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It is shown that reflectors and similar functors in algebraic and topological-algebraic structures 
in many cases commute with products. In particular, reflectors of the category of (semi) topological 
semigroups into the subcategory of compact topological semigroups or groups have this property. 
The proofs are straightforward and avoid the use of almost periodic functions. 
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l. Introduction 

In this paper we study functors close to reflectors and we consider the question 
in which cases they preserve products. It turns out that this is often the case when 
some kind of algebraic structure is involved. Our interest in this problem was 
stimulated by the fact that we did not understand the proof in [11] that products 
of topological groups are preserved by the Bohr compactification functor (it is all 
right if all groups involved are abelian). All later papers dealing with this question 
known to us are based on the theory of almost periodic functions. Our approach 
is directly based on the categorical properties involved and it applies to many other 
situations. 

Let F: 'JC1 ~ 'J{2 be a covariant functor between categories :x1 and 'J{2 (for categori
cal notions we refer to [10]) and assume that for a set {X;} of objects in J(1 both 
the products I1 X; in 'J{1 and I1 FX; in 'J{2 exist. Then there is a canonical morphism 
1-'{x,}: F(IJ X;) ~ IJ FX; (shortly: µ,), defined uniquely by the condition that the 
following diagram commutes for every j. 
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µ 
F(IIX;) ----------~ IIFX; 

~~ 
FXj 

(here pr means: projection). If µ, is an isomorphism in JC2 then we shall say that 
'F preserves the product of {X;}' or 'F commutes with the product of {Xi}'. There 
are many examples where F always preserves products, e.g. if F is a right adjoint, 
or if F is a covariant Hom-functor, or if F is a product functor. As we are more 
interested in reflectors, these results are oflittle use for us (see however the beginning 
of Section 2). We shall consider a situation which always occurs if Fis a reflector, 
but which is more general: we shall assume that 'X1 = JC2 =: 'JC, so that F is an 
endofunctor of K., and we shall assume that there is a natural transformation 
rr: lx-+ F. In that case one has the equality 

/.L{X;} o 'Tin X, = n 'TIX; 

which follows from the following commutative diagram: 

IIX 11nx, II 
; ----------- F X; 

prx,I ~TIFX,Y ''l"x, 

~ 
J0 FXj 

11x, 

(1) 

In the sequel we shall sometimes say that such an Fis 'close to a reflector'. Let us 
now summarize several relevant known results from various structures. 

Examples. (1) In the category of topological spaces one of the most studied reflec
tions is the Cech-Stone compactification. It is known [8] that for completely regular 
spaces µ, is a homeomorphism if and only if n X; is pseudocompact (granted some 
non-trivality condition). A similar assertion is true for zero-dimensional spaces and 
the Banaschewski compactification [13, 3). The problem when the Hewitt real 
compactification v preserves products is still open. For partial results see e.g. [5], 
[12] and [24], where one can find other references. In any case, the property 
o(X x Y) = vX xv Y is not a topological property of the space X x Y (see [12]). 
In the positive results for v (and, similarly, in results for the topological completion; 
see [26]), local compactness plays an important role. This is not by accident: locally 
compact spaces are so-called exponential objects (i.e.-xX has a right adjoint) and 
in [28) for such objects X situations are characterized where F(X x Y) = FX x PY 
(one can find in [28] other references to similar results, e.g. by B. Day and 0. Wyler). 
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(2) In the previous example the failure of µ, to be an isomorphism (or even an 
injection) in general is basically due to the fact that a dense embedding of a space 
X into a space of the form FY is not uniquely determined by X. But this is really 
the case for completions of structures with uniformly continuous mappings as in 
Metr, Unif, TopVs, Norm: completions are unique, hence the completion functor 
preserves all products. 

(3) An interesting example is Herrlich's wild reflection of Top into the full 
subcategory generated by {Cl( IK a cardinal number}, where C is a strongly rigid 
Hausdorff space. This subcategory is reflective in Haus (see [9]) and a straightforward 
argument shows that the reflector preserves a product TI X; iff every continuous 
mapping TI X; ~ C depends on at most one coordinate. 

(4) Another type of reflections are those where the units are just bijections or 
surjections. As is well-known (and easy to prove}, the T0-modification in Top 
preserves finite products; see also Application 2 ahead. The T1 -, T2 - and T3-

modifications do not preserve all finite products (this is also well-known; as an 
example, consider 1 x 'T/ : Q x X ~ Q x Y, where X = w x ( w + 1) with the topology 
in which all points of w x w are discrete, while a point ( n, w) E w x ( w + 1) has a 
nbd base consisting of sets of the form { ( i, k) Ii ,,.;;; n, m ,,.;;; k ~ w} for some m E w; the 
space Y is the quotient of X obtained by identification of the subset {(n, w)ln E w} 
to one point; the quotient map rt: X ~ Y is the T2 - (hence T1-) modification of X). 
In certain situations, T1-modifications preserve finite products, e.g. of symmetric 
spaces (i.e., spaces in which x E {yJ implies y E "{X}" or of (not necessarily T1-) 

completely regular spaces; but these are really instances of T0-modifications. For 
the T3~-modification F of (not necessarily T1-) topological spaces probably the 
strongest results are in [15]: if X is completely regular then F(X x Y) = X x PY 
for every regular space Y iff X is locally compact ( cf. also the final remark in 
Example 1 above). In Unif, the precompact modification functor Fis an example 
of a reflector where the units are not embeddings. It commutes with the product of 
{XJ if at most one of the spaces X; is not precompact; moreover, for any space 
X, F(X x X) = FX x PX iff X is precompact (see [ 4]). 

(5) Let 'J{ be the category of partially ordered sets and monotone mappings which 
are either sup-preserving or inf-preserving or sup-inf-preserving. Then the reflection 
of 'J{ into the full subcategory of complete partially ordered sets preserves products 
(the form of the reflection depends on the type of morphisms; compare with [10, 
p. 180]). 

(6) Let SGrp denote the category of semigroups; if not stated otherwise we shall 
assume that each semigroup has a unit and that homomorphisms of semigroups 
preserve the units. With TopSGrp (respectively, STopSGrp) we shall denote the 
category of all topological (respectively, semitopological) semigroups; recall that 
in a topological semigroup S the semigroup operation S x S ~ S is simultaneously 
continuous, whereas in a semitopological semigroup it is only separately continuous. 
Apart from Holm's paper mentioned above the following papers deal with preserva
tion of products by reflections of these categories into their full subcategories of 
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compact objects (in obvious notation, CompSTopSGrp, CompTopSGrp and 
CompTopGrp are reflective subcategories of STopSGrp; the reflections of an object 
X in these categories are often denoted as XWAP (weakly almost periodic compac
tification), XAP (almost periodic compactification) and xsAP (strongly almost peri
odic compactification)): generalizing work of [19] and [2], [ 17] shows that the 
functor ( · )AP preserves arbitrary products, and in [2], [16] it is shown that ( ·) WAP 

does not preserve finite products. 
(7) Dierolf proved in [7] that every bireflection (i.e. the unit consists of bimorph

isms) in the category TopVS of topological vector spaces preserves products. This 
was generalized in [29] for endofunctors F of productive subcategories JC of TopVS 
for which there exists a certain natural bitransformation TJ: l:rr ~F. Our results in 
Section 2 below are even more general. 

(8) Let G be a topological group and let JC be the category Top0 of all topological 
transformation groups with acting group G and continuous equivariant mappings 
(see e.g. [30]). Let for an object X ofTop0 , T/x: X ~PX be the reflection of X into 
the subcategory of compact objects in Top0 . In the same way as in Example 1, if 
G is locally compact and locally connected, then µ,: P(fl X;) ~TI PX; is an 
isomorphism iff TIX; is pseudocompact (apart from trivial cases); see [31, 32]. 

We shall present our results for the situation described in the beginning of this 
introduction in two parts: Section 2 deals with finite products and Section 3 with 
infinite products. Although in both cases the approach has a common idea, in details 
different procedures must be used. Also, for infinite products the results are less 
general. Also, in order to avoid intricate formulations we have refrained from writing 
down all results in the greatest possible generality. An inconvenient consequence 
is that at some places we have to refer to a proof rather than to the corresponding 
result. 

2. Finite products 

The main results of this section are stated for algebraic structures (with or without 
an additional topological structure). In most cases a functor close to a reflector 
preserves finite products. For non-algebraic structures the method gives a weaker 
version of preservation (e.g. µ a bijection but not necessarily an isomorphism), 
which is nevertheless useful. 

As observed already in the Introduction, sometimes the preservation of (finite) 
products by reflections follows from general results. For example, let X be a category 
where finite products and coproducts exist and coincide (a so-called semi-additive 
category; see [10, Section 40]) and let P: X"' JC1 be a reflector into a full subcategory 
X1 of X. Then P preserves coproducts, hence all finite products (in X 1 , products 
and coproducts coincide as well). Examples of semi-additive categories are Ah, 
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R-Mod (R any ring), their topological versions TopAb, TopVS and their full sub
categories. Also the full subcategories of all commutative objects in SGrp and 
TopSGrp (not of STopSGrp) are semi-additive (together with Theorem 3 in Section 
3 below this accounts e.g. for the preservation result in [19]). We shall consider a 
slightly more general situation: an endofunctor of a semi-additive category which 
is close to a full reflector. As a motivation for the following definition, we mention 
the following characterization: a category 'JC is semi-additive iff it has finite products, 
it is 'pointed' (i.e., 'JC(X, Y) contains a unique zero morphism ex, y for any two 
objects X and Y in 'JC) and it has a 'categorical' binary operation <f>. This last 
condition means the following: let DxX := X x X and Dxf== f xf (X an object 
and fa morphism in 'JC); then </>: Dx 4 Ix is a natural transformation such that for 
each object X in 'JC the following diagram commutes: 

exLl.Ix lxX.Px 
x xxx XXXXX----xxx 

1x~x1 ~ l•x •xXlxl l•x 
XXX X XXX __ .P_x __ +- X 

Here ex:= ex,x, the zero morphism of X, and L1 denotes the diagonal product 
operation. (That this characterization is equivalent with the definition of semi
additive category as given in [10) follows easily from the observation that if 'JC is 
semi-additive, then one can take for <f>x the codiagonal map; conversely, if JC satisfies 
the above conditions, then 'addition' of morphisms f, g: X 4 Y can be defined by 
f + g := <f>x o (fx g) o 8x where Bx is the diagonal map.) In the characterization 
above, the condition that <f> is a natural transformation expresses two properties, 
namely that each <Px is a morphism in JC and that all morphism of 'JC are homomorph
isms with respect to </J. We shall now relax the first property, while keeping the 
second one. The reason is, that in non-commutative algebraic structures (e.g. for 
Grp) the binary operation X x X 4 Y and, consequently, the canonical mapping 
X x Y 4 X + Y are not morphisms in the category under consideration, but in some 
auxiliary 'underlying' category (e.g. Set). Therefore we introduce the following 
notion of 'relative' semi-additivity: 

Definition. A category 'J{ is said to be semi-additive over a category ?£ whenever it 
satisfies the following conditions: 

(1) 'J{ has finite products; 
(2) 'J{ has zero-morphisms (for objects X and Y, ex, y will denote the zero

morphism from X to Y, and ex := ex,x); 
(3) There is a faithful functor 1-1: 'J{ 4 ?£ which preserves all finite products and 

reflects all isomorphisms; 
( 4) There is a natural transformation <P: I Dx 14 1-1 such that 
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Here I 1I:X1-7IlxI=l1x1 and I el: X -I ex I are natural transformations from 1-1 to 

itself (of course ID.ul := 1-1° D:JC, a functor from 'J( to :?f). So for each object X of 

JC there is a morphism <f>x: IX x XI = IXI x IXI ~ IXI in ge such that the above 

diagrams (with obvious modifications) commute. 
The categories Grp, SGrp and their full subcategories are semi-additive over Set; 

the category Rng is semi-additive over Ah, over SGrp and over Set; TopGrp, TopSGrp 

and TopRng are semi-additive over Top. Similarly, the categories of uniform groups 

or convergence groups are semi-additive over the category of uniform spaces or 

convergence spaces, respectively. The categories of semi-topological structures (i.e. 

<Px: X x X ~ X is separately continuous: e.g. STopGrp, STopSGrp, etc.) are not 

semi-additive over some category: they are not so over Top (because <Px is not 

continuous) and they are not so over any other category (Set, for example) because 

then 1-1 does not reflect isomorphisms (of course, we could leave this condition out 

of the definition, but then we would have to include it in Theorem 1 below). 

In the following theorem, F( X) and IF( 'JC) I denote the subcategories of 'J( and 

Zf, respectively, generated by the objects F(X) and I F(X) I with X in 'J(. 

Theorem 1. Let the category 'J( be semi-additive over the category Ee, and let F; '}{ ~ 'J{ 

be a covariant functor. If there is a natural transformation T/: l:tc ~ F such that, for 

each object X of'}{, hx I is an epimorphisms with respect to I F('JC) I, then F preserves 

finite products. 

Proof. First observe that the functor F preserves zero-morphisms: for any pair X, Y 

of objects in JC the equalities 

hold (compositions with zero-morphisms are again zero-morphisms), as well as 

( T/ is a natural transformation). Since I e FX,FYI and IF( e x,Y) I are morphisms in 

I F(X) I, the epi-property of 11 implies that IF( ex, y) I= I e FX,FYI. Because 1-1 is faithful, 
it follows that F( e x,Y) = e FX,FY for all objects X, Y in 'J(. 

In order to show that µ: F(X x Y) ~ FX x FY is an isomorphism in 'J( it is 

sufficient to show that Iµ I is an isomorphism in ze. We shall show that its inverse 
in ze is the morphism 

(X, Y objects in '}{). For convenience, we shall omit in the remainder of the proof 

all occurrences of the functor I-I, understanding the intention to consider all 
morphisms as belonging to the category ze. 
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To prove µ, 0 11 = 1 FXxFY is equivalent with showing that prFx o µ, o 11 = prpx and 
prpy 0 µ, 0 11 = prpy. We shall prove the first of these equalities: 

(I) 

prpx 0 µ, 0 11 = <f>Fx 0 [F(prx) X F(prx )] 

0 {[F(lxL1ex, y) 0 prFx ].:1 [F( ey,xL11 y) 0 prpy]} 

= <f>Fx 0 {[F(prx) ° F(lxL1ex,Y) 0 prFx ]L1[F(prx) ° F(ey,xL1ly) 0 prpy]} 

(2) 

= <f>Fx 0 {prpxileFxxFY,Fx} 

= <l>Fx 0 (prFx x prFx) 0 {1 FXxFYL1eFXxFY} 

(3) (4) 

= prpx 0 </> FXxFY 0 (1 FXxFYL1e FXxFY) = prFx· 

Here equality ( 1) is based on the fact that F(prx) 0 </> F(xx Y) = <f>Fx 0 (F(prx) x 
F(prx )) which follows from </> being a natural transformation; note also that 

prFx 0 µ, = F(prx ). Equality (3) follows similarly from</> being a natural transforma

tion. In (2) it is used that F(prx 0 0xL1ex.Y))=F(lx)=lpx and 

F(prx 0 ( ey,xLl l y)) = F( ey,x) = e FY,Fx· Finally, ( 4) uses one of the axioms of <f>. 

Next we show that 11°µ=1 F(Xx Y) or equivalently (by the assumption on 77 ), 

v 0 µ 0 7]xxy=7JxxY· Since µ 0 7]xxy=7]xX7]y we must prove v 0 (7]xX7]y)= 

7] xx y; as follows: 

(5) 

v 0 ( 7Jx X 7]y) = </> F(Xx Y) 0 {[F(lxL1ex, y) 0 7Jx 0 prx ]L1[F(ey,x.1ly) 0 7]y 0 pry]} 

= </>F(XxY) 0 {[ 7JxxY 0 OxL1ex,Y) 0 prx ]Ll[ 7]xxY 0 (ey,x.11 Y) 0 pry]} 

= <f>F(XxY) o ( 7JxxyX 7JXxY) 0 {(lx X ey )Ll(ex X 1 y)} 

(6) 

= 7] x x y 0 </> xx y 0 {Ox X ey )Ll (ex X 1 y)} = 7] xx y. 

Here properties of </> and 77 as natural transformations are used. Also, (5) requires 

the definition of v and the equality prFx 0 ( 7Jx x 7Jy) = 7Jx 0 prx (similarly for prpy ), 

and ( 6) follows from the equality 

</> xx y 0 {Ox X ey )Ll (ex X 1 y)} = lxx y, 

which can be proved by composing both sides with prx and pry: 

prx 0 <f>xxY 0 {(lx X ey)Ll(ex X ly)} 

= <f>x o (prx x prx) o {(lx x ey )Ll(ex x }y)} 

= <f>x 0 {(prx 0 (lx x ey )]Ll[prx 0 (exx1 y)]} 

= <f>x o {(lx o prx )Ll(ex 0 prx)} = <f>x 0 (lx.dex) 0 prx = prx, 

and similarly for the composition with pry. D 
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Remark. The epi-property of 'T/ is needed in the category ~ If fe is the category 
Set, then this requirement for 'T/ means that it is a surtransforrnation (all 1/x 's are 
surjections); we need this even if we consider the epi-property of 'T/ in fe only with 
respect to the morphisms of 'JC (i.e. morphisms in fe which are homomorphisms in 
X). This implies that for discrete algebraic structures Theorem 1 gives no better 
results than Theorem 2 below. But in categories of algebraic structures endowed 
with a continuity, like topological semigroups, convergence groups, etc., with the 
underlying category it equal to Top, Conv, Unif, etc., there are many examples of 
functors F (even reflectors) satisfying the conditions of Theorem 1 with 'T/ not a 
surtransformation. For concrete examples, see after Theorem 2. 

Corollary 1. Let 'JC be a semi-additive category and let F: 'JC~ .'i{ be a covariant functor. 
If there is a natural transformation 1J: lx ~ F which is epi with respect to F(X), then 

F preserves all finite products. 

Proof. 'JC is semi-additive over itself. D 

Remarks. (1) In the proof that µ 0 v = 1 Fx x PY (or rather that Iµ I 0 v = l 1 Fx x FYI) the 
existence of 'T/ (and its epi-property) was only used in order to show that F preserves 
zero-morphisms. Consequently: 

If F is a covariant endofunctor of a relatively semi-additive category preserving 
zero-morphisms, then for finite products the morphism lµl:IF(fIXi)l~ITIFXil is a 
retraction. 

The condition that F preserves zero-morphisms cannot be left out: if JC= Ah, 
FX:='ll.xX,Ff=lzXf. then µ:lxXx Y~'ll.xXx'll.x Y is given by µ(n,x,y)= 
(n, x, n, y)(X and Y objects in Ah, n E Z, x EX, y E Y), hence µ is not surjective. 
Note that in general, if F preserves all finite products (as in the situation of the 
theorem) then in particular F preserves void products, that is, F preserves the zero 
object. 

(2) In the theorem and its corollary, the epi-property for 1J cannot be replaced 
by the condition that F preserves the zero-morphisms: if 'J{ = Ah, and if for each 
object X in Ab, PX is the free abelian group over the set IX\{O}I, then F preserves 
the zero object, but µ is not injective in general (but, by Remark 1 above, µ is a 
retraction). It is, in fact, easy to show that 'free algebraic structure' functors do not 
preserve products. 

(3) The definition of a relatively semi-additive category (existence and properties 
of <P and e) cannot be weakened to the assumption that e: 1 x ~ lx is just some 
natural transformation. For instance, the category of left zero semigroups (i.e., with 
multiplication xy := x in each of its objects) satisfies these weakened conditions: for 
any set X, put ex := 1 x, <Px : (x, y) >-+ x: X x X ~ X; then <P and e satisfy the condi
tions as expressed in the commutative diagrams. If X is a topological space, then 
ex and <Px are continuous. Stated otherwise, also the category of topological left 
zero semigroups satisfies the weakened conditions. Now let for each topological 
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left zero semigroup X, 1'/x : X -7 FX denote its Cech-Stone compactification 
(endowed with its left zero semigroup structure). Usually,µ: F(X x Y) ~ FX x FY 
is not injective for Tychonov spaces X and Y. 

( 4) The proof of Theorem 1 is of local character: it uses only X, Y, X x Y and 
the images of these objects under F, together with certain morphisms between these 
objects. In particular, the functor \-\ has to preserve only the product under 
consideration, and \-\ need not reflect all isomorphisms: we need only that if \µ \ 
is an isomorphism then so is µ. We leave it to the reader to reformulate Theorem 
1 so as to apply to a fixed finite product. 

(5) In the proof of Theorem 1 the axioms for <f> were not used in full force. First, 
the condition </> 0 ( </> x \ 1 \) = </> 0 ( \ 1 \ x <f>) was not used at all, and in addition, of the 
conditions </> 0 ( \ 1 \ L1 \ e \) = \ 1 \ = </> 0 ( \ e \ L1 \ 1 \) the first was used for X and the second 
for Y. For concrete algebraic structures (such as groups, semi-groups) this means 
that associativity of the algebraic operation is irrelevant for Theorem 1, while X is 
only required to have a right unit and Y a left unit. Remark 3 above shows that 
the existence of some sort of unit is necessary (for remarks of similar purport in 
the context of STopSGrp, see [22, 2]). 

(6) One might hope that it would be sufficient that only F(JC) is semi-additive 
over flt, i.e., </>z is only defined (as a morphism in ~) for objects Z of the form 
Z = F(X) in JC. Then the first two parts of the proof of Theorem 1 are still valid 
(provided the other conditions of the theorem are met: the existence of TJ: lx ~ F 
with each \11x\ epic with respect to \F(X)\). In particular,\µ\ is a retraction (see 
also Remark 1 above). But the proof of equality (6) falls through! Instead of 
formulating a general result about this situation, we shall give just one particular 
example of how to deal with this situation. 

Corollary 2. Let F be a covariant functor from STopSGrp into itself with values in 
TopSGrp Haus, and assume that there exists a natural transformation TJ : 1 ~ F such 
that T/x has a dense range for each object X of STopSGrp. Then F preserves all finite 
products. 

Proof. (This result actually is a corollary of the proof of Theorem 1). Recall that 
the objects ofSTopSGrp =: JC are assumed to have a unit element, and that morphisms 
preserve these unit elements (see Example 6 in Section 1). Hence JC is 'almost' 
semi-additive over Set: all conditions of the definitions are satisfied (with \-1 the 
usual forgetful functor, and each <f>x : \X \ x \ X \-7 \X \ the semi-group operation in 
X), except the condition that\-\ reflects isomorphisms. However, on F(X) we shall 
interpret \-\ as the forgetful functor to Haus. Since for each object Z in F(JC) the 
mapping </>z:\Z\x\Z\-7\Z\ is continuous (i.e., <f>z lifts to a morphism in Haus) 
and, moreover, each l11xl with X in .'J'{ is epic with respect to \F(X)j, the first two 
parts of the proof of Theorem 1 can be carried out in Haus. In particular, v is a 
morphism in Haus and \µ. \ o P = 1 IFXxFYI· The last part of the proof can be carried 
out in Set, showing that P 0 \ µ. \ 0 \ TJ xx y\ = j 1 TJ xx v\. But this equality can be inter
preted as an equality in Haus (the forgetful functor Haus~ Set is faithful}. Since 
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hxx y j is epic in Haus it follows that v 0 jµ I= ll<F(Xx YJI· So jµ, I is an isomorphism 

in Haus. Since the forgetful functor TopSGrp Haus 4 Haus reflects isomorphisms, it 

follows that µ is an isomorphism in TopSGrpHaus. hence also in 'JC. D 

The most general situation (and weakest result) is the following theorem. We 

shall say that a functor 1-1: 'J{ ~Et' lifts constants whenever for all objects X, Y in 'J{ 

the image of the set 'J{(X, Y) under 1-1 contains all constant morphisms of 

Et'(IXI, I Yj). 

Theorem 2. Let 'J{ be a category having finite products, let Et' denote either the category 

Set or the category SGrp, and let 1-1: 'J( ~Et' be a faithful functor preserving finite 

products and lifting constants. If F: 'J{ 4 'J{ is a covariant functor and 1J : lye~ Fis a 

natural transformation then Iµ, I is injective on the image of I 11n x, I for each finite 

family {X;} of objects in 'JC. 

Proof. It is sufficient to prove the assertion for products of two factors X and Y. 

In view of formula (1) in the Introduction the following must be shown: if 

(x, y), (x', y') E !XI x I YI and l7Jx x 7Jyl(x, y) = l7Jx x 1Jy l(x', y'), then hxxYl(x, y) = 

l7J xx yl(x', y'). First, suppose that 2r =Set. Then for every b EI YI we have the 

following commutative diagram in Et' (here cb denotes the lifted constant morphism 

X ~ Y that has the value b in I YI: 

XXY 1JxxY F(XX Y) 

I F(l,a,,i 

FX 

Together with the equality I 7Jx I (x) =I 11x I (x') this implies 

l7JxxYj(x, b) = 1Jxxv(x', b). (2) 

Similarly, the assumption l7Jvl(y)=hvl(y') implies for every aEIXI: 

l7Jxxvl(a,y) = l1Jxxvl(a, y'). (3) 

Substituting b == y in (2) and a:= x' in (3) one gets the desired result. 

In the case that Zf= SGrp one obtains in a similar way the equalities (2) and (3), 

but now with a:= ex, b := ey, i.e., only for the unit elements. But as 

(x, y) = (x, ey) · (ex, y ), (x', y') = (x', ey) · (ex, y') 

and l1Jxxvl preserves the multiplication in the semigroups, it follows easily that 

hxxvl(x,y)=l1Jxxv!(x',y'), as desired. 0 

Remarks. (1) As in the proof of Theorem 1, in the above proof for a product of 

two factors X and Y only the existence of a right unit in X and a left unit in Y is 

needed. 
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(2) The condition that I-I lifts constants cannot be omitted from Theorem 2. Let 
'J{ be the category Top0 (see Example 8 in the Introduction). For each object (X, 1T) 
of Top0 (i.e., 1T' is the action of G on X) let X /err be the orbit space of (X, 1T) 
and T the trivial action of G on x I c'fT. The quotient map T/x: (X, 1T)-+ (X I cm T) 
is a morphism in Top0 and it is a quotient (in fact, 'T/x: x-+ x I err is an open 
mapping). Although 'T/ is a surtransformation, µ is not injective in general: take 
x = y == G with 1T( t, x) := tx for t, x E G. Then x I c'fT is a singleton, hence (X I c,,) x 
( y / C,,) is a singleton. On the other hand, the orbit space of X x Y is the underlying 
topological space of G. 

For the following corollaries, recall that if 1-1: 'JC-+ f£ is a faithful functor, then a 
morphismf:X-+Y in 'JC is said to be a quotient (w.r.t. l-l:'JC-+ff') iflfl is an 
epimorphism in f£ and if, in addition, g 0 If I E l'JC(X, Z)I for some morphism g in 
if and object Z in 'JC, implies g E l'JC( Y, Z) I. In our case, where ff' is either Set or 
SGrp, quotients are always surjective (or rather, their 'underlying' mappings in f£ 
are surjective; but we prefer to use adjectives like surjective, injective, etc. also for 
morphisms in 'JC). 

Corollary 1. Under the assumptions of Theorem 2, if 'T/ is a surtransformation, then 
µ is bijective for finite products. If, moreover, the faithful functor 1-1: 'JC-+ f£ reflects 
isomorphisms of IF( 'JC) I, then F preserves all .finite products. 

Corollary 2. Under the assumptions of Theorem 2, if both 'T/x and 'T/Y are quotient 
and also 'T/x x 'T/v is quotient, then µ: F(X x Y)-+ FX x FY is an isomorphism. 

Proof. If 'T/x and T/v are surjective thenµ is a surjection (use formula (1)), hence 
a bijection. If 'T/x x 'T/v is quotient, then (1) implies thatµ is quotient. Now observe, 
that every bijective quotient is an isomorphism. D 

Applications. (1) For purely algebraic categories like Grp, Ab, R-Mod, SGrp, 
BoolAlg, Rog, and their full subcategories, Theorem 2 implies that each endofunctor 
F which admits a surtransformation (in particular: each sur-reflection) preserves 
finite products. As observed earlier, in this situation one cannot obtain stronger 
results via Theorem 1. 

(2) For categories of pure continuity structures like Top, Conv, Unif, and their 
full subcategories the forgetful functor into Set almost never reflects isomorphisms. 
In these cases Theorem 2 gives only that if there is a surtransformation TJ: 1'.)'{-+ F 
then µ : F(fl X;)-+ TI FX; is a bijection for finite products, that is, F(fl X;) may be 
regarded as TI FX; but endowed with a finer structure. This is the case for the regular 
and completely regular modification functors in Top and the precompact 
modification functor in Unif (cf. also Example 4 in the Introduction). The T0-

modification in Top is a quotient reflection (i.e. each 'T/x is quotient: it is even an 
open mapping) and Corollary 2 shows that it preserves all finite products. The T1 -

and Ti-modifications are also quotient, but since in general 'T/x x TJy need not be 
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quotient, (it is if 7Jx and 7Jv are open and/ or perfect maps), Corollary 2 cannot be 
applied, and actually, the T1- and Trmodifications do not preserve all finite products. 
There are categories of continuity structures where quotients are productive: Unif, 
Prox (cf. [14]), and the categories of merotopic spaces or of convergence spaces 
(not in Near, [27]). In such categories, all quotient reflections preserve finite and 
(Corollary 2 of Theorem 3 below) infinite products. 

(3) An exception to the general statement with which 2 above begins is the 
category Comp of compact Hausdorff spaces: here the forgetful functor to Set reflects 
isomorphisms (also, surjective morphisms are quotients and quotients are produc
tive). So if F: Top~Top is a covariant functor with F(Top) £Comp and 7J: 1 ~Fis 
a surtransformation, then F preserves all finite (and, by Theorem 3 below) all infinite 
products. In particular, every epireflector F: Comp~ Comp preserves products. 
Example 3 from the Introduction shows that one cannot remove the epi-condition. 
Similar remarks can be made for the category Ban1 of all Banach spaces and bounded 
linear transformations: by the Open Mapping Theorem, bijective morphisms are 
isomorphisms. Thus, for example, every epireflection F: Ban1 ~ Ban 1 preserves all 
products. Also, in the category of standard Borel spaces and Borel mappings, every 
bijective morphism is an isomorphism (see [21] for references); we leave the 
conclusions to the reader. 

(4) Corollary 2 to Theorem 1 shows the following: if 7Jx: X ~ FX denotes the 
reflection of an object X from STopSGrp into CompTopSGrp or into CompTopGrp 
(the almost peridoic, respectively strongly almost periodic compactification of X), 
then F preserves all finite products (for infinite products, see Theorem 4 below). 
For comments and references, see Example 6 in the Introduction. Here we stress 
the fact that our proof uses only the categorical properties of these compactifications 
(the proof is 'intrinsic') and make no use of (weakly) almost periodic functions. A 
similar method as used in the proof of Corollary 2 to Theorem 1 shows that every 
surreflection from STopSGrp into TopSGrp preserves finite products. A completely 
different application is the one, mentioned in Example 7 of the Introduction: by 
Theorem 1, every covariant functor F: TopVS ~ TopVS (or :f{ ~:JC, where :f{ is a 
productive full subcategory of TopVS) with values in the full subcategory of Haus
dorff spaces and for which there is a dense-transformation 7J : l;l{ ~ F preserves finite 
products. See also the Remark after Theorem 3 below. 

(5) It is known that the category of complete convergence groups is a full reflective 
subcategory of the category of all convergence groups (see e.g. [23], also for earlier 
references to convergence groups and their completions, and [18] for later results). 
The natural map from a convergence group to its universal completion need not be 
injective, and completions need not be unique. It follows from Theorem 2 that the 
reflector from the category of convergence groups into the category of complete 
convergence groups commutes with finite products. (This result was known for 
abelian groups to R. Frie and V. Koutnik, but not published). 

(6) If G1 is an epireflection from Top3! into a subcategory of Comp and DX; is 
pseudocompact, then G1(D X;) = D G;X;. Indeed, 0 1 factorizes as 0 1 =Go F with 
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P the Cech-Stone reflector and G is an epireflector from Comp into itself. By 
Application 3 above, G preseves all products. Hence 0 1 preserves every product 
that is preserved by F. Compare this result with [6] where in some sense a converse 
is obtained: if G: Top2 ~ .sll and P: Top2 ~ 9fl are epireflections, .sll.,;;; 9fl .,;;; Reg .sll, 
where Reg .sll is the category of all .sl/-regular spaces, then for all objects X, Y in 
Reg .sll, the equality G(X x Y) = GX x GY implies F(X x Y) =PX x PY. 

3. Infinite products 

Easy examples show that in categories of discrete algebraic structures reflections 
do not preserve infinite products even if they preserve finite ones (according to 
Application 1 in Section 2). For example, take 'JC:= Grp and for 7/x: X ~PX the 
quotient map of the group X onto X / X 0 , where X0 is the torsion subgroup of X. 
Then for Zn, the cyclic group of n elements, P"lL.n ={O}, hence 0~= 1 P"li.n = {O}, but 
0~=1 "li.n is not a torsion group, hence P(O:=i "li.n) ¥- {O}. A similar example can be 
given for the reflection F: Grp ~ Ab. 

In algebraic structures, the finite products are directly determined by their factors 
(e.g. in SGrp ( x, y) = ( x, ey) · (ex, y) for (x, y) E X x Y): to determine infinite prod
ucts by finite ones, one needs some kind of convergence. This is done in the following 
theorem, which is the infinite counterpart of Theorem 2. 

Theorem 3. Let 'JC be a category which admits a faithful functor 1-1: 'JC~ Top and 
assume that 1-1 preserves products. Moreover, let P: 'JC~ 'JC be a covariant functor and 

7J: l:x ~Fa natural transformation. If[µ. [ is injective on the image of I 11n x,I for all 
finite products, then Iµ. I is injective on the image of 1 TJn x, I for all infinite products 
with I P(Il X;) I a Hausdorff space. 

Proof. Suppose that K is an infinite ordinal number, that {X.,} aeK is a family of 
objects of;'/{ for which both rr x .. and TI PX" exist, and that I P(O x .. ) I is a Hausdorfi 
space. Take x, y E I TI Xa I such that In 77., I ( x) = In T/a I (y); as in the proof of Theorem 
3 we have to show that i TJ I (x) = I 11 I (y) (for simplicity we write 77" instead of 'Y/x0 

and 7/ instead of rin xJ- For f3 ~ K denote by z13 the point of In X" I such that 

{ pr"y for a </3, 
pr z = 

" /3 pr0 x for a;;;., {3, 

(here pr0 is the projection of ITI X"I onto IX"[). Observe that zo=x and z,, = y. We 
shall prove by transfinite induction that I 11I(z13 )=I11I(zo)=I11 I (x) for all {3 ~ K. 

Obviously, this is true for f3 = 0. Suppose our claim is true for all /3 < y, where 
O<yo;;;K. If y is isolated (i.e. y-1 exists) then, taking into account that IJ.tl is 
injective for the two-factor product x ,,-1 x cn",..'Y-1 x .. ), one easily sees that the 
equality of the images of the points z 'Y-1 and z'Y under I 11 xr1 x 11na,.y-ix" I implies 
the equality of their images under 1111. Thus, one has l11l(z,,-1)=lril(z'Y). Together 
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with the induction hypothesis it follows that l7Jl(zy) = ITJJ(x). If 'Y is a limit then 

zy = lim 13 < Y z13 hence I ri I ( zy) = lim 13 <YI ri I ( z13 ); so by the induction hypothesis, 

\ ril (zy) =I 11 j(x) (observe that F(rJ X") has unique limits). This completes the proof, 

because for {3 = K the equality I ri I (z13 ) = lri I (x) gives the desired result. 0 

Remarks. In the above proof, continuity of I ri I is needed, but only for special nets 

indexed over chains of length not larger than the cardinality of the index set of the 

product. Also, the functor 1-1: 'JC~ Top need not preserve products in the full sense 

of the word: it suffices that lfI X; I is a cartesian product endowed with a topology 

which is coarser than the product topology obtained when all factors are given the 

discrete topology (or even coarser than the chain-net co reflection of that product). 

So instead of Top one may take in Theorem 3 any convenient category of net

convergence structures; thus, in sequential structures countable products are pre

served. This is formulated in the following Corollaries; here we mean by a chain

continuity structure a structure where convergence of chains is defined such that 

constant nets have their value as limit and such that each subnet of a net having a 

limit has the same limit. The morphisms are required to preserve the convergence. 

Corollary 1. Let JC be a category of chain-continuity structures having a faithful functor 

into Set or SGrp which preserves finite products and lifts constants. If F: 'J{ ~ 'J{ is a 

covariant functor, has values in structures with unique limits and admits a surtransfor

mation 7) : Ix-'> F, then µ, is bijective on all products. 

Proof. Combine Theorem 3 (together with the Remarks above) with Theorem 2 in 

order to see that µ, is injective. Surjectivity follows easily from equation ( 1) in the 
Introduction. 0 

Corollary 2. Under the assumptions of Corollary I for '){ and F, if 7) is a quotient

transformation then µ, : F(TI X;)-'> TI FX; is an isomorphism in 'J{ for a product TI X; 
in '}{ if! TI 7)x, is quotient. 

Remarks. We leave the formulation of similar Corollaries for sequential structures 

and countable products to the reader. Note, that in Corollary 1, if the faithful 

functor from 'JC into Set or SGrp reflects isomorphisms in I F('J{) I, then F preserves 

products (if Iµ, I is an isomorphism, then so is µ,).Also, observe that no compatibility 

of algebraic and continuity structures was required: we needed only continuity of J ri j. 
The main application of Theorem 3 and Corollary 1 lies in balanced categories 

(i.e. bijective morphisms are isomorphisms), and most categories with an algebraic 

and a continuity structure are not balanced. Thus in such categories if F is an 
' ' 

endofunctor admitting a surtransformation ri : l-'> F and F has values in Hausdorff 

structures, then F(f1 X;) and TI FX; have the same underlying set, but in general 

the continuity structure on the former is finer than that on the latter. In categories 

like Unif, Conv, STopGrp, TopGrp, TopVS, where quotients are productive, Corollary 
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2 can be used. For example, the reflector from STopGrp into TopGrpHaus preserves 
all products. Another example is a modification of the example at the beginning of 

this Section: in the category TopGrp denote for an object X the torsion subgroup 

by X1; then FX := X / X, defines a reflection of TopGrp into TopGrpHaus (in fact, 
the torsion free Hausdorff groups), and F preserves all products. A similar example 

is obtained if one replaces X, by Xc, the commutator subgroups of X (then one 
obtains the reflection into abelian Hausdorff groups). Notice that Theorem 3 and 
Corollary 1 are also of interest in categories of compact structures and of Banach 
spaces (cf. Application 3 in Section 2). 

One cannot hope to obtain more than the conclusion of Theorem 3, namely, that 

I J.L I is injective on the image of I 11 I. To this end, consider Example 3 of the 
Introduction. It is interesting (namely, in connection with the first case in Theorem 

4 below) that this example can also be given within the category TopGrpHaus: by 
[20] there exists a topological Hausdorff group S admitting no continuous 
endomorphisms but the obvious ones (the constant mapping with value the identity, 

and the identity mapping); with this object S, the procedure outlined in [9] can be 
performed in TopGrpHaus· 

Our final result is formulated in a local form in order to keep the presentation 
as general as possible and at the same time understandable. 

Theorem 4. Let 1-1: JC~ STopSGrp be a faithful functor which preserves products, lifts 

constants and reflects isomorphisms; moreover, let F: JC~ JC be a covariant functor 

and 1): l:J'C ~Fa natural transformation. If {X;} iE 1 is a set of objects in X then in the 

following cases J.L : F([l X;) ~TI FX; is an isomorphism: 

(1) I F(fl X;) I is a Hausdorff topological semigroup and I 11n x, I is surjective; 

(2) I FCTI X;) I is a compact Hausdorff topological semigroup and I 7Jn x, I maps IIT X; I 
onto a dense subset of IF([l X;)I. 

Proof. We have to prove that IJ.L I is an an isomorphism in the category STopSGrp. 
First, we shall show that IJ.L I is surjective. To this end, observe that for each j EI 
the canonical projection pj: TI X; ~ xj is a retraction, the diagonal product qj: xj ~ 

TIX; of lxj and the zero-morphism ]0~ Tii?'j X; being a section (note that x has 
zero-morphisms, obtained as liftings of the constant morphisms in STopSGrp that 

have unit elements as values). It follows that F( pj) is a retraction, so that IF( pj) I 
is surjective for each j E I. However, I 77x; iol pj I= IF( pj) I 0 I 77n x, I, and this implies 
that I 11 x; I is surjective (has dense range, respectively) if I 77n x, I is surjective (has 
dense range, respectively). Now equation ( 1) in the Introduction implies that in 

case 1, I J.L I is surjective and that in case 2, I J.L I has a dense range. But in case 2, 
each IFJ01 has a compact Hausdorff topology (being retract of IFCTI X;)I under 
IF(pj)i), so that ITI FX;I has a Hausdorff topology, and therefore IJ.L\ is a surjection 
in this case as well. 



186 M. Hu§ek, J. de Vries / Preservation of products by functors 

Next, we show that l.u I is injective. This will be sufficient for the second case, 
since we know already that l,u I is a surjection of compact Hausdorff structures. To 
prove injectivity of I .u I in case 1, we need only refer to Corollary 1 of Theorem 3 
(or rather, a version of this Corollary for the given product IT X;, requiring only 
that each I Y/xj I is surjective; cf. the proof of the Corollary). In case 2, proceed as 
follows. For any subset J of J, consider the following diagram in X: 

Here Y/J := 1Jn1 x;• 7JJ := .U{X;iiEJh 'YJ := T/I, ,u := J.LI, the p1 and qJ are projections, and 
aJ is the diagonal product of 1 n1 x; with the zero-morphism ITJ X; ~IT rv X;. Note, 
that for finite 1 the morphism I ,u1 I is an isomorphism ( cf. Corollary 2 to Theorem 
1), so that in order to prove injectivity of l,u I it suffices to show that for x, y E 
I F(Il X;) I, x 7" y implies that there exists a finite subset J of I with I F(p1) I (x) 7" 
IF(pJ )l(y). For the proof it will be convenient to introduce the following notation: 

la1 ° P1I=: W; and P1 :=I Fa; ° Fp; I= I Fa; I 0 IFP1 I. 

Consider any point x in I F(fI X;) I. We claim that the net {pJxlJ E [J] <w} converges 
to x in J F(J1 X;) J (here [J]<w denotes the set of all finite subsets of I). Assume the 
contrary: there is an open nbd U of x such that the :ffe = {JIJ E [Jrw, p1x E U} is 
cofinal in ur"'. By compactness, the set {p;xlJ E :ffe} has an accumulation point p 
in IF(J1 X;)j. Then p e U, so p has an nbd V such that x e V. Since p = pe (e the 
unit element in IF(Il X;)j) and the binary operation in the semigroup jF(fI X;)I is 
continuous, there are nbd's V 1 of p and V, of e such that V 1 • V, ~ V. Continuity 
of I 77 I implies that there is an nbd W of { e;};E I in 1111 X; I such that I YJ I ( W) ~ V,. 
There is a finite subset 1 of I such that w I\1 (y) E W for all y E ITI X;: any finite 
subset of I determining a basic nbd of { e;};E I in IIL X; I, included in W, suffices; 
also, J can be taken large enough to guarantee that J E f!f and p1x E V1• Since 
P r\J( ITJ IY) =I Y/ I 0 w rv(Y) EI YJ I ( W) ~ V, for ally E 111 X; I and I YJ I has a dense range, 
it follows that Prv(z) E V, for all z E IF(Il X;)I. Next, notice that y = w1 (y) · w1v(Y) 
for all y E 111 X; I, hence z = PJ(z) · p r\1(z) for all z in the (dense) range of IT/ I. By 
a continuity argument, this equality holds for all z EI F(Il X;) I, which gives 

x=pJ(x)·Pr\J(x)E V 1 • V,s; V, 

contradicting the choice of V. This proves our claim. 
Clearly, this implies immediately that if x,yEIF(IlX;)I, and x7"y, there is 

JE[Jr"' with pAx)¥p1(y), hence IFP1l(x)¥IFPJl(y), as desired. This completes 
the proof that J µ..I is injective in case (2). It remains to show that I .u I is an isomorphism 
in case 1. We know already that it is a continuous bimorphism. That l.u I is a 
homeomorphism can be proved as follows. 
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First, notice that in In xi I for each point y the net { Wj (y) I J E [I] <w} converges 
to y. Since J 11 J is a continuous surjection, it follows that in J F(CT X;) J for each point 
x the net {p1xJl E [I]<w} converges to x. Now consider a point x and an open nbd 
U of x in J F(CT X;) J, and let V and Ve be nbds of x and e, respectively, such that 
V· Ve£: U. As in the proof above one shows that there is J E [I] <w such that p1x E V 
and p rv( z) E Ve for all z E J F(CT Xi) J. Continuity of J Fa1 I implies the existence of 
a nbd W of JFp1 J(x) in JF(CT1 XJJ with JFa1 J( W) s; V. Since Jµ.1 J is a homeomorphism 
(Corollary 2 to Theorem 1), W1 :=qj 1(Jµ.1 j(W)) is an nbd of J,uJ(x) in TI 1 JFX;j. 
Now for every point yEJ,uJ- 1(W1) one has q1 J,uJ(y)Ejµ.1 J(W), that is, 
Jµ.1 J(JFp1 J(y )) E l.u1 I ( W), hence J Fp1 J(y) E Wand consequently p1 (y) E jfo1 J( W) s; 
V. As before, y=p1(y)·p 1\ 1(y); since by the choice of J we have p1\l(y)E V., it 
follows that y E V· Ve£ U. This shows that W 1 s; Jµ. J ( U) and Jµ. J is a homeo
morphism. 0 

Remarks. In the last paragraph of the above proof it was observed that if J 11n x, J is 
surjective, then {p1xll E [l]<w} converges toxin JFCll Xi)J. If JFCll XJJ has Haus
dorff topology, then this can be used to give another proof of Theorem 3. 

The above proof (also for case 2) can be so modified as to use only chains (then 
chain-compactness for chains of a certain length would be sufficient in case 2). 

Finally, as in previous results, the functor J-1 needs only to reflect isomorphisms 
from JF(X)J, which is in both cases a subcategory ofTopSGrpHaus· 

The most important applications of Theorem 4 are formulated in the following 
Corollaries. 

Corollary 1. The strongly almost periodic compactification STopSGrp' CompTopGrp 
and the almost periodic compactification STopSGrp ~ CompTopSGrp preserve all 
products. 

Proof. Both functors are reflectors, satisfying the conditions of case 2 of 
Theorem 4. 0 

Corollary 2. Every surreflector of STopSGrp into a full subcategory of TopSGrpHaus 
preserves all products. 

Remarks. ( 1) The conditions on Y/ in Theorem 4 cannot be omitted. To this end, 
modify Example 3 of the Introduction to one in the category TopGrp 8 aus: let F be 
the reflector of this category into the subcategory { G" JK a cardinal}, where G is a 
strongly rigid topological Hausdorff group ( cf. [20]). 

(2) In the category TopGrp, Corollary 2 above can be improved so as to hold 
for dense-reflections into TopGrpHaus· We shall indicate a proof of the following 
statement: if F: TopGrp ~ TopGrpHaus is a covariant functor and Y/: 1--? Fis a dense
transformation, then for all products µ.: F(CT Xi)--? CT FXi is an embedding. To prove 
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this, notice that T/ can be factorized as 1 -? 71 ' F' -? 71 " F" where ri' is a surtransformation 
and ri" is an embedding-transformation. By case 1 of Theorem 5, F' preserves all 
products. Thus, we need only to prove that our statement holds for the case that T/ 

is a dense-embedding transformation. With notation as in the proof of Theorem 5, 
let x E F(f1 X;), x ~ e and µ,(x) = e (all identities are denoted e).There are disjoint 
nbd's Ux of x, u. of e in F(f1 X;) and a canonical nbd Ve in I1 X; depending on 
some J E Urw such that 17( Ve)s;; U,. Then 17-1( Ux) n V, = </>, hence pr111- 1( Ux) n 
pr1 v. = </J. But x E 17( 17-1( Ux)) because 17 has a dense range, hence e = F(pr1 )(x) E 

F(pr1 ) TJ( 17- 1 Ux) = 171 (pr17)- 1( Ux))· As this set is disjoint from pr1 V.(171 is injective) 
this is a contradiction, so µ, is injective. From this it follows by a straightforward 
argument (taking into account that I1 FX; as a product of Hausdorff groups is a 
regular space into which F(I1 X;) is continuously injected by µ, in such a way that 
the dense subspace 7J(F(f1 X;)) is topologically embedded) thatµ, is an embedding. 

The following example shows that in this resultµ, need not be surjective: consider 
a sequence of topological groups { Gn}neN such that the only continuous homomorph
ism from G" to Gm for m ,e. n is the constant map with value the identity of Gm 
and such, that the only continuous endomorphisms of Gm are the constant map 
and the identity mapping (for the existence of such a system, consult [20] or [25]). 
Also, taking none of the G" compact, the image O" of Gn in G~AP is a proper 
subgroup of G~AP. Now let G := { x E I1 G~API # { n jpr nX e On}< w}' and let F be the 
reflector of TopGrp into the epireflective hull in TopGrpHaus of { G}. Taking into 
account that G~AP <;; G for each n and that G" admits no other continuous 
homomorphism into G than the obvious one (coming from the canonical morphism 
Gn-? G~AP) it follows that FG" = G~AP for each n. On the other hand, G = F(f1 G") 
which is a proper subset of IT FG". 
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