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Let F be a field and let K be the vector space of dimension 27 over F whose elements are the
triples x = [x1,x2,x3] with x; € M3(F), the set of 3 X 3-matrices with entries in F, for i = 1,2,3,
with addition and scalar multiplication taken entrywise. Set

= {g € GL(K): there is A EF" such that, for all x € K,%x8) = Agx)},

where ZK—F is the cubic form Zx) = detx] + detxy + detx3 — trace (x1x2x3). Then

[E E] is the universal cover of the simple Chevalley group Eg(F) (the split form) and E is the
extension of E by diagonal automorphisms. The center of E is Z(E)= Hom(Z3,F ). Let &} ik be
the element [x,x2,x3] of K all of whose entries are 0 except for the j k-entry of x;, wh1ch is 1.
Furthermore, set e; =ekfori =123 ande = e] + ey + e3. Itis well known (cf. MAaRs
[9]) that E has three orbits on P, the set of 1-spaces of K, with representatives <x >, where x is one
of ey, e1 + ez, e. Clearly, Z(E) fixes P pointwise, and the group E = E / Z(E) acts faithfully on
P. Let () be the inper product given by (x,y) = trace (x}fyl + x2y3 + x3y3) for
x = [x1,x2,x3), ¥y = [p1,y2,y3]1 EK. Define a map # :K—K, x » x¥ by the identity

Ax + v) = Ax) + F oy + yFp? + aqy),
for x,y € K and ¢ an indeterminate over F. (The map # can be explicitly defined as

#

xT = [X# - JCZXS,Xit - x1x2,x‘f = x3x1};

here c#, for a 3X3 matrix ¢ = (c,-j), is the 3>(3-matrix with i,j-entry c,? = ¢kICmn — CknCml,
where (jkm) = (iln) =_(123).) Thus # is a quadratic map and the set {<x> € P x# = 0} is
E-invariant. The three E-orbits of points < x > in P can be distinguished by invariants as fol-
lows

(). x = 0, x 7 0. We refer to these <x > as white points. For such a point, the stabilizer in E
is E<x> = QL, a parabolic subgroup with unipotent radical Ru(E <x>) = @ =F!6 and Levi
complement L (so Q N L = 1) such that [L,L]= D5(F), the spin group of type D5 over F and
L/[LL}=F".

@i). Ax) = 0, x# 7 0. These will be called gray points. For such a point, E<x> = QL
where 0 = R,,(E<x>)~ FI6, 0 N L =1,[L,L]= B4(F), the spin group of type B4 over F,

and L/[L,L)=F".

(iii). Ax) 7= 0. These we designate as black points. For such a point, E <x > = F4(F).

The collections of white, gray, and black points will be designated by #,9,4, respectively. Both #
and % are E-orbits. Two points <x >, <y > € & are in the same E-orbit if and only if Z(x) / Ay)
has a cube root in F.

We note that <e> & & and that its stabilizer F = f-:e = FE <¢> preserves (-,"), whence the map
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x » x¥ (x EK). If char(F) 3= 3, then egel, where 1 denotes the orthogonality relation in-
duced in K by (), and K = <e> @el. In any case, we will let ¥V = K/<e>, a 26-
dimensional module for F.

For u,v €K, we define uXy = (u +v)* —u¥ — v#, This is an Finvariant symmetric, bil-
inear map from K to K. If U C K, we will also write uX U for the union of uXw over allw € U.
The group E preserves the relation x Xy = 0 for x,y € K.

The present definition of the Eg(F)-module, which is based on a Lie subgroup of type 42424 in
the sense that such a subgroup obviously stabilizes 9 (see the section below), comes from
FREUDENTHAL {6]. Other explicit forms of &, related to subgroups of Lie type 4145 and F4,
respectively, are given by DicksoN [5] (see also CHEVALLEY [2]) and JacoBson [7]. More informa-
tion of the module under study here can be found in recent work of ASCHBACHER [1].

It is our purpose to determine the orbits of E on the 2-spaces (i.e., the 2-dimensional linear sub-
spaces, also called the projective lines) of K under the assumption that ¥ = Fg, a finite field with ¢
elements. The main reason for restricting to finite fields is brevity of exposition; in fact it is not

hard to extrapolate from the present text a qualitative result on the E-orbits of 2-spaces for the case
of an arbitrary field.

Remark When F = Fgq is finite of order g, the order of E is q3‘6(q12 1)(q9—l)(q8~1)
(q ——1)(q -—1)(q - l) and the E-orbit sizes are as follows:

12 _ — — 12 _ 9_
o = 4 — 1X¢° D g = 4414 12(4 L Chmt) §

@ -g-D (" — Dg-D
and |8 = q'%(g°~1Xg°> — 1).

The next five sections are organized as follows: Some useful elements of E are explicitly given
in Section A. In the subsequent section P we introduce some notation and preliminary facts that will
prove useful throughout the analysis. In section W which then follows we will find all E-orbits of
lines containing a white point. Then we move into section B determining the F-orbits of lines of K
which contain <e>> and from this all E-orbits of lines which contain a black point. Finally, in sec-
tion G we determine the E-orbits of lines containing gray points.

To end this section, we recall some standard notation for groups. We write Sym,, for the
symmetric group on n letters and Z,, for the cyclic group of order n. Let p be a prime, and ¢ = p¢
a power of p. We use ¢" and Fj to denote the elementary abelian p-group Zg" aund [g"] for a p-
group of order ¢”. The multiplicative group of the field F is denoted by F~ (or, if F = Fg, also by
Z;_1). For groups 4 and B, A.B denotes an extension with normal subgroup 4 and quotient B.

Section A. SOME ELEMENTS OF E.

The following identity, first observed by FREUDENTHAL [6], has been used by SPRINGER [10] to
characterize the pair of the bilinear form (-,*) and 2.

x¥¥ = Axx (x EK).

From this identity, many others can be derived, cf. JACOBsON [8]. Here are three important ones,
valid for all x,y € K:

x ¥ X(xXy) = Axy + xF ),
xX(x® Xp) = Axy + xy)xF
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Xp)* +xF3p® = ¥y + oy Fx
Using these, it is straightforward to derive that, for x,y € K with (x,y)=0 and <x>,<y> € ¥,
the map #x,:K—K given by

2 =z 4 yX(xX2) — @y)x ( €K)
belongs to E. Tt fixes x and the subspace y XK.

By H we denote the subgroup of E consisting of all elements which are diagonal with respect to the
standard basis ejk (1 <ijk < 3). An arbitrary element # € H has the shape h(a,B,v.8,6,$) =

on'"‘S ! ofy o 76§ -1 Bvﬁc 1% a e  afte &
1,8 ¥ 18 la ya IB 183—- g- e ,8 y lfa—lﬁ—le—l ae‘—l B-—le-l
yla7! By ‘r -1 ﬁé‘ O R S S

Here, cach entry represents the scalar by which the corresponding basis element of K is multiplied
in the action of h.

The diagonal transformations d, (a € F*) given by

a”! 1 1
1 a o

i a a

« a a
1 1 1
1 1 1

a 1 1
o 1 1

with the same convention as for # € H, complement H to a maximal diagonal subgroup of E estab-
lishing that the morphism A:E—F" given by 2Axf) = Mg)x) for g € E and x E K, is surjective.
The next set of transformations in E constitutes a subgroup isomorphic to a central product
SL3(F)oSL3(F)oSL3(F). Forg),g2,83 € SL3(F), we let 55, .. . be the transformation s given by

t = (gxigr hgaxagi Lgaxag!) (x = [xi,xgxs3] €K).
Many 2-spaces that we shall encounter have a conjugate in the 9-space < e};:1 < jk <3 >
the subgroup {s,, ,..a: g1.82 € SL3(F)} == SL3(F)XSL;(F) stabilizes this 9-space and yields auto-
morphisms suitable for deriving some of the transitivity results needed in the sequel.

Section P. NOTATION AND PRELIMINARY FACTs.
Let £ be a collection of subspaces of K and M a subspace of K. We will set

AM) = (UESUCM) and M, = (U EF5:UDM).

When either A M) or M, consists of a single element we will, by abuse of notation, identify AM) or
M 4 with this single element.

Next, suppose .# C P, that is, a set of 1-spaces of K, and k is a positive integer. By % we will
mean the collection of k-dimensional subspaces of K all of whose 1-spaces belong to £ Thus, £ =
{M<K:dmM = k, P(M) C #}. A member of #; will be called a purely white k-space, and a
member of % a pwely gray k-space. U F =F, and I €P;, we wrte dist()) =
(H#DIL,ILKDI, | RD)) for the distribution of the points of / among the E-orbits,

The permutation representation of £ on #7is a parabolic representation; it is well known and

supports the Lie incidence structure Eg (F) (cf. COHEN & COOPERSTEIN [3] and COOPERSTEIN [4]).
The next several results can be deduced easily from facts about this representation.
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(P.1). The permuation rank of E on W'is 3. For w € ¥, the orbits of Ew on Ware {w},
Aw) = {xEW. <wx> EW) = (x€#: wXx =0} and T(w) =
= (xXEW wXx #0} = {(x €W A < x,w>) = {w,x}).
We will write w’ for the set {w} U A(w), and, if 4 is a subset of #; we write 4’ for N, cw"
We will also write x ’ instead of <x > ’if <x > €% When F = F, we have

[A(w)| =g(g* +1)(g> +1Xg> +1Xg+1) and |Tw)| =¢%(g* — 1Xg*+1) /(g—1).

®2. Le xwe¥ with x&Tw). Set Skxw) = <w,x,x' Nw’'>. Then
S(x,w) = WXx)XK and dim S(x,w) = 10. For any x,,w; € ¥(S(x,w)) with x| EL'(w,), we
have S(xy,w1) = S(x,w). Additionally, writing S =S (x,w), we have

@)  (HS8),%3(S), C ) is a polar space of type D over F;

(i) the stabilizer Eg of S in E is a parabolic subgroup isomorphic, but not conjugate in E 10 E,;

@) [Ru(Es),S] = O

(iv) a Levi complement to R (Eg) in Eg is transitive on P(S) \ W(S), which consists of gray points.
We will refer to the subspaces S(x,w) as symplecta and denote the collection of such spaces by 52

(®3). ¥, 5 & if and only if k<6. The stabilizer Ey of U € W;, is a parabolic subgroup. If k 5,
E is transitive on #x. The group has two orbits on 'Ws which can be distinguished by maximality: one
orbit consists of those purely white subspaces which are maximal under inclusion, the other consists of
purely white subspaces which can be embedded in an element of #.

We will denote by #%#; the set of all elements of #5 which are maximal among the subspaces in #.
The Tits building associated with E can be obtained as a geometry whose elements of the various
types are as indicated in the E¢-diagram below. Incidence is symmetrized inclusion except for unor-
dered pairs from .#%; X %; and X #, (up to ordering), in which cases it is “meeting in a member

of #3” and “#5”, respectively.
o—o—i’{f—o——o

W N W MW &

(PA). If S € then S coniains representatives of both E-orbits in ;.

(P.5). The permutation rank of E on & is 3. For S €% the orbits of Eg on & are {S}, 8(S) =
{RESL:S NREAW;), andy(S) = {RES SN REW}

We remark that the incidence system (¥, {Ug: U € A¥#5}, € ) is isomorphic to (#;%;, C ), the au-
tomorphism being established by an outer automorphism of E.

(P.6). E has three orbits on WX For any w € W and S € %, precisely one of the following occurs:
®» wePS)y

@@ w’'nNSewW\ A4

@@ w'nNS=0

When F =F,, then, for wE# and S ES, we have [{RES:wEPR)} = |#S)I
@ —1g*+1)/g=1), {RES w NREW} = |{<x>€W: x'NS5EW}
g>(q* +1)g* +1)g* +1)Xg +1), and {RE #w NR = 0}l

[/ ]
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H{xe#:x' NS =0} =g

®D. Ify €Y then lygl = 1, andyy = y* XK.
Proof. Since E is transitive on ¥ and 4S) 5% & for each § €% we have y, 7% @. On the other

hand, if S % R €% then, by (P.5), P(R N §) C #. It follows that |yy|<1, and so |yg| = 1.
The remaining assertion follows by a direct check fory = e, + ej.

Section W. LINES WITH WHITE POINTS.

From now on we shall assume that F = [, a finite field of order g. The first result is a direct
consequence of (P.2) and (P.3).

(W.1). Letl € P, and assume |#({l)| = 2 Then either
@ lewand i‘,:—: [gP1(SLy(F)X SLs(F)).F"; or
@ #DI =2 PO\A) C %4 gl = 1, and E;= [¢1D4(F).(F' V.2

Wesel f =#; and % = (IE€P,: |#U)| =2). Then |Z| = |E|/|El, for [€Z, is as
given in Table 1 below (i =1,2).

W2). Let IEP, weEH) y ERl and assume yo N w' = 0. Then P(D\{w,y} C % and
E, = E,, == B4F).F . Thereis a single E-orbit of such lines . The g — 1 black points of I occur in
(3,9 — 1) Ey-orbits of length (g —1) / (3,4 —1).

We denote the collection of such lines by 4.

Proof. By (P.6), E is transitive on pairs (w,S) € #X& for which w’ N § = 0. The subgroup
Es, = Ds(F).F" is a Levi complement to the unipotent radical in each of the parabolic subgroups
Eg and E,,. It has has a single orbit on 4S) and, if y € 4S), then E.,,,~ = E,, = Eg, =
B4(F).F". It follows that E is transitive on .. Take w = <e; >,y= <e; + e3> and
I= < w,y > . Then lis a representative of such a line, and P(D\{wy} C %, a direct check, us-
ing elements of H, shows that elements <u > and <v > of (/) are E;,-conjugate if Hu) / Av)is a
cube in F*. This completes the proof of (W.2).

(W3). The group F has two orbits in W, with representatives <e; > and <x >, where x =ely. The
respective stabilizers are F, - = B4(F) and F.,- =QL a parabolic subgroup of F with unipotent
radical Q =F", and Levi complement isomorphic to Bs(F). F.

Proof. By (W.2), we have that E <ee, > = 1§4(F)F'. From its action on # < e,e;>), it follows
that F, > == 134(F). This accounts for one orbit with ¢%(¢® + ¢* + 1) points of #. The
geometry (1I’(e¢),1/f2(e*), C) is the Lie incidence structure F,;(F). From this it follows that
#el) is an orbit of F containing <x>>, that F.,» is as stated, and |<x>f| =

@2—1Xg* -1 /(@*—1)Xg—1). But then | <e; >¥| + |<x>F| = [#1, and hence all
points in % have been accounted for.

(W.4). The group E has two orbits of lines | for which #W{I) % @ = KI). One orbit is . Denote the
other orbit by %. Then, for | €%, |W(1)] = 1, PY\H) C % and E; = [¢'S]1 B,(F).F'.

Proof. Let ] € P, with #{{) 5= @ 7 %[). Since E is transitive on %, without loss of generality we
may assume <e> & P(l). By (W.3), F = E, has two orbits on #_ Consequently, E has two orbits
on lines as described above, one of which must be 4. Suppose ! €%. By (W.1), |#())] = 1 and
if {x} = W), then P()\ {x} C & Since Fis transitive on #{el), the group E, is transitive on
{y € #:x € #{y1)}, from which it follows that E; = E,; is transitive on (/). By (W.3), for
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y € &), we have l?',w = [q‘5}f}3(IF)IF'. Taking x = <el, > andy = < e >, elements of
H suffice to establish trausitivity on /\ {x,y}, whence transitivity of E; on (). Thus, E, =
[g'*} B3 (F).F" as claimed.

Remark. % consists of (3,4 —1) E-orbits of equal length; they can be distinguished by the value
(modulo cubes) in F” of 2 on a black point of I €.%.

W.S). Letl € P, Assume |'#()| = {w} for some w € Wand I\ W{I) C ¥ Then one of the follow-
ing holds

() Iyt B, wXI =0, and By = [¢*) B3(F).(F )%

(i) ls= @, for each y € P(D\{w), the space yy N w' belongs to W, and E, =
[¢™) SL4(F).(F* ).

In each case there is a single orbit, which we denote by % and .%, respectively.

Proof. Let / € P, be such that #{/) = {w}, and P(H\{w} C % .

¥ [y 5= @, then, by (P.7), I} =1. Put § = lpand write Eg = QL where Q = R,(Eg)and L a
Levi complement. Then (Q,§] = 0, and L is transitive on {m € P,(S): |#{m)| = 1}. For such a
line m, we have L,, = [¢*].B;(F).(F")*. From this it follows that E;, = Eg;, = QI, is as stated
above. Taking w = <e; > and ! = <el, + e};,w>, it is readily verified that w X/ = 0, whence
@®.

Suppose now that [, = @. Lety €P(D\{w}. Thus yEZ Set S =y f w ES, then | =

<wy > C §contradicting I, = @. If w’ N § = 0, then, by (W.2), P(D\ {wy} C &, again
a contradiction since P(/)\ {w} C % According to (P.6), for all y € P(I)\ {w}, it follows that
ye N w €#;5. Also by (P6), E is transitive on pairs (S),w)) ESX¥ such that
SN <wy >'EH. Let Eg = QLwith Q = R,(Es)and L a Levi complement. L, = Ly
where U = § N w’. Now Ly== [q")SLs(F).(F") is transitive on ¥S) and, for y € 48S), we
bave Ly,= ([¢%"“}SL4F).(F'Y. This shows that E is tramsitive on {(wy)E #XE:
w’ N (y)y € #5), from which it follows that E is transitive on & = {I€Py:|#N| = 1,
P(O\W) C 4ly = @) and, for | €%, the subgroup E; is transitive on #/). The rest of (W.5)
follows easily from this.

Now if ] € Py, #(l) 5= &, then I must satisfy one and only one of |#{))| =2; |#D]| =1

and H/) # @; or |#D| = 1 and P(N\ (/) C ¥ We have therefore completely enumerated the
lines / containing white points. We summarize:

(W.6). If | is a 2-space of K containing a white point, then it is contained in & for a unique
i €{1,2,3,4,5,6); furthermore, its stabilizer E; and distribution dist(l) are as given in Table 1.

. Table 1.

E-orbits of lines / containing white points.

orbi E, orbit size description dist (I
i 12 _ 9 _ 8__1)( 6_D
5) SL,(F)XSLs@)WF| - =1Xg —g — (g memb +1,0,0
A 1971 SLa(F) 5(F). (q‘-l)(qs-'l)(qz—"l)(q—l) er g %
8¢ ,12 9 s 4 + 1) bf %
161 D (FL(F 2.2 9°(q"* —1Xg° —1)(g> — (g kecant 2.4—1,0
% [¢"}D4(F).F'Y 2 — g 17 .ecan (2,9
in symplecton
20,12 9 5

n - g®@ =g’ —1g’ =D < + > fl.lg—1

'% B4(F)-F (q4_D(q__l) €1,€2 €3 K ) )
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orbit E, orbit size description dist ()
167 3 . 12— - )¢~ 1xg°— 1)
% [¢'°1B;(F).F q @—g-D <e,ely > 1,0,9)
% [q24]“§3(|:).(r‘)2 q3 le—l)(qg — 1)(42_1)(‘]1 + 1) tangent (l,q O)
—1 ?
12 9 (q 8 ! 3 5 n symplecton
% | g2SL.Ey e —De SD@ D, L s 1,00
(¢*-g—-1y

Section B. LINES WITH BLACK POINTS.

-

In this section F = E,= Fu(F), V = K/<e>. We will determine the orbits of F on V.
From this we deduce the orbits of E on lines containing black points and the stabilizers of represen-
tatives. The main result is

(B.1). The orbit structure of F on P(V) = {<ex>/<e>:x EK \ <e>} is given in Table 2,
where € is one of 2,3,4,5,7 and such that g=e¢ (mod 6).

Table 2.
F-orbits on P(V).
orbit number of stabilizer orbit size description xin
type orbits Ferx> of x et
I 1 B4(F) g+ q*+ 1) |<x>, x*=0,(xe)5%0| no
- 12 _ 4
I 1 [¢51.B5(F).F" ﬁ~—ql—§91—1L—l)— <x>, x* =0, (xe)=0 | yes
12 _ 8 __
I 1 [} Go(F)F* q4-(‘1—;§%———l)- <x>€9 (xe)=0 |yes
v 1 [q1B:(F)  |gA@P—1)g*+1) |<x>€Z (xe)#0 |mno
— - 120,12 _ 8
v 9-¢< D4(F) g(g —g"~1) . . 1o
6 (g*— 1y generic in a special
plane
- 12¢,12 8 __
VI 85 + 0.7 b2 |ete U=l no
’ ' gt -1y
~ 12_ 12__1)(48_1)
vII 8oa+5 Da(E).3 q°4q no
(X3 e,7 4( ) 3(q4_1)2
- 12 12__1)( 8_1)
VIII 5, D4(F).S 1 q
3 4(F).Sym; 6@ 1] yes
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orbit number of stabilizer orbit size description x in
type orbits Feox> of x et

q +1 '-285,7“28&4" e,3

3 12(,8 _ 1y g4 —

X 3 D4(F) g7~ -1 generic in a triality no
twisted special plane

A Ca ) A
X 2,7+28,4+63  |PDu(F)3 3 yes
q—1+8,+8., 25 12,12

XI B E— Dy(F).2 g(g b generic in a duality 1o

twisted generic plane
. 120,12 _
XIL Satost+8s  |Phe®2 |42 =D yes

2

The stabilizers [¢'1G,(F).F" in III and [q7].§3(F).F' in IV are contained in the stabilizer
[¢"°).B3(F).F" in TL The stabilizers D4(F).2, 2D4(F), and 2D4(F).2 in V, VI, X1, and XII, respective-
ly, are contained in a stabilizer B4(F) in L. If char(F) = 3, then V has a 25-dimensional irreduci-
ble submodule, namely e/ <e >, whose orbit structure can be determined by the last column.

We will prove the result by establishing the existence of each of the orbits and showing they
have the required stabilizer. Since the sum of the sizes of the orbits in the table is (g% —1) /(g ~1),
the assertion (B.1) will then follow. After this has been established, we will determine, for represen-
tatives /, the distribution disz(/) and the action of E; on P(J).

(B.2). Thepoint <x> = < e > is a representative of orbit I.
Proof. Clearly eff = 0 and (e,;) % 0. In (W.3) wesaw that F < oo, > = F <, » = By(F).

B3). Letx =el;. Thenx* =0, (x,e) = 0and Fepy> = Foyn = qP.By(F)F areasinlil
Proof. This was shown in (W.3).

B4). Letx = el +els. Then <x>€ ¥4 (x,e) =0and Fe,p» = Feys = [¢"]1Gy(F).F as
in I1.

Proof. Let y =el;. Then x¥ = y and (x,e) = 0 as can be easily computed from the defining for-
mulae for (-,) and #. Note that y* = 0 and (y,e) = 0 and hence <y > is a representative of the
orbitin IL. Set 0 = R,(F<y>) and let L be a Levi complement to Q in F, . It is easily com-
puted that the symplecton § = xgp = yXK = < ey, b, els, eh, ebi, by, ebs, s, ks, ey >
satisfies y €S and S N et = < § Ny’ > . The subgroup Q fixes every line on <y > in et,
and, for every such line m (5% < y,e > in case char(F)=3), is transitive on P(m)\ {<y>}.
Thus Q.,» bas index ¢ in Q. Since L= B3F)F acts irreducibly on the 8-space
<S Ny’ > /<y> (as can be deduced from the F4- geometry), it follows that L is transitive on
the set of all lines <y,z> of <S Ny’> = S N et for which z¥ £ 0. Since < y,x> is
such a line, Lo, = G,(F)F . Hence F <, > = [¢"*]1G2(F)}F". Asx® = y, we conclude that
Feys = Foprn = [q")Go(F)F" is as asserted.
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BS). Letx=el; — ely. Then <x> € & (x,€) 7 0, and F <> = [q7}.B3(F) as in IV.

Proof. Let y,5,Q,L be as in (B4). Then x* = y and Ax)=0, so <x> € & Again, xy = S and
F<y> C F<ys. In this case, however, x@&S Ne* = < S Ny’ >. The Levi complement L
is tramsitive on the set of all lines m in S lying on <y > for which |#{m)| = 2. For any such line
m, the unipotent radical Q is transitive the g —1 points of &m). From this it follows that F . =
[g71B3(F).

In the next several proofs we establish that the remaining ¢* —¢* —¢' points of ¥ all be-
long to a so-called (twisted or untwisted) special plane. By definition (cf. ASCHBACHER [1]) a 3-
space « in K is special if it has _‘_p:ecnsely 3 noncollinear white points and every point of 7 not on a
line through two white poinis of = is black. There is a unique E-orbit of such 3-spaces.

Letw = < ej,ej,e; > . Thisis a special plane. Let, = < &jsk > where {z,j,k}
(1,2,3). f x = <u> € P(r), then Hu) = 0 unless x € P(}) for some i € {1,2,3}, and u¥ 0
unless x € {ey,ez,e3}. Thus, Ng(m)/Cp(w) is isomorphic to a subgroup of Sym,. If
{ijk} = {1,2,3}, we set S;= <e,e>4 Then §; N <eg>'=0 Since Es,=
Ds(F).F", there exists an element 7; € Eg,, interchanging e; and ¢;, and hence r; EF = E,. Then
the subgroup T = < 7,m,m > of F fixes » and induces Symy on {ej,ez, es3}. Clearly
E, ¢, e = D4(F) acts in each of its three distinct linear representation of degree eight on the spaces
{e1,€2,e3}* N (e XK) where i = 1,2,3.

The following observation is crucial: if x=<u> €7\ U }=) < ¢, >, then 7 =

< e,x,u® > . It follows that 7 is the only F-conjugate of m containing x =<u>>, and

Dy(F)== Ce(m) < Fx < Fapn> < Np(m)=2Dy(F)Sym;.

Hence F...>/Cp(m) is a subgroup of Sym 3, completely  determined by
(<ex>F N P(m)/<e>|. Letx= <u>€Ex\ Ul <ee >.As we are only interested
in the F-orbit of < e,u > modulo <e¢> we may assume u = e, + ae; for some a €F\ {0,1}.
Now the elements of T which induce (23), (12), (123), (132) (13) map <e,u > / <e> onto

<eey + fes > /<e>withf = a ', 1—a 1 —a” ,(I—a)’and(l a”)7!, in the
respective cases. This implies that, for gemeric @, ie., a % 0,1,—1, 2, ,2(1+ —3), we have
l(<ex>F N P(z)) /<e>| = 6. To be more specific in the remaining cases, that is, for non-

generic a, we must consider the different values of 4 modulo 6.

(@- ¢=! (mod 6). The above 7 values for a are all distinct, so we get (g —7) /6 orbits with F, =
DyF). For «a= —1 2 we have |(<ex>F N P(m)/<e>| = 3, and, for

a=(1£V=3)/2, we have (<ex>F N 7m)/<e>| = 2. Thus, we get two additional orbits,

one with F_, > == D4(F) 2, the other with F, , - = D4(F) 3

(i)). ¢=2 (mod 6). Thus g is an odd power of 2, and so (l+\/———) /2 (that is, primitive cube roots

of 1) do not exist in F. Since 2=0,1=—1, and a = —;— corresponds 10 u = e3, we only need ex-

clude & = 0,1; thus there are (¢ —2) / 6 orbits with stabilizer F., , - = I:h(lF).

(iii). g=3 (mod 6). Now ¢ is a power of 3, s0 —1 = -;— = (1=V — 3)/2; with such an a we get
an orbit with stabilizer F.,, » = f),,(lF).Symg. Excluding « = 0,1, —1, we get (g —3) /6 orbits
with F<ex> DA(F)

(iv). g=4 (mod 6). Now ¢ is an even power of 2, and two distinct primitive cubic roots of unity ex-
ist, leading to a single orbit with F<,X? == D4(F).3. Excluding @ = 0,1,(—1%=V —3) /2, there
remain (g —4) /6 orbits with F_,, - = D4(F).

v). ¢=S5 (mod 6) Now (1=V —3) /2 do not exist, so we get (for a = — 1,—2-,2) a simple orbit
with Fe, > == D4(lF) 2 and, for a generic, (g —5) /6 orbits with F, > == D,(F).



476 ARJEH M. COHEN AND BRUCE N. COOPERSTEIN

Note that the lines <e,u>, for u = e; + ae;, contain three gray points and that the remain-
ing g —2 points are black since they meet each of < e;,¢; > in a point, but do not contain any of
<ey>,< ey >, <ey>.If Fooyn = D4(F) or Dy(F).2 then at least one of these points is
fixed, which we may assume tobe < u > . Butthen F o ,,> S F oy = Fo, 5 = ByF).

We now proceed to the “twisted” cases. # may be viewed as the set of points of its “algebraic
closure”, # = n®¢F ( F an algebraic closure of F) fixed under the Frobenius map Frob, acting as
a v of on the coefficients of elements with respect to a given base, say ey,e5,e3. By a we].l known
consequence (cf._ SPRINGER [11]) of Lang’s result on the vanishing of the first order Galois cohomol-
ogy, the group F, CF(o) of all elements of F (the algebmc clpus‘thrf_ of F) which are fixed by a
given automorp_hxsm o of the form 7o Frob, for some inner autGmorphist r of 7, is isomorphic to F.
Similarly, the F,-module V, is lsomorphxc to the F-module V. We shall apply this principle to find
orbits in twisted versions 7, of =.

(B.6) (Triality Twisted Version). Let v be the member of T =Sym; which induces (123) on
{e1,e2,¢3}. Then 7 is normalized by o = ToFrob,, so 7, is well defined. It has F-basis /1 = e,
fo = hey + Mey + X717 4ey, fy = Mep + )\ 1- ey + Aes, where A EF is a fixed primitive
(g* + g + 1)-st root of unity. All points <u> of 7, satisfy Hu) 7 0. This follows from the fact
that no point in P( < ¢,e; > ) is fixed by ¢. Thus, any line contained in a triality twisted special
plane contains only black points. It is readily seen that, for <u> € P(7,), we have

3D4F)=C5,@) < Fo)aus> < Fo)aeu> < NE (@) =3D4(F)3

(and, by the argument above, we may identify F, with F and 7, with a plane of K containing
< e>).

As in the untwisted case, we need to know, for 7 in N§ (7,) inducing (123) on {e},e3,e3}, and
u €7,, when
*) <emu) > =<eu> mod <e>.
A simple computation, using 7(f,) = (A7 + AT+ Ne — fo — f3 and 1Y3) = f; shows that
(*) is satisfied with 4 = af; + Bf; (0,8 €F) if and only if * — «f + f# = 0. We consider
the separate cases of ¢ modulo 3.
@i). ¢=1 (mod 3). The above equation in &8 has two distinct solutions up to scalar muitiples.
These lead to two orbits with F,, > = 3Dy(F).3. The remaining (g —1) / 3 orbits have F, > =
3D (F).
(). ¢=2 (mod 3). There are no solutions, so we get (g +1) /3 orbits with F, , > == 3D4(F).
(iii). ¢=0 (mod 3). The solution « = — B leads to a single orbit with stabilizer F.,,. =
*D4(F).3. The remaining ¢ /3 orbits have F,,> = >D(F).

(B.7) (The Duality Twisf). We now take ¢ to be the composition of the Frobenius automorphism
Frob, with an automorphlsm 7€ T which induces (23) on {ey,e;,e3}. As in (B. 4), 7 is o-invariant.
The ﬁxed point space 7, has F-basis fi = e, f2 = €2 + €3, f3 = hey + A ley, where A €F is
a primitive (g +1)-st root of unity. It has a unique point <u> for which u®* =0, namely
<u>= <e > and K7,) = P(< fo,f3>) Foruem\(<e > U <fo,fz>) we
have

DBy =(F,) < Folaws < Fodeeu> < NEF)=2Dy(F)2.
Setting u = afy + f3 (a €F) we get that <e,n(u) > =<e,u> mod <e> if and only if
(#) 2a= —QA+A7hH
There are two cases to consider.
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g% %ﬂ (mod 2). Then (+) has no solutions, so there are g /2 orbits with stabilizer F,,> =
(ii).4 ( q)El (mod 2). There is a unique solution to (+), leading to a simple orbit with stabilizer
Feoys = 2D4(F).2. The remaining (g —1) /2 orbits have F, > = 2D,(F).

Since u* = (a + AYa + A"!)e;, we must have F,,» < F <, > 2= By(F) for all <u>
considered. This ends the proof of (B.1).

We end this section with the following consequence of (B.1).

(B.8). The E-orbits of lines containing black but no white points are as indicated in Table 3, with the
exception thay, if ¢ =2, the members of % lie in a special plane but have no black points.

Table 3.
Lines / black but no white points.
orbit F-type stabjlizer E-orbit dist (I)
of I E{ size
150,12 9__ 8 _ S
$ il [qlSle(F)-F‘ q Iq 1)(9 q__l)l(q lxq 1) (O,I,q)
a 20¢,12 9__ 4 S
% | ke F | =D q_‘)](" =D 24
~ 8012 9 8 _ 5.
% | vV | bsym, | CESHELHEEUEED ) 039
-
% | XX 3Dy(F)3 T4 - - - gt D | 00g+D)
% | XIXI | 2DyF)2 Lg% -1)g°~1Xg* 1) ©.Lg)

Proof. Let € P, be a line with ¥{/)=@ 5= ). By transitivity of £ on %, we may assume
<e> €1, and so, according to (B.1), / has type L, II,..., or XII. As for types I and II, the lines
! = <e,x> in (B.2), (B.3) belong, respectively, to .4 and %. The distributions dist([), stabilizers
E,, and actions of E; on P(J) were completely determined in section W.

Suppose | = <e,x> has type IIl, and <x> € H/). Then E; is transitive on / because if
<f> €dI)\ <e>, then Af)is a cube in F’, so there is g € E with f® = ¢ and, by transitivity
of F on the set of lines labeled III, we may take g such that <x>8 = <x>, Thus F; = F,,>
has index q in E;.

Next, suppose that / has type IV. Then, up to conjugacy, we may take Q) = {<x>,<y>},
where x = e; + e3,y = ey + els. Since (x*,p) 7% 0 and (x,y*) = 0, we have E; = E<,> <y>.
Using appropriate elements of H, we find that E; has (3,q —1) orbits of equal length on Z(/), and
that E] = F{e‘x>.F'.

It remains to discuss the case where / lies in one of the (twisted or untwisted) special planes « of
Section B. Using the fact that the number of point orbits in 7 equals the number of line orbits in
(or just the automorphisms d, and k# € H from Section A), we get that E, acts transitively on each
of the sets # N W), # N KI), # N ), and on the set of all lines m C « with ¥(m) = & and
Hm) 5= @. Therefore, I belongs to one of the E-orbits listed and the stabilizer in E is as stated.

The orbits found are named %,..., 4, as indicated in the table.
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Section G. Gray LINEs.

We complete our determination of E-orbits of lines in this section. Since we have already
found all orbits of lines which contain white or black points, it remains to determine the E-orbits on
%.

(G.Y). The group E is transitive on %y = {{ €% : lp7# &). Moreover, if | € %(S), then El =
Eg = [¢"] 2D 4(F). Z,:\2
Proof. If I € % and lp# &, then |ly]l = 1. Now E is transitive on & and if § is a symplecton,

then we have Eg/R, (Eg)= Ds(F).F" is transitive on %(S) (cf. (P.2)). The second assertion follows
from standard knowledge of the Ds-space S.

(G2). Let $1,5, ESwith S) N Sy = <x> EW. Then Es s = [q'} Do(F).(F') is transitive on
each of the following three sets of pairs: {y1 €ESy,y2 €S2 xXy; = xXy, =0},
V1 €ES1,y2 €82 x Xy = 0,xXy; %= 0} and {y, €ES1,y2 €S2 x><y1 :;EOny # 0}. The
stabilizer in Eg s, of a such a pair is isomorphic to [q"*)G,(F).(F Y, [¢°1B3(F).F", D4(F), in the
respective cases.

Proof. The unipotent radical R (Es ,5,) fixes each line 7 in S; on x Wlth xXm = 0 (and, for each
line m, is transitive on m \ {x}). The quotient Egl s,/ R,,(ESI 5,) = D4(F).(F')? acts on the two 8-
spaces <z E §;:zXx = 0>/ < x>, i =1,2 with inequivalent actions. (This can be seen directly
by the fact that Eg s preserves the map from #5(S; N x") N xy; onto #5(Sy N x’) N xy;
givenby I » < §; NI’ > ; this map induces an incidence preserving map from singular points of
the D4-space <z €S;:zXx = 0> /<x> onto one of the classes of singular 4-spaces of the
D,-space <z €8,:zXx = 0 > /<x>). The group Es s has two orbits on the set of points
¥y € @(S;) which are dJSfmgu:shed by y2Xx = 0 and y, Xx 5= 0, respectively. Moreover, the sta-
bilizer in Es, 5, of yo €S, is Es,,, = [} BsF)F ¥ i xXyy = 0, and Ej, ,, = [qs]D4(F)F
otherwise. (G.2) readily follows from knowledge of the action of EgI n s ES .5, on Sy,

(G3). Let K be the collection of lines < yy,y2 > € % which are not contained in a special plane
and satisfy <y, > o N <y, > ¢ € #. Then E is transitive on LAy with stabilizer of ] €4 in E
isomorphic to [q'*1.(G2(F)XSLy(F)).F". If g > 2, this is the single orbit of lines <y, y; > €%
with <y, > o N <y > g €W} if g =2, there is exactly one additional such orbit, namely %,.

Proof. For I = <y ,p,> €, 58t S, = <y >4i=12 Thus S NS = <x> €#
In view of (G.2), there are only three cases to be considered (up to interchanging y; and y).

@. xXp; = xXy, =0. We may take y, = el + ¢} and y, = e}y + e};. A direct check
(using elements of the form s; . 1) shows that E; induces PSL(F) on P (/). From this we conclude
that E; == [¢"}(G2(F)XSLa(F))F .

(). xXy; =0, xXy,#0. We may take y, =e|; + e}y and y, =e; + es. Now
<y; +y; > € (), a contradiction to the hypothesis.

(ii). xXy; 55 0, x Xy, 5 0. The triple <x,y,,y2 > spans a special plane. Therefore, if z € P(})
satisfies z & P(<x,x; >)U P(<xxy3 >)U P(<xy,x3 >), then z €4. Such points exist
if and only if ¢ > 2. This ends the proof of (G.3).

Remark. The stabilizer E; of | €.4; is contained in the stabilizer of a point, namely E, for x =
Nyeps
It now remains to consider lines / in % for which there are points y,y; € P(J) satisfying
<y1 >yn <_y2 >y E%.
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G Letl€B, <y >, <y, > €RI. Write S; = {y;}eand U = S$1 N Sy. If U EH5 and
there is a hyperplane A of U with y; XA = 0 for each i =1,2, then W(I) 5= &.

Proof. We have dim{y,€S8;: AXy; =0} = 6 for both i=12 Simce U =
S NAYN(S, NA), wehavethat C= < §; N 4’,§, N A’ > has dimension 7. However,
if B = Aﬁ, then B; = S; N B € ¥; (l=l,2)satisfy < B,,B > = Band B; N B, = A.
Therefore, B is a hyperplane in C, and, as < y;,y; > C C, that B N <y, y; > 0. Hence
"//’(<}’1,)’2 >)7“- 3.

(G.S). Let x,x1,x, € Whe such that x €T(x,) N T(x,) and set S; = {x,x;}» Assume S$; N S,
€ ¥#5. If xiy€E<x;>' and <y;> EQ <xx>) for each i=12 then
H<y1y2 >)5* 2.

Proof. Observe that <y; > 5 = §;and U = §; N S, E#. Since x; € <x; > ’, we get from
®P6) <x;>'NS;= <UN <x;>' x> = <UN <x3>'x;>, whence
UN<x; >'= UNn<x,>'=A. Then y;X4 =0, and so, by (G4,
<y >)%# 2.

(G6). The group E is transitive on the set of triples x,x\,x, of distinct white points with
x €I(x1) N T(xy), x1 EN(xy), and S; N Sy € Ws where S; = (x,x;}s The stabilizer in E of
such a triple is isomorphic to [q™}SL3(F).(F') and is transitive on the set of pairs
VIEA<xx >y ER <x,x3 >)

Proof. Set S = S(x1,x3), U= S, N Ss,and U; = SN S, fori = 1,2. Since U N <x; > ' is
a hyperplane in U contained in S N §; N Sy, we have § N §; N S; € %3, and so, by (P.5),
U, €¥;. Clearly, x € Uand x; € U; for i = 1,2. Now, E is transitive on #3 and if N € #3, then
Ey = [qPHSLy(F)XSLy(F)XSL3(F)). (F')’ is transitive on triples U, Uy, Uz € N 49 such that
UZ < Uy,U, >, with stabilizer in E isomorphic to [¢?L(SL,(F)X SLy(F). (F*)’ in E.

Put N = <e1’e}2,e{3 >, U= <N,e?2,e§3 >, U = <N,e§2,e§3 >, and U, =
<N,eh,e}; > . Using this explicit description and automorphisms s,, . .. and f,, as described in
Section A, it is readily seen that Eyggs s 1is transitive on the set of all triples of points
X €P(WU\N), x €P(U1\x) x €PWU;\G'U <x>7). Now x=<el >,
x; =<ely >, x, = <e} + e}y > is such a triple and their stabilizer is E, ., =
[g™1.SL3(F).(F")’. These three points are the only white points in < x,x,x, > and all other
points are gray. Finally, elements from H show that the stabilizer of x,x,,x, is transitive on pairs
Y1 EA < xx1 > ),y EQ < x,x, > ). This completes the result (G.6).

(G.7). E is transitive on the set B4 of lines | €% such that, if yy,y; €1 and y| % y,, then
01y N (V2)e € #s. Moreover, [E, E)] induces PSLy(F) on P(I) and E,g[qm].(SLz(lF)XSLg(IF)).
F'

Proof. Let U = §; N §, € #;. By (G.5), if A,,4, are hyperplanes of U such that y; X4; = 0,
then 4, %2 4,. Letx € P(U\ (4, U A43)). Then y; Xx 7 0 for each i =1,2. By (W.1) and (W.5),
< xy; >) = 2Let{x} = #M<xy >)\{x},i = 1,2. Now x,xy,x, satisfies the hy-
potheses of (G.6). We deduce that E is transitive on %, and, for / a representative, F; induces
PSL,(F)onl

We summarize
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(G.8). Every purely gray line belongs to one of the three E-orbits in Table 4.

Ha

(LG, @E)XSL,@pF| 4o’ — g ~1)g’ = 1)

gV (SLo(F) X SLy @) F LU =N ~ g — )a* ~ 1) + 1)

R Table 4.
E-orbits of purely gray lines
rbil stabilizer orbit size example
type E
- 8,12 —1Yg% — 1)(g5 —
% 1 VDutgrg—1)2 LM M= o quadric
7~

in a symplecton
<el t+elyely +ely >

Ciad ) CRD))

(ql__l)(q__l) 8}2 +353>e12 +€§2 +e§3 >

This completes the results.
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