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ABSTRACT 

A simple proof of a lower bound on the number of 
2m X 2m matrices with 0,1 entries and each of whose rows 
and columns adds to the fixed sum m is presented. In fact, it 
is shown that for any fixed 0 < ).. < 1/2 the number of such 

matrices is asymptotically at least c2;r+>-m. The inductive 

proof employed in the present paper might also turn out to be 
useful in obtaining lower bounds for other types of Kostka 
numbers. 

1. Introduction. 

0,1 matrices, i.e. matrices whose only entries are the bits 0 and 1, 
occur as the characteristic functions of finite binary relations. Thus, let 
R C N X Ebe a binary relation on the set N X E, where N = {v 1, ... ,vm} 
and E = {e 1, .. .,en}. Define 

{
l if R(v;,e1) 

a;,j = 0 otherwiae. 

Then the m X n matrix AR= (a;) contains a complete description of the 
relation R. Here are some examples from graph theory. If N is the set of 
nodes, E is the set of edges of a graph G and R( v; ,e;·) if and only if v; is 
incident to e1, then AR is called the incident matrix of G = (N,E). If 
N = E is the set of nodes of a graph G and R(v;,v1) if and only if v; is 
adjacent to v1, then AR is called the ad2'acency matrix of G = (N,E). 
Some information regarding the structure of such focidence matrices can 
be found in [10]. 

For each m ,k let {k} be the number of different m X m square 

matrices with 0,1 entries such that the sum of the entries of each row and 
each column is exactly k. 
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A lot of interesting results are known about (/:}. when k is small 
with respect to m. For fixed k, [2) gives the general asymptotic result 

m ~ [-(k-1)2 l 
{ k} .i:::t ( k !)2m ·exp 2 ' 

as m tends to oo. If k = 2, [3] provides the recursive formula 

{7;} = (7;)·[2{m21}+(m-l){m22}]. 

A general asymptotic formula is also given in [7], in which it is stated that 
for any O < c < 1 and any 1 < k < c·~, 

{m} = ~·[ [ (k-1)
2 l O(m-1+0 2;.i)l 

k (k!)2m exp 2 + ' 

as m tends to oo. 

Further asymptotic results are also known for small k, e.g. see [9] for 
k = 3, and [8] fork = O((logn )1/4-£). 

For larger k the result of [5] is known, which can be stated as fol­
lows: if k < cm, for c < 1/6, then uniformly 

l'kl _ /;~J: up [ (k~ll\0 [:: J] 
For more information see [4]. 

In addition, there has been a lot of work regarding an exact formula 
for (/:}. Such a rather unmanageable formula is given on page 235 of [2]. 
Additional work, which is influenced by the theory of group characters, 
can be found in [11]. A necessary and sufficient condition for the existence 
of 0,1 matrices with prescribed row and column sums is provided by the 
Gale-Ryser theorem (see [10]). The numbers {1:} are also known in the 
literature as Kostka number (see [3], [6]). 

However, very little seems to be known on {~1 } when k is close to 

m /2, e.g. {2m} or even { 2m
1

}. The purpose of the present paper is to m m-
give a simple proof of a lower bound on the size of {2m}. This is done by m 
formulating an inductive property that must be satisfied by all potential 
0,1 matrices. Moreover, if this property is satisfied by the first k rows of 
the matrix (k < m) then it is possible to extend the matrix by adding one 
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more row in such a way that the property is still satisfied by the first 
k + 1 rows of the matrix. This makes it possible to recursively construct 

such matrices and hence give a lower bound on {2m}. 
m 

There is a lot of interest in determining the value of {2;1}. In fact, it 

appears that there is work in progress by Odlyzko, Zagier and McKay in 

order to determine the exact asymptotic behaviour of {~} (personal com­

munication with McKay). 

2. The Counting Arguments. 

An obvious way to obtain a lower bound for {2m} is to count all pos-
m 

sible arrangements of the bits 0,1 on the top half of the matrix and then 
reflect the resulting configuration to the bottom half. In fact, the follow­
ing result can be shown. 

Theorem 2.1. For all m > 0, 

(2:r ~ {2:} ~ l2;1)2m-1. 

Proof. Let a 2m X 2m square matrix be given. Split the matrix into two 
parts. The top m rows constitute the top part and the bottom m rows 
constitute the bottom part. For any given row of the top part there are 

(2=) different ways to arrange the bits 1 and 0 inside this row and in such 

a way that the sum of its entries is m. In particular, there are (2;1r dif­

ferent ways to arrange the bits 1 and 0 inside the top part of a matrix in 
such a way that the sum of the entries of each row is m. It remains to fill 
the bottom part of the matrix. This is done by adjoining to the bottom 
half the (0,1) complement of the top half of the matrix. Now it will be 
shown that the sum of the entries of each column must be equal to m. 
Indeed, let 0 be an arbitrary column with entries c 1, ... ,c 2m, where ci is the 
entry of the ith row of G. By construction of the matrix for each 

2m 
i = 1, ... ,m, ci + Ci+m = 1. Hence, 2:.>i = m, as desired. This establishes 

i=l 

the desired lower bound. 

The upper bound is much easier to prove. There are 2m possible 
rows in any matrix. However, the sum property satisfied by the matrix 
columns implies that the entries of any row can be computed from the 
entries of the remaining 2m - 1 rows. D 

Here is a table comparing the values of {2:} with the approximate 

values of the upper and lower bounds of theorem 2.1, for m = 1,2, ... ,10. 
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In addition, the third column of the table gives the approximate lower 

bound of theorem 2.4, i.e. (2m)3m/.l. L. Meertens has written a computer m 
program to determine the values of {~}, from which the values below 

corresponding to m :::; 4 are taken. For m > 4 the values are taken from 
the tables in !4]. 

m (i:r e:)3m).l {2m} 
m 

(lm)2m-1 
m 

I 2 2.82 2 2 

2 36 216 90 216 

3 8.00·103 7.15·10° 2.97·10b 3.20·10° 

4 2.40·107 l.I8·1011 l.17·1011 8.24·1012 

5 l.02·1012 l.02·1018 6.73·1018 4.I9·10"1 

6 6.22·I011 4.9I·l0"'0 6.41 ·10""' 4.I9·106
" 

7 5.6I·l0"4 1.33·1031 l.09·10u 9.I6·10"" 
8 7.53·103

:1 2.07·104
¥ 3.48·1000 4.40·1061 

9 1.52· 104:1 1.87·10°3 2.19·101
" 4.74·10 1 ~ 

10 4.63·10b2 9.98·1078 2.79·10" 1 l.16·10100 

A less trivial approach to obtain a better lower bound is via the method of 
filling correct patterns. The idea is as follows. Begin filling up the rows 
of a 2m X 2m matrix starting from the top and moving downwards. 
After k rows have been filled call the resulting pattern correct if: 

(i) each of the k rows has exactly m I's, and 

(ii) each of the 2m columns has:::; m I's and:::; m O's. 

Then it can be shown that 

Lemma 2.2. Every correct pattern of k < 2m rows can be extended to a 
correct pattern of k + 1 rows. 

Proof. Let a correct pattern of k < 2m be given. Define 

Na(i) = IU,i): J:::; k, ai,i = O}I, 

Ni(i) = l{(J,i): J:::; k, a;,i = I} j, 

i.e. the number of O's and l 's respectively in the ith column. So, by defini­
tion of correct patterns we have that for all i = 1 , .. .,2m, 

(1) 

Further, define M 0 = l{i: N 0(i) = m}I and M 1 = l{i: Ni(i) = m}I as the 
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number of columns having already their maximal share of O'a and 1 's 
respectively, viz. m. Note that 

N 0(i) + Ni(i) = k, (2) 

for i = 1, ... ,2m, and 
2m 2m 

I;No(i) = L:;N1(i) = mk. 
i 111111 l i-1 

(3) 

Proof of the claim: Assume on the contrary that M 1 = m + r, for some 
r 2 1. The proof of M 0 :$; m is entirely similar. (Note that this implies 
k 2 m.) Then 

2m 

L:;N1(i) 2 (m+r)m + (m-r)(k-m), 
i-1 

since there are m + r columns with m occurrences of 1 and the remaining 
m - r columns have by (1), (2) at least k - m occurrences of 1. There­
fore it follows from (3) that 

mk 2 (m+r)m + (m-r)(k-m) 

or equivalently k 2 2m, contradicting the W3Sumption k < 2m. This 
proves the claim. 

From the claim the result follows immediately. Indeed, put 

{
o if Ni(i) = m 

a.Hl,i = 1 if N 0(i) = m 

and choose the remaining entries in the (k+l)-th row such that there are 
m occurrences of 1 and m occurrences of 0. Obviously such a pattern of 
k + 1 rows is still correct, which completes the proof of the lemma. D 

Based on this last lemma the counting argument runs as follows. Let 
0 < c < m be a fixed constant integer. Consider 2m X 2m matrices with 
only the first m rows filled in such a way that each row has exactly m O's 
and exactly m 1 's. Let A(c) be the number of such matrices each of 
whose columns has at most m - c O's and m - c 1 's. (Note that A( c) is 
positive only if 2c :$; m.) This requirement means that rows m+l, ... ,m+c 
can be filled in an arbitrary manner (of course with the usual restriction 
that each row has m O's and m I's), while still retaining a correct pattern. 

So, to each of these A( c) half-filled matrices there correspond (
2
:)' 
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matrices, which can be filled to a full 2m X 2m matrix forming a correct 
pa.ttern. Hence, it is clear that 

e:} ~ A(c)·(2:)•. 

It remains to determine a lower bound on A(c ). Let A..;(c) be the number 
of matrices with rows 1, ... ,m filled in such a way that at least one of the 
columns has less than c i's, where i = 0,1. It is clear that 

(
2:r -A(c)::; A 0(c) + A 1(c) = 2Ao(c). 

Hence it is enough to determine an upper bound on the quantity 
A0(c). To this end, let B0(c) be the number of half-way correctly filled 
matrices with first column containing Jess than c O's. Clearly, 
A 0(c) ~ 2mB0(c). Further, let Bo,j be the number of half-way correctly 
filled matrices with the first column containing exactly j O's, where 
j = O,. .. ,c-1. So 

Bo(c) = Bo,o + · · · + Bo,e-1· 

Now it is easy to see that 

B . = (~)·(2m-l)m-j,(2m-l)j = (~)·(2m-l)m. 
O,J J m -1 m J m -1 

Hence, noting that 

and putting 

we obtain 

It follows that 

Hence, the following theorem has been proved. 
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Theorem 2.3. For all m > 0 and any integer 0 < c < m/2 the follow­
ing inequality holds: 

em}> [1 4m.Pm(c) ]·(2mr+•. 0 
m - 2m m 

3. The Lower Bounds. 

Finally, it remains to determine values of c for which theorem 2.3 

provides nontrivial lower bounds to {2m}. The following useful formula on m 
sums of binomial coefficients can be found in page 76 of [2]: fork < m, 

k 2 

~Cf) = (m-k)fJ:)-j tk(2-tr-k-1dt. 
i=O l 

(It can be proved easily using integration by parts.) However, for t ~ 1, 
t(2-t) $ 1. Hence, it follows that fork< m/2, 

k 2 

~(n:) < (m-k)·(m)·J(z-t)m-2k-Idt = m-k ·(m). 
;=0 i - k 

1 
m-2k k 

In addition, the following formula gives a generalization of the binomial 

coefficient c;) when x $ m is an arbitrary nonnegative real: 

m m! 
( x) = r(x+l)·r(m-x+l)' 

where r is the gamma function. However, it is easy to show that the func­

tion (7;) is nondecreasing for 0 < x < m/2, e.g. this can be proved easily 

using the identity 

r(x) = lim 
11-00 

n"'·n! 
x(x+l) ... (x+n)' 

which is stated as formula (10) in page 13 of [1]. It follows from the mono­

tonicity of (m), that for any 0 < ). < 1/2, 
x 

~J m m-l>-mJ . m < m-l>-mJ . m 
~ ( i) $ m-2l>-mJ (l.>.mJ) - m-2l>-mJ (Am). 
s=O 

Using Stirling's formula 

r(x+l) ~ x'"·e-"'·~ 

for approximating the gamma function (see [1]) it is easy to see that for 
positive A < 1, 
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2mH().) 

()..:) /::;>' Y211'A(l->.)m' 

where H{>.) = ->.log2>.. - (1->.)log2(1->.) is the so called binary entropy of 
).. . Hence, for ).. < 1/2 and m large enough it is asymptotically true that 

~j m 1->.+(>.m-l>.mJ)/m . m 
~ ( i) ~ 1-2>.+2(>-m-l>.mJ)/m (>.m) 

< 1->.+(>.m-l>.mJ)/m . 1 . 1 .2mH().) 
- 1-2>..+2(>.m-L>.mJ)/m Y211'>..(1->.) "'Vm' · 

Consequently, asymptotically, the lower bound of theorem 2.3 becomes 

{2m} > [l Ym·O(m,>.) ]·(2m)m+LAmJ+r 
m - 2m(l-H().)) m 1 

where for each fixed >. 

l->.+ >.m-l>..mj 
m 1 

O(m,>.) = 4· >.m-L>.mJ . \/211'>.(1->.)' 
1-2>-+2·--"-----'-"-

m 

tends to the quantity 

1->. 1 
C(>.) = 4· 1-2>.. . \7211'>..(1->.)' 

as m tends to oo. Moreover, for fixed 0 < >. < 1/2, the factor 

Vm·C(>.) 
E(m,>.) = 1 - 2m(l-H().)) 

converges to 1 as m tends to oo. Hence, asymptotically, the following ine­
quality ha.s been proved: 

{2,:}:?: E(m,>.)-(2,:r+L>.mJ+r. 

In fact, without loss of generality, this last inequality can be stated as fol­
lows without mentioning l>.mJ at all. 
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Theorem 3.1. For all 0 < >- < lj.2, it is asymptotically true that 

{2:} ~ (~)"' +>.m. D 

Remark. By properly modifying the above proof the interested reader 
should have no difficulty in formulating the result of theorem 3.1 as a 
proper inequality, which does not refer to asymptotics at all. 
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