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A Display Controller for an Object-level 
Frame Store System ~:~ 

JAK.S. Jayasinghe, A.A.M. Kuijk, and L. Spaanenburg 

In [3] and [1] a new architecture for a Computer Image Generating (CIG) system designed to have optimal Interaction 
support for cealistlc 3D graphics has been presented. There it was stated that -from an interaction paint of view­
there IS no need to have access to an image representation as low as the pixel level. This. and the fact that the 
performance and resolution to a major extend has been limited by the pixe update speed enforced by memory 
technologies. led us to the conclusion that it should be investigated whether a CRT display could be refreshed fro·11 
an object-level representation of the frame instead of the conventional pixel-level frame store. 

In thiS paper we present as a result of thiS study an architecture of a (multi-processor) Display Controlier that is 
capable to di'ectly refresh a raster display from such an Object-level frame representation. 
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1.3.3 {Computer Graphics]. Picture/Image Generation - Display algorithms 

Key Words & Phrases: Display Controlie', Computer Image Generation. Raster Graphics, Object Representation, 
MaSSive Parallelism. RISC, VLSI. 

1. Introduction 
In present day workstations, high quality visualization and interaction facilities are 
becoming essential features. Recognizing this, system designers paid special attention to 
the image generation pipeline in order to improve both image quality and interaction 
behaviour. By improving the image generation pipeline, the frame buffer access bottleneck 
became more and more apparent. To overcome this problem, all sorts of partitioning 

* This study is partly funded by the Dutch Technology Foundation (STW). 
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strategies have been developed, without asking the basic question: "do we need a pixel­
level frame buffer?" 

The basic justification of a frame buffer in graphics systems is the need to uncouple the 
real-time refresh process from the computation intensive image generation process. In 
order to separate these two processes, storage of the image is needed in a representation 
suitable for the refresh process. Due to ever increasing demands on image quality and 
image complexity, even the vast evolution of hardware we could witness the last decade 
did not result in an image generating system that could meet the timing requirements 
imposed by the refresh process. This justifies the expectation that uncoupling of the image 
generating and the refresh process will always be needed. Realising this, the basic question 
posed above can be changed into: "do we need a frame representation level as low as the 
pixel level?" 

To answer this question from an interaction point of view an inventory of the types of 
graphics based interaction [3] shows that these interactions basically act on three 
representation levels (see Table 1). These levels are: Low: visible parts of objects (LDF). 

Medium: objects as a whole (MDF) and High: the image as a whole (HDF). 

Note that there are no interactions that address individual pixels at all. so the answer to 

the last question from interaction point of view is no. 

LDF 

Highlight 


BlinK 


Depth Cue 


Pick 


MDF HDFI 
Priority i Viewing Control 

ViSibility Grouping 

Transparency 


Shading, Reflection 


Scale, T ranslste, Rotate 


Clip 


Change, Replace 


Table 1: Examples of some graphics based interaction operations and the representation lev­

els on which they operate. LDF is the level of visible parts of objects, MDF is the object level 
and HDF is the image level. 

Based on this inventory, we designed a workstation architecture where all three levels 
mentioned are accessible for interaction purposes [1,3]. Since these three levels are 
present in our architecture, it is only a small step to come up with the final question: "is it 
possible to refresh directly from the lowest representation level needed for interaction?" 

In order to answer this question, firstly some details on this lowest representation level 
(LDF\ 

t LDF stands for Low level Display File or alternatively Linear Display File following earlbom [2J 
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In our architecture, the LDF is a bucket-sorted structure of primitives called patterns It is 
the result of a hidden surface removal algorithm that operates in object space [5). It is 
essential to note that, since only the visible parts of objects are in this file, the patterns in 
this LDF are non-overlapping. The geometrical properties of these patterns are described by 
domains (O(x, y), in the form of a sorted list of slices designed for efficient HSR and scan 
conversion) whereas the colour properties are described by colourjunctions (C(x, y). 

What properties should a Display Controller (DC) have that can indeed refresh directly 
from this LDF, the lowest but still structured object-level representation we have 
accessible for interaction? 

It should be noted that since the number of patterns in the LDF can be very high for a 
complex scene (in the order of lOOK), the band-width of the LDF/DC interface will be a 
prime factor that could limit the performance of the DC. Because -as mentioned in the 
above- patterns in the LDF are non overlapping, only a few patterns, the so called 
Active Patterns, contribute to a given pixel-row. Active Patterns in general will contribute 
to several pixel-rows. Due to high refresh speeds, on-chip storage of the Active Patterns 
will be necessary to reduce the band-width requirements of the LDF/DC interface. Since 
each "slice" of a domain has enough information to paint the pixels up to the next slice, 
the on-chip storage could be kept to a minimum (i.e. instead of storing the complete active 
pattern in the on-chip storage, only one slice of an Active Pattern needs to be stored). 

As real-time scan-conversion is a very demanding process, full exploitation of coherence so 
that incremental calculations can be done is essential. For each pattern, the colour of 
adjacent pixels as well as the intersections of the edges of a pattern with the next pixel­
row can be calculated incrementally. The exploitation of these coherencies of the patterns 
reduces the processing power requirements of the display controller dramatically (see the 
Appendix). Even with these incremental calculations several hundred MIPS are required 
for real-time scan-conversion. However, due to the technological limitations we have to 
face today, the capacity of processing elements will be limited to an order of 10 MIPS. 

Therefore, if we stick to the idea of refreshing from the LDF, the bandwidth requirements 
as well as the processing requirements enforce a multiprocessor implementation of the 
Display Controller. 

In this paper we present the basic structure of the Display Controller as shown in 
Figure I, designed with the above considerations in mind. The Display Controller consists 
of an Increment Processor (IP) capable of painting pixels on the display at refresh speed, 
an Active Patterns Store (APS) implemented as an on-chip memory of the IP, a high 
band-width LDF/DC interface, and a Pattern Loader (PL) which loads the active patterns 
from the LDF into the APS. Note that both the IP and the PL must be realized as 
multiprocessor arrays. 
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Figure 1: Functional block diagram of the Display Controller (DC). It consists of a Pattern 

Loader (PL) that loads the active patterns in the on chip Active Pattern Store (APS). These Ac­
tive Patterns are used by the Increment Processor (IP) to produce the pixel stream. Note that 

PL as well as IP are multiprocessor arrays. 

2. A Multiprocessor Display Controller. 
During the design of the multiprocessor Display Controller, the following aspects have 
been taken into account. 

• 	 Since all of the elements in the DC cannot be integrated into a single chip, the DC 
must be partitioned. This partitioning should not cause any considerable degradation 
of the DC performance. 

• 	 The system should be scalable. That is, it should be adaptable to different resolutions 
and complexity demands. 

• 	 The adaptability should show a performance improvement linear with the increase of 
hardware. 

• 	 Ability to use the same architecture for increased packing densities (i.e. the architecture 
should not be determined by current VLSI technology). 
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• 

• 

Ability to handle images conslstmg of lots of small patterns having rather simple 
colour functions as well as images consisting of fewer patterns, but having more 
complex colour functions. 

lmplementable in VLSL 

LDF 

APS 

rl-f APS: Active Pattern Store 
PL : Pattern Loader 
se : Scan-line Command_. --M 

SCB : se Buffer 
X IP : X Incremental ProcessorV VseB Y =IP : Y Incremental Processor

d~ 0 
J\ J\
V se Bus V 

oe 

Figure 2: The architecture of the Display Controller. 

The architecture presented in Figure 2 satisfies these requirements. This figure merely 
presents the data flow through the system. The control flow will be discussed in the next 
section. The high band-width of the LDFIDe interface, has been achieved by parallel 
accesses of the LDF by multiple PLs. Due to the fact that patterns in the LDF do not 
overlap, the PLs can work completely independently. 
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The nature of the DC process -incrementally generating streams of pixels, row by row­
suggests a splitting of these incremental operations in horizontal (x) and in vertical (y) 

direction. The y-increments to calculate both the intersection O(x) of a pattern with the 
current scanline as well as the colour function C(x) of that pattern on the current scanline. 
The x-increments to ealculate the pixel values of that section. Since the time constraints of 
these two processes differ in an order of the number of pixels on a scanline, it is 
reasonable to suggest an implementation of the IP array by two different types of 
processor elements, X _IP and Y _IP. 

The Y _IPs calculate the intersections of the pattern edges with the current pixel-row, the 
colour values at the left most edge, the incremental colour values along the pixel-row 
direction, etc, and generate from this the scanline commands that are sent into the 
Scanline Command Buffer (SCB). 

The X_IPs are pixel processors, of which there are as many as there are pixels on the 
pixel-row. The X_IPs are connected as a systolic-array. The left-most X_IP is fed by 
scanline commands from the Scanline Command buffers. Each X _IP performs incremental 
calculations on the scanline command it receives which is then passed on to its right 
neighbour. Depending on the type and destination range of a command, internal registers 
of the X_IPs are updated. Between commands from one scanline and the next, a special 
Refresh command is fed to the X IP array, which causes the X _IP that receives this 
command to output the resulting colour value and reset its internal registers to be able to 
start calculations for the next pixel-row. Since due to this mechanism Refresh commands 
directly control the pixel flush, they will have to come at regular intervals, dictated by the 
total line time. 

The architecture as presented in Figure 2 inherits the following features: 

• 	 The number of X_IPs can be adapted to any display resolution desired. 

• 	 The ratio of processor elements can be tuned to maximize the throughput of the DC. 
(e.g. if the throughput of a Pattern Loader seems to be larger than that of a YIP, one 
PL can be made to serve several Y _IPs.) 

• 	 PLs and Y IPs can be added to the DC in order to increase the processing power. 
With this, the performance of the system can be increased up to a level where it can 
render the most complex pictures (i.e. pictures without any coherence between the 
pixels). 

• 	 Realistic pictures "ith multiple light sources, and objects with diverse shading 
properties can be scan-converted in real-time. The realism of the generated picture can 
be improved by anti-aliasing the edges of the patterns (see the Appendix). 

As the processors in the systolic-array have to perform some calculations before they 
transfer data to their neighbouring processors, the transfer speed and consequently the 
maximum resolution is limited (with the targeted technology this will be in the order of 
1 K X 1 K). Due to the anti-aliasing capabilities, the effective resolution of the display can 
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be improved beyond that. Alternatively, if a higher resolution is essential even without 
anti-aliasing, one can use a numbcr of X _IP arrays in paralleL As the speed of VLSI 
implementations is continuously increasing, it can be expected that within a few years 
time, also very high resolution displays can be refreshed using a single X IP array. 

3. Partitioning the Multiprocessor Display Controller 

As sub-micron technology and wafer scale integration are not available on a cheap 
commercial basis, the DC has to be partitioned into several chips. As we mentioned 
before, this partitioning must not degrade the performance of the DC. Figur~ 3 shows the 
different levels of partitioning that can be done. 

~ 

Display ~ .. ! 	 High priority 

Medium Priority 

Low Priority 

DC-_ ....•..........• ....•••......... ---.... 

Figure 3: The different levels of partitioning of the Display Controller. 
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As indicated by the thick dashed box, it would be desirable to have one complete, 
maximally configured, De in a single chip. This however is impossible, not only due to 
limitations of the silicon technology, but also due to the large number of I/O pins needed 
for a high band-width LDFIDe interface (which is realized by multiple busses). For this, 
the De can be partitioned as indicated by thin dashed boxes. This partitioning includes a 
PL and some Y _IPs on one chip, and the X_IPs on another chip. If even more 
partitioning is enforced by the technology available, we can do it as indicated by filled 
boxes. Here only a few X_IPs are integrated on one chip, the PL on a separate chip, and 
some Y _IPs with the APS on another chip. 

4. Implementation of the Multiprocessor Display Controller 

4.1. The Pattern Loader 

As the output of the X IP array is directly used to refresh the display, the De will have to 
fulfill high throughput requirements. As a result programmability of the De must be kept 
to a minimum. On the other hand, in order to be able to adapt to future developments in 
lighting models, mapping techniques etc, we do not want to impose a severe restriction 
upon the representation in the LDF. Therefore any mismatch between the data 
representations in the LDF and the representations as needed by the increment processors 
must be resolved by a data dependent mapping, i.e. by making the PL programmable. 

Program Memory I.. ~ RISC CPUI 

Figure 4: The basic block structure of the Pattern Loader. 

Because of the high throughput requirements, calculations performed by the increment 
processors will have to be done using fixed-point numbers. Floating-point numbers, 
however, are indispensable for up stream processes in the image generating pipeline, such 
as the hidden-surface removal algorithm. 

As a resnlt, we propose the PL to be a pipe-lined RISe processor with a floating-point to 
fixed-point converter (preferably on-chip for maximum throughput). Since the LDF 
contains the data of the patterns, a separate memory is employed to store the RISe 
processor program. Figure 4 shows the basic blocks of the Pattern Loader. The data 
memory of the RISe processor consists of the LDF memory and APS memory. The PLs 
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will operate in MIMD (Multi-Instruction Multi-Data) mode, to be able to handle 

differently structured data. 


The function of the Pattern Loader (PL) is to transfer the active patterns from the Low­

level Display File (LDF) into the Active Pattern Store (APS). The internal architecture of 

the proposed RISC CPU. and it's instruction set are given in Figure 5 and Table 2 

respectively. The estimated packing density is one PL per 1 p, CMOS chip. The number of 

I/O lines connected to the PL is about 40. The PL could also be implemented using a 

general purpose processor, probably at the cost of some performance degradation. 

Functions to be performed by the PL's hardware are described in the coming sub-sections. 


4.1.1. Program Loading Mode. In this mode the PML signal will be kept low by the host, 
and the PL':> program will be down loaded via the PL's data bus, otherwise used for LDF 
and APS memory access only. In this mode the normal operation of the PL will be 
suspended. Once the complete program memory is down-loaded. the PML line will be set 
on a high level again and the PL can start the pattern loading process. 

4.1.2. Index Table Construction Mode. Although it may be possible to find the patterns 
contributing to the pixel-row being scan-converted on the fly, it is much more efficient to 
make use of an index table, i.e. a table, indicating which patterns are contributing to a 
given pixel-row. Modification of such an index table has to be carried out during the 
vertical retrace time, since at that time, no patterns are scan-converted. The index table 
can be stored in the LDF memory. There should be an entry in the index table for each 
pixel-row on the display and each entry of the index table must indicate which patterns 
become active on the pixel-row in question. This index table mechanism can be used to 
assure that pattern loading can be sustained at a sufficient rate. 

4.1.3. Pattern Loading Mode. In this mode the active patterns indicated by the index 
table, will be transferred into the APS. As fixed-point numbers are used within the 
Display Controller, floating-point numbers will be converted into fixed-point 
representation. Complex patterns which, due to the fixed sized APS segments cannot be 
stored as a whole, must be decomposed into simple patterns. Sudden peaks in the pattern 
loading process can be minimized by loading patterns in advance. 

The signals VAP, RE, GE and BE. are used to load the active patterns into the 
APS. The PL will lower the signal on the APSR line (by a RAPS instrnction) in order to 
get a free segment of APS memory. In return APSA will be lowered, if a free APS memory 
segment is available. The PL will wait for this signal if the W APSA instruction has already 
been executed. The BE and BE signals are used for selective transfer of colour 
dependent data. Once an active pattern is loaded, the PL signals on VAP, indicating the 
incremental processors can scan-convert the pattern. 



150 

To I From LOF, APS 

PC 

Add-Sub 

BA 

Control 

APSA APS Acknowledge 
APSR APS Request 
BA Branch Address Reg. 
BE Blue Enable 
GE Green Enable 

Register 
INT InterruptFile 

32 Bit x 16 INTA Interrupt Acknowledge 
IRC Increment LC 
LC Line Counter 
LLC Last LC Reg. 
MUX 2: 1 MultiplexerBarrel 

32..1' Shifter 

INTA 

DDB 
PC Program Counter 
PI Processor Identity Reg. 

Floating-point RE Red Enable 
Fixed-point RLC Reset LC 
Converter I I PI LLC 

RST Reset 
ALU Temp Temporary Reg. 

...... RST VAP Valid Active Pattern 

Flags 

APS Interface 

t t t t t RLC ILC 

APSA APSR VAP FiE GE BE 

Figure 5: Register level architecture of the Pattern LoadeL 

The on-chip counter LC indicates which pixel-row is being scan-converted, whereby the 
PL can check whether it is loading the patterns in time. Such a check is needed, since a 

delay in the APSA signal might delay the PL. The LC counter is incremented by the signal 
on lIe and reset by RLe (Note that if a general purpose CPU is used for the PL, LC must 
be implemented in external hardware). If the patterns could not be loaded in time the host 
computer must be informed about this situation. The INT signal. generated by the OINT 
instruction, is used to report pattern loading problems to the host. The INT signal will 
transfer the value of the LC when the problem occurred (which is stored in LLC register) 
as well as a pattern identification number (which is stored in the PID register), when the 
host responds via tbe line INTA. In order to reduce the pin count of the PL, these data will 
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Data Transfer Instructions Genera! Control instructions 

U) liL "[vi Hi <- <~"M> 

LDI RI, 0 RI <- 0 

MV RL Rj RI <- RI 

ST - Rj, Ri <''11> <- RI 

ST "Rj+, Ri <'AI> <- RI 

RI <- RI+1 

ST -RI, Ri 81 <- RJ-1 

<'R]> <-RI 

BRA "Ri 

BRC'Ri 

BRZHI 

CALL "'RI 

CLC 

Branch always to 

Branch on C to Ri 

Branch on to "RI 

Branch to subroutine" Ri 

Reset C flag 

FPC Ri, Iii Iii fixed pOint RI 

NDrJ No operation 

RST 

SEIC 

COLE 

GINT 

RAPS 

SVAP 

RI 

WAPSA 

Generate int€PTupt 

Request APB segment 

Signal VAP 

Wail unlll APSA 

Anthmetlc / Logical instructIons 

AoDRi, Hj 

AoDC R" RI 

ADol RI, D 

ADDIC RI, D 

AND HL lij 

ASL Ri, Rj 

ASR RI, '1) 

LSL RI, Rj 

LSR RL "I 

NEG Ri 

NOT Ri 

OR RI, RI 

SUB Ri, R) 

SUBC RI, Rj 

Ri <- RI+-lil 

RI <- Ri+Ri+C 

RI RH,D 

Ri RI+D+C 

RI RI And R) 

Anthmetic lett shift 

Ri by bits 

Arithmetic nghl shift 

Ri by bits 

Logical le'l srill 

RI by bits 

Logical right so,fj 

RI by < Ri> bits 

RI -Ai 

RI Not RI 

RI RI Or RI 

RI Ri-R) 

RI RI-Rj-C 

SUBI Ri, D RI Ri-D 

SUBIC RI, [) RI RI-D-C 

Table 2: Instruction set of the Pattern Loader, Ri, Rj are registers RO, R1" R15, "M and "Ri is 

the address given by M or Ri and <"M> and <"'Ri> is the data at the corresponding ad­
dress, 

be sent on the PL's data bus, so that during this time the pattern loading will temporary 
be suspended. The line DDB will be lowered by the PL in order to disconnect the data bus 
from the LDF. 

The operation of the PL is pipelined and external data and address busses are allocated to 
the LDF and APS memory by time multiplexing. 
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4.2. The Active Pattern Store 

For maximum parallelism of the PLs and IPs, the APS must be implemented as dual-port 
memory. The memory locations which contain the Active Patterns must be well protected 
from the PL aecess. A segmented APS will simplify the management, while supporting the 
throughput requirements. For efficient usage of the APS memory, the size of the segments 
must be kept to a minimum. On the other hand. such a strategy will reduce the overall 
throughput rate due to increased PL work load. Therefore the APS must be able to store 
patterns containing a few pattern slices (say 5-10). Because of the pattern representation 
used [5] any eomplex pattern can be sub-divided into simple domains very easily so that 
the PL is indeed able to decompose complex patterns on the fly into the simple patterns 
which can be stored in APS segments. 

The APS management will be implemented by a flag mechanism (See Figure 6). As soon 
as the PL has loaded an active pattern into the APS. a flag is raised in the corresponding 
APS segment, indicating that this segment contains an active pattern. We refer to this flag 
as Active Pattern Flag. The Y _IPs must process the APS segments of which Active Pattern 
Flag is raised. As soon as the data of the APS segment becomes outdated, Y IP must reset 
the Active Pattern Flag and raise another flag indicating that the corresponding segment is 
free for PL access. The above flag mechanism protects the APS segments containing valid 
data and provides a fast response to the requests made by the PL 

To J From PL 

I EJ 

Figure 6: Implementation of the Active Pattern Store. 

The Global Manager keeps track of all free APS segments, while the Local Manager 
connects its APS segments either to the PL or to the Y IP depending on the commands 
received by the Global Manager and the flag settings. One Global Manager is assigned to 
each Pattern Loader. Due to the Local Manager switch mechanism. the number of APS 
segments available is transparent to the PL, so that a variation of the number of APS 
segments can be done very easily. Furthermore it reduces the width of the address bus 
between the PL and the APS. 
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4.3. The Y Increment Processor 

Now let us turn our attention to the implementation of the Y JP. Due to the diversity of 
the patterns (they may be textured or not, have different number of slices etc.), a highly 
specialized processor is not suitable. On the other hand the high throughput requirements 
can only be met by a highly specialized processor. Therefore, the Y _IP has to have a 
restricted programmability. For this, the Y IP will also have to be a pipe-lined RISC 
processor. Its instruction set will be small compared to that of the PL. 

As a large number of Y _IPs will be needed -more then there are PLs-, an instruction 
transmission mechanism is proposed. Instructions are generated by the Instruction 
Generator and flow through the Y _IPs as shown in Figure 7. Therefore, the Y _IPs operate 
on SIMD (Single Instruction Multi-Data) mode with some phase difference. The reasons 
for this instruction transmission mechanism are two-fold: As described in the Appendix, 
only a few number of multiplications are required for the scanline command generation. 
Hence one multiplier can be used by neighbouring Y IPs when they operate in different 
phases. Furthermore an instruction transmission mechanism reduces the driving 
requirements of the Instruction Generator. 

APS APSAPS 
segment segmentsegment 

Instruction 
Generator 

: Instruction transmission Path 

Figure 7: The instruction transmission mechanism of the Y _IP array. 

The Y IPs update the v-dependent data items in the APS such as the intersections points 
of the edges and colour values and they generate Scanline Commands. These commands 
will be stored in the SCB. As all Y IPs must send their scanline commands to the X IP 
array, the SC Bus must be properly arbitrated. This SC Bus arbitration is discussed in 
next the section. 

The scanline commands to be generated consist of EV AL and SET commands described 
in section 4.5. The architecture of the Y _IP processor is presented in Figure 8. The active 
patterns are stored in the APS. Generated scanline commands are stored in the FIFO 
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and Control ) 

Instruction 
In I 8 

Instruction 
Out 

APS 
8 Bits x 128 
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Flags 

Token In Token Out 

FIFO 

8 Bits x 10 x 

8 

8 

Section 
Selector 

P Q 

BF 

R S 

To I From Multiplier 

Figure 8: Architecture of the Y_IP processor. A,B,C are registers whereas P,Q,R,S are virtual 

registers shared by several Y _IP processors. 

memory. Although 32 bit representation is used for the intensity data in the scanline 
commands (see section 4.5), the internal busses in the Y IP processor are not 32 bit wide, 
Reasons to use more narrow data busses in the Y IP processor are three fold. In the first 
place, the number of Y _IP processors integrated in one chip should preferably be as large 
as possible. The second reason is that data paths of different widths are required for the 
intensity and pixel location data. Although 32 bit data are needed for the intensity data, 
for the pixel location data 10 to 12 bits are sufficient. The third and main reason is the 
necessity of a multiplier for the scanline command generation. If the data path of the 
Y IP processor is small, a multiplier could be integrated into the Y _IP processor chip 
quite easily, The timing constraints for the scanline command generation is not as severe 
as the evaluation of scanline commands. Hence smaller data paths within the Y _IP 
processor will not noticeably degrade the performance of the system. However, if the PL 
can only access the APS memory via narrow data paths. the speed of the pattern loading 
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will become insufficient. Hence the PL must be able to write into APS memory via 
sufficiently wide data paths. 

As stated before, the number of multiplications required for the scanline command 
generation is small, so that a serial multiplier and a divider is proposed (note that an array 
multiplier or divider needs a very large silicon area). The instruction set of the Y _IP 
processor is given in Table 3. All instructions, except MULT and DIV are single cycle 
instructions. Since the multiplier and divider are serial they need more cycles. In order to 
provide sufficient multiplications and divisions, a serial multiplier and divider which can 
supply results after w cycles, where w is the word length (8 bits), is proposed. 

Data Transfer instructIons Arithmetic / Logical instructions 

LD Ri, oM Ri <- <"'M> 

LDI RI, 0 RI <- 0 

MV Ri, Rj Ri <- Rj 

ST 'M, Rj <"M> <- RJ 

ADD C <- A+B 

AD DC C <- A+B+Cln 

AND C <- A And B 

ASL Rk, d Arithmetic left shift 

Rk by d bits 

ASR Rk, d Arithmetic right shift 

Rk by d bits 

LSL Rk, d Logical left shift 

Rk by d bits 

LSR Rk, d Logical right shift 

Rk by d bits 

MULT R, S <- pxS 

NEG Rk Rk <- -Rk 

NOT Rk Rk <- Not Rk 

OR C <-AOrB 

SUB C <-A-B 

SUBC C <- A-B-Cln 

General Control instructions 

AYIP Active if valid pattern 

CLRC,n Clear Cin flag 

DYIP Deactivate 

HTCin Halt if On flag true 

HTNCin Halt If Cin flag false 

HTZ Halt If Z flag true 

HTNZ Halt if Z flag false 

NOP No operatIon 

NER New pixel row 

SETOn Set Cin flag 

RST Restart 

Table 3: Instruction set of the Y _IP processor. Ri is one of the registers A, B, P or Q, Rj is 

one of the registers C, R or S while Rk is register A or B, "'M is the address given by M and 

<"'M> is the data at the corresponding address, 

Due to the diversity of the patterns, the data in the APS will not be uniformly structured. 
As instructions are transmitted along the Y _IP array, one can generate only scanline 
commands for those patterns which have similar attributes. Hence the processors which 
are assigned to differently attributed patterns than the one being processed must be 
disabled. For this purpose, we employ the HALT instruction. As the disabled processors 
will reduce the processor utilization, we can use a Data Independent Flow (DIF) type 
programming style to maximize the utilization of the processors. The estimated packing 
density of the Y _IP processor is about 16 processors per chip with associated memory in 
I fl CMOS technology. The number of 110 lines is expected to be about 100. 
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4.4. The Scanline Command Buffer 

For the maximum parallelism of the processors in the DC, the SCB must be freely 
accessible for the Y _IPs and X _IP array independently. Hence a double buffered memory, 

or a FIFO must be used. 


In order to arbitrate the SC Bus, a token mechanism is proposed. Nearest neighbour 

connection for the token flow is best for VLSI implementations. As shown in Figure 9, the 
left most SCB receives the token from the Instruction Generator. As soon as the SC bus is 
free (indicated by the BF line), the SCB which holds the token sets a "busy" on the BF 
line and starts to transfer SC commands. Each SCB keeps the token as long as it has SCs 
to be transferred to the X IP array. When the SCB is ready it releases the busy from the 
BF line and passes the token to its right neighbour. The right most SCB returns the token 
to the Instruction Generator. Upon this, the Instruction Generator will feed NOP 
instructions to the X IP array followed by the Refresh command. The Refresh command 
has to maintain synchronization, so that these NOP instructions have to fill up the time 
left before the Refresh command can be issued. 

\. - •. -sc B!,IS - - - •• 

SC Bus Arbitration Token Path 

• Token 

SC Path 

Figure 9: The Scaniine Command Bus arbitration mechanism. 

The space available in a SCB must be sufficiently large to store all the scanline commands 
required for the most complex pattern shading. In such complex cases, one pattern may 
generate several scanline commands. If a large number of patterns are complex shaded, 
the X _IP array may not be able to processes all scanline commands generated, in which 
case the token sent into the SCBs will not complete its round-trip in time. As the scan­
conversion must be continued in real-time, such tokens must be purged, a new token must 
be issued and the host has to be notified. Such an exceptional situation can occur only if 
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there are too many small patterns having a too high shading complexity. As a rule of 
thumb, patterns in the LDF should in principle not generate more instructions for a 
sean line than a constant times the number of pixels they cover on that scanline. 
Individual patterns may exceed this number, as long as this is averaged out by less 
demanding patterns. 

4.5. The X Increment Processor 

Ambient. diffuse, and specular components of the generally applied shading models as 
well as depth cueing and periodic textures. can be painted using incremental calculations. 
As described in the Appendix, piece-wise second order curves can be used to approximate 
the diffuse and specular reflections. The effect of depth cueing can be generated by 
changing the intensity gradients. Furthermore periodic textures can be generated by 
setting intensity, first derivative andlor second derivative at well defined pixel locations. 
Calculation of the effects of multiple light sources would be greatly simplified if partial 
contributions can be summed. 

Command In Command out 

Internal Data outData In 
Registers 

Color Values 

Figure 10: BaSIC structure of an X IP element. 

Given this, we designed a processor array of which the elements can execute the 
instruction set presented in Table 4. This array of processors will be able to support a 
fairly complex shading strategy. The instructions traverse the X _ IP array and data 
associated with each instruction will be updated at each processor as indicated in Table 4. 
The block diagram of an X IP processor is given in Figure 10. 
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Set the first derivative of the intensity at the pixel locations X, X+OX, to OL 

SETOOI(X, OX, 001) Set the second derivative of the intensity at the pixellocallons X, X+OX, .. to 001. 

OIS(X, OX) Oisable the update of the R register 

EVAL1(XDX,I, 01, 001) Update the intensities between pixel locations X and X+OX If pIXels are between X and 

X~OX, then R, I, DI are updated as follows 

R <-R+I, 

I <-I+DI, 

01 <- 01+001 

If I, 01 or 001 has been set by preceding SET commands, use the values providec by 

1<-1+01, 

If I or DI has been set by preceding SET commands, use the values provided by the SET 

commands. 

EVAL3(X,DX,I) Update the Intens.ties between pixel locations X and X+OX. If pixels are between X and 

X+OX, then R is updated as follows 

R R-I, 

It I has been set by preceding SET commands, use the values provided by the SET 

commands, 

EVAL4(X, I) Updale the .ntens.ties tl€tween pixel local1Ons X and X + OX If pixels are between X and 

X+OX, then R updated as follows 

R I, 

REFRESH() Refresh Ihe d.splay by the content of Rand resel all registers to tl€ able to calculate the 

colours 01 the next Plxel row. 

NOPO Do nothing. This command is used to maintain the synchronism. 

Table 4: The X IP command set 

The function of the X _IP processor is to calculate the pixel intensities incrementally along 
the pixel-row direction, and to sum partial contributions generated for instance by 
individual light sources, The following code describes the operation of the X IP processor 
in detail. 

Read X, OX, I, 01, 001 provided with the command; 


Use new data for I, Di, 001 il protect flags are false or use previously stored data when protect flag is true; 


X~~ 

switch (Command) 
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case "EVAL1 ": ,I (Eval TRUE) ( if (X ~ ~ 0) { 	 Eva! FALSE; 

Command NOP; 

else { 	 If (D.s FALSE) Colour +~ I; 

I +~ DI; 

DI DDI; 

else if (X ~~ 0) { 	 Eval ~ True; 

X ~ DX; 

if (Dis ~ ~ FALSE) Colour 

I +~ DI; 

DI ~~ DDI; 

Protect_I Protect_DI ~ Protect_001 ~ FALSE; 


D,s TRUE; 


break; 


case "EVAL2": II (Eval TRUE) ( II(X ~~ 0) { Eva! FALSE; 

Command NOP; 

else ( If (D,s ~ ~ FALSE) Colour 

01; ) 

else ,I (X -- 0) { 	 Eval ~ True: 

X ~ OX; 

,I (Dis ~~ FALSE) Colour 

I +~ DI; 

Protect I Protect_DI ~ Protect_ DDI ~ FALSE; 


D,s TRUE; 


break; 


case "EVAL3": il (Eval TRUE) ( il(X ~~ 0) { Eval ~ FALSE; 

Command - NOP; 

else If (Dis ~~ FALSE) Colour I:) 

else If (X O){ Eval True: 

X DX; 

if (Dis - ­ FALSE) Colour 

Prolect I Prolect DI Protect_DDI ~ FALSE; 

D.s TRUE; 

break; 

case "EVAL4": 'f (X 0 && Dis FALSE) Colour ~ I; 

D,s TRUE; 

break; 

case "SETI" .1 (X 0)( X OX; 

StoreJ 

Protect_I ~ TRUE; 

break; 

case "SETDI"" if (X 0)( 	 X OX; 

Store_DI: 

Protect 01 TRUE: 

break, 

case "SETDDI":l1 (X 0) ( X OX: 

Store""DDI; 

Protect 001 TRUE: 

break; 
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case "DIS'" if (X 

il(X 

break; 

0&& Eval ~~ FALSf)( 

0&& TRUE) 

X Ox; 

Eval 

D,s 

Command 

TRUE; 

NOP; 

case" REFRESH": Output Colour; 

Reset Registers; 

break; 

case" NOP": break: 

Command TIme slot;1 

rSETI(X, OX, I) X,OX 

.............. 

Time slot #2 Time slot #3 Time slot #4 

I 

Time slOI "'5 

SETDI(X, Ox. DI) X. OX 01 

SETDOI(X, OX, 001) X,OX 001 

OIS(X, OX) X,OX 

EVAL1(X, OX, I, 01, 001) 001X,OX 01 I Accumulate 

EVAL2(X, OX, I, 01) X,OX I01 Accumulate 

EVAL3(X, OX, I) IX,OX Accumulate 

EVAL4(X, I) X, I 

REFRESHO Refresh 

No operationNOPO I 

Table 5: Decomposition of the scanline command set. 

Time Slot TN 

XjPi 

EVAL2(1} 

XjP;+! 

EVAL2(X.DX) 

XjPi+2 

SETI(I} 

XjPi+3 

SETI(X,DX) 

XjPi+4 

- '­

Time Slot TN+! 

XjPi 

-­

X_IP;+! 

EVAL2(1) 

XjPi+2 

EVAL2(X,DX) 

XjPi+3 

SETI(I) 

XjPi+4 

SETI(X.DX} 

Figure 11: Distribution of the decomposed scanline command data among X IP processors in 
two consecutive time-slots, 

I, 01, 001 are represented by 32 bit fixed-point numbers in the realization proposed, Due 
to the large number of bits involved, the I, 01, 001 cannot be sent in parallel. Hence 
only one 32 bit input and one output data port will be used and consequently I, DI, DDI 
and the couple X, OX will be sent serially. Since 10-12 bits are sufficient for the 
representation of the X and OX, we can send the X and OX simultaneously on the LSB 
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10 

and MSB side of the 32 bit data bus. Table 5 shows the decompositions and the 
sequential order of the data as it will be sent into the X IP array. The sequential ordering 
has been optimized to maximize the throughput of the X IP processor. The decomposed 
data will be sent into the X IP processor array in a pipe-lined fashion. Figure II shows an 
example of scanline data in two consecutive time slots. 

Figure 12 shows the architecture of the X IP processor at register transfer leveL Registers 
A, Band C are used to store the intensity, the first derivative and the second derivative of 
the intensity function respectively. Register D is used to hold the accumulated colour 
intensity. 

M 
U 
X 

Data Out 

ChM ChL 

BtL 

B1H 

ABC 

LD Reg.' 
RD Reg. 

FFFF ... 

16 

16 , 
One 

+ 

B3H 

o 

16 

16 

B2L 

B2H 16 

16 ~ 

7l:
[;]--
~ 

LD Fleg. 
RD Reg. 

Control 

B IPAlpBlpc~-------)Io-L-___--'------------- ­ M Com. OutCom. In 
U - U 

X
F I-----------------~__~_________~~ 

10to 

LD Reg. Load RegisterA,B,C,D Internal Registers 

PA, .. PC Protect Flags RD Reg. Read Register 


Eval Evaluate Flag ChM Change MSB Part 


Nop No Operation Flag ChL Change LSB Part 


MUX 2:1 Multiplexer S*L Internal Data Bus Low Side 


BUF Buffer B*H Internal Data Bus High Side 


Figure 12: Register level architecture of the X _IP processor. 
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The EVAL commands will update the appropriate registers when the processor location is 

between X and X + DX. 


The SET commands win set the appropriate registers when the processor location is X, 

X + DX, X + 2DX, .. and raise the appropriate protect flag. When this protect flag is true 

the EVAL commands do not modify the content of the corresponding register. As the SET 

commands must effect only one EV AL command, the protect flags will be reseted during 

the last cycle of each EVAL command. 


The processors which are between the pixel locations X and X + DX or processors on the 

pixel locations X, X + DX, X + 2DX, .. are identified as follows. At each processor the 

values of X is decremented by I and DX is substituted for X when X=O. This mechanism 

will set Cx=O when X, X+DX, X+2DX,.. are zero. (ex is carry out from the MSB of X). 


Upon the REFRESH command, the content of the D register will be transferred to the 

output circuitry and all registers and their flags will be cleared to be ready to process the 

scanline commands on the next pixel-row. 


The estimated packing density of the X IP processor is about 8 processors per chip in l/L 

CMOS technology. The number of I/O lines required is about 100. 


Table 6: Maximum throughput of the X _IP array. 

5. Some Performance Figures 

Let us assume the resolution of the display is M X N pixels and frame rate is R Hz. 
Furthermore assume the pixel clock speed is Cp MHz and one pixel row is refreshed 
within TI /Lseconds. According to the design of the X}P array we have 
K T1NRCp Mclock cycles per second to send the scanline commands to the X IP array. 
Table 6 shows the maximum throughput that can be achieved by a single X IP array. In 
order to load the X _IP array to its maximum capacity, PL's must be able to transfer the 
same amount of patterns to the APS. For geometrically homogeneously distributed pattern 
heights and pattern loading times (with average height h pixels rows and average loading 
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time t seconds) the average number of APS segments occupied is given by [4]: 

i #APS [ #APS! J t]' 
o 	 L r~J i~1 (#APS~i)! h'G 

l t 1 + I ~fPS [ ....#APS! J [_t_]i 
i ~ 1 	 (..,-APS~') ! hT, 

where #APS is the number of APS segments connected to a PL, L is the number of PLs 
and 0 is the average number of APS segments occupied. 

It can be shown that the best pattern loader utilization and APS segment occupancy 
hT,

occurs when :#oAPS """ t (see [4]). Based on these results, Table 7 shows the number of 

APS segments (hence number of Y _IPS) and PLs required for the maximum throughput. 

Shading method 

Phong shading 

Gouraud shading 

Table 7: 	 Hardware requirements for maximum throughput. 

6. Conclusions 

We have shown that by exploiting massive parallelism and RISC technology, a 
multiprocessor Display Controller could be designed that is able to run the real-time 
refresh process from the lowest level frame representation we needed for interaction 
purposes. In doing so we are automatically assured of the maximum speed for interactions 
taking place at this lowest level. Since the frame representation at this level consists of a 
structured list of objects, it is both very compact as well as well suited for partial updates 
[1]. As a result, the aceess requirements of the frame store memory are reduced 
considerably. The real-time refresh process includes advanced scan conversion. Advanced 
in the extend that even complex shading methods such as Gouraud and Phong shading as 
well as periodic textures, multiple light sources and depth cueing are efficiently supported. 

The Display Controller could be structured in such a way that scaling to both different 
display screen resolution as well as different image complexity can be done in a linear and 
independent way. 



164 

In spite of the massive parallelism, the number of chips needed for a 512 X 512 display 
will be below 100 with 1.2 micron technology. 


As a result we obtained a powerful rendering device, which can be considered as our 

solution to the frame buffer access problem. 
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Appendix 

D 

This appendix will explain the use of incremental calculalions for scan-conversion. In section A.I 
we will have a look at the calculations needed to determine the geometry and in section A.2 we 
will discuss several calculations needed for pixel-colour evaluation. 

A B l'rx 1 ,..--------------- -- - ------- _. 
y 

Qi+1. .. ... 
C 

2 2' 

Figure A1: Scan conversion of an elementary pattern. 

A.I Scan-converting the Domains Using Incremental Calculations 

Although domain representation can be used to describe any complex shapes such as concave 
shapes, partially filled shapes, etc, let us consider an elementary convex shape (Figure AI) for our 
discussion. The domain representation of the pattern ABCD contains two scan lines II' and 22'. 
The scan-points A, B and gradients of AD and BC edges are associated with scanline 11'. Let edges 
AD and BC intersect the jlh and j+1 

th pixel-rows at P 0, and P'+I' 0;+1 respectively. Let P" Py" 
denote the x and y coordinates of the point P. Then we can \\-Tite: 

P. + I, = P" 1 j Grad(AD) 

0,+" = a" 1 I Grad(BC) 

If 1 I Grad(edge) is provided with the pattern, the intersections of the edges and the scanline can be 
calculated incrementally. Direct evaluation of the intersections would need multiplications. which 
are quite expensive in the sense of time and chip area. Incremental calculations on the other hand. 
require additions only. For the incremental calculations, fixed-point numbers can be used. A 
2m X 2° display needs, at least max (2 m, 2 n) bits for the variables. 

A.2 Incremental Colour Evaluation 

The realism of computer synthesized images can be enhanced by several techniques such as 
shading. texture generation. depth cueing, anti-aliasing etc. These techniques need a tremendous 
amount of calculations. hence real-time applications are difficult. Exploitation of coherency 
reduces the processing requirements and forthcoming sections present how this can be exploited 
for shading, texture generation, depth cueing and anti-aliasing. 
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A.2.t Shading 

In computer graphics, shading is the calculation of pixel intensities by estimating the contributions 
caused by different lightsources. These contributions depend on factors such as the colour of the 
light source, the relative positions, properties of the object, view direction etc. The eontributions 
can be subdivided into three components, i.e. the ambient, diffuse and specular components. The 
ambient component is a general, lightsource independent term which depends on the object colour 
only. The difI'use component is a sum of terms, each of which depends on the distance, relative 
direction and colour of a particular lightsource and depends on the object surface colour and 
reflectivity. The specular component is somewhat similar, except that it is dependent on the view 
direction. 

VL : Light Source Direction 

VI : Light Direction 

V" : Surface t\'ormal 

Ve : Eye Direction 

Vr : Reflection Direction 

E1 
Figure A2: The vector and angle relations involved in shading calcuiations .. 

The equations I to 4 show the reflected light intensity mathematically. For an explanation of the 
vectors and angles which appear in these equations, please refer to A2. Shininess of a 
surface is described by p, the specular exponent. This component is small for dull surfaces and can 
be as large as 100 for highly reflective (metallic-like) surfaces. The value of m determines the 
directivity of the light source. 

Ilghtsources 

1= la + 2: (Id + Is) (I) 

la Ka (2) 

10 Kd (VI'Vn)(VL '('- VI))m 

10 Kd cos 0cos mfJ for '1T!2~ 101, IPI ~o (3) 

Is Ks (V,Ve)P(VL '( - VI»m 

Is Ks cos P" cosmfJ for '1T!2~ IPI, 1"1 ~o (4) 
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In order to estimate the reflected light intensities, equation 1 has to be evaluated on all pixels 
covered by domains, Due to the vector dot product calculation and exponent calculations, real­
time calculation of equation I would require a tremendous amount of hardware. For this, we 
approximate the term cosP (J piece-wisely by second order polynomials because second order 
polynomials can be evaluated iteratively using three additions per pixel location. Equation 5 can 
be derived by minimizing the absolute error. 

0 if Ixl >xo 

cospx = if xo';; Ix I .;; Xl (5) 

if 0.;; Ixi <Xl 
XOXl 

whcrc 

xo = 

Xt = 

This approximation does not produce Mach-band effects because the approximated function and 
its first derivative have no discontinuities. The algorithm given below generates the approximated 
function iteratively. 

xo ~ (p + 64.0) I (5.0' P 317) 


X, ~ (p + 56) I (p'(Q.09 P , 


x = - Xrnax, 


'Jo, ~ O. 


::JI ~ 0, 


I ~ 0, 


wh"e (X < -XO) [X I, l 

001 ~ 2 I (XO'(XO Xl)); 


wh"e (X < ,Xl) {X 1, 


DI 

C:JI = ·2/ (XQ<Xl), 


wh"e (X < -Xl) (X 1; 


DO 


DDI ~ 2 I (XO'(XO Xl)); 


while (X < -Xl) (X 1, 


DI DO' 


1 +- 01. ) 

whIle (X <,.,. Xn;ax) 


Note that only one comparison and three additions are needed per iteration step. This can be 
done using fixed-point numbers only. It can easily be proven that if at least max (2 m, 2 n) bits are 
provided for tbe Fractional part, the use of fixed point numbers does not introduce quantization 
errors in the resulting intensity. Therefore a 1024 X 1024 display with 256 intensity levels needs at 
least 28 bits (8 +20) for the intensity data. 
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In the proposed architecture, Phong-like shading is evaluated by the scanline commands pumped 
into the X _IP array, The data for the scanline commands are calculated by Y _IP processors based 
on equation 5, The scanline commands are generated for each pixel-row, and the amount of 
calculations needed for the scanline command generation can be reduced by incrementally scaling 
the scanline command data, 

A,2,2 Depth Cueing 

Depth cueing is a technique to improve the realism of an image by fading the light intensities 
according to the distance between observer and surface. Figure A4 shows an appropriate depth 
cueing scale. The light reflected by the surfaces which are in front of the front depth plane and 
surfaces behind the back depth planes are scaled down by a constant factor and surfaces in 
between these two surfaces are scaled down by an interpolated factor. 

Scale Factor 

1.0 
Front Scale 
Factor 

Back Scale - - - - - - - - - r - --::--..,.-----­

Factor 

Distance 

- - - - - - - - - - - - - - - - - - - -

Front Depth Back Depth 
Plane Plane 

Figure A4: Depth cueing by scaling the intensity related to the view distance .. 

For exact results, the scaling would have to be performed at pixel-level, which would involve a lot 
of calculations. Therefore, we exploit the following simplified calculations. In case of constant 
shaded patterns, the edge intensities for each scanline are first scaled down according to the depth 
cueing scale factor. Given this, the intensities along the scan line can be linearly interpolated as in 
Gouraud shading to obtain the colours of the intermediate pixels. For Gouraud shaded patterns 
the same technique can be employed. Note that in both cases the intensity gradients are changed. 
In the case of Phong shaded patterns, one can get the appropriate effect by using different change 
over points (i.e. Xo, xd for negative and positive values of x. This has to be done carefully in order 
to avoid discontinuities in the intensity. In a forth coming paper we will describe Phong shading 
with depth cueing in more detail. 
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SETI(XO,2DX,I) 
SETI(Xl,2DX,O) 
EVAL3(XO,6DX,O) 

, , , SETDI(XO,2DX,DI) 
f I l I SETI(Xl,2DX,O)I : f I I 

I i I I I 

I : • SETDI(XI,2DX,O)I I 

f t I • I I • 

I • I I

/1U/LVL
, 

EVAL2(XO,6DX,O) 

' 
SETDI(XO,2DX,DI) 
SETDI(Xl,2DX,-DI) 
EVAL2(XO,6DX,O) 

xO xl x2 x3 x4 x5 x6 

(a) (b) 

Figure A5: Penod'c texlJres and the scanline commands to generate them. 

A.2.3 Generation of Periodic Textures 

According to section A.2.1, a complex shading method like Phong shading can be implemented 
using incremental calculations by changing the first and second derivatives of intensity at well 
defined pixel locations. Similarly, periodical textures can be generated using the same technique, in 
which case hardware designed for Phong shading can be used to generate periodical textured 
patterns. Figure A5(a) shows some simple patterns generated by incremental calculations just by 
altering intensity and first derivative and Figure A5(b) shows the scanline commands that go with 
it. Using this method, regular but fairly complicated textures can be generated quite efficiently. 

z ~. 

DZ: ::S;:c 


Figure A6: Antl'aliaslng by modifying ,ntenslty function derivatives near the edges of a pattern. 
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A.2.4 Anti-aliasing the Pattern Edges 

Anti-aliasing of pattern edges can be performed using incremental calculations by simply changing 
the derivatives of intensity. In this case the intensity gradients are changed for the pixels covered 

by pattern edges. Figure A6 shows an example of how this is done. 


Due to the incremental methods we presented, the same hardware can be used for Phong shading, 

Gouraud shading, depth cueing, texture generation, and anti-aliasing of pattern edges. As the pixel 
colours are calculated in real-time, at least 100 MIPS processing power is needed for Phong 
shading on a display of 1024 X \024 pixels at 50 Hz frame refresh rate. The processing power 
needed increases linearly with the number of light sources present. Therefore, the processing power 
of the scalable DC could be as high as several hundred (or even thousands) MIPS. 


