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1 Introduction

Though the pun in the title is intended, it is not quite fair to Piet Wesseling as he is a
person who promoted the development of multigrid to far more complicated equations
than the Poisson equation. Instead, the title should be taken more literally as it truly
relates to the contents of this note. It is shown that while multigrid is renowned for his
efficiency in solving partial differential equations, integral equations and what not, it can
also, maybe surprisingly, be used for the multiresolution of images [6, 7]. For the latter,
first a second order partial differential operator is applied to an image function followed
by a pyramidal decomposition using typical multigrid operators. The case of isotropic
homogeneous diffusion (Poisson) provides an example that leads to a linear multiresolution
scheme. Under certain conditions the scheme boasts perfect reconstruction.

Piet Wesseling has been a scientific advisor at CWI for many years. Every question put
forward to him, by no matter who, is answered courteously and thoughtfully. Occasionally
his answers start by the phrase ”Ik heb er geen verstand van, maar . . . ” (”I am not
knowledgeable on this, however . . . ”). Then I always pricked up my ears because I knew
that an important remark was at hand. I hope he enjoys this tribute.

2 The multigrid image transform

Firstly we recapitulate particular items as they are used in multigrid methods [1, 2] for
the solution of large linear systems of equations arising from discretized (elliptic) partial
differential equations. We confine ourselves to the Poisson equation. Secondly we show
how to incorporate those items into an image transform to be.

2.1 Recapitulation on Poisson and multigrid

We consider the Poisson equation in two space dimensions

Lu ≡ −∆u(x) = f(x) (1)

on a rectangular domain Ω ⊂ R
2 with adiabatic boundary conditions. For discretization

we employ a set of rectangular and increasingly coarser grids (vertex-centered):

Ωn ⊃ Ωn−1 ⊃ . . . Ωk ⊃ . . . ⊃ Ω0.

The grid at level k is described as follows:

Ωk ≡ {(xi, yi) | xi = o1 + (i − 1)hk, yi = o2 + (j − 1)hk} (2)
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Figure 1: Example sequence of increasingly coarsened grids used in multigrid (vertex-
centered)

where (o1, o2) is the origin and hk−1 = 2hk. See Figure 1 for an example. S(Ωk) denotes
the linear space of real-valued functions on Ωk

S(Ωk) = {gk | gk : Ωk → R} ,

where gk ∈ S(Ωk) is called a grid-function. We note in advance that images as in Figure 2
relate to such grid-functions as two-dimensional arrays in which each element corresponds
to a single pixel (with a grey-value assigned to it) in the displayed image. Discretization
leads to

Lnun = fn (3)

where
Ln : S(Ωn) → S(Ωn) (4)

is the discretization of L and fn ∈ S(Ωn) is the discretization of f . We discretize by
means of bilinear finite elements which gives rise to the following 3 × 3 stencil (or mask)
in the interior of the domain:

Ln ∼ 1
3




− 1 − 1 − 1
− 1 + 8 − 1
− 1 − 1 − 1


 . (5)

We find the solution un ∈ S(Ωn) of Eq. (3) very efficiently by means of multigrid, operat-
ing on all levels k = 0, . . . , n. We opt for the sawtooth multigrid cycle (this is not essential
but transparent) where at each level k a smoother (like Jacobi, Gauss Seidel, incomplete
LU, . . . ) is applied after the coarse grid correction (CGC) defined shortly. Let un be an
approximation of un. The CGC at level k (meant to reduce the smooth part of the error)
reads:

rk = fk − Lkuk; (6)
rk−1 = Rk−1rk; (7)

solve (approximately) Lk−1ek−1 = rk−1; (8)
ũk = uk + Pkek−1. (9)

The grid transfer operators mentioned are defined as follows. The restriction operator

Rk−1 : S(Ωk) → S(Ωk−1), k = n, . . . , 1 (10)

transfers the residual onto the coarser grid, and the prolongation operator

Pk : S(Ωk−1) → S(Ωk), k = 1, . . . , n (11)
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interpolates and transfers a correction for the solution towards the finer grid. Here bilinear
interpolation is the natural choice for Pk and the restriction is chosen to be the transpose
of the prolongation. The operators Lk, k = n − 1, . . . 0 are produced by the Galerkin
coarse grid approximation which gives rise to the same stencils as in (5), see [5].

2.2 The Poisson multigrid image transform

We are not building yet another Poisson solver in this note. Instead, we do now a bit of
reverse thinking. We start of with a greyscale image and consider it to be the solution un

of Eq. (3). We compute the right-hand side fn that goes with it (as an image, it reveals
edges at Ωn). Moreover, we compute its representations on the coarser grids:

{
fn = Lnun,
fk = Rkfk+1, k = n − 1, . . . , 0 (12)

(the image of fk reveals edges at Ωk). This concludes the first step of our multiresolution
scheme. The next step requires the multigrid approximation operator

Ek : S(Ωk) → S(Ωk), k = 1, . . . , n (13)

which is defined as:
Ek ≡ L−1

k − PkL−1
k−1Rk−1, k = 1, . . . , n. (14)

This operator used to live as a recluse in the books of Hackbusch [2] and Wesseling [4]
and the like, existing solely for the sake of convergence proofs in multigrid theory. Here it
finds a new station in life, serving as a high-pass filter in the scheme. The multiresolution
decomposition reads as follows:

{
a0 = L−1

0 f0,
dk = Ekfk, k = 1, . . . , n.

(15)

The gridfunction a0 is called the approximation at level 0 and the dk are called details.
The reconstruction counterpart reads simply:

ak = Pkak−1 + dk, k = 1, . . . , n. (16)

The gridfunction ak is called the approximation at level k. The reconstruction is a perfect
one (if we take the outcome of the decomposition as the input for the reconstruction we
obtain the original image, an = un). The proof is in [6].

3 The multigrid image transform in action

An image of Piet’s face serves as an example, see the top left image of Figure 2. The
dimensions read 1537 by 1025, leading to 1575425 pixels. We try and reduce these numbers
severely, but would like to retain an acceptable level of image quality. We apply the above
transform with 10 levels, producing the approximations a0, a1, . . . , a9. Where operations
L−1

k vk on intermediate gridfunctions vk are required, we employ the multigrid algorithm
from [5]. The bottom right image of Figure 2 depicts a6. Its dimensions read 193 by 129,
leading to a mere number of 24897 pixels. For reasons of comparison, we include pictures
of plain downsampling (top right) and the approximation by means of the Daubechies 4
wavelet transform (bottom left) on similar coarse grids. If we focus on the hairy parts we
observe that plain downsampling yields rather chaotic results, that Daubechies 4 yields a
far better result but looks a bit blurred and that multigrid appears the most respectful
for Piet’s image (small wonder). But then again, I might be biased.
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Figure 2: Top left: original image. Top right: plain downsampling, three levels of coars-
ening. Bottom left: approximation by the Daubechies 4 wavelet transform, three levels of
coarsening. Bottom right: approximation by the multigrid image transform, three levels
of coarsening.
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4 Final remarks

A (linear) multiresolution scheme has been presented, based on multigrid operators and
the Poisson equation. When used for the approximation of an image at a coarsened grid
it shows little or no blurring. We make a few additional remarks on the scheme. The
costs of the scheme appear to be within the same range as wavelets, thanks to multigrid
efficiency. Boundary conditions are an issue that can be dealt with neatly. The scheme
lends itself to generalization, instead of the Poisson operator we may opt for a more
general elliptic partial differential operator to serve special image processing purposes.
Particular diffusion tensors of interest can be found in Weickert’s book [3] where they are
used in the context of time-dependent partial differential equations. Elaboration of the
latter remarks is beyond the scope of this note. For more information, see [6, 7].
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