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ABSTRACT 

For any undirected graph G, let µ(G) be the graph invariant introduced by Colin 
de Verdiere. In this paper we study the behavior of µ(G) under clique sums of 
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i.:raphs. In pa1tic11lar, we givf' a forbidden minor characterization of those clique sums 

c; of c;. a11d G, for which µ(G) = rnax{µ(G 1), µ(G 2 )}. 
l -

!. INTRODUCTION 

Colin de Verdiere [2] (cf. [3]) introduced an interesting new invariant 

µ(G) for graphs C, based on algebraic and analytic properties of matrices 

associated \\ith G. He showed that the invariant is monotone under taking 

minors and that µ(G) .;;; 3 if and only if G is planar. 

Colin de Verdiere conjectured that y(C) .;;; µ(G) + 1, where y(G) is the 

coloring number of G. This conjecture would follow from Hadwiger's conjec­

ture [as µ(K) = 11 - l] and is trne for µ(G).;;; 4. 

Graph G is a clique sum of graphs G 1 and G2 if VG = VC 1 U VC2 and 

EC= EC, U EG 2 • where VC 1 n VG2 is a clique both in C 1 and in G 2 • 

Note that for the coloring number y one has that y(G) = max{y(G 1), 

y(G 2 )} if G is a clique sum of C 1 and G 2 • A similar relation holds for the 

size of the largest cli(1ue minor in a graph. 

We therefore are interested in studying the behavior of µ(C) under 

dique sums (d. also [4]). A critical example is the graph K 1+ 3 \Li (the graph 

obtained from the complete graph K1+ 3 by deleting the edges of a triangle). 

One has µ(K,+i \A)= t + 1 [since the star K4 \Li has µ(K 4 \A)= 2 
and since adding a new vertex adjacent to all existing vertices increases µ by 
l ]. 

Ilmve\·er, K, +:>\A is a clique sum of K1+ 1 and K 1 + 2 \ e (the graph 

obtained from K1 + 2 by deleting an edge), with common clique of size t. 

Both K1 + 1 and K 1 +2 \ e have µ = t. So, generally one does not have that, 

for fixed t, the property µ(G) .;;; t is maintained under clique sums. Simi­

larly. K 1 + 1 \A is a dique sum of two copies of K1+ 2 \ e, with common 
clique of size t + 1. 

These examples where µ increases by taking a clique sum are in a sense 

the only cases: \Ve show that if G is a clique sum of G 1 and G 2 , with 

common dique S, then µ(G) > t == max{ µ(G 1 ), µ(C 2 )} if and only if t > 0 

and either IS I = t and G - S has three components, the contraction of 

which makes with Sa K 1+ 3 \A, or ISI = t + land G - S has two cornpo-

1wnts, the contraction of which makes with S a K1 + :i \ Li. Moreover, if 
µ(G) > t, then µ(G) = t + land µ(G 1) = µ(C 2 ) = t. 

So µ(G) = rmLx{µ(C 1), µ(G 2 )} if and only if C does not contain 
K, + ,3 \ A as a minor. 

ln Section 2 we give the definition of Colin de Verdiere's invariant, 

including an alternative linear algebraic characterization of the "strong Arnold 
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hypothesis." In Section :3 we prove a lemma, while in Section 4 we derive our 
main characterization. 

If M is a matrix, then M K denotes the sub matrix of M induced by the 
row and column indices in K. Similarly, if x is a vector, then x K denotes the 
subvector of x induced by the indices in K. We denote the ith eigenvalue 
(from below) of M by A-;{M). 

2. COLIN DE VERDIERE'S INVARIANT 

We describe Colin de Verdiere's invariant. Important is a certain general 
position assumption for matrices called the strong Arnold hypothesis. We 
here formulate it and give an equivalent linear algebraic characterization. 

Let M = (m;) be a symmetric n X n matrix. Let R(M) be the set of all 
symmetric n X n matrices A with rank( A) = rank( M ). Let S( M) be the set 
of all symmetric 11 X n matrices A = (a;) such that ai.j = 0 whenever i * j 
and m. 1 = 0. 

Th~· matrix M is said to fulfill the strong Arnold hypothesis (SAH) if 
R(M) intersects S(M) at M "transversally"; that is, if the tangent space of 
R( M) at M and the tangent space of S( M) at M together span the space of 
all symmetric n X n matrices. In other words, if the intersection of the 
normal spaces at M of R( M) and S( M) only consists of the all-zero matrix. 

The tangent space of R( M) at M consists of all S}rnrnetric n X n 
matrices N such that x TNx = 0 for each x E ker( M ). Thus the normal 
space of R(M) at M is equal to the space generated by all matrices xxT with 
x E ker( M ). This space is equal to the space of all symmetric n X n matrices 
X satisfying MX = 0. Trivially, the normal space of S( M) at M consists of all 
symmetric n X 11 matrices X = (x;) such that xi,J = 0 whenever i = j or 
mi.J * 0. Therefore, the SAH is equivalent to: 

there is no nonzero symmetric n X n matrix X = ( x;) such 
that MX = 0 and such that x i.j = 0 whenever i = j or ( 1) 
mi.j * 0. 

Now Colin de Verdiere's invariant µ/G) is defined as follows. Let G be 
an undirected graph, which throughout this paper we assume without loss of 
generality to have vertex set {1, ... , n}. Then µ(G) is the largest corank of 
any symmetric n X n matrix M = (m;) satisfying: 

M has exactly one negative eigenvalue (of multiplicity 1), and 
for all i, j with i * j, mi.j < 0 if i and j are adjacent, and (2) 
m;,j =0 otherwise, 
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and such that M fulfills the SAH. [The corank corank( M) of a matrix M is 
the dimension of its kernel.] 

It turns out, as proved in [2], that if G' is a minor of G, then µ,( G ') ~ 
µ,( G). On proving this, the SAH is essential.) So for each fixed t, the class of 
graphs G satisfying µ(G) ~ t is closed under taking minors. Hence, by the 
theorem of Robertson and Seymour [6] there is a finite collection of "for­
bidden minors" for such a class of graphs. 

Colin de Verdiere [2] showed that the graphs G satisfying fL(G) ~ 1 are 
exactly the paths, those satisfying µ,(G) ~ 2 are exactly the outerplanar 
graphs, and those satisfying µ.,( G) ~ 3 are exactly the planar graphs. If 
fL(G) ~ 4, then G is linklessly embeddable, since each graph G in the 
complete class of forbidden minors found by Robertson, Seymour, and 
Thomas [7] has µ,(G) > 4 (cf. Bacher and Colin de Verdiere [l]). In fact, 
Robertson, Seymour, and Thomas [8] conjecture that also the reverse implica­
tion holds. 

3. A LEMMA 

The following lemma gives us some tools: 

LEMMA. Let G = (V, E) be a graph and let M be a matrix satisfying 
(2). Let s ~ v and let cl• ... ' c"' be the components of G - S. Then: 

(i) If A) Mc) < 0, then A1( Mc) > 0 for all j -:/= 1. 
(ii) If A 1 (Mc) = 0, then there are at least co rank{ M) - IS I + 2 co mpo­

nerits C; with A1( Mc) = 0. 
(iii) If M fi1/fills the SAH, then there are at most three components C; 

with A1(Mc) = 0. 

Proof. If (i) does not hold, we may assume that A1(Mc,) < 0 and 
A1(Mc) ~ 0. Let z, x 1, and x2 be the eigenvectors belonging to the smallest 
eigenvalues of M, Mc , and Mc.,, respectively. By the Perron-Frobenius 

I - . T T theorem we may assume that z, x 1, x 2 > 0 and by scalmg that Zc, x 1 = zc, x 2 • 

Define y E ~" by y; := (x 1); if i E C 1, lj; := -(x 2 ); if i E C2 , and 
.·. T 7' T d T -Yi:= 0 if l ({:.cl u Cz. Then z y = Zc,X1 - Zc:J2 = 0 an y My -

xTMc,x 1 + x~Mc; 2 x 2 < 0. However, ZTlj = 0 and- yTMy < 0 imply that 
A2(M) < 0, contradicting (2). 
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To see (ii), if A1(Mc) = 0, then by (i), Ai( Mc) ~ 0 for all i; that is, Mc, 
is positive semidefinite for each i. Let D be the vector space of all vectors 
x E ker(M) with x, = 0 for all s E S. Then: 

for each vector x ED and each component C; of G - S, 
Xc =0, Xc > 0 or Xc < O; if moreover A1(M~) > 0, then (3) 
Xc: =0. , , --1 

Indeed, if x ED, then Mc Xc = 0. Hence if xc, =fa 0 (as Mc is positive 
semidefinite), Ai( Mc) = 0 ~nd 'xc is an eigenvector belonging 'to A1(Mc), 
and hence (by the P~rron-Frobeni~s theorem) Xc > 0 or Xc < 0. ' 

Let m' be the number of components C; ~th A1(M;) = 0. By (3), 
dim( D) .;,;;; m' - 1 (since each nonzero x E D has both positive and negative 
components, as it is orthogonal to z). 

Since A. 1(Mc) = 0, there exists a vector w > 0 such that Mc w = 0. Let 
I I 

F be the vector space of all vectors x5 with x E ker(M). Suppose that 
dim(F) =IS!. Let j be a vertex in S adjacent to C1• Then there is a vector 
y E ker(M) with yj = -1 and y; = 0 if i ES\ {j}. Let u be the jth 
column of M. So Uc = Mc Ye . Since uc .;,;;; 0 and Uc =t= 0, we have 

, I 'I 'I I 'I 

0 > u Tc w = Yc1 Mc w = 0, a contradiction. 
I 'I 'I 

Hence dim(F).;;;; JS! - 1, and so 

m' - 1 ~ dim(D) = corank(M) - dim(F) ~ corank(M) - IS!+ 1. 

( 4) 

If (iii) does not hold, we may assume that A.1(Mc) = 0, for i = 1, ... , 4. 
Let X; be an eigenvector belonging to the smallest eigenvalue of Mc,• for 
i = 1, ... , 4. Let z be the eigenvector belonging to smallest eigenvalue of M. 

1' 1' d 1' Vife may assume that z, xi,. .. , x4 > Oandthat zc,x 1 = Zc 2 X 2 an Zc,1X3 = 
zb4 x4 • Define the vectors Yi and y2 by (y 1); := (x 1 ); if i E Ci, (y 1 ); := 

-(x 2 ); if i E C2 , and (y 1); := 0 if i r:E. C1 U C2 , and (yz); := (x); if 
i E Ca, (y 2 ); := -(x 4 ); if i E C4 , and (y2); := 0 if i $ C3 U C4 • Then 

1' 1' T 1' 1' T · 1' z Yi = zc,x 1 - zc_,x2 = 0 and ;::: y2 = Zc;Jx 3 - Zc 4 X 4 = 0. Smee y 1 Myi = 

xI'Mc,xi + x~·Mc 2 X 2 = 0 and similarly y~My2 = 0, the vectors y 1 and Y2 
belong to ker( M ). 

Define X := y 1 y~· + y2 yf. Then xi,j ¥= 0 implies i E C 1 U C2 and j E 

C3 U C4 or conversely. As MX = 0, this contradicts the SAH. • 
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4. CLIQUE SUMS OF GRAPHS 

Now let G be a clique sum of G 1 and G2 • Let S := VG1 n VG2 and 
t := max{ µ,(G 1), µ,(G 2 )}. For any U ~VG, let N(U) denote the set of 
vertices in VG \ U that are adjacent to at least one vertex in U. 

THEOREM. If µ,(G) > t, then µ,(G) = t + 1 and we can contract two 
or three components of G - S so that the contracted vertices together with S 
form a K1+:J \ 6.. 

Proof. We apply induction on IVGI + ISI. Let M be a matrix satisf)ring 
(2) and fulfilling the SAH, with corank equal to µ,(G). We first show that 
A1(Mc) ~ 0 for each component C of G - S. Suppose A1(Mc) < 0. Hence 
by (i) of the lemma, A1(MC') > 0 for each other component C'. Let G' be 
the sub graph of G induced by C U S; so G' is a subgraph of G 1 or G 2 • Let 
L be the union of the other components, so A1(M1) > 0. We write 

( M, 
Uc i, ) T rr (5) M = U; 
uz· ML 

Let 

A'~ rn 
() 

~u,~M,' l I (6) 

0 

Then by Sylvester's law of inertia (cf. [5, Section 5.5]), the spectrum of the 
matrix 

(
Mc 

AMAT= ur c 
() 

Uc 

rr - uLMz 1u[ 
0 

(7) 

has the same signature as the spectrum of M; that is, AMAT has exactly one 
negative eigenvalue and has the same co rank as M. Let rr I = rr - ULM LI ut 
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As ML is positive definite, the matrix 

(
Mc 

M' == VJ ~) (8) 

has exactly one negative eigenvalue and has the same corank as M. Since 
(ML\J ~ 0 if i =I= j, we know that (M£ 1 )i,J ~ 0 for all i, j. [Indeed, for any 
symmetric positive-definite matrix D, if each off-diagonal entry of D is 
nonpositive, then each entry of v- 1 is nonnegative. This can be seen 
directly, and also follows from the theory of "M-matrices" (cf. [5, Section 
15.2]): Without loss of generality, each diagonal entry of D is at most 1. Let 
B == I - D. So B ~ 0 and the largest eigenvalue of B is equal to 1 - .A1(D) 
< 1. Hence v- 1 = I + B + B2 + B3 + ··· ~ 0 (cf. Theorem 2 in Section 
15.2 of [5]).] 

Hence, (II')i,J ~ 0 for each i and j with i =F j. Thus M' satisfies (2) with 
respect to G '. 

The matrix M' also fulfills the SAR. To see this, let X' be a symmetric 
matrix with M' X' = 0 and (X')iJ = 0 if i and j are adjacent or if i = j. As S 
is a clique, we can write 

X' = c ( X' 
yr ~)· (9) 

Let Z == -YULM£ 1 and 

( X' 
y n c 

X== yr 0 
zr 0 

(10) 

Then X is a symmetric matrix with (X)i,J = 0 if i and j are adjacent or if 
i = j, and MX = 0. So X = 0 and hence X' = 0. 

It follows that µ,(G') ~ corank(M') = corank(M) = µ,(G) > t, a contra­
diction, since G' is a subgraph of G 1 or G2 • 

So we have that A1(Mc) ~ 0 for each component C of G - S. Suppose 
next that N(C) =F S for some component C of G - S. 

Assume that C ~ VG 1• Let H 1 be the graph induced by C U N(C) and 
let H 2 be the graph induced by the union of all other components and S. So 
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G is also a clique sum of H 1 and H2 , with common clique S' := N(C), and 
H 2 is a clique sum of G 1 - C and G2 • 

If µ,(G) = µ,(H 2 ), then µ./H 2 ) > t' == max{µ,(G 1 - C), JL(G2 )}. As 
IVH2 1 + ISI < IVGI +IS!, by induction we know that µ,(H 2 ) = t' + 1, and 
thus µ(G) = µ(H 2 ) = t' + 1 ~ t + 1. Thus t' = t and µ,(G) = t + 1. 
Moreover, either !SI= t + 1 and H 2 - S has two components C', C" with 
N(C') = N(C") and IN(C')I = t, or !SI= t and H 2 - S has three compo­
nents C' with N(C') = S, and the theorem follows. 

If µ(G) > µ(H 2 ), then µ,(G) > t' == max{ µ,(H), µ,(H 2 )}. As IVG!+ 
IS'I <IVG!+ !SI, we know that µ(G) = t' + l, implying t' ;;,;. t, and that 
either IS'I = t' + 1 or IS'I = t'. However, IS'I < ISI ~ t + 1 ~ t' + 1, so 
IS'I = t' and t' = t. Moreover, G - S' has three components C' with 
N(C') = S'. This implies that G - S has two components C' with N(C') = 
S ', and the theorem follows. 

So we may assume that N(C) = S for each component C. If !SI> t, then 
G 1 would contain a K1+ 2 minor, contradicting the fact that µ,(G 1) ~ t. So 
IS I ~ t. Since co rank( M) > IS I, we have A1( Mc) = 0 for at least one compo­
nent C of G - S. Hence, by (ii) of the lemma, G - S has at least corank(M) 
- !SI+ 2 = µ(G) - !SI + 2 ~ 3 components C with A1(Mc) = 0, and by 
(iii) of the lemma, µ(G) - ISI + 2 ~ 3, that is, t;;. !SI;;,;. µ,(G) - 1;;;. t. • 

We give as direct consequences the following corollaries: 

Co1mLLARY 1. Let G be a clique sum of G 1 and G 2 and let S == VG 1 Ii 
VG 2 • Then µ,(G) = max{ µ,(G 1), µ,(G 2 )} if µ,(G 1) =I= µ(G 2 ), or !SI< µ,(G), 
or !SI= µ,(G 1) and G - S has at nwst two components C with N(C) = S. 

COROLLARY 2. Let G be a clique sum of G 1 and G2 and let t = 
max{ µ,(G 1), µ,(G 2 )}. Then µ,(G) = t if and only if G does not have a 
K1 + .3 \Ii-minor. 

We thank the referee for carefully reading the paper and for helpful 
suggestions. 

REFERENCES 

R. Bacher and Y. Colin de Verdiere, Multiplicites des Valeurs Propres et Transfor­
mations Etoile-Triangle des Graphes, Preprint, 1994. 

2 Y. Colin de Verdiere, Sur un nouvel invariant des graphes et un critere de 
planarite, ]. Cornbin. Theory Ser. B 50:11-21 (1990). 



COLIN DE VERDIERE'S GRAPH 517 

3 Y. Colin de Verdiere, On a new graph invariant and a criterion for planarity, in 
Graph Structure Theory (N. Robertson and P. Seymour, Eds.), Contemporary 
Mathematics, American Mathematical Society, Providence, R.I., 1993, pp. 
137-147. 

4 H. van der Holst, M. Laurent, and A. Schrijver, On a minor-monotone graph 
invariant, ]. Combin. Theory Ser. B, to appear. 

5 P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., with Applica­
tions, Academic Press, Orlando, 1985. 

6 N. Robertson and P. D. Seymour, Graph Minors. XV. Wagner's Conjecture, ]. 
Combin. Theory Ser. B, to appear. 

7 N. Robertson, P. Seymour, and R. Thomas, Sachs' Linkless Embedding Conjec­
ture, ]. Comhin. Theory Ser. B, to appear. 

8 N. Robertson, P. D. Seymour, and R. Thomas, A survey of linkless embeddings, in 
Graph Structure Theory (N. Robertson and P. Seymour, Eds.), Contemporary 
Mathematics, American Mathematical Society, Providence, R.I., 1993, pp. 
125-136. 

Received 8 February 1995; final manuscript accepted 16 February 1995 


