Architectures for Interactive Raster Graphics

Fons Kuijk and Robert van Liere

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

For an interactive graphics system two major information streams can be
recognized, information for the image synthesis process and information related
to user input. In this paper, we present a logical model for the image synthesis
pipeline and a logical model for input devices. Based on these abstractions we
describe an interactive raster graphics system. Requirements that go with
interactive systems make it important to discuss implementation of this archi-
tecture on parallel systems. For this we emphasize on rasterization hardware
and system configurability.

¥

I. INTRODUCTION

Research on raster graphics at CWI has been largely focused on satisfying the
requirements for interactive environments. Graphics plays an important role
in the area of user interfaces, an outstanding example of an interactive
environment (see H.J. Schouten’s contribution elsewhere 1n this issue).
Requirements of such user interfaces, high resolution displays and fast interac-
tion facilities, are becoming standard features of today’s desk-top workstations.
The increased capabilities of such personal workstations triggered more visual
oriented communication. Consequently, user interfaces have become powerful
tools. However the interactive graphics response takes up a considerable
amount of computing resources.

One can foresee that the next generation of workstations would need even
more demanding visualization facilities, such as rendering realistic 1mages of
three-dimensional objects that can be manipulated 1n real time. Realistic
images involve high resolution systems and advanced shading models, mclud-
ing high quality illumination, distance attenuation, shadow casting and textur-
Ing.

Rendering these images in real time (typically < 0.1 sec.) takes considerably
more computing resources than offered by present day workstations. The need
for such systems, however, is growing in areas such as design, engineering,
simulation and animation. For this, a research project at CWI 1s aimed at the
design of a new workstation architecture. For time-critical functions in that
architecture new hardware components will be designed. New and faster
hardware alone however will not suffice. The interactive workstation concept
should be based on an architecture which reflects the balance between carefully
designed hardware resources and well-structured logical modules which

Copyright ©© 1991, Stichting Mathematisch Centrum, Amsterdam
CWI Quarterly 3, 179-201

179

economically make use of these resources. This inherent dualism of graphics
systems research will be reflected throughout this paper.

This paper is organized as follows: We first present a simplified overview of
the computer graphics image synthesis pipeline and the relevant functions that
operate on it. Next, we show how a logical input model interacts with various
stages of the image synthesis pipeline. Finally, we show how parallel process-
ing can be applied to implement the logical models so that real-time interac-
tion can be achieved. The emphasis throughout the paper will be on the logi-
cal models of image synthesis and interaction.

2. RASTER GRAPHICS ARCHITECTURES

2.1. Graphics systems

Originally, a raster graphics system merely was a dedicated section of system
memory, the so-called frame buffer, connected to a video controller (sometimes
called display controller). This basic system is shown in Figure 1. The host
CPU had to perform all the processing needed to generate an image. Even on
a fast computer however, image generation takes much more time than the
persistence time of the phosphor of the screen (typically 10-60 milliseconds).
Therefore, resulting colour values of individual picture elements (pixels) are

stored in the frame buffer from which a screen refresh process, handled by the
video controller, can be initiated.

CPU

System Bus

Frame
Buffer "

stream

Video
Controlle

- -|
FIGURE 1. Simple graphics system.

Frame buffer access takes place via the system bus.

At a sufficiently fast rate, typically 60-100 Hz, the video controller reads in the
digital pixel data from the frame buffer and generates from that data the
analogue video signal. The pixel data varies depending on the kind of system:
a monochrome system has one bit per pixel, a full colour system may have up
to 36 bits per pixel (12 bits for each of the red, green and blue video signals).

130

CPU

Systemn Bus

| System | Display |
Memory Processo

Display Framej Video

Processo . > | §
| Memory Buffe [stream Controlle

video ||

FIGURE 2. Graphics system centered around a display processor. The
display processor oft-loads the host CPU and reduces sys-
tem bus contention.

From this elementary architecture, the display processor architecture (see
Fig. 2) emerged, triggered by the ever-increasing need for extra performance
and the availability of inexpensive microprocessors [1-3]. In this architecture,
some of the image generation tasks are handled by a dedicated display proces-
sor, thereby oft-loading the host CPU. Typical for this architecture is that
frame buffer access i1s handled by the display processor via a private bus,
thereby reducing system bus contention. Even for display processor architec-
tures frame storage 1s still needed. Most of the systems found today adhere to
this concept, although we can distinguish a great variety in the level of func-
tionality handled by the display processor. Throughout the years we have seen
several ‘waves’ of moving functionality in the direction of display processors
and moving functionality back to the host CPU. These tidal waves on the
ocean of computer graphics are caused by changes in hardware technology
(e.g. the RISC versus CISC competition) as well as changes in software tech-
nology and de facto standards (graphics languages versus pixel based window
systems).

2.2. Logical model for image synthesis
A logical model of the image synthesis pipeline is shown in Figure 3. This
model [4] distinguishes between the different logical representation levels of
objects that exist in the image synthesis pipeline and the operations applicable
on these representations.

The application model (AM) is the representation of an object as

181

determined by the application program. In this representation the application
data to be displayed is presented as a model from which specific graphical
images can be composed. The application program can change the object
representation by editing it. Naming of parts of the representation is allowed
and can be used to aid editing.

The structured display file (SDF) contains only graphical information of
objects and is composed of a list of output primitives. The graphics system
manages the content of the structured display file. The application program
does not have direct access to it.

The linear display file (LDF) contains the representation of objects in a
form designed for optimal refreshing speed. With raster displays this 1s the
frame buffer, in which an image is represented as a pixel pattern. The display
contains the resulting visible representation of the image.

Between each pair of successive representations, there 1s a logical processor
that can map one representation to the other. Each logical processor accepts
input parameters that influence the mapping process. These input parameters
consist of a previous representation and, optionally, of parameters that are
controlled by either the user or the application program.

The display file compiler (DFC) implements the logical process that maps
the application model to the structured display file. This mapping process can
be parameterized by, for example, surface properties of the objects.

The display processing unit (DPU) implements the logical process that maps
the structured display file to the linear display file. Functions that are executed
by the display processing unit are geometric transformations, hidden surface
removal calculations, illumination calculations and clipping. The display pro-
cessing unit can be parameterized by, for example, viewing and illumination
parameters (ct. E.H. Blake’s contribution on ‘Shading’ in the Appendix).
Needless to say, 1t 1s this process that is the most time critical of the image
synthesis pipeline.

The display controller (DC) implements the logical process that maps the
linear display file onto the screen. The display controller can be parameterized
so that only portions of the linear display file are mapped on the screen; 1.e.
parameterized by window management functions.

3. INTERACTION

The basis of interaction lies in the effectiveness of how a user can operate the
image synthesis pipeline. To explain this, we first develop a logical input
model which encapsulates all types of physical input devices and possible user
actions.

3.1. Logical input devices

A logical model of a graphical input device 1s shown diagrammatically in Fig-
ure 4.

182

rorwarded logical

al inpul gevices

logical e L0304t 1O MO
Drocessnr

Repregsentation dify output

level

- - = inputl forwarded to other processors

FiGure 3. Logical model of image generation pipeline. AM - Applica-
tion Model, DFC - Display File Compiler, SDE - Struc-
tured Display File, DPU - Display Processing Umit, LDF -

Linear Display File. DC - Display Controller.

Different classes of logical input devices exist corresponding to different types
of input primitives. Each class has a well-defined data type for the measure
reported by devices of that class. For example, current computer graphics stan-
dards support the following basic logical input device classes: locator, stroke.
valuator, choice, pick, string [3].

The input primitive produced by the logical device is the measure of the
device at the moment a trigger fires. The operating mode of the device deter-
mines when an input primitive is delivered to the user of the device.

An input device logically comprises measure, echo, prompt, trigger. and ack-
nowledgement processes overseen by a single control process.

Control

Echo | A~ nowledgement

mMeasure

FIGURE 4. Logical model of a graphical input device.

Each of the component processes has certain responsibilities which, when act-
ing in concert, can result in the production of an input primitive derived from
manipulations of the input tool by an actuating agent:

183

Measure process. When the measure process 1s activated, it continuously
maintains a measure value derived from the inputs to the process. The
process 1s responsible for performing all computations necessary to map
the inputs to the measure value. The measure may then be accessed by the
echo and control processes as necessary.

® Echo process. When the echo process is activated, it provides continual
feedback of the current value of the measure. This feedback 1s expressed
in terms of the output facilities available at the level of abstraction at
which the logical input device is defined. The echo process may also use
output storage facilities maintained at this level of abstraction.

® Prompt process. The prompt process is responsible for indicating the avai-
lability of its associated logical input device. The prompt appears when
the prompt process is activated. The prompt is used both as an indication
and to provide instructions on the use of the logical input device.
Trigger process. While a trigger process is active, it continuously monitors
one or more sets of conditions. When any one of these sets of conditions
s satisfied, the trigger is fired. The trigger firing is reported to the control
process.
Control process. The control process is responsible for the overali opera-
tion of the logical input device and i1ts associated component processes.
When the logical input device is activated, the control process activates
the associated measure, echo, prompt, and trigger processes. These
processes then function independently. When the trigger firing report 18
received by the control process, it produces an appropriate input primitive
that may contain the measure which was current at the time of the trigger
firing. The input primitive is then reported to the agent that 1s using the
logical input device.

® Acknowledgement process. The acknowledgement process 1s activated
upon acceptance or rejection of the input primitive by the using agent.
The acknowledgement process provides feedback according to whether the
input report was accepted or rejected. Either one, but not both, of an
acceptance acknowledgement or a rejection (negative) acknowledgement
can be a null feedback.

3.1.2. Operations on logical inpur devices. There are seven types of operations

which may be performed on logical mmput devices and their component

processes. These are described below:

® Definition. The definition operations form logical input devices as collec-
tions of component processes. The component processes themselves may
either be predefined or provided by the agent that 1s defining the logical
input devices. Typically, a realization of this model will constrain the con-
trol process to be predefined. However, this 1s not an intrinsic requirement
of the model.

® /nitialization. Intialization operations prepare the logical input device for
activation by defining the nitial state to be used by each of the com-
ponent processes. These initial values are applied at each activation of the

134

logical input device. At this time static echo and prompt objects may be
created for display at activation.
Activation. When a logical input device i1s activated, the states of the com-
ponent processes are set to their initial values and the component
processes are activated. At this time, the logical input device may be util-
1zed (see below).
Utilization. After a logical input device has been activated, its various
component processes execute independently under the coordination of the
control process. At this time, any input tool associated with the logical
input device may be manipulated by the operator to modify the input
values from which the measure is constructed. Feedback of the current
value of the measure is produced by the echo process. Factors involved in
the evaluation of the sets of conditions associated with trigger firings are
monitored by the trigger process. As appropriate, trigger firing reports are
provided by the trigger process to the control process. As trigger reports
are received by the control process, input primitives are produced and
delivered to the using agent. Validation of acceptance or rejection of the
input primitives is feedback to the operator by momentary activation of
the acknowledgement process.

® Deactivation. When the control process determines that the logical input
device should no longer be available (usually by direction of the using
agent), the component processes are terminated. This will result in elimi-
nation of the echo and the removal of the state of the logical input device.
Manipulation of any associated input tools will no longer have any effect
on this logical input device.

® [ermination. At termination of a logical input device, resources allocated
to the logical input device are released. Such resources include the initial
state values and any precomputed echo and prompt objects.

® Undefinition. When a logical input device is undefined, all knowledge of
the composition of the logical input device is removed from the system.
The 1dentifier of the logical input device may then be reused for another
definition.

3.1.3. Operating modes. A logical mput device may operate in any one of
several operating modes. An operating mode determines the behavior of the
device as seen by the operator of the device and the agent using the device.
Examples of operating modes commonly supported include the conventional
request, sample, and event modes. However, these are not intended to be the
only possible operating modes. Support for other modes can be defined so
long as they operate within the confines of the model.

3.1.4. Relationship between input and outpur. Logical input devices may need to
make use of output facilities in order to provide prompting, echoing, and ack-
nowledgement. The input model does not contain special output functionality
for this purpose. Instead the model uses the output functionality provided at
the same level of abstraction (see section 2.2) at which the logical input device

185

is defined. The using agent of a logical input device may be the output
environment at its level of abstraction. For instance, a logical input device may
directly control components of the state of this environment rather than
through a path involving the transfer of input primitives to a higher level of
abstraction followed by an invocation of an output function which causes
appropriate changes at the lower level. An example of this is a logical input
device which provides a transformation matrix used directly by the output
environment, or which provides a colour representation that is used directly in
a colour table.

The model also allows the output environment to be either a part of the
state of the component processes of a logical input device, or input to a pro-
cess. An example of this is a pick logical input device for which the input data
are a location in the coordinate space at a certain level of abstraction and the
current collection of graphical information at that level.

This balanced relationship between input and output is called iput/output
symmetry. The diagram below illustrates this relationship. The logical Input
device (box on the left) gets its input from its using agent. It can pass on the
input through to a higher level, or invoke a function f (input) which causes
changes in an output environment (box on the right). Similarly, the output
environment can invoke the function which causes a change of state in the log-
ical input device. '

f(input)

Output
Environment

g(output)

FIGURE 5. Balanced relationship between input and output.

3.2. Display files

From the logical model one can see that appropriate structuring of the display
files can aid the logical processes to traverse and/or edit these files. On one
hand the structure of a display file should support high level editing, for
instance, to facilitate dragging of compound structures. On the other hand, a

low level structuring seems to be necessary for the rapid redrawing of low level
editing such as pick operations.

186

Display file structure. To achieve interactive display of images, a well-
tured display file must have the following properties:
Performance. Performance results from fast execution of each primitive in
the display file. The algorithms that implement each logical process must
emphasize the execution speed. The performance of the system will be
determined by the slowest algorithm. Graphics algorithms can be imple-
mented either in software or in silicon.
Structuring. The primitives are structured into groups to aid editing and
traversing of the display file. In the next section we list a number of typi-
cal editing operations on the structured and logical display files. The point
here is that an appropriate structuring of the display file will aid the logi-
cal process of regenerating a display file. It will be this regeneration speed
which determines how the display file should be structured.

. Editing display files. Two basic notions related to editing of structured
ay files are those of incremental and local changes.

eally, algorithms within the display processing unit should be able to make
ges incrementally. By incremental changes we mean changes that are rela-
to an already existing value. In this way, an editing operation can be
sented by updating a value in the structured display file. The change
; effect by first letting the change propagate through the structured display
nd then generate from this a new logical display file.

gorithms should, when possible, support the notion of locality. This
1s that a change will affect a relatively small portion of the display file. If
orresponding part in the display file can be easily 1dentified, it 1s possible
inimize both the update efforts in the structured display file, as well as the
ration of the corresponding logical display file. Structuring should be par-
arly helpful in supporting this type of changes.

'pical editing operations on the structured and logical display files that
- be supported include:

Geometrical transformations. The geometry of an object 1$ represented 1n
the structured display file by a group of primitives. A particularly interest-
ing editing operation is the transformation of the object. The structured
display file must have a level where a complete group of primitives can be

mation would be the dragging of an object. With an appropriate structure
in the structured display file this editing operation would need to change
only one value.

Colour control. Little attention has been given to provide firmware for
dynamic control of colours. Fast regeneration should include colour func-
tion evaluation. This can be done 1if, in the process of mapping the higher
level display file on to the lower level, the area information and the colour
function per area can be preserved. Then the effect of shading reflection
and transparency can be realized by colour function compositions.
Appearance control. The attributes that are traditionally used for creating
dynamic effects, such as highlighting, are primarily used for fast low level

187

teedback. They affect either groups or individual output primitives. In
both cases the corresponding elements must be easily tractable in the
display file. Appearance control introduces no further requirements
beyond those already encountered for transformations.

@ [nsert and delete. Insertion and deletion of objects in the display file

require local rearrangements for proper hidden surface removal and light-
Ing eftects. Such rearrangements must be calculated quickly, followed by
a re-execution of the hidden surface removal algorithm.
Picking manipulations. Picking an output primitive 1s an editing operation
by the user which essentially involves a search of the display file. Usually,
the graphics system will provide some form of feedback to identify the
picked primitive by, for example, high-lighting. Picking and feedback will
be best served by functionality that identifies the relevant elements in
real-time. Low level feedback will assist during picking. Higher level feed-
back, indicating restored consistency after an input completion, will use
upward references realized either by an explicit administration or by fast
searching traversal.

3.3. An interaction based architecture

The aspects of 1nteractions as listed above, determine the structuring of a
display file, a data structure in which information needed to generate an image
1s stored. An inventory of manipulations which can be expected to occur by
user interactions showed us that all interactions are nitiated based on
geometrical aspects. We concluded [6,7] that apart from the application model,
three geometry based levels of image representation must be accessible for
Interaction purposes. These levels are: visible parts only, graphical objects or
compound graphical objects, and the scene as a whole.

Based on this notion, we arrived at the logical architecture shown n Figure
6, in which the application model i1s progressively processed in a number of
steps, each providing facilities for interactive modification. The availability of
intermediate representation levels allows changes to be initiated on the lowest
level possible. It also supports incremental changes affecting a mere subset of
the 1image information, thereby reducing the amount of computations needed
and thus improves system performance. Note that based on this viewpoint
pixels can be considered as artefacts of the raster technology. Interaction sup-
port as such does not justify a pixel representation of the image. For this rea-
son, in this architecture, the refresh process 1s at least conceptually nitiated
from a domain representation level. Given the real-time requirements of the
refresh process, i1t 1s clear that a display controller that actually operates from
this level i1s quite resource intensive. On the other hand 1t will support the
fastest possible response on interactions.

Worth noting is that colour evaluation can take place at different levels 1n
this architecture. In this way, different shading methods and evaluation stra-
tegies can be incorporated in the same architecture.

183

iransio dynamic attnbutes
Humination appearance

visibility
calculation

FIGURE 6. An interaction supporting architecture. User iteractions

can be initiated from intermediate representation levels.

4. PARALLEL PROCESSING

The logical architecture presented in the previous section provides the structur-
ing for efficient interaction support. In spite of this, some of the processing
steps involved require considerable computing resources 10 guarantee
sufficiently fast response. Processor technology developments have resulted in a
remarkable improvement of computing power. But, to satisfy the need for

higher image quality, scene complexity and interactivity, experts in the field

present day processors is necessary. It is clear that this cannot be accomplished
by improvement in processor technology and efficient structuring alone. An
interactive system will have to be highly parallel. Before we discuss our inves-
tications in this area we will first focus on how parallel systems can be
classified.

4.1. Classification

are: ‘how can the problem be distributed?” and: ‘what kind of hardware 1s
ippropriate?’. Depending on which of these two aspects 1s of most concern, we
can classify parallelism based on architectures or based on distribution.

4.1.1. Architecture based classification. In computer graphics systems, we can

distinguish the following types of parallel architectures: pipeline, MIMD, sys-

tolic array and SIMD.

® Pipeline. In this class of architectures, data 1s passed from one processor
to the next, each processor performing a specific task. For this type of sys-
tems load balancing and capability of handling large data streams are
essential. Data dependent processing reduces the efficiency of these sys-
tems.

 MIMD. A multiple instruction, multiple data system 1s a set of asynchro-
nous operating processors. Synchronisation is handled by message passing.

189

Job scheduling and communication are the most critical aspects. Scalabil-
ity and configurability made this type of system popular. On the other
hand, this architecture 1s costly and can make debugging tedious.

Systolic array. A systolic array processor is closely related to the pipeline
architecture. In general however it is a multi-dimensional structure han-
dling multiple data streams. The processing elements handle instruction
level tasks only and are interconnected in a problem specific way. An
array as a whole should be considered as one dedicated processor rather
than a flexible programmable system.

SIMD. A single instruction, multiple data system (also known as vector-
processor) 1s a set of synchronous operating processors: all execute the
same instruction in lock-step. Its centralized control makes it well suited
for massive parallelism. The efficiency may reduce dramatically when con-
ditional nstructions are ivolved.

Apart from the classification types mentioned here we can distinguish several
levels of granulanty. Especially for MIMD architectures, we encounter systems
involving mainframes, workstations, loosely coupled multi-processors, tightly

coupled multi-processors, down to instruction set level multi-processors.
®

Mainframes. Processing can be off-loaded to a mainframe, a vector-

processor, a supercomputer or even a cluster of supercomputers. These

types of number crunching facilities can usually be accessed via a wide
area network. This type of approach is typical for non-interactive com-
puter intensive preprocessing tasks and has little relevance for this discus-
S101.

Workstations. A processing task can be distributed among a cluster of
workstations connected via a local area network. Normal operating system
facilities can be used to start remote procedures. The cluster may be very
heterogeneous.

Loosely coupled multi-processors. This term refers to message passing sys-
tems. Each processor has its private local memory. Data exchange and
synchronisation is handled by sending messages via multiple links. Com-
munication overhead can be considerable.

Tightly coupled multi-processors. 1f all processors of a system share a piece
of memory, they are said to be tightly coupled. Data can be shared and
synchronisation can be handled by centrally administered status informa-
tion. Memory contention puts an upper limit on the number of proces-
sors that can efficiently be coupled.

Instruction set level multi-processors. In this category we find dataflow pro-
cessors, neural networks and the like. These architectures execute machine
instructions in parallel. The programming of these type of architectures
differs much more from programming a sequential machine than any of
the other granularity levels above.

190

g e poimnt of view the
subdivision strategies can be recognized: tmage space. object
functional Mﬁ%‘}ihvmm‘a
19€ . his rather popular strategy ecach processor operates on
one or Mmore piwﬁx ﬁ‘ﬁ' the image. The maximum level of parallelism s
determined by the image resolution, a constant factor. Etticiency of such
systems may be low because image complexity 1s usually not homogene-
ous. Furthermore, geometric data must be distributed to all PrOCEsSOrs.

® Object %pau Processors are allocated to process one or more graphical
objects (e.g. hines, areas, Lhamuu‘s} The number of objects 1n a scene
Mnm should relate to the level of parallelism 1s a dynamic quantity. Pix-
els generated by each processor must be collected and compared with

mxuhx from other processors to determine therr visibility. The number of

nixels each Processor wi 1] generate 1s data de pendent.

Mwmi Processors are allocated for one of the tasks found in the

m“mge generation pipehne (geometric transformation, clipping. shading

ete.). The tasks vary i complexity and some of the tasks are data depen-

dent (e.g. nppm) which comphicates load balancing.

For parallel algorithms we also find the concept of granularity and recognize

the classes coarse. medium and fine grain parallelism. This classification is

based on the number of instructions executed between two points of synchron-

isation. There 1s no real concensus on the exact quantification.

® (oarse grain. The tasks are executed with hardly any information

exchange. Typically the number of instructions is OVer 4 thousand.

® Medium grain. Tasks executed are in the order of tens to hundreds of
instructions. Communication is substantial,

® fine grain. Tasks are up to several instructions long, the communication
rate 1s very high.

Distribution based classification. From the algonitt

4.2. Parallel graphics
Graphics algorithms are inherently parallel. In mweasmg order of gmnularlty
H‘w u:)n"apunng deks can he Urgdnucd bdscd on paw ﬁ \ftmws po Vg(mx

l." H

aaaaa

on ';.,fé-':mH E hardwam has been found [8} but a L..-cmhgumu(m o_pmndi for the
entire graphics pipeline has not been found yet. Each of the solutions pro-
posed so far has its specific characteristics and is well suited for a particular
type of images and a particular type of rendering only.

In computer graphics, however, we must deal with more than just one type
of images and more than just one type of rendering. We find a great variety In
the internal characteristics of images. such as shading techniques [9,10], hidden
surface removal algorlthms [11.12] and graphics pnmmves [13-15]. A Eso the
characteristics of applications vary considerably, and in an interactive environ-

ment, even momentarily.

191

For this reason, research in the department of interactive systems has been
concentrated on a part of raster graphics hardware that 1s common to all sys-
tems, re.. the rasterization step, and on adaptable graphics environments.
These topics will be discussed in the next two sections.

4.3. A domuain level display controller

Technically the most demanding element of the interaction based architecture
presented, 1s the display controller. As mentioned above, in this architecture
the input of the refresh process is a domain-level rather than a pixel-level
representation of the image. As a result, a// pixel related operations must be
handled by the display controller at a rate of about 60 Hz. These pixel related
operations include scan-conversion, shading and anti-aliasing of the graphical
primitives (see plate number I). We believe that. due to this, a well partitioned
multi-processor system is a prerequisite. The system should be flexible enough
to be able to support different kinds of shading techniques.

The way in which images are scanned (a sequence of horizontal scanlines)
already leads to a subdivision of the refresh process in vertical (y) and in hor-
izontal (x) directions. This phenomenon reflects in the two distinct types of
processors (x- and y-processors) that can be found in the display controller
architecture shown in Figure 7 [16]

»

Display File of visible objects

object
loader

. . . . C e . . . y-pProcessors

Scanline commands

11T R
_ Stream

X-Processors

FIGURE 7. Schematics of the display controller.

Most primitives contribute to a limited number of horizontal scanlines only,
l.e. they become ‘active’ during a short period of the refresh process. The
display file from which the display controller operates is organized such that
primitives that become active can be casily found. These active primitives are

192

presented to the y-processors by a so-called object loader. The y-processors
scan these active primitives, thereby generating scanline commands containing
shading information of the intersection of the current scanline with the primi-
tive. These commands in turn are sorted and converted to a pixel stream (of
about 90 MHz, i.e. 11ns/pixel) by a systolic array of x-processors. Finally, this
stream of digital pixel intensities is converted into an analogue video signal.

The result 1s a hybrid architecture in that it exploits image space subdivision
(each vertical pixel column is assigned to one x-processor from the array), as
well as object space subdivision (each y-processor operates on a different active
primitive).

The display controller can be scaled according to the needs. The number of
x-processors can be adapted to obtain the desired resolution of the system,
whereas the number of y-processors can be adapted to the desired maximum
complexity of images to be displayed. The instruction repertoire of the proces-
sor elements provides the flexibility desired for different types of shading (see
also plates II, II1, IV, V and E.H. Blake’s contribution on ‘Shading’ in the
Appendix).

For implementation of the display controller, full-custom VLSI chips were
needed. A photograph of the x-processor array chip, designed by our col-
leagues at the University of Twente, can be found in this issue (plate number
VD).

4.4. Adaprable parallelism by means of BONSAI
Parallelism can also be applied to higher levels of the Image synthesis pipeline.
We have designed and implemented a prototype system, called BONSAI, some
key principles of which we will discuss here.
Two major shortcomings of current day graphics systems are related to (1)
the static nature of the application interface and (2) the static nature of the
graphics pipeline semantics. We illustrate each issue by an example.
® Static application interfaces. Current graphics systems provide application
program with only a fixed collection of primitives, attributes, and storage
schemes. This, in general, leads to tedious specifications for those applica-
tions that use primitives which do not fall in a system’s fixed collection. A
lengthy decomposition process must be done by the application in order
to use the primitives available in a graphics package. A more promising
approach seems to be to allow the application to augment the collection
of primitives and attributes or even define its own storage scheme. By
Importing new primitive definitions into a graphics package, the applica-
tion can be kept simple.

® Suatic pipeline semantics. All graphics systems define a pipeline through
which a primitive passes when it is rendered. Attribute binding and
storage of intermediate representations are fixed by the semantics of the
pipeline. This approach is awkward for those applications that need to use
other storage schemes to store graphics data. Allowing the application to
define its own storage scheme will greatly enhance interaction since only
the application can have the knowledge of how data retrieval can be done

193

efficiently. A second advantage of a generic pipeline definition is that 1t
allows the application to provide the graphics system with a specialized
hardware configuration.

BONSAI addresses these two shortcomings by providing support for what we

believe will have a fundamental impact on the definition of new graphics

software architectures. We refer to these issues as (1) providing support for
extensible application interfaces and (2) providing support for configurable
pipelines.

1) Extensible application interfaces will allow an application to define and
import new primitives, attributes and storage schemes into BONSAL
Libraries of predefined primitives and attributes will be provided for gen-
eral use. An application can specialize on or augment to a library primi-
tive. -

2) Configurable pipelines will allow the application to exploit novel hardware
architectures by placing those components in the pipeline where they are
needed the most [17]. For example, BONSAI should be able to exploit all
possibilities of parallel components by allowing the application to define a
pipeline that can exploit this parallelism. A second example is to allow the
application to configure the pipeline to exploit remote computing services.

Extensible interfaces can be realized in two steps. First, BONSAI must provide

suitable abstractions for basic concepts such as primitives, attributes, and

storage. The second step allows the application, by means of object-oriented
techniques, to specialize on these abstractions. In this way applications can
define new abstractions in terms of the more general ones known to BONSAIL

Object-oriented techniques can be used to specialize in various storage schemes

as well. We find all the necessary object-oriented techniques in the program-

ming language C+ +, so no special purpose specification language 1s neces-
sary.

4.4.1. The internals of BONSAI The definition of the BONSAI system is
based on a new approach to the development of systems, called the
Component/Framework Process. Inherent in this process is a model of graph-
ics systems which sees a graphics system as constructed from a collection of
components set in a framework. Components include datatypes and opera-
tions. A framework is the glue which joins components together to form a sys-
tem and manages the display and control. This idea is illustrated in Figure 8.
Systems A, B and C each have their own frameworks. Some components are
used by more than one system, others by only one. The relationship between
the PHIGS standard [18] and the PHIGS+ proposal [15] illustrates this idea
in that PHIGS and PHIGS+ share a common framework. but differ in their
choice of output primitive components and attribute components. PHIGS +
uses a richer set of components which take illumination into account. In con-
trast however, PHIGS and PHIGS + use the same input components.

194

Frameworks

System A

(.ﬂ"

DﬁDDﬁﬁﬁﬁﬁiiEDDﬁ

Set o f Components

[:l Component E:] Framework

FIGURE 8. Component/Framework Process: Graphics systems can be
constructed from a collection of components set in a
framework.

The realization of a graphics pipeline can conceptually be partitioned into

three tiers: tier one is called the shell: tier two is BONSAI; tier three is called
the virtual workstation.

lier-One: Shell. The shell implements the high level functional interface
as defined by some standard. Typical examples of shells are GKS.
PHIGS, PHIGS+ and RenderMan [15]. The shell will use all functional-
ity that is available from the BONSAI system.

lier-Two: BONSAI. BONSALI is the intermediate level that is used by
high level graphics packages as a veneer to the virtual workstation. It is
the shell’s own responsibility to map high-level representations onto
representations that are suitable for BONSAL.

lier-Three: virtual workstation. The virtual workstation level is an
abstraction of a particular hardware configuration. Both the shell and
BONSAI can parameterize the virtual workstation in order to take advan-
tage of the underlying hardware capabilities. A typical example of a dev-
ice dependent parameterization is how an area primitive is decomposed.
On some hardware configurations an area primitive must be decomposed
Into a mesh, whereas on others an area primitive will be decomposed into
triangular strips. The virtual workstation level can be parameterized to be
either a mesh machine or a triangular strip machine.

195

5. CONCLUSION

In this paper we presented a novel architecture for interactive raster graphics.
The architecture reflects the balance between carefully designed hardware and
well-structured high level logical modules which make effective use of the
hardware. We explained the importance of parallel systems and how they can
be applied to implement the described architecture.

REFERENCES

1.

2.

10.

1.

12.

13.

J. FOLEY, A. vAN Dam (1982). Fundamentals of Interactive Computer
Graphics, Addison-Wesley, Reading, Mass.

W.M. NEwMAN, R.F. SprouLL (1979). Principles of Interactive Computer
Graphics, McGraw-Hill, New York.

K. GuITAG, T. VAN AKEN, M. AsaL (1986). Requirements for a VLSI
graphics processor. IEEE Computer Graphics and Applications 6 (1), 32-
47. B

[. CARLBOM (1980). System Architecture for High-Performance Vector
Graphics, Ph.D. Thesis, Dept. of Computer Science, Brown University,
Providence.

D. ROSENTHAL, J. C. MICHENER, G. Prarr, R. KESSENER, M. SABIN
(1982). The detailed semantics of graphics input devices. Compurer
Graphics 16 (3), 33-38.

PJW. TEN HAGEN, AL AM. Kunk, C.G. TRIENEKENS (1987). Display
architecture for VLSI-based graphics workstations. W. STRASSER (ed.).
Advances in Graphics Hardware I, Eurographic Seminars, Springer-Verlag,
Berlin. '

V. AKMAN, PJW. 1TEN HAGEN, A AM. Kunk (1988). A vector-like
architecture for raster graphics. A.A.M. Kunk, W. STRASSER (ed.).
Advances in Graphics Hardware 11, Eurographic Seminars, Springer-Verlag,
Berlin.

J.H. CLARK (1982). A VLSI geometry processor for graphics. Computer
Graphics 16 (3), 127-133.

B.T. PHONG (1975). Illumination for computer generated 1mages. Com-
munications of the ACM 18 (6), 311-317.

R. HALL (1988). [Illumination and Color in Computer Generated Imagery,
Monographs in Visual Communication, Springer-Verlag, Berlin.

A.AM. Kupk, PJW. TEN HAGEN, V. AKMAN (1988). An exact incre-
mental hidden surface algorithm. A AM. Kuwuk, W. STRASSER (ed.).
Advances in Graphics Hardware 11, Eurographic Seminars, Springer-Verlag,
Berlin.

E. FIuMe, A. FOURNIER (1988). The visible surface problem under
abstract graphic models. R.A. EARNSHAW (ed.). Theoretical Foundations
of Computer Graphics and CAD, NATO ASI Series. Springer-Verlag,
Heidelberg.

F.R.A. HopGoop, D.A. BrRuCE, J.R. GaLLopr, D.C. SUTCLIFFE (1983).
Introduction to the Graphical Kernel System (GKS), Academic Press.

196

4. ISO (1985). Information processing - graphical kernel system - functional
description. International Standard DIS 7942,

15. A. v. Dam (1988). PHIGS+ functional description, revision 3.0. ACM
Computer Graphics 22 (3).

16. JLALK.S. JAYASINGHE, A AM. Kuuk, L. SPAANENBURG (1991). A display
controller for an object-level frame store system. A AM. Kuuk (ed.).
Advances in Graphics Hardware III, Eurographic Seminars, Springer-
Verlag, Berlin.

I'7. D.B. ARNOLD, D.A. Ducg, G.J. REYNOLDS (1987). An approach to the
formal specification of configurable methods of graphics systems. G.
MARECHAL (ed.). European Computer Graphics Conference and Exhibition,
North-Holland, Amsterdam, 439-463.

18. ISO (1989). The programmer’s hierarchical interactive graphics system
(PHIGS), ISO 9592 (3 parts).

197

