
Monitoring Method Call Sequences using
Annotations?

B. Nobakht1, M.M. Bonsangue1,2, F.S. de Boer1,2, and S. de Gouw1,2

1 Leiden Institute of Advanced Computing,
Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

{bnobakht,marcello}@liacs.nl

2 Centrum Wiskunde and Informatica,
Science Park 123, 1098 XG Amsterdam, The Netherlands

{frb,cdegouw}@cwi.nl

Abstract. In this paper we introduce JMSeq, a Java-based tool for
the specification and runtime verification via monitoring of sequences of
possibly nested method calls. JMSeq provides a simple but expressive
way to specify the sequential execution of a Java program using code
annotations via user-given sequences of methods calls. Similar to many
monitoring-oriented environments, verification in JMSeq is done at run-
time, but differently from all other approaches based on aspect-oriented
programming, JMSeq does not use code instrumentation, and therefore
is suitable for component-based software verification.

Keywords: Object monitoring, run-time verification, method call se-
quence specification, code annotation, component-based testing, com-
munication traces

1 Introduction

Testing and, more recently, monitoring are two established approaches to the
verification of large complex systems. Testing is generally used to validate the
results of each step in the software life cycle against the expected ones. More
recently, monitoring-oriented programming has emerged as a formal branch of
testing suitable to validate runtime data collected during system execution [13].
While in ordinary testing the software system under test must be stimulated so
to reproduce an expected behavior, in monitoring the actual behavior is observed
and analyzed a posteriori with respect to some specification.

Component based software engineering advocates the construction of soft-
ware by gluing together prefabricated components [27]. Because the code of the
components is not always available, automatic code insertion is not possible,
thus posing new challenges to testing and monitoring of the final product. An

? This research is partly funded by the EU project FP7-231620 HATS:
Highly Adaptable and Trustworthy Software using Formal Models
(http://www.hats-project.eu/)

alternative to the white box view of monitoring is given by automatic generation
of wrappers for monitoring the external behavior of third-party components. A
wrapper is automatically generated for every component with tracking code to
form an observable component in the black box view. As for the automatic code
insertion, formal specifications are separated from source code, but the complex-
ity of generating the wrappers can be very high, as the code relative to a single
specification must be distributed among several wrappers. The approach is thus
not flexible and easily reusable. Basically, there are no other systematic methods
and technologies available to control and monitor the external behaviors of the
components according to a test specification.

In this paper we consider components as compiled Java packages that are an-
notated with specification of the internal object behaviors by means of sequences
of outgoing method calls from the component and incoming return messages to
the component. Component designers can use the standard Java 5 Annotations
[3] to specify the intended behavior of the component as well as the action to be
taken in case of failure. We express the intended behavior through a set of exe-
cution traces3. To check conformance of the execution trace with respect to its
specification, monitors are automatically synthesized from specified properties
and integrated into the original system to check its dynamic behaviors during
execution. The approach is therefore simple, modular and flexible to use. It does
not assume that the component source code is available, but it requires the ad-
dition of annotations either at design process or the testing phases, similar to
what happens in the proof-carrying code approach [25]. The runtime verification
and monitoring framework we implement is based on the Java Platform Debug-
ger API (JPDA) [4]. Our method is thus complementing the approach taken in
JavaMOP [14], where Java programs are monitored and verified at runtime by
means of code instrumentation. JMSeq can be used to complement other exist-
ing testing and verification frameworks to add capabilities for the developer. For
instance, one can use JML [22] to specify the properties of the data flow and use
JMSeq to specify the properties of the control flow.

The rest of the paper is organized as follows. In Section 2 we discuss the prob-
lem of monitoring and testing component based systems. Then, in Section 3 we
present a language for specifying sequences of method calls that are annotating
the interfaces or the code of a program, as explained in Section 4. These annota-
tions are used by the JMSeq framework, introduced in Section 5, to monitor the
program. In Section 6, we discuss related work including a more detailed com-
parison with JavaMOP [14], another monitoring framework. Finally, we conclude
in Section 7 and also discuss possible future work.

2 Monitoring component based systems

Monitoring refers to the activity of tracking observable information from an
execution of a system with the goal of checking it against the constraints imposed

3 By execution traces, we mean the sequence of method calls and method returns, not
sequences of states

by the system specification. The observable information of the monitored system
typically includes behaviors, input and output, but may also contain quantitative
information. A monitoring framework consists of a monitor that extracts the
observable behavior from a program execution, and a controller that checks the
behavior against a set of specifications. In the case that an execution violates
the constraints imposed by the specification, corrective actions can be taken.

What can be monitored depends, of course, on what can be observed in a
system. When the application source code is available, its code can be instru-
mented to receive informative messages about the execution of an application at
run time. New code is inserted into the original code, preserving the original logic
of the application; yet, the extra code is essential for the management of moni-
toring and verification mechanisms. For example JavaMOP [14] uses AspectJ to
inject monitors into the original code. Also, the JML run-time assertion checker
has been implemented using aspect-oriented programming [26].

As programs have become larger and more complex, encapsulation and hiding
techniques have become more important. Component based software construc-
tion has emerged as a viable solution for handling the complexity of software.
Components implement one or more interfaces describing the services they pro-
vide and require. Usually, the interfaces are described only in terms of a signa-
ture and the source code of a component is not available. During the integration
phase, when components are composed into a system, it is thus very difficult for
the developer to check if the behavior of the system conforms to its specification.
In fact, the absence of source code implies that we cannot instrument it, and
therefore current run-time verification techniques cannot be used.

In this paper we present JMSeq, a runtime verification framework that is not
based on code instrumentation, but rather on code annotation. Code annotation
has become increasingly popular in the past few years, especially because of its
effectiveness in integrating formal techniques for verification with programming.
Essentially, annotations are code segments that are compiled but do not provide
any logic or business in the program; yet, they indirectly affect the program
execution based on the additional information they add to the running code.

Annotations are different from documentation tags as originally used by JML
to specify assertions for verification of Java code [22]. In fact documentation tags
are not compiled, and thus are highly dependent on the presence of the source
code. The success of modern testing frameworks such as JUnit [5] advocated for
development of services based on annotations for the recent versions of the Java
language. JMSeq uses Java annotations to provide a way for the programmer to
specify for each method a set of execution traces representing an abstraction of
the intended behavior, or protocol, of a component. Thus, method call sequence
specifications specify properties of the control flow of the global execution trace.
The methods in these sequences denote the use of services of other components
or even of the component itself. In particular we do not exclude call-backs.

When deployed, we assume that each component contains the description of
its protocol that can be checked for conformance at run-time. Only the compo-
nent interfaces need to be known to the system developer, possibly with JMSeq

annotations when the source code is not available. Of course it would be advanta-
geous if the developers have documentation describing the internal components
annotations. The advantage of this approach is an easy integration of JMSeq
with the testing framework JUnit [5] for the execution of an individual compo-
nent in a specific context to see whether they generate the expected results. In
this case, we do not need the component to be annotated at all as one can easily
write a JUnit test for it, annotate JUnit methods with JMSeq annotations and
run the JUnit test with JMSeq.

Let us consider the notions of “black-box” and “white-box” testing. As white-
box testing usually utilizes the internal structure of a software system, the source
code dependence is inevitable. However, in the case of black-box testing, there
is no need for the source code of the system as the test depends on the process,
input and output, and the test specification of the system.

Moreover, in the field of testing, there are times that some parts of the sys-
tem are not available (or made unavailable); thus, there should be a mechanism
to substitute “mock implementation” for a system interface when needed. This
technique may be referred to as unit testing in contrast with integration testing
as different components are being regarded as stand-alone entities providing pre-
defined interface and behavior and no mock implementation can be substituted
or provided in the system. In other words, in integration testing, the system may
be complete and operational on its own and in unit testing, there are points that
require mock implementations (since the development is not complete yet).

JMSeq is uses black-box testing as it does not use the internal structure of the
program. And, it supports both unit testing and integration testing techniques;
provided that the developer or the tester provides the mock implementations
required in unit testing.

Table 1 characterizes several testing frameworks by distinguishing among
code annotation, code instrumentation, unit testing, and integration testing tech-
niques.

Instrumentation Annotation Technique

JML 3 5 Unit, Integration
JavaMOP 3 5 Unit, Integration

PQL 3 5 Unit, Integration
JMSeq 5 3 Unit, Integration

Table 1: Approach Comparison

3 Method Sequence Call Specification

We consider a component to be a collection of compiled Java classes. The relevant
dynamic behavior of a component can be expressed in terms of specific sequences

of messages between a small, fixed number of objects. In Figure 1, we see two
UML message sequence diagrams each describing how the four objects interact
with other and in which order. In this section, we develop a specification language
for describing kinds of interactions using a context free grammar.

Essentially, a specification language for sequences of method calls needs to
distinguish between the specifications of the two cases in Figure 1.

Case 1 shows a scenario in which (the call to) m c is nested in m b since m c
is called during the activation of m b (i.e. after m b is called and before it
returns). Similarly, both m b and m c are nested in m a.

Case 2 represents a method call in which methods from different/same objects
are called in a sequential rather than nested manner. For instance, both m b
and m c are called by m a.

Typically, a program will need a combination of both cases to specify its dynamic
behavior. Specifying only the order of the method calls is not enough, as both
cases above have the same order of method calls. It is thus required to have a
specification technique that distinguishes between the method calls and method
returns.

MainMain AA BB CC

11

22

m_a

m_c
m_b

m_a
m_b

m_c

Fig. 1: Examples of Method Sequence Call Specification

It is clear from the above examples that regular expressions over method
calls are not enough to specify the typical nested call structure of a sequence of
messages in the presence of recursion. In general, such sequences form a context
free language. However they have a special structure: there is a deterministic

pushdown automaton accepting them such that it pushes or pops at most one
symbol only, depending if a method call or return is read, respectively. Such an
automaton is called a visibly pushdown automaton [8].

In JMSeq, a specification denotes a post-condition associated with a method.
It specifies the set of possible sequences of method calls, or protocol, of an object
in the context of the relevant part of its environment. Formally, sequences of
method calls belong to a context free language specified by means of a grammar.
Figure 2 represents the method sequence call specification grammar.

〈Specification〉 ::= 〈Call〉 | 〈Call〉 〈Specification〉 |
〈Specification〉m | 〈Specification〉$ | 〈Specification〉# |
(〈Specification〉)

〈Call〉 ::= {call(〈Signature〉)〈InnerCall〉}$ |
{call(〈Signature〉)〈InnerCall〉}# |
{call(〈Signature〉)〈InnerCall〉}m |
{call(〈Signature〉)〈InnerCall〉} |
{call(∗)} |
< 〈Call〉 ? 〈Call〉 >

〈InnerCall〉 ::= [〈Call〉]〈InnerCall〉 | ε
〈Signature〉 ::= 〈AspectJ Call Expression Signature 〉

Fig. 2: Method Sequence Specification Grammar

A specification consists of a sequence of calls that can be repeated an a
priori fixed number of times (”〈Specification〉m”), with m ≥ 0, one or more
times (”〈Specification〉$”), or zero or more times (”〈Specification〉#”). Although
JMSeq does not use aspect-oriented programming in its implementation; we
have used the generic method call join points syntax of AspectJ [19], using for
example # to denote the more standard Kleene star operation. Additionally,
(〈Specification〉) is a way to group specifications to avoid ambiguity. To improve
readability of the specifications, grouping is only used when necessary.

A call is a call signature followed by a (possibly empty) sequence of inner
calls. Each call can be repeated either one or more time, zero or more times, or
exactly m-times, for some m ≥ 0. Additionally, the wild card {call(∗)} denotes
a call to an arbitrary method. To support branching, JMSeq also provides <
〈Call〉?〈Call〉 > to allow the specification of a choice in the sequence of method
executions.

Inner calls are calls that are executed before the outer call returns, i.e. they
are nested. We do not have explicit return messages, but rather we specify
the scope of a call by using parentheses. Information about the message call,
like caller, callee, method name, and actual parameters are expressed using the

generic AspectJ syntax for pointcut model that is used to express the point of
calling a method from another object [19,1]. Put it simply, a call signature is of
the form

call([ModifiersPattern] TypePattern
[TypePattern .] IdPattern (TypePattern | ".." , ...)
[throws ThrowsPattern]

)

reflecting the method declarations in Java that include method names, method
parameters, return types, modifiers like “static” or “public”, and throws clauses.
It is noticeable that the annotation are used for the “public” method from outside
the component; yet, the developer is allowed other modifiers such as “private”
for runtime checking since the internally used annotations are not visible from
outside the component. Here IdPattern is a pattern specifying the method
name. It can possibly be prefixed at the left by a specification of the type of
the object called. Method modifiers and return type are specified by the two
leftmost patterns. The method name is followed by a specification of the type
of the parameters passed during the call, and possibly by a specification of the
throws clause. It implies that JMSeq specification grammar can distinguish the
overloaded methods in a class. Patterns may contain wild card symbols “*” and
“..”, used for accepting any value and any number of values, respectively. For
example, the call

call(* *.A.m a(..))

is denoting a call to method m a of any object of type A that is placed in any
package, and returning a value of any type. If there is a need to be more specific,
a possible restatement of the same specification could be:

call(int nl.liacs.jmseq.*.A.m_a(Object, double))

Next we give few example of correct method sequence specifications. For
instance, the specification of the sequence in case 1 of Figure 1 is given by:

{call(* *.A.m_a(..))[{call(* *.B.m_b(..))[{call(* *.C.m_c(..))}]}]}

Here is important to notice that the call to method m b is internal to m a, and
the one to m c is internal to m b. The sequence in case 2 of the same figure would
be:

{call(* *.A.m_a(..))[{call(* *.B.m_b(..))}][{call(* *.C.m_c(..))}]}

where both calls to methods m b and m c are internal to m a.
These two cases depict a fixed sequence of method calls. More interesting

are the cases when, for instance, the method m a should be called at least once
before any possible method call to m b or m c:

{call(* *.A.m_a(..))}$<{call(* *.B.m_b(..))}#?{call(* *.C.m_c(..))}#>

Such a specification is used in circumstances where m a will satisfy a requirement
in advance that is used by m b or m c.

It is notable that the meta-grammar provided in Figure 2 is a context-free
grammar; however, the actual specifications are regular expressions; for example,
they may contain unbounded repetition and choice of calls. They are not context
free as the bound m in the repetition is assumed to be fixed and not a free
variable.

4 Annotations with method sequence calls

Annotations do not directly affect program semantics, but they do affect the
way programs are treated by tools and libraries, which can in turn affect the
behavior of the running program [3]. Annotations can be read from source files,
class files, or reflectively at run-time. Once an annotation type is defined, it can
be used to annotate declarations. An annotation is a special kind of modifier,
and can be used anywhere that other modifiers (such as public, static, or
final) can be used.

One of the major desired effects of using annotations in code is that it will
allow for testing components without the need to have their source code. We
only used the meta data loaded from the annotations during runtime.

JMSeq defines two type of annotations: sequenced object annotations and
sequenced method annotations.

Sequenced Object Annotations Simply put, SequencedObject annotation
is just a marker for those classes to notify the annotation meta-data loader that
the objects from the annotated class contain methods which specify a sequential
execution. The code is demonstrated in Listing 1.

Listing 1: SequencedObject Annotation Declaration

1 @Retention(RetentionPolicy.RUNTIME)
2 @Target(ElementType.TYPE)
3 public @interface SequencedObject {
4 // we need no properties for this annotation as this is only a marker.
5 }

@Retention(RetentionPolicy.RUNTIME) declares that this annotation is
only applicable during runtime and may not be used in other scenarios, whereas
@Target(ElementType.TYPE) declares that this annotation can only be used
on types including classes, interfaces and enumerated types.

Sequenced Method Annotation A sequence method annotation is used to
specify the sequence of method calls under a given method. The annotation re-
quires a string property declaring the sequential specification discussed in Section
3. Listing 2 presents the declaration.

Listing 2: SequencedMethod Annotation Declaration

1 @Retention(RetentionPolicy.RUNTIME)
2 @Target(ElementType.METHOD)
3 public @interface SequencedMethod {
4

5 String value();
6

7 Class<VerificationFailureHandler> verificationFailureHandler();
8 }

@Target.ElementType.METHOD declares that this annotation is only applica-
ble to methods. The string value from value() holds the sequential specification.
The class VerificationFailureHandler is introduced by verificationFailureHandler()

and is used when a sequence execution failure occurs at runtime. Its implemen-
tation is left to the tester or developer who should provide a custom behavior
to handle the verification failures.

In Listing 3 we give two examples of annotations of the class Main class in
Figure 1. In both cases we annotated method main() with two sequences of
method calls, describing the behaviors given in Figure 1

Listing 3: Sample annotated specification

1

2 // Case 1
3 @SequencedObject
4 public class Main {
5

6 @SequencedMethod("{call(* *.A.m_a(..))[{call(* *.B.m_b(..))[{call(* *.C.m_c
(..))}]}]}")

7 public void main() {
8 // ...
9 }

10

11 public void init() {
12 // ...
13 }
14 }
15

16 // Case 2
17 @SequencedObject
18 public class Main {
19

20 @SequencedMethod("{call(* *.A.m_a(..))[{call(* *.B.m_b(..))}][{call(* *.C.
m_c(..))}]}")

21 public void main() {
22 // ...
23 }
24

25 public void init() {
26 // ...
27 }
28 }

5 The JMSeq framework

In this section, we present the JMSeq monitoring and testing framework, and
discuss its implementation that uses Java 5 Annotations [3] and Java Platform
Debugger API [4]. More implementation details, including samples and docu-
mentation, can be found at http://code.google.com/p/jmseq/.

As discussed above, we assume that Java components come together with se-
quenced object and sequenced method annotations. More annotations are possi-
ble within the same class, but not for the same method. This implies a local and
partial view of the component specification, that can be scattered among all its
constituent classes. The annotated methods are the ones that will be monitored
by JMSeq.

JMSeq, based on some initial parameters, initiates another inner Java virtual
machine (JVM) inside the current execution to control the sequenced execution
of the program (Figure 3). Essentially, the parameters tell the inner JVM what
type of events are going to be reported back to JMSeq for verification such as
method entries and method exits. Also, JMSeq is not interested in events from
all objects but only for those specified in the parameters. The inner JVM takes
advantage of the Java Platform Debugger Architecture (JPDA) to access the
needed details on the execution of the system while it is running. JPDA is a
framework for debugging and interfacing the JVM. Java Debugger Interface is
the interface of JPDA that gives access to different details on the execution of a
program.

Before execution, JMSeq inspects the classes in the running class path to
collect and store all the methods that are annotated for sequenced verification.
This step, denoted in Figure 3, does not need code inspection, but uses the
annotated meta data available in the compiled code.

The program is now executed. Whenever an event is reported to JMSeq
the event trace model is updated in such a way that events are aware of their
previous call stack trace (Figure 3): if the event represents a method that does
not need to be monitored the execution continues until the next event, otherwise
it is verified if it is an expected event. The verification is done through a simple
state machine with a stack for the nested events occurred so far. The verification
process is described as (Figure 3):

1. A “call expression” of the event model is constructed.
2. Using the meta data available from annotations of the methods, then, the

next “possible call expressions” of the current state is built.
3. A match making is done between the possible call expressions and the current

call expression as the candidate. The possible call expressions are computed
on-the-fly rather than constructing the full automaton in the beginning of
the verification process. This way we avoid the construction of states in the
automaton that are never used in the execution. To avoid repeated computa-
tions of the same states, JMSeq utilizes dynamic programming techniques. If
a match is found, the method is accepted; otherwise it fails. When a failure
occurs, JMSeq will execute the custom verification handler that is imple-

http://code.google.com/p/jmseq/

mented either internally as part of the component code by the programmer,
or externally by the system designer.

The overall JMSeq process is depicted in Figure 3.

Initialize
JVM Options

Initialize
JVM Options

Launch
Target JVM

Launch
Target JVM

Receive
Execution Event

Receive
Execution Event

Sequenced?Sequenced?

Load Annotated
Metadata

Load Annotated
Metadata

Initialize/Continue
State Machine

Initialize/Continue
State Machine

Build
Call Expression

Build
Call Expression

Propose Next
Possible CE

Propose Next
Possible CE

Match Current
With Possible CE
Match Current

With Possible CE

Matched?Matched?

ErrorError

No

Yes

NoYes

Fig. 3: Runtime Object Monitoring and Sequenced Execution Verification

5.1 JMSeq Architecture

The overall architecture of JMSeq is given in Figure 4. It basically consists of
three main modules: one for handling the communication with the JVM execut-
ing the program, another module for storing the annotation information, and a
third module for executing the run-time verification.

The current design of JMSeq is completely general and modular; as it allows
for replacing the grammar in Figure 2 with other specification modules, based,
for example, on temporal logics or extended regular expressions.

Program Execution Trace Model and Processing According to JDI event
model, JMSeq takes control over some of the execution events that JVM pub-
lishes during a program execution. Therefore, a component was designed to
model and hold the execution trace events required for event handling and exe-
cution verification.

JMSeq Architecture ViewJMSeq Architecture View
ProgramExecutionTracerProgramExecutionTracer

VirtualMachineLauncherVirtualMachineLauncher VirtualMachineEventProcessorVirtualMachineEventProcessor

Java Virtual MachineJava Virtual Machine

EventHandlerEventHandler

ExecutionExecution

ExecutionTraceOracleExecutionTraceOracle

SequencedMethodSequencedMethod SequencedObjectSequencedObject

SequentialExecutionMetadataSequentialExecutionMetadata

SequentialExecutionMetadataLoaderSequentialExecutionMetadataLoader ExecutionVerifierExecutionVerifier

CallExpressionStateMachineCallExpressionStateMachine

CallExpressionCallExpression CallExpressionMatcherCallExpressionMatcher

CallExpressionProposerCallExpressionProposer CallExpressionBuilderCallExpressionBuilder

Fig. 4: Software Architecture for Method Sequence Specification

1. Execution is the central component that holds the information about every
execution in the JVM using the JDI event mechanisms. Relevant events
include “method entry” and “method exit”. It provides access to information
such as:
– The object that is currently executing (the callee object) and its unique

identifier in JVM.
– Event details through subclasses such as method return values or the

caller object reference in case of a method exit event.
– Parent Execution: every execution can hold a reference to its parent exe-

cution object forming a directed tree of executions. This help traversing
the executions at validation time or for the simulation of formal specifi-
cation.

2. EventHandler is the event handling interface that is injected into JVM with
access to JDI information. The event handler receives event for which it is
subscribed and possibly takes an associate action. In particular it creates
an instance of Execution for each sequence annotation and it stores it in
the ExecutionTraceOracle registry ready to be used by the verification
module. In general, all events received and processed by EventHandler are
stored in this registry for further use by other components.

Sequential Execution Annotation Repository As the execution traces are
stored in a repository, they are supposed to be checked and verified against the

formal specifications as described on the @SequencedObject and @SequencedMethod

annotations of the compiled classes in the program. It is the task of sequential ex-
ecution annotation repository to store this information. A service is responsible
to read and load the meta-data of all classes that are annotated. This infor-
mation is used when there is a need to verify the conformance of an execution
event.

Execution Verification During an execution, events are received that need to
be monitored and verified against a message sequence specification. For every
specification in the meta-data repository, a deterministic state machine including
a stack is created for recognizing the sequences in the specification. Whenever
an event is processed that belongs to a sequence of method calls, the execution
verifier checks if the state machine can execute a transition associated with this
event. If the state machine accepts the current event, the execution will continue;
otherwise, the execution is “invalid” and therefore it is stopped. At this point,
JMSeq provides a simple way to plug in a verification failure handler by means
of a class provided by either the component designer or the test developer. The
verification failure handler should implement an interface introduced by JMSeq.

The execution verification component is composed by the following elements:

1. Call Expression is a simple component for interacting with each state ma-
chine object. Basically, it transforms execution events coming from the JVM
into call expressions used by the state machine components.

2. Call Expression State Machine: Sequences of executions are translated to
“call expression”s that are to be accepted by a state machine. The stack of
the automaton is necessary to distinguish the method’s context on different
calls to the same method calls, for example. At the end of a successful se-
quential execution, the stack for the automaton associated to that sequenced
execution specification should be empty. Otherwise the top of the stack is
used to match the event with a possible candidate call expression of the
previous event.

3. Call Expression Builder constructs a call expression out of:

(a) A string which is in the format of the JMSeq specification grammar as
in Figure 2. This service is used the first time a sequential execution is
detected to build the root of the future possible (candidate) call expres-
sions.

(b) An execution event; every time an execution is handed over to verification
module, an equivalent call expression is built for it so that it can be
compared and matched against the call expression for the previous event.

4. Call Expression Proposer is a service proposing possible next call expressions
for a given call expression based on the sequences specified in the annotation.
As described by the grammar in Figure 2, for each current call expression
there can be several possible next call expressions that may appear as the
next event, but for each of them the automaton associated with the gram-
mar can only make one transition (that is, the specification is a deterministic

context free language). Note that since more specification sequences are pos-
sible involving the same method, only those call expressions that are valid
in all specifications will be proposed.

5. Call Expression Matcher is another service that tries to match two call ex-
pressions. It is used, for example, to validate the current call expression
against all those proposed by the previous service. If a match is found, the
execution continues; otherwise the verification is regarded as failed. In this
case, if a verification failure hander is provided, the failure data is transferred
to it for further processing.

6 Related Work

JML [22] provides a robust and rigorous grounds for specification of behavioral
checks on methods. Although JML covers a wide range of concerns in asser-
tion checking, it does not directly address the problem of method sequence call
specification as it is more directed towards the reasoning about the state of an
object. JML is rather a comprehensive modeling language that provides many
improvements to other extensions to Design by Contract (DBC) [24] equivalent
formalism such as jContractor [9] and Jass [11].

In [16], taking advantage of the concept of protocols, an extension to JML is
proposed that provides a syntax for method sequence calls (protocols) along with
JML’s functional specification features. Through this extension, the developer
can specify the methods’ call sequence through a call sequence clause in JML-
style meta-code. In the proposed method, the state of a program is modeled as
a “history” of method calls and return calls using the expressiveness of regular
expressions; thus, a program execution is a set of “transitions” on method call
histories. The verification takes place when the execution history is simulated
using a finite state machine and checked upon the specified method call sequence
clause.

JML features have been equivalently implemented with AspectJ constructs
[26], using aspect-oriented programming [19] They propose AJMLC (AspectJ
JMLC) that integrates AJC and JMLC into one compiler so that instead of
JML-style meta-code specifications, the developer writes aspects to specify the
requirements.

In [17] an elegant extension of JML with histories is presented. Attribute
Grammars [21] are used as a formal modeling language, where the context-free
grammar describes properties of the control-flow and the attributes describe
properties of the data-flow, providing a powerful separation of concerns. A run-
time assertion checker is implemented. Our approach differs in several respects.
The implementation of their run-time checker is based on code instrumentation.
Additionally, they use local histories of objects, so callbacks can not be modeled.
However, the behavior of a stack can be modeled in their approach (and not
in ours), since their specifications are not regular expressions but context-free
languages.

In the domain of runtime verification, Tracematches [7] enables the program-
mer to specify events in the execution trace of a program that could be specified

with “the expressiveness” of a regular pattern. The specification is done with
AspectJ pointcuts and upon a match the advised code is run for the pointcut.
Along the same line, J-LO [12] is a tool that provides temporal assertions in
runtime-checking. J-LO shares similar principles as Tracematches with differ-
ences in specifications using linear time temporal logic syntax.

Additionally, Martin, Livshits and Lam propose PQL [23] as a program ex-
ecution trace query language. It enables the programmer to express queries on
the execution events of objects, methods and their parameters. PQL then takes
advantage of two “static” and “dynamic” checkers to analyze the application.
The dynamic checker instruments the original code to install points of “recov-
ery” and “verification” actions. The dynamic checker also translates the queries
into state machine for matching criteria. The set of events PQL can deal with
includes method calls and returns, object creations and end of program among
others. Accordingly, generic logic-based runtime verification frameworks are pro-
posed as in MaC [20], Eagle [10], and PaX (PathExplorer) [18] in which monitors
are instrumented using the specification based on the language specific imple-
mentations.

Using runtime verification concepts, Chen and Rosu propose MOP [15,6] as
a generic runtime framework to verify programs based on monitoring-oriented
programming. As an implementation of MOP, JavaMOP [14] provides a plat-
form supporting a large part of runtime JML features. Safety properties of a
program are specified and inserted into the program with monitors for runtime
verification. Basically, the runtime monitoring process in MOP is divided into
two orthogonal mechanisms: “observation” and “verification”. The former stores
the desired events specified in the program and the latter handles the actions
that are registered for the extracted events. Our approach follows the same idea
as MOP, but it does not use AOP to implement it. Another major difference
is in the specifications part. MOP specifications are generic in four orthogonal
segment: logic, scope, running mode and event handlers. Very briefly, the scope
section is the fundamental one that defines and specifies the parts of the pro-
gram under test. It also enables the user to define desired events of the program
that need to be verified. The logic section helps the user specify the behavioral
specification of the events using different notations such as regular expressions
or context-free grammars. The running mode part lets the user specify what is
the running context of the program under test; for instance, if the test needs to
be run per thread or in a synchronized way. And, the event handlers section is
the one to inject customized code of verification or logic when there is a match
or fail based on the event expression logic.

In Listing 4 we show an example of JavaMOP code with ERE logic for the
two specifications given in Figure 1.

Listing 4: Sample JavaMOP Specification using CFG logic

1 SampleCase1(Main m) {
2 event method_m_a before(A a):
3 call(* A.m_a(..)) && target(a) {}
4 event method_m_b before(B b):
5 call(* B.m_b(..)) && target(b) && cflow(SampleCase1_method_m_a) {}

6 event method_m_c before(C c):
7 call(* C.m_c(..)) && target(c) && cflow(SampleCase1_method_m_a) && cflow(

SampleCase1_method_m_b) {}
8

9 ere: (method_m_a method_m_b method_m_c)*
10

11 @fail {
12 System.err.println("Invalid Execution");
13 __RESET;
14 }
15 }
16

17 // Case 2
18 SampleCase2(Main m) {
19 event method_m_a before(A a):
20 call(* A.m_a(..)) && target(a) {}
21 event method_m_b before(B b):
22 call(* B.m_b(..)) && target(b) && cflow(SampleCase1_method_m_a) {}
23 event method_m_c before(C c):
24 call(* C.m_c(..)) && target(c) && cflow(SampleCase1_method_m_a) && !cflow(

SampleCase1_method_m_b) {}
25

26 ere: (method_m_a method_m_b method_m_c)*
27

28 @fail {
29 System.err.println("Invalid Execution");
30 __RESET;
31 }
32 }

It is interesting to note that both MOP specifications have the same ERE
expression. This is because JavaMOP has separated logic and scope specification
from event handling. The difference in monitoring is obtained by the different
usage of the command cflow in the scope section. This command is an AspectJ
construct to control the context of the execution when running some code inside
a method [19].

7 Conclusion and future work

We proposed JMSeq, a framework for specifying sequences of method calls using
Java annotations. The sequences do not only consist of method names, but may
contain information such as object caller and callee. JMSeq uses Java Platform
Debugger to monitor the execution of a component based system based on Java.
Monitoring is divided into two phases: observing the events in the program
and verifying them against the local specifications provided through annotated
objects at runtime. No code instrumentation is necessary, as only binary code
is enough for system testing and monitoring purpose. JMSeq can be integrated
with JUnit for unit testing purposes. An initial version of JMSeq runtime checker
is available at http://code.google.com/p/jmseq.

We believe JMSeq is a novel approach to runtime verification of software using
code annotations. The approach is especially suitable for runtime component
based verification, as it does not require the presence of source code. In line with
this end, we plan to extend the support of JMSeq by providing native features
such as mock implementation or symbolic execution in case parts of the system

http://code.google.com/p/jmseq

are unavailable which is particularly useful in unit testing. Currently, JMSeq
only provides testing capabilities in the context of JUnit.

Another potential area of improvement is the data model used by JMSeq.
Currently it overlaps with the event model that JPDA provides when publish-
ing the registered events in JVM. The resulting overhead is rather expensive.
Optimization will allow, for example, to store only the minimal necessary in-
formation providing a faster indexing for the retrieval of the events. Further
performance improvement can be obtained by better exploiting the connections
between JPDA and JVM. For example, there are tools such as Eclipse Debug
Platform [2] that provide extensive facilities through JPDA with high perfor-
mance. Currently, in JMSeq, it is the standard JVM that runs the program
and publishes the events that are interesting to JMSeq for further verification
for which, in turn, JMSeq uses a simple state machine to verify the executing
events. As another future work, instead of using a state machine, one could use
a pushdown automaton which allows for context-free method call sequence spec-
ifications. Moreover, in another approach, JVM, JPDA and the state machine
can be merged together such that it is actually the JVM that asks permission
for the next execution from the state machine that is provided. Thus, the testing
framework can even take control of the underlying program execution for further
checks or verification. In other words, method call sequence specifications may
also be used in the pre-conditions of a method. In comparison with the runtime
checking, another line of future work can be to extend JMSeq to support static
verification of protocols.

Acknowledgments We thank the referees for their comments and Michiel Hel-
vensteijn for the helpful discussion.

References

1. AspectJ Language Semantics. http://eclipse.org/aspectj/doc/
released/progguide/semantics-pointcuts.html.

2. Eclipse Debug Platform. http://www.eclipse.org/eclipse/debug/.

3. Java 5 Annotations. http://java.sun.com/j2se/1.5.0/docs/guide/
language/annotations.html.

4. JPDA Reference Home Page. http://java.sun.com/javase/
technologies/core/toolsapis/jpda/.

5. JUnit Test Framework. http://www.junit.org/.

6. MOP: Monitoring-oriented programming. http://fsl.cs.uiuc.edu/index.
php/MOP.

7. C. Allan, P. Avgustinov, A.S. Christensen, L. Hendren, S. Kuzins, O. Lhotak,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to AspectJ. OOPSLA, 2005.

8. R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56:16:1–
16:43, 2009.

9. P. Anercrombie and M. Karaorman. jContractor: Bytecode instrumentation tech-
niques for implementing dbc in Java. RV’02, 2002.

http://eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html
http://eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html
http://www.eclipse.org/eclipse/debug/
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://www.junit.org/
http://fsl.cs.uiuc.edu/index.php/MOP
http://fsl.cs.uiuc.edu/index.php/MOP

10. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime Verifi-
cation. VMCI’04, 2004.

11. D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass - Java with Assertions.
RV’01, 2001.

12. E. Bodden. J-lo, a tool for runtime-checking temporal assertions. Master Thesis,
RWTH Aachen University, 2005.

13. F. Chen and G. Rosu. Towards Monitoring-Oriented programming: A paradigm
combining specification and implementation. Electronic Notes in Theoretical Com-
puter Science, 89(2):108–127, Oct 2003.

14. F. Chen and G. Rosu. Java-MOP: A monitoting oriented programming environ-
ment for Java. TACAS, 2005.

15. F. Chen and G. Rosu. MOP: An Efficient and Generic Runtime Verification Frame-
work. OOPSLA, ACM Press, 2007.

16. Y. Cheon and A. Perummandla. Specifying and checking method call sequences
of Java programs. Springer Science, 2007.

17. S. de Gouw, J. Vinju, and F. S. de Boer. Prototyping a tool environment for
run-time assertion checking in JML with Communication Histories. FTfJP’10,
2010.

18. K. Havelund and G. Rosu. Monitoring Java programs with Java PathExplorer.
RV’01, 2001.

19. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold.
Getting started with ASPECTJ. ACM CACM, 2001.

20. M. Kim, S. Kannan, I. Lee, , and O. Sokolsky. Java-MaC: a Runtime Assurance
Tool for Java. RV’01, 2001.

21. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968.

22. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of JML: A Behavioral
Interface Specification Language for Java. ACM SIGSOFT Software Engineering,
2006.

23. M. Martin, V.B. Livshits, and M.S. Lam. Finding application erros and security
flaws using PQL: a program query language. OOPSLA, 2005.

24. B. Meyer. Object-Oriented Software Construction, 2nd edition. Prentice Hall, New
Jersey, 2000.

25. G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’97, pages
106–119, New York, NY, USA, 1997. ACM.

26. H. Rebelo, S. Soares, R. Lima, P. Borba, and M. Cornelio. JML and Aspects: The
benefits of instrumenting JML features with AspectJ. 2008.

27. Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component software:
beyond object-oriented programming. Addison-Wesley, 2002.

	Monitoring Method Call Sequences using Annotations
	Introduction
	Monitoring component based systems
	Method Sequence Call Specification
	Annotations with method sequence calls
	Sequenced Object Annotations
	Sequenced Method Annotation

	The JMSeq framework
	JMSeq Architecture
	Program Execution Trace Model and Processing
	Sequential Execution Annotation Repository
	Execution Verification

	Related Work
	Conclusion and future work

