
10

A Display Controller for an Object-level
Frame Store System ~:~

JAK.S. Jayasinghe, A.A.M. Kuijk, and L. Spaanenburg

In [3] and [1] a new architecture for a Computer Image Generating (CIG) system designed to have optimal Interaction
support for cealistlc 3D graphics has been presented. There it was stated that -from an interaction paint of view­
there IS no need to have access to an image representation as low as the pixel level. This. and the fact that the
performance and resolution to a major extend has been limited by the pixe update speed enforced by memory
technologies. led us to the conclusion that it should be investigated whether a CRT display could be refreshed fro·11
an object-level representation of the frame instead of the conventional pixel-level frame store.

In thiS paper we present as a result of thiS study an architecture of a (multi-processor) Display Controlier that is
capable to di'ectly refresh a raster display from such an Object-level frame representation.

CR Categories and Subject Descriptors:
B.7.1 {Integrated Circuits] . Types and Design Styles VLSI
C.l.m. [Processor ArChitectures] .' Miscellaneous - Hybrid systems
C.3 [Special-Purpose and Application-based Systems} .' Rea/-time systems
1.3. t [Computer Graphics] .' Hardware Architecture - Raster display devices
1.3.3 {Computer Graphics]. Picture/Image Generation - Display algorithms

Key Words & Phrases: Display Controlie', Computer Image Generation. Raster Graphics, Object Representation,
MaSSive Parallelism. RISC, VLSI.

1. Introduction
In present day workstations, high quality visualization and interaction facilities are
becoming essential features. Recognizing this, system designers paid special attention to
the image generation pipeline in order to improve both image quality and interaction
behaviour. By improving the image generation pipeline, the frame buffer access bottleneck
became more and more apparent. To overcome this problem, all sorts of partitioning

* This study is partly funded by the Dutch Technology Foundation (STW).

http://www.eg.org
http://diglib.eg.org

142

strategies have been developed, without asking the basic question: "do we need a pixel­
level frame buffer?"

The basic justification of a frame buffer in graphics systems is the need to uncouple the
real-time refresh process from the computation intensive image generation process. In
order to separate these two processes, storage of the image is needed in a representation
suitable for the refresh process. Due to ever increasing demands on image quality and
image complexity, even the vast evolution of hardware we could witness the last decade
did not result in an image generating system that could meet the timing requirements
imposed by the refresh process. This justifies the expectation that uncoupling of the image
generating and the refresh process will always be needed. Realising this, the basic question
posed above can be changed into: "do we need a frame representation level as low as the
pixel level?"

To answer this question from an interaction point of view an inventory of the types of
graphics based interaction [3] shows that these interactions basically act on three
representation levels (see Table 1). These levels are: Low: visible parts of objects (LDF).

Medium: objects as a whole (MDF) and High: the image as a whole (HDF).

Note that there are no interactions that address individual pixels at all. so the answer to

the last question from interaction point of view is no.

LDF

Highlight

BlinK

Depth Cue

Pick

MDF HDFI
Priority i Viewing Control

ViSibility Grouping

Transparency

Shading, Reflection

Scale, T ranslste, Rotate

Clip

Change, Replace

Table 1: Examples of some graphics based interaction operations and the representation lev­

els on which they operate. LDF is the level of visible parts of objects, MDF is the object level
and HDF is the image level.

Based on this inventory, we designed a workstation architecture where all three levels
mentioned are accessible for interaction purposes [1,3]. Since these three levels are
present in our architecture, it is only a small step to come up with the final question: "is it
possible to refresh directly from the lowest representation level needed for interaction?"

In order to answer this question, firstly some details on this lowest representation level
(LDF\

t LDF stands for Low level Display File or alternatively Linear Display File following earlbom [2J

143

In our architecture, the LDF is a bucket-sorted structure of primitives called patterns It is
the result of a hidden surface removal algorithm that operates in object space [5). It is
essential to note that, since only the visible parts of objects are in this file, the patterns in
this LDF are non-overlapping. The geometrical properties of these patterns are described by
domains (O(x, y), in the form of a sorted list of slices designed for efficient HSR and scan
conversion) whereas the colour properties are described by colourjunctions (C(x, y).

What properties should a Display Controller (DC) have that can indeed refresh directly
from this LDF, the lowest but still structured object-level representation we have
accessible for interaction?

It should be noted that since the number of patterns in the LDF can be very high for a
complex scene (in the order of lOOK), the band-width of the LDF/DC interface will be a
prime factor that could limit the performance of the DC. Because -as mentioned in the
above- patterns in the LDF are non overlapping, only a few patterns, the so called
Active Patterns, contribute to a given pixel-row. Active Patterns in general will contribute
to several pixel-rows. Due to high refresh speeds, on-chip storage of the Active Patterns
will be necessary to reduce the band-width requirements of the LDF/DC interface. Since
each "slice" of a domain has enough information to paint the pixels up to the next slice,
the on-chip storage could be kept to a minimum (i.e. instead of storing the complete active
pattern in the on-chip storage, only one slice of an Active Pattern needs to be stored).

As real-time scan-conversion is a very demanding process, full exploitation of coherence so
that incremental calculations can be done is essential. For each pattern, the colour of
adjacent pixels as well as the intersections of the edges of a pattern with the next pixel­
row can be calculated incrementally. The exploitation of these coherencies of the patterns
reduces the processing power requirements of the display controller dramatically (see the
Appendix). Even with these incremental calculations several hundred MIPS are required
for real-time scan-conversion. However, due to the technological limitations we have to
face today, the capacity of processing elements will be limited to an order of 10 MIPS.

Therefore, if we stick to the idea of refreshing from the LDF, the bandwidth requirements
as well as the processing requirements enforce a multiprocessor implementation of the
Display Controller.

In this paper we present the basic structure of the Display Controller as shown in
Figure I, designed with the above considerations in mind. The Display Controller consists
of an Increment Processor (IP) capable of painting pixels on the display at refresh speed,
an Active Patterns Store (APS) implemented as an on-chip memory of the IP, a high
band-width LDF/DC interface, and a Pattern Loader (PL) which loads the active patterns
from the LDF into the APS. Note that both the IP and the PL must be realized as
multiprocessor arrays.

144

~
Incremental Processor

(IP)

DC V
G:)

Figure 1: Functional block diagram of the Display Controller (DC). It consists of a Pattern

Loader (PL) that loads the active patterns in the on chip Active Pattern Store (APS). These Ac­
tive Patterns are used by the Increment Processor (IP) to produce the pixel stream. Note that

PL as well as IP are multiprocessor arrays.

2. A Multiprocessor Display Controller.
During the design of the multiprocessor Display Controller, the following aspects have
been taken into account.

• 	 Since all of the elements in the DC cannot be integrated into a single chip, the DC
must be partitioned. This partitioning should not cause any considerable degradation
of the DC performance.

• 	 The system should be scalable. That is, it should be adaptable to different resolutions
and complexity demands.

• 	 The adaptability should show a performance improvement linear with the increase of
hardware.

• 	 Ability to use the same architecture for increased packing densities (i.e. the architecture
should not be determined by current VLSI technology).

--M

145

•

•

Ability to handle images conslstmg of lots of small patterns having rather simple
colour functions as well as images consisting of fewer patterns, but having more
complex colour functions.

lmplementable in VLSL

LDF

APS

rl-f APS: Active Pattern Store
PL : Pattern Loader
se : Scan-line Command_. --M

SCB : se Buffer
X IP : X Incremental ProcessorV VseB Y =IP : Y Incremental Processor

d~ 0
J\ J\
V se Bus V

oe

Figure 2: The architecture of the Display Controller.

The architecture presented in Figure 2 satisfies these requirements. This figure merely
presents the data flow through the system. The control flow will be discussed in the next
section. The high band-width of the LDFIDe interface, has been achieved by parallel
accesses of the LDF by multiple PLs. Due to the fact that patterns in the LDF do not
overlap, the PLs can work completely independently.

146

The nature of the DC process -incrementally generating streams of pixels, row by row­
suggests a splitting of these incremental operations in horizontal (x) and in vertical (y)

direction. The y-increments to calculate both the intersection O(x) of a pattern with the
current scanline as well as the colour function C(x) of that pattern on the current scanline.
The x-increments to ealculate the pixel values of that section. Since the time constraints of
these two processes differ in an order of the number of pixels on a scanline, it is
reasonable to suggest an implementation of the IP array by two different types of
processor elements, X _IP and Y _IP.

The Y _IPs calculate the intersections of the pattern edges with the current pixel-row, the
colour values at the left most edge, the incremental colour values along the pixel-row
direction, etc, and generate from this the scanline commands that are sent into the
Scanline Command Buffer (SCB).

The X_IPs are pixel processors, of which there are as many as there are pixels on the
pixel-row. The X_IPs are connected as a systolic-array. The left-most X_IP is fed by
scanline commands from the Scanline Command buffers. Each X _IP performs incremental
calculations on the scanline command it receives which is then passed on to its right
neighbour. Depending on the type and destination range of a command, internal registers
of the X_IPs are updated. Between commands from one scanline and the next, a special
Refresh command is fed to the X IP array, which causes the X _IP that receives this
command to output the resulting colour value and reset its internal registers to be able to
start calculations for the next pixel-row. Since due to this mechanism Refresh commands
directly control the pixel flush, they will have to come at regular intervals, dictated by the
total line time.

The architecture as presented in Figure 2 inherits the following features:

• 	 The number of X_IPs can be adapted to any display resolution desired.

• 	 The ratio of processor elements can be tuned to maximize the throughput of the DC.
(e.g. if the throughput of a Pattern Loader seems to be larger than that of a YIP, one
PL can be made to serve several Y _IPs.)

• 	 PLs and Y IPs can be added to the DC in order to increase the processing power.
With this, the performance of the system can be increased up to a level where it can
render the most complex pictures (i.e. pictures without any coherence between the
pixels).

• 	 Realistic pictures "ith multiple light sources, and objects with diverse shading
properties can be scan-converted in real-time. The realism of the generated picture can
be improved by anti-aliasing the edges of the patterns (see the Appendix).

As the processors in the systolic-array have to perform some calculations before they
transfer data to their neighbouring processors, the transfer speed and consequently the
maximum resolution is limited (with the targeted technology this will be in the order of
1 K X 1 K). Due to the anti-aliasing capabilities, the effective resolution of the display can

147

be improved beyond that. Alternatively, if a higher resolution is essential even without
anti-aliasing, one can use a numbcr of X _IP arrays in paralleL As the speed of VLSI
implementations is continuously increasing, it can be expected that within a few years
time, also very high resolution displays can be refreshed using a single X IP array.

3. Partitioning the Multiprocessor Display Controller

As sub-micron technology and wafer scale integration are not available on a cheap
commercial basis, the DC has to be partitioned into several chips. As we mentioned
before, this partitioning must not degrade the performance of the DC. Figur~ 3 shows the
different levels of partitioning that can be done.

~

Display ~ .. ! 	 High priority

Medium Priority

Low Priority

DC-_•..........••••......... ---....

Figure 3: The different levels of partitioning of the Display Controller.

148

As indicated by the thick dashed box, it would be desirable to have one complete,
maximally configured, De in a single chip. This however is impossible, not only due to
limitations of the silicon technology, but also due to the large number of I/O pins needed
for a high band-width LDFIDe interface (which is realized by multiple busses). For this,
the De can be partitioned as indicated by thin dashed boxes. This partitioning includes a
PL and some Y _IPs on one chip, and the X_IPs on another chip. If even more
partitioning is enforced by the technology available, we can do it as indicated by filled
boxes. Here only a few X_IPs are integrated on one chip, the PL on a separate chip, and
some Y _IPs with the APS on another chip.

4. Implementation of the Multiprocessor Display Controller

4.1. The Pattern Loader

As the output of the X IP array is directly used to refresh the display, the De will have to
fulfill high throughput requirements. As a result programmability of the De must be kept
to a minimum. On the other hand, in order to be able to adapt to future developments in
lighting models, mapping techniques etc, we do not want to impose a severe restriction
upon the representation in the LDF. Therefore any mismatch between the data
representations in the LDF and the representations as needed by the increment processors
must be resolved by a data dependent mapping, i.e. by making the PL programmable.

Program Memory I.. ~ RISC CPUI

Figure 4: The basic block structure of the Pattern Loader.

Because of the high throughput requirements, calculations performed by the increment
processors will have to be done using fixed-point numbers. Floating-point numbers,
however, are indispensable for up stream processes in the image generating pipeline, such
as the hidden-surface removal algorithm.

As a resnlt, we propose the PL to be a pipe-lined RISe processor with a floating-point to
fixed-point converter (preferably on-chip for maximum throughput). Since the LDF
contains the data of the patterns, a separate memory is employed to store the RISe
processor program. Figure 4 shows the basic blocks of the Pattern Loader. The data
memory of the RISe processor consists of the LDF memory and APS memory. The PLs

-- - - -

149

will operate in MIMD (Multi-Instruction Multi-Data) mode, to be able to handle

differently structured data.

The function of the Pattern Loader (PL) is to transfer the active patterns from the Low­

level Display File (LDF) into the Active Pattern Store (APS). The internal architecture of

the proposed RISC CPU. and it's instruction set are given in Figure 5 and Table 2

respectively. The estimated packing density is one PL per 1 p, CMOS chip. The number of

I/O lines connected to the PL is about 40. The PL could also be implemented using a

general purpose processor, probably at the cost of some performance degradation.

Functions to be performed by the PL's hardware are described in the coming sub-sections.

4.1.1. Program Loading Mode. In this mode the PML signal will be kept low by the host,
and the PL':> program will be down loaded via the PL's data bus, otherwise used for LDF
and APS memory access only. In this mode the normal operation of the PL will be
suspended. Once the complete program memory is down-loaded. the PML line will be set
on a high level again and the PL can start the pattern loading process.

4.1.2. Index Table Construction Mode. Although it may be possible to find the patterns
contributing to the pixel-row being scan-converted on the fly, it is much more efficient to
make use of an index table, i.e. a table, indicating which patterns are contributing to a
given pixel-row. Modification of such an index table has to be carried out during the
vertical retrace time, since at that time, no patterns are scan-converted. The index table
can be stored in the LDF memory. There should be an entry in the index table for each
pixel-row on the display and each entry of the index table must indicate which patterns
become active on the pixel-row in question. This index table mechanism can be used to
assure that pattern loading can be sustained at a sufficient rate.

4.1.3. Pattern Loading Mode. In this mode the active patterns indicated by the index
table, will be transferred into the APS. As fixed-point numbers are used within the
Display Controller, floating-point numbers will be converted into fixed-point
representation. Complex patterns which, due to the fixed sized APS segments cannot be
stored as a whole, must be decomposed into simple patterns. Sudden peaks in the pattern
loading process can be minimized by loading patterns in advance.

The signals VAP, RE, GE and BE. are used to load the active patterns into the
APS. The PL will lower the signal on the APSR line (by a RAPS instrnction) in order to
get a free segment of APS memory. In return APSA will be lowered, if a free APS memory
segment is available. The PL will wait for this signal if the W APSA instruction has already
been executed. The BE and BE signals are used for selective transfer of colour
dependent data. Once an active pattern is loaded, the PL signals on VAP, indicating the
incremental processors can scan-convert the pattern.

150

To I From LOF, APS

PC

Add-Sub

BA

Control

APSA APS Acknowledge
APSR APS Request
BA Branch Address Reg.
BE Blue Enable
GE Green Enable

Register
INT InterruptFile

32 Bit x 16 INTA Interrupt Acknowledge
IRC Increment LC
LC Line Counter
LLC Last LC Reg.
MUX 2: 1 MultiplexerBarrel

32..1' Shifter

INTA

DDB
PC Program Counter
PI Processor Identity Reg.

Floating-point RE Red Enable
Fixed-point RLC Reset LC
Converter I I PI LLC

RST Reset
ALU Temp Temporary Reg.

...... RST VAP Valid Active Pattern

Flags

APS Interface

t t t t t RLC ILC

APSA APSR VAP FiE GE BE

Figure 5: Register level architecture of the Pattern LoadeL

The on-chip counter LC indicates which pixel-row is being scan-converted, whereby the
PL can check whether it is loading the patterns in time. Such a check is needed, since a

delay in the APSA signal might delay the PL. The LC counter is incremented by the signal
on lIe and reset by RLe (Note that if a general purpose CPU is used for the PL, LC must
be implemented in external hardware). If the patterns could not be loaded in time the host
computer must be informed about this situation. The INT signal. generated by the OINT
instruction, is used to report pattern loading problems to the host. The INT signal will
transfer the value of the LC when the problem occurred (which is stored in LLC register)
as well as a pattern identification number (which is stored in the PID register), when the
host responds via tbe line INTA. In order to reduce the pin count of the PL, these data will

151

Data Transfer Instructions Genera! Control instructions

U) liL "[vi Hi <- <~"M>

LDI RI, 0 RI <- 0

MV RL Rj RI <- RI

ST - Rj, Ri <''11> <- RI

ST "Rj+, Ri <'AI> <- RI

RI <- RI+1

ST -RI, Ri 81 <- RJ-1

<'R]> <-RI

BRA "Ri

BRC'Ri

BRZHI

CALL "'RI

CLC

Branch always to

Branch on C to Ri

Branch on to "RI

Branch to subroutine" Ri

Reset C flag

FPC Ri, Iii Iii fixed pOint RI

NDrJ No operation

RST

SEIC

COLE

GINT

RAPS

SVAP

RI

WAPSA

Generate int€PTupt

Request APB segment

Signal VAP

Wail unlll APSA

Anthmetlc / Logical instructIons

AoDRi, Hj

AoDC R" RI

ADol RI, D

ADDIC RI, D

AND HL lij

ASL Ri, Rj

ASR RI, '1)

LSL RI, Rj

LSR RL "I

NEG Ri

NOT Ri

OR RI, RI

SUB Ri, R)

SUBC RI, Rj

Ri <- RI+-lil

RI <- Ri+Ri+C

RI RH,D

Ri RI+D+C

RI RI And R)

Anthmetic lett shift

Ri by bits

Arithmetic nghl shift

Ri by bits

Logical le'l srill

RI by bits

Logical right so,fj

RI by < Ri> bits

RI -Ai

RI Not RI

RI RI Or RI

RI Ri-R)

RI RI-Rj-C

SUBI Ri, D RI Ri-D

SUBIC RI, [) RI RI-D-C

Table 2: Instruction set of the Pattern Loader, Ri, Rj are registers RO, R1" R15, "M and "Ri is

the address given by M or Ri and <"M> and <"'Ri> is the data at the corresponding ad­
dress,

be sent on the PL's data bus, so that during this time the pattern loading will temporary
be suspended. The line DDB will be lowered by the PL in order to disconnect the data bus
from the LDF.

The operation of the PL is pipelined and external data and address busses are allocated to
the LDF and APS memory by time multiplexing.

152

4.2. The Active Pattern Store

For maximum parallelism of the PLs and IPs, the APS must be implemented as dual-port
memory. The memory locations which contain the Active Patterns must be well protected
from the PL aecess. A segmented APS will simplify the management, while supporting the
throughput requirements. For efficient usage of the APS memory, the size of the segments
must be kept to a minimum. On the other hand. such a strategy will reduce the overall
throughput rate due to increased PL work load. Therefore the APS must be able to store
patterns containing a few pattern slices (say 5-10). Because of the pattern representation
used [5] any eomplex pattern can be sub-divided into simple domains very easily so that
the PL is indeed able to decompose complex patterns on the fly into the simple patterns
which can be stored in APS segments.

The APS management will be implemented by a flag mechanism (See Figure 6). As soon
as the PL has loaded an active pattern into the APS. a flag is raised in the corresponding
APS segment, indicating that this segment contains an active pattern. We refer to this flag
as Active Pattern Flag. The Y _IPs must process the APS segments of which Active Pattern
Flag is raised. As soon as the data of the APS segment becomes outdated, Y IP must reset
the Active Pattern Flag and raise another flag indicating that the corresponding segment is
free for PL access. The above flag mechanism protects the APS segments containing valid
data and provides a fast response to the requests made by the PL

To J From PL

I EJ

Figure 6: Implementation of the Active Pattern Store.

The Global Manager keeps track of all free APS segments, while the Local Manager
connects its APS segments either to the PL or to the Y IP depending on the commands
received by the Global Manager and the flag settings. One Global Manager is assigned to
each Pattern Loader. Due to the Local Manager switch mechanism. the number of APS
segments available is transparent to the PL, so that a variation of the number of APS
segments can be done very easily. Furthermore it reduces the width of the address bus
between the PL and the APS.

153

4.3. The Y Increment Processor

Now let us turn our attention to the implementation of the Y JP. Due to the diversity of
the patterns (they may be textured or not, have different number of slices etc.), a highly
specialized processor is not suitable. On the other hand the high throughput requirements
can only be met by a highly specialized processor. Therefore, the Y _IP has to have a
restricted programmability. For this, the Y IP will also have to be a pipe-lined RISC
processor. Its instruction set will be small compared to that of the PL.

As a large number of Y _IPs will be needed -more then there are PLs-, an instruction
transmission mechanism is proposed. Instructions are generated by the Instruction
Generator and flow through the Y _IPs as shown in Figure 7. Therefore, the Y _IPs operate
on SIMD (Single Instruction Multi-Data) mode with some phase difference. The reasons
for this instruction transmission mechanism are two-fold: As described in the Appendix,
only a few number of multiplications are required for the scanline command generation.
Hence one multiplier can be used by neighbouring Y IPs when they operate in different
phases. Furthermore an instruction transmission mechanism reduces the driving
requirements of the Instruction Generator.

APS APSAPS
segment segmentsegment

Instruction
Generator

: Instruction transmission Path

Figure 7: The instruction transmission mechanism of the Y _IP array.

The Y IPs update the v-dependent data items in the APS such as the intersections points
of the edges and colour values and they generate Scanline Commands. These commands
will be stored in the SCB. As all Y IPs must send their scanline commands to the X IP
array, the SC Bus must be properly arbitrated. This SC Bus arbitration is discussed in
next the section.

The scanline commands to be generated consist of EV AL and SET commands described
in section 4.5. The architecture of the Y _IP processor is presented in Figure 8. The active
patterns are stored in the APS. Generated scanline commands are stored in the FIFO

154

From PL
(Data. Address

and Control)

Instruction
In I 8

Instruction
Out

APS
8 Bits x 128

APS Local
Manager

Control

Flags

Token In Token Out

FIFO

8 Bits x 10 x

8

8

Section
Selector

P Q

BF

R S

To I From Multiplier

Figure 8: Architecture of the Y_IP processor. A,B,C are registers whereas P,Q,R,S are virtual

registers shared by several Y _IP processors.

memory. Although 32 bit representation is used for the intensity data in the scanline
commands (see section 4.5), the internal busses in the Y IP processor are not 32 bit wide,
Reasons to use more narrow data busses in the Y IP processor are three fold. In the first
place, the number of Y _IP processors integrated in one chip should preferably be as large
as possible. The second reason is that data paths of different widths are required for the
intensity and pixel location data. Although 32 bit data are needed for the intensity data,
for the pixel location data 10 to 12 bits are sufficient. The third and main reason is the
necessity of a multiplier for the scanline command generation. If the data path of the
Y IP processor is small, a multiplier could be integrated into the Y _IP processor chip
quite easily, The timing constraints for the scanline command generation is not as severe
as the evaluation of scanline commands. Hence smaller data paths within the Y _IP
processor will not noticeably degrade the performance of the system. However, if the PL
can only access the APS memory via narrow data paths. the speed of the pattern loading

155

will become insufficient. Hence the PL must be able to write into APS memory via
sufficiently wide data paths.

As stated before, the number of multiplications required for the scanline command
generation is small, so that a serial multiplier and a divider is proposed (note that an array
multiplier or divider needs a very large silicon area). The instruction set of the Y _IP
processor is given in Table 3. All instructions, except MULT and DIV are single cycle
instructions. Since the multiplier and divider are serial they need more cycles. In order to
provide sufficient multiplications and divisions, a serial multiplier and divider which can
supply results after w cycles, where w is the word length (8 bits), is proposed.

Data Transfer instructIons Arithmetic / Logical instructions

LD Ri, oM Ri <- <"'M>

LDI RI, 0 RI <- 0

MV Ri, Rj Ri <- Rj

ST 'M, Rj <"M> <- RJ

ADD C <- A+B

AD DC C <- A+B+Cln

AND C <- A And B

ASL Rk, d Arithmetic left shift

Rk by d bits

ASR Rk, d Arithmetic right shift

Rk by d bits

LSL Rk, d Logical left shift

Rk by d bits

LSR Rk, d Logical right shift

Rk by d bits

MULT R, S <- pxS

NEG Rk Rk <- -Rk

NOT Rk Rk <- Not Rk

OR C <-AOrB

SUB C <-A-B

SUBC C <- A-B-Cln

General Control instructions

AYIP Active if valid pattern

CLRC,n Clear Cin flag

DYIP Deactivate

HTCin Halt if On flag true

HTNCin Halt If Cin flag false

HTZ Halt If Z flag true

HTNZ Halt if Z flag false

NOP No operatIon

NER New pixel row

SETOn Set Cin flag

RST Restart

Table 3: Instruction set of the Y _IP processor. Ri is one of the registers A, B, P or Q, Rj is

one of the registers C, R or S while Rk is register A or B, "'M is the address given by M and

<"'M> is the data at the corresponding address,

Due to the diversity of the patterns, the data in the APS will not be uniformly structured.
As instructions are transmitted along the Y _IP array, one can generate only scanline
commands for those patterns which have similar attributes. Hence the processors which
are assigned to differently attributed patterns than the one being processed must be
disabled. For this purpose, we employ the HALT instruction. As the disabled processors
will reduce the processor utilization, we can use a Data Independent Flow (DIF) type
programming style to maximize the utilization of the processors. The estimated packing
density of the Y _IP processor is about 16 processors per chip with associated memory in
I fl CMOS technology. The number of 110 lines is expected to be about 100.

156

4.4. The Scanline Command Buffer

For the maximum parallelism of the processors in the DC, the SCB must be freely
accessible for the Y _IPs and X _IP array independently. Hence a double buffered memory,

or a FIFO must be used.

In order to arbitrate the SC Bus, a token mechanism is proposed. Nearest neighbour

connection for the token flow is best for VLSI implementations. As shown in Figure 9, the
left most SCB receives the token from the Instruction Generator. As soon as the SC bus is
free (indicated by the BF line), the SCB which holds the token sets a "busy" on the BF
line and starts to transfer SC commands. Each SCB keeps the token as long as it has SCs
to be transferred to the X IP array. When the SCB is ready it releases the busy from the
BF line and passes the token to its right neighbour. The right most SCB returns the token
to the Instruction Generator. Upon this, the Instruction Generator will feed NOP
instructions to the X IP array followed by the Refresh command. The Refresh command
has to maintain synchronization, so that these NOP instructions have to fill up the time
left before the Refresh command can be issued.

\. - •. -sc B!,IS - - - ••

SC Bus Arbitration Token Path

• Token

SC Path

Figure 9: The Scaniine Command Bus arbitration mechanism.

The space available in a SCB must be sufficiently large to store all the scanline commands
required for the most complex pattern shading. In such complex cases, one pattern may
generate several scanline commands. If a large number of patterns are complex shaded,
the X _IP array may not be able to processes all scanline commands generated, in which
case the token sent into the SCBs will not complete its round-trip in time. As the scan­
conversion must be continued in real-time, such tokens must be purged, a new token must
be issued and the host has to be notified. Such an exceptional situation can occur only if

157

there are too many small patterns having a too high shading complexity. As a rule of
thumb, patterns in the LDF should in principle not generate more instructions for a
sean line than a constant times the number of pixels they cover on that scanline.
Individual patterns may exceed this number, as long as this is averaged out by less
demanding patterns.

4.5. The X Increment Processor

Ambient. diffuse, and specular components of the generally applied shading models as
well as depth cueing and periodic textures. can be painted using incremental calculations.
As described in the Appendix, piece-wise second order curves can be used to approximate
the diffuse and specular reflections. The effect of depth cueing can be generated by
changing the intensity gradients. Furthermore periodic textures can be generated by
setting intensity, first derivative andlor second derivative at well defined pixel locations.
Calculation of the effects of multiple light sources would be greatly simplified if partial
contributions can be summed.

Command In Command out

Internal Data outData In
Registers

Color Values

Figure 10: BaSIC structure of an X IP element.

Given this, we designed a processor array of which the elements can execute the
instruction set presented in Table 4. This array of processors will be able to support a
fairly complex shading strategy. The instructions traverse the X _ IP array and data
associated with each instruction will be updated at each processor as indicated in Table 4.
The block diagram of an X IP processor is given in Figure 10.

158

Set the first derivative of the intensity at the pixel locations X, X+OX, to OL

SETOOI(X, OX, 001) Set the second derivative of the intensity at the pixellocallons X, X+OX, .. to 001.

OIS(X, OX) Oisable the update of the R register

EVAL1(XDX,I, 01, 001) Update the intensities between pixel locations X and X+OX If pIXels are between X and

X~OX, then R, I, DI are updated as follows

R <-R+I,

I <-I+DI,

01 <- 01+001

If I, 01 or 001 has been set by preceding SET commands, use the values providec by

1<-1+01,

If I or DI has been set by preceding SET commands, use the values provided by the SET

commands.

EVAL3(X,DX,I) Update the Intens.ties between pixel locations X and X+OX. If pixels are between X and

X+OX, then R is updated as follows

R R-I,

It I has been set by preceding SET commands, use the values provided by the SET

commands,

EVAL4(X, I) Updale the .ntens.ties tl€tween pixel local1Ons X and X + OX If pixels are between X and

X+OX, then R updated as follows

R I,

REFRESH() Refresh Ihe d.splay by the content of Rand resel all registers to tl€ able to calculate the

colours 01 the next Plxel row.

NOPO Do nothing. This command is used to maintain the synchronism.

Table 4: The X IP command set

The function of the X _IP processor is to calculate the pixel intensities incrementally along
the pixel-row direction, and to sum partial contributions generated for instance by
individual light sources, The following code describes the operation of the X IP processor
in detail.

Read X, OX, I, 01, 001 provided with the command;

Use new data for I, Di, 001 il protect flags are false or use previously stored data when protect flag is true;

X~~

switch (Command)

159

case "EVAL1 ": ,I (Eval TRUE) (if (X ~ ~ 0) { 	 Eva! FALSE;

Command NOP;

else { 	 If (D.s FALSE) Colour +~ I;

I +~ DI;

DI DDI;

else if (X ~~ 0) { 	 Eval ~ True;

X ~ DX;

if (Dis ~ ~ FALSE) Colour

I +~ DI;

DI ~~ DDI;

Protect_I Protect_DI ~ Protect_001 ~ FALSE;

D,s TRUE;

break;

case "EVAL2": II (Eval TRUE) (II(X ~~ 0) { Eva! FALSE;

Command NOP;

else (If (D,s ~ ~ FALSE) Colour

01;)

else ,I (X -- 0) { 	 Eval ~ True:

X ~ OX;

,I (Dis ~~ FALSE) Colour

I +~ DI;

Protect I Protect_DI ~ Protect_ DDI ~ FALSE;

D,s TRUE;

break;

case "EVAL3": il (Eval TRUE) (il(X ~~ 0) { Eval ~ FALSE;

Command - NOP;

else If (Dis ~~ FALSE) Colour I:)

else If (X O){ Eval True:

X DX;

if (Dis - ­ FALSE) Colour

Prolect I Prolect DI Protect_DDI ~ FALSE;

D.s TRUE;

break;

case "EVAL4": 'f (X 0 && Dis FALSE) Colour ~ I;

D,s TRUE;

break;

case "SETI" .1 (X 0)(X OX;

StoreJ

Protect_I ~ TRUE;

break;

case "SETDI"" if (X 0)(X OX;

Store_DI:

Protect 01 TRUE:

break,

case "SETDDI":l1 (X 0) (X OX:

Store""DDI;

Protect 001 TRUE:

break;

160

case "DIS'" if (X

il(X

break;

0&& Eval ~~ FALSf)(

0&& TRUE)

X Ox;

Eval

D,s

Command

TRUE;

NOP;

case" REFRESH": Output Colour;

Reset Registers;

break;

case" NOP": break:

Command TIme slot;1

rSETI(X, OX, I) X,OX

..............

Time slot #2 Time slot #3 Time slot #4

I

Time slOI "'5

SETDI(X, Ox. DI) X. OX 01

SETDOI(X, OX, 001) X,OX 001

OIS(X, OX) X,OX

EVAL1(X, OX, I, 01, 001) 001X,OX 01 I Accumulate

EVAL2(X, OX, I, 01) X,OX I01 Accumulate

EVAL3(X, OX, I) IX,OX Accumulate

EVAL4(X, I) X, I

REFRESHO Refresh

No operationNOPO I

Table 5: Decomposition of the scanline command set.

Time Slot TN

XjPi

EVAL2(1}

XjP;+!

EVAL2(X.DX)

XjPi+2

SETI(I}

XjPi+3

SETI(X,DX)

XjPi+4

- '­

Time Slot TN+!

XjPi

-­

X_IP;+!

EVAL2(1)

XjPi+2

EVAL2(X,DX)

XjPi+3

SETI(I)

XjPi+4

SETI(X.DX}

Figure 11: Distribution of the decomposed scanline command data among X IP processors in
two consecutive time-slots,

I, 01, 001 are represented by 32 bit fixed-point numbers in the realization proposed, Due
to the large number of bits involved, the I, 01, 001 cannot be sent in parallel. Hence
only one 32 bit input and one output data port will be used and consequently I, DI, DDI
and the couple X, OX will be sent serially. Since 10-12 bits are sufficient for the
representation of the X and OX, we can send the X and OX simultaneously on the LSB

161

10

and MSB side of the 32 bit data bus. Table 5 shows the decompositions and the
sequential order of the data as it will be sent into the X IP array. The sequential ordering
has been optimized to maximize the throughput of the X IP processor. The decomposed
data will be sent into the X IP processor array in a pipe-lined fashion. Figure II shows an
example of scanline data in two consecutive time slots.

Figure 12 shows the architecture of the X IP processor at register transfer leveL Registers
A, Band C are used to store the intensity, the first derivative and the second derivative of
the intensity function respectively. Register D is used to hold the accumulated colour
intensity.

M
U
X

Data Out

ChM ChL

BtL

B1H

ABC

LD Reg.'
RD Reg.

FFFF ...

16

16 ,
One

+

B3H

o

16

16

B2L

B2H 16

16 ~

7l:
[;]--
~

LD Fleg.
RD Reg.

Control

B IPAlpBlpc~-------)Io-L-___--'------------- ­ M Com. OutCom. In
U - U

X
F I-----------------~__~_________~~

10to

LD Reg. Load RegisterA,B,C,D Internal Registers

PA, .. PC Protect Flags RD Reg. Read Register

Eval Evaluate Flag ChM Change MSB Part

Nop No Operation Flag ChL Change LSB Part

MUX 2:1 Multiplexer S*L Internal Data Bus Low Side

BUF Buffer B*H Internal Data Bus High Side

Figure 12: Register level architecture of the X _IP processor.

162

The EVAL commands will update the appropriate registers when the processor location is

between X and X + DX.

The SET commands win set the appropriate registers when the processor location is X,

X + DX, X + 2DX, .. and raise the appropriate protect flag. When this protect flag is true

the EVAL commands do not modify the content of the corresponding register. As the SET

commands must effect only one EV AL command, the protect flags will be reseted during

the last cycle of each EVAL command.

The processors which are between the pixel locations X and X + DX or processors on the

pixel locations X, X + DX, X + 2DX, .. are identified as follows. At each processor the

values of X is decremented by I and DX is substituted for X when X=O. This mechanism

will set Cx=O when X, X+DX, X+2DX,.. are zero. (ex is carry out from the MSB of X).

Upon the REFRESH command, the content of the D register will be transferred to the

output circuitry and all registers and their flags will be cleared to be ready to process the

scanline commands on the next pixel-row.

The estimated packing density of the X IP processor is about 8 processors per chip in l/L

CMOS technology. The number of I/O lines required is about 100.

Table 6: Maximum throughput of the X _IP array.

5. Some Performance Figures

Let us assume the resolution of the display is M X N pixels and frame rate is R Hz.
Furthermore assume the pixel clock speed is Cp MHz and one pixel row is refreshed
within TI /Lseconds. According to the design of the X}P array we have
K T1NRCp Mclock cycles per second to send the scanline commands to the X IP array.
Table 6 shows the maximum throughput that can be achieved by a single X IP array. In
order to load the X _IP array to its maximum capacity, PL's must be able to transfer the
same amount of patterns to the APS. For geometrically homogeneously distributed pattern
heights and pattern loading times (with average height h pixels rows and average loading

163

time t seconds) the average number of APS segments occupied is given by [4]:

i #APS [#APS! J t]'
o 	 L r~J i~1 (#APS~i)! h'G

l t 1 + I ~fPS [....#APS! J [_t_]i
i ~ 1 	 (..,-APS~') ! hT,

where #APS is the number of APS segments connected to a PL, L is the number of PLs
and 0 is the average number of APS segments occupied.

It can be shown that the best pattern loader utilization and APS segment occupancy
hT,

occurs when :#oAPS """ t (see [4]). Based on these results, Table 7 shows the number of

APS segments (hence number of Y _IPS) and PLs required for the maximum throughput.

Shading method

Phong shading

Gouraud shading

Table 7: 	 Hardware requirements for maximum throughput.

6. Conclusions

We have shown that by exploiting massive parallelism and RISC technology, a
multiprocessor Display Controller could be designed that is able to run the real-time
refresh process from the lowest level frame representation we needed for interaction
purposes. In doing so we are automatically assured of the maximum speed for interactions
taking place at this lowest level. Since the frame representation at this level consists of a
structured list of objects, it is both very compact as well as well suited for partial updates
[1]. As a result, the aceess requirements of the frame store memory are reduced
considerably. The real-time refresh process includes advanced scan conversion. Advanced
in the extend that even complex shading methods such as Gouraud and Phong shading as
well as periodic textures, multiple light sources and depth cueing are efficiently supported.

The Display Controller could be structured in such a way that scaling to both different
display screen resolution as well as different image complexity can be done in a linear and
independent way.

164

In spite of the massive parallelism, the number of chips needed for a 512 X 512 display
will be below 100 with 1.2 micron technology.

As a result we obtained a powerful rendering device, which can be considered as our

solution to the frame buffer access problem.

References

I. 	 V. Akman, P.J.W. ten Hagen, and AAM. Kuijk, "A Vector-like Architecture for
Raster Graphics," in Advances in Graphics Hardware II, ed. AAM. Kuijk, W.
Strasser, EurographicSeminars, Springer-Verlag, 1988.

2. 	 I. Carlbom, System architecture for High-Performance Vector Graphics, Dept. of
Computer Science, Brown University, Providence, 1980. Ph.D. thesis

3. 	 P.J.W. ten Hagen, AAM. Kuijk, and e.G. Trienekens, "Display architecture for
VLSI-based graphics workstations," in Advances in Graphics Hardware 1, ed. W.
Strasser, EurographicSeminars, Springer-Verlag, 1987.

4. 	 J.AK.S. Jayasinghe, "Modeling and Performance Evaluation of a Real-Time Display
Controller by Petri Nets," Report in preparation, University of Twente, Enschede,
The Netherlands.

5. 	 AA.M. Kuijk, P.J.W. ten Hagen, and V. Akman, "An Exact Incremental Hidden
Surface Algorithm," in Advances in GraphiCS Hardware II, ed. AA.M. Kuijk, W.
Strasser, EurographicSeminars, Springer-Verlag, 1988.

Appendix

D

This appendix will explain the use of incremental calculalions for scan-conversion. In section A.I
we will have a look at the calculations needed to determine the geometry and in section A.2 we
will discuss several calculations needed for pixel-colour evaluation.

A B l'rx 1 ,..--------------- -- - ------- _.
y

Qi+1.
C

2 2'

Figure A1: Scan conversion of an elementary pattern.

A.I Scan-converting the Domains Using Incremental Calculations

Although domain representation can be used to describe any complex shapes such as concave
shapes, partially filled shapes, etc, let us consider an elementary convex shape (Figure AI) for our
discussion. The domain representation of the pattern ABCD contains two scan lines II' and 22'.
The scan-points A, B and gradients of AD and BC edges are associated with scanline 11'. Let edges
AD and BC intersect the jlh and j+1

th pixel-rows at P 0, and P'+I' 0;+1 respectively. Let P" Py"
denote the x and y coordinates of the point P. Then we can \\-Tite:

P. + I, = P" 1 j Grad(AD)

0,+" = a" 1 I Grad(BC)

If 1 I Grad(edge) is provided with the pattern, the intersections of the edges and the scanline can be
calculated incrementally. Direct evaluation of the intersections would need multiplications. which
are quite expensive in the sense of time and chip area. Incremental calculations on the other hand.
require additions only. For the incremental calculations, fixed-point numbers can be used. A
2m X 2° display needs, at least max (2 m, 2 n) bits for the variables.

A.2 Incremental Colour Evaluation

The realism of computer synthesized images can be enhanced by several techniques such as
shading. texture generation. depth cueing, anti-aliasing etc. These techniques need a tremendous
amount of calculations. hence real-time applications are difficult. Exploitation of coherency
reduces the processing requirements and forthcoming sections present how this can be exploited
for shading, texture generation, depth cueing and anti-aliasing.

166

A.2.t Shading

In computer graphics, shading is the calculation of pixel intensities by estimating the contributions
caused by different lightsources. These contributions depend on factors such as the colour of the
light source, the relative positions, properties of the object, view direction etc. The eontributions
can be subdivided into three components, i.e. the ambient, diffuse and specular components. The
ambient component is a general, lightsource independent term which depends on the object colour
only. The difI'use component is a sum of terms, each of which depends on the distance, relative
direction and colour of a particular lightsource and depends on the object surface colour and
reflectivity. The specular component is somewhat similar, except that it is dependent on the view
direction.

VL : Light Source Direction

VI : Light Direction

V" : Surface t\'ormal

Ve : Eye Direction

Vr : Reflection Direction

E1
Figure A2: The vector and angle relations involved in shading calcuiations ..

The equations I to 4 show the reflected light intensity mathematically. For an explanation of the
vectors and angles which appear in these equations, please refer to A2. Shininess of a
surface is described by p, the specular exponent. This component is small for dull surfaces and can
be as large as 100 for highly reflective (metallic-like) surfaces. The value of m determines the
directivity of the light source.

Ilghtsources

1= la + 2: (Id + Is) (I)

la Ka (2)

10 Kd (VI'Vn)(VL '('- VI))m

10 Kd cos 0cos mfJ for '1T!2~ 101, IPI ~o (3)

Is Ks (V,Ve)P(VL '(- VI»m

Is Ks cos P" cosmfJ for '1T!2~ IPI, 1"1 ~o (4)

167

In order to estimate the reflected light intensities, equation 1 has to be evaluated on all pixels
covered by domains, Due to the vector dot product calculation and exponent calculations, real­
time calculation of equation I would require a tremendous amount of hardware. For this, we
approximate the term cosP (J piece-wisely by second order polynomials because second order
polynomials can be evaluated iteratively using three additions per pixel location. Equation 5 can
be derived by minimizing the absolute error.

0 if Ixl >xo

cospx = if xo';; Ix I .;; Xl (5)

if 0.;; Ixi <Xl
XOXl

whcrc

xo =

Xt =

This approximation does not produce Mach-band effects because the approximated function and
its first derivative have no discontinuities. The algorithm given below generates the approximated
function iteratively.

xo ~ (p + 64.0) I (5.0' P 317)

X, ~ (p + 56) I (p'(Q.09 P ,

x = - Xrnax,

'Jo, ~ O.

::JI ~ 0,

I ~ 0,

wh"e (X < -XO) [X I, l

001 ~ 2 I (XO'(XO Xl));

wh"e (X < ,Xl) {X 1,

DI

C:JI = ·2/ (XQ<Xl),

wh"e (X < -Xl) (X 1;

DO

DDI ~ 2 I (XO'(XO Xl));

while (X < -Xl) (X 1,

DI DO'

1 +- 01.)

whIle (X <,.,. Xn;ax)

Note that only one comparison and three additions are needed per iteration step. This can be
done using fixed-point numbers only. It can easily be proven that if at least max (2 m, 2 n) bits are
provided for tbe Fractional part, the use of fixed point numbers does not introduce quantization
errors in the resulting intensity. Therefore a 1024 X 1024 display with 256 intensity levels needs at
least 28 bits (8 +20) for the intensity data.

168

In the proposed architecture, Phong-like shading is evaluated by the scanline commands pumped
into the X _IP array, The data for the scanline commands are calculated by Y _IP processors based
on equation 5, The scanline commands are generated for each pixel-row, and the amount of
calculations needed for the scanline command generation can be reduced by incrementally scaling
the scanline command data,

A,2,2 Depth Cueing

Depth cueing is a technique to improve the realism of an image by fading the light intensities
according to the distance between observer and surface. Figure A4 shows an appropriate depth
cueing scale. The light reflected by the surfaces which are in front of the front depth plane and
surfaces behind the back depth planes are scaled down by a constant factor and surfaces in
between these two surfaces are scaled down by an interpolated factor.

Scale Factor

1.0
Front Scale
Factor

Back Scale - - - - - - - - - r - --::--..,.-----­

Factor

Distance

- - - - - - - - - - - - - - - - - - - -

Front Depth Back Depth
Plane Plane

Figure A4: Depth cueing by scaling the intensity related to the view distance ..

For exact results, the scaling would have to be performed at pixel-level, which would involve a lot
of calculations. Therefore, we exploit the following simplified calculations. In case of constant
shaded patterns, the edge intensities for each scanline are first scaled down according to the depth
cueing scale factor. Given this, the intensities along the scan line can be linearly interpolated as in
Gouraud shading to obtain the colours of the intermediate pixels. For Gouraud shaded patterns
the same technique can be employed. Note that in both cases the intensity gradients are changed.
In the case of Phong shaded patterns, one can get the appropriate effect by using different change
over points (i.e. Xo, xd for negative and positive values of x. This has to be done carefully in order
to avoid discontinuities in the intensity. In a forth coming paper we will describe Phong shading
with depth cueing in more detail.

169

SETI(XO,2DX,I)
SETI(Xl,2DX,O)
EVAL3(XO,6DX,O)

, , , SETDI(XO,2DX,DI)
f I l I SETI(Xl,2DX,O)I : f I I

I i I I I

I : • SETDI(XI,2DX,O)I I

f t I • I I •

I • I I

/1U/LVL
,

EVAL2(XO,6DX,O)

'
SETDI(XO,2DX,DI)
SETDI(Xl,2DX,-DI)
EVAL2(XO,6DX,O)

xO xl x2 x3 x4 x5 x6

(a) (b)

Figure A5: Penod'c texlJres and the scanline commands to generate them.

A.2.3 Generation of Periodic Textures

According to section A.2.1, a complex shading method like Phong shading can be implemented
using incremental calculations by changing the first and second derivatives of intensity at well
defined pixel locations. Similarly, periodical textures can be generated using the same technique, in
which case hardware designed for Phong shading can be used to generate periodical textured
patterns. Figure A5(a) shows some simple patterns generated by incremental calculations just by
altering intensity and first derivative and Figure A5(b) shows the scanline commands that go with
it. Using this method, regular but fairly complicated textures can be generated quite efficiently.

z ~.

DZ: ::S;:c

Figure A6: Antl'aliaslng by modifying ,ntenslty function derivatives near the edges of a pattern.

170

A.2.4 Anti-aliasing the Pattern Edges

Anti-aliasing of pattern edges can be performed using incremental calculations by simply changing
the derivatives of intensity. In this case the intensity gradients are changed for the pixels covered

by pattern edges. Figure A6 shows an example of how this is done.

Due to the incremental methods we presented, the same hardware can be used for Phong shading,

Gouraud shading, depth cueing, texture generation, and anti-aliasing of pattern edges. As the pixel
colours are calculated in real-time, at least 100 MIPS processing power is needed for Phong
shading on a display of 1024 X \024 pixels at 50 Hz frame refresh rate. The processing power
needed increases linearly with the number of light sources present. Therefore, the processing power
of the scalable DC could be as high as several hundred (or even thousands) MIPS.

