Trilinear alternating forms on a vector space of dimension 7

Arjeh M. Cohen & Aloysius G. Helminck
Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

ABSTRACT

For vector spaces of dimension at most 7 over fields of cohomological dimension at most 1 (including algebraically closed fields and finite fields) all trilinear alternating forms and their isotropy groups are determined.

1. Introduction.

Let E be a vector space over the field F of dimension $n < \infty$. Whereas the problem of classifying bilinear alternating forms on E is well known and very elementary, the classification of trilinear alternating forms seems tractable for small values of n only. By the classification of r-linear alternating forms on E we mean the determination of equivalence classes of these forms with respect to the following equivalence relation:

Two r-linear forms f, f' on E are said to be equivalent if there is a linear transformation $g \in GL(E)$, the general linear group on E, such that

$$f(x_1, \ldots, x_r) = f'(gx_1, \ldots, gx_r) \quad (x_1, \ldots, x_r \in E).$$

Letting $g \in GL(E)$ act on the vector space of r-linear forms f on E by means of

$$(g \cdot f)(x_1, \ldots, x_r) = f(g^{-1}x_1, \ldots, g^{-1}x_r) \quad (x_1, \ldots, x_r \in E),$$

we can rewrite (1) as $g \cdot f = f'$. We shall often write gf instead of $g \cdot f$. The equivalence classes are the $GL(E)$-orbits under this action. An r-linear form f on E is called alternating if for all $x_1, \ldots, x_r \in E$ with $x_i = x_j$ for at least two distinct $i,j \quad (1 \leq i, j \leq r)$, we have $f(x_1, \ldots, x_r) = 0$. The vector space of all r-linear alternating forms on E will be denoted by $\text{Alt}_r(E)$. The classification of r-linear alternating forms on E consists of the determination of all $GL(E)$-orbits in $\text{Alt}_r(E)$. We shall write $G = GL(E)$, and $G_f = \{ g \in G \mid gf = f \}$ for any $f \in \text{Alt}_r(E)$; we shall refer to
G_f as the *stabilizer* (in G) of f. Obviously, G_f is an algebraic group defined over F; in fact, it is a Zariski closed subgroup of G. If K is an extension field of F, then any r-linear form f on E has a unique extension to an r-linear form f^K on $E \otimes_F K$. Two r-linear forms f, f' on E are called K-equivalent whenever their extensions $f^K, (f')^K$ are equivalent. We shall denote by \bar{F} the algebraic closure of F and we shall write $\bar{E} = E \otimes_F \bar{F}, \bar{G} = GL(\bar{E})$, and $\bar{f} = f^{\bar{F}}$.

Now, dim \bar{G} and dim \bar{G}_f are well-defined integers and the orbit \bar{G}_f of \bar{f} has the structure of an algebraic variety of dimension dim $\bar{G} - \dim (\bar{G}_f)$, see BOREL [1]. Since dim $\bar{G} = n^2$ and dim $\text{Alt}_r(\bar{E}) = \binom{n}{r}$, this yields

$$\dim \bar{G}_f \geq n^2 - \binom{n}{r}. \quad (3)$$

If \bar{G} has finitely many orbits in $\text{Alt}_r(\bar{E})$, there must be a form \bar{f} in $\text{Alt}_r(\bar{E})$ for which equality holds in (3). But equality implies $n^2 \geq \binom{n}{r}$. Hence, if $\text{Alt}_r(\bar{E})$ consists of finitely many equivalence classes, either $r \leq 2$, or $r = 3$ and $n \leq 8$. This illustrates why the problem of classifying trilinear alternating forms differs from its bilinear counterpart.

If $r = 2$, there are finitely many G-orbits, see DIEUDonné [4]. We shall see in the sequel that for arbitrary F this is no longer true if $r = 3$ and $n = 7$. However, if F is algebraically closed, $r = 3$ and $n \leq 7$, there are finitely many G-orbits. The classification in this case was carried out by J.A. SCHOUTEN [7] in 1931 for $F = \mathbb{C}$, and, independently, by CRESP [3] in 1976 for F algebraically closed of characteristic $\neq 2,3$. GUREVICH [5] gives an answer to the classification problem with $F = \mathbb{C}, r = 3$ and $n = 8$. In this paper, we present a relatively short proof of the classification for F algebraically closed of arbitrary characteristic, $r = 3$ and $n = 7$. Furthermore, we compute the stabilizers in G of representatives of each of its orbits and derive the classification for $n \leq 7$ and $r = 3$ over certain non-algebraically closed fields — including all finite fields — by use of (noncommutative) first order Galois cohomology. In particular for a finite field F, it turns out that the number of projective $\text{GL}(n,F)$-orbits on $\wedge^3 F^n$ is 4 if $n = 6$, and 11 if $n = 7$.

After finishing this work, it has come to our knowledge that MIGLIORE [10] has also studied trilinear alternating forms on F^7 for finite fields F.

The outline of the paper is as follows. The main results are stated in Section 2. In the hope that for finite fields this classification will be of some relevance to finite geometry and combinatorics, we have included two corollaries of this classification. Section 2 ends with an elementary but basic lemma for the classification over an algebraically closed field. The classification over these fields appears in Section 4, while Section 3 is devoted to the computation of the stabilizers of the forms given in Section 2. Finally, in Section 5 the necessary Galois cohomology is introduced and an account is given of the classification over a field of cohomological dimension at most 1.
2. Notation and Statement of Results.

In this section, we let $E = F^n$ be the standard vector space over the field F of dimension n, consisting of column vectors, and denote by e_1, \ldots, e_n the standard basis vectors. The dual E^* of E will be interpreted as a vector space of row vectors. Thus, e_1^T, \ldots, e_n^T, where x^T is the transposed of $x \in E$, is a dual basis of e_1, \ldots, e_n, i.e., is a basis of E^* with

$$e_i^T e_j = \begin{cases}
1 & \text{if } i = j \\
0 & \text{otherwise}.
\end{cases}$$

By well-known theory, cf. BOURBAKI [2], the space $\text{Alt}_r(E)$ may be identified with the skew-symmetric tensor product $\wedge^r E^*$ of r copies of E^*. In fact, we shall identify the two by viewing $x_1^T \wedge x_2^T \wedge \cdots \wedge x_r^T$ for $x_1, \ldots, x_r \in E$ as elements of $\text{Alt}_r(E)$ by means of

$$x_1^T \wedge \cdots \wedge x_r^T (u_1, \ldots, u_r) = \sum_{\sigma \in S_r} \text{sg}(\sigma) \prod_{i=1}^r x_i^T u_{\sigma(i)} \quad (u_1, \ldots, u_r \in E) \quad (4)$$

where S_r stands for the symmetric group on r symbols and $\text{sg}(\sigma)$ is the sign of $\sigma \in S_r$. Obviously,

$$\{ e_i^T \wedge \cdots \wedge e_j^T \mid 1 \leq i_1 < i_2 < \ldots < i_r \leq n \}$$

is a basis of $\text{Alt}_r(E)$.

The action of $g \in G = \text{GL}(E)$ on $\text{Alt}_r(E)$ defined in (2) is determined by

$$g(x_1^T \wedge \cdots \wedge x_r^T) = x_1^T g^{-1} \wedge \cdots \wedge x_r^T g^{-1} \quad (x_1, \ldots, x_r \in E), \quad (5)$$

where $x^T h$ for $x \in E$ and $h \in G$ is the element of E^* satisfying $(x^T h)v = x^T (h v)$ for all $v \in E$. In order to simplify notation, we shall often abbreviate e_i^T to i. Also, we shall write ij for $i \wedge j$ and ijk for $i \wedge j \wedge k$, where $1 \leq i, j, k \leq n$. We are now ready to formulate the main results.

2.1. Theorem. Let E be a vector space of dimension 7 over an algebraically closed field F. Then any nonzero trilinear alternating form on E is equivalent to exactly one of the nine forms f_i for $i = 1, \ldots, 9$ of Table 1. The stabilizer G_i of f_i in $G = \text{GL}(E)$ has the structure given in Table 1.

Here, F^m, for $m \in \mathbb{N}$, denotes a group with composition series of length m all of whose m factors are isomorphic to the additive group of the field F, F^* denotes the multiplicative group of F, and μ_3 the subgroup $\{ x \in F \mid x^3 = 1 \}$. Furthermore, λ, μ are such that

$$P_\lambda(x) = \begin{cases}
X^2 - \lambda & \text{if } F \text{ has odd characteristic} \\
X^2 + \lambda X + 1 & \text{otherwise}
\end{cases}$$

and $P_\mu(X) = X^3 - \mu$ are irreducible in $F[X]$. We note that Table 1 contains only a rough description of the isomorphism type of G_f. A full description can be found in Section 3.
A form \(f \in \text{Alt}_3(E) \), where \(E = F^n \), can conveniently be represented by a diagram in the following way. A diagram consists of vertices and lines which are labelled 3-cycles of vertices. The vertices are the coordinates \(1, \ldots, n \). A line is a 3-cycle \((i,j,k)\) with \(i<j<k \) and the label is \(A_i + A_j + A_k \). In a picture of a diagram the lines \((i,j,k)\) for which \(i<j<k \) does not hold are suppressed. If \(f(e_i,e_j,e_k) = 1 \), the label is not drawn at all. See Figure 1 for an example.

A perfect field is said to have cohomological dimension at most 1 if the Galois group of its algebraic closure has cohomological dimension at most 1; cf. Serre [8], where it is also shown that finite fields have cohomological dimension at most 1.

2.2. Theorem. If \(E \) is a vector space of dimension 7 over a perfect field \(F \) of cohomological dimension at most 1, then any nonzero trilinear form is equivalent to one of the forms \(f_i \) (\(1 \leq i \leq 9 \)), \(f_{j,\lambda} \) (\(j = 10, 11 \)), \(f_{12,\mu} \) of Table 1. Moreover, the only pairs of equivalent forms in Table 1 occur among the pairs \(f_{j,\alpha}, f_{j,\beta} \), where either \(j = 10, 11 \) and \(P_\alpha(X), P_\beta(X) \) define isomorphic extension fields of \(F \) in the respective cases, or \(j = 12 \) and the polynomials \(X^3 - \alpha, X^3 - \beta \) define isomorphic cubic extension fields of \(F(\sqrt[3]{-1}) \) and \(\alpha^{-1} \beta \) has a cube root in \(F(\sqrt[3]{-1}) \).
Table 2
The number of forms in $\text{Alt}_3(F^7)$, F a finite field of order q, equivalent to one of the forms in Table 1.

| form | $| G / G_f |$ | degree |
|------|----------------|-------|
| f_1 | $(q^7 - 1)(q^5 - 1)(q^3 + 1)/(q - 1)^2$ | 13 |
| f_2 | $(q^7 - 1)(q^5 - 1)(q^4 + q^2 + 1)(q^2 + q + 1)$ | 20 |
| f_3 | $\frac{1}{2}(q^7 - 1)(q^5 - 1)(q^3 + 1)(q^2 + 1)q^9$ | 26 |
| f_4 | $(q^7 - 1)(q^6 - 1)(q^5 - 1)(q^3 + q^2 + q + 1)$ | 28 |
| f_5 | $\frac{1}{2}(q^7 - 1)(q^6 - 1)(q^5 - 1)(q^2 + 1)(q^2 + q + 1)q^9$ | 31 |
| f_6 | $(q^7 - 1)(q^6 - 1)(q^5 - 1)(q^4 - 1)q^6$ | 34 |
| f_7 | $(q^7 - 1)(q^6 - 1)(q^5 - 1)(q^2 + 1)q^{11}$ | 21 |
| f_8 | $(q^7 - 1)(q^5 - 1)(q^3 - 1)q^8$ | 35 |
| f_9 | $\epsilon(q^7 - 1)(q^5 - 1)(q^4 - 1)(q^3 - 1)(q - 1)q^{15}$ | 26 |
| $f_{10,\lambda}$ | $\frac{1}{2}(q^7 - 1)(q^6 - 1)(q^5 - 1)(q^2 - 1)q^9$ | 31 |
| $f_{11,\lambda}$ | $\frac{1}{2}(q^7 - 1)(q^6 - 1)(q^5 - 1)(q^3 - 1)(q - 1)q^9$ | 35 |
| $f_{12,\mu}$ | $\frac{1}{2}(q^7 - 1)(q^5 - 1)(q^4 - 1)(q^3 - 1)(q - 1)q^{15}$ | 35 |

2.3. Corollary. Let E,F be as in Theorem 2.2. If H is a subgroup of $\text{GL}(E)$ which is irreducible on E and fixes a nonzero trilinear alternating form on E, then H is a subgroup of the Chevalley group of type G_2 over F extended by $\mu_3 = \{ x \in F^* | x^3 = 1 \}$.

Proof. By inspection of the stabilizers of Table 1 and their action on E (see Section 3), it is immediate that $G_{f_1}, G_{f_{12,\lambda}}$ are the only stabilizers of trilinear alternating forms which are irreducible on E. Since H is irreducible and fixes a nonzero element of $\text{Alt}_3(E)$, it must be a subgroup of a conjugate of $G_{f_1}, G_{f_{12,\lambda}}$, and hence of $G_2(F)\mu_3$.

2.4. Corollary. Let F be a finite field of order q. Then the number of forms in $\text{Alt}_3(E)$, with $E = F^7$, equivalent to one of the forms in Table 1 is as given in Table 2.

Proof. Given $f \in \text{Alt}_3(E)$, the number in question is $| G | / | G_f |$, where $G = \text{GL}(E)$ has order $q^{21} \prod (q^i - 1)$. Since G_f is conjugate to G_f, if f is equivalent to f_i, and the right hand side is known by Table 1, the result follows by straightforward computation.

Here, $\epsilon = 1$ if $\gcd(q - 1, 3) = 1$ and $\epsilon = \frac{1}{3}$ otherwise; λ, μ are as in Table 1. (Observe that if $\gcd(q - 1, 3) = 1$, then $f_{12,\mu}$ and f_{12,μ^2} do not occur.)

We finish this section by introducing the basic tools of the proof of the above theorems. Let E, F, G be as before and $r \geq 1$. For $f \in \text{Alt}_r(E)$ we define the kernel
\[fj = a_{312} - a_{213} + a_{123} + a_{645} - a_{546} + a_{456}. \]

It readily follows that \(R_0(f_3) = <e_7> \) and that \(R_{<1}(f_3) = <e_1, e_2, e_3, e_7> \cup <e_4, e_5, e_6, e_7> \).

Suppose \(g \in G_3 \). Then \(g \) either stabilizes each of the two linear subspaces whose union is \(R_{<1}(f_2) \), or interchanges them. Moreover, \(g \) stabilizes \(<e_7> \). Hence, after multiplication of \(g \) by an element of \(A \), we may assume that \(g \) is of diagonal form with entries \((\lambda, 1, 1, \mu, 1, 1, 1)\) for some \(\lambda, \mu \in F^* \). As in 3.1, it follows that \(\lambda = \mu = 1 \), so that \(g \in A \).

3.4. The form \(f_4 = \frac{162}{3} + \frac{243}{3} + \frac{135}{3} \) has stabilizer \(G_4 = A \), where

\[
A = \begin{cases}
\begin{pmatrix}
h & 0_{3 \times 3} & 0_{3 \times 1} \\
r & h (\det h^{-1}) & 0_{3 \times 1} \\
a & \lambda & \\
\end{pmatrix} & h \in GL(3, F), \quad \lambda \in F^* \\
\begin{pmatrix}
h & 0_{3 \times 3} & 0_{3 \times 1} \\
r & h (\det h^{-1}) & 0_{3 \times 1} \\
a & \lambda & \\
\end{pmatrix} & a \in F^{1 \times 6}, \quad r \in F^{3 \times 3}, \quad \text{trace } r = 0
\end{cases}
\]

so \(G_4 \approx F^{3 \times 1} : (GL(3, F) \times F^*) \).

Proof. A simple computation shows that \(R_0(f) = <e_7> \) and that \(R_1(f) = <e_4, e_5, e_6> \setminus \{0\} \). Suppose \(g \in G \). Then \(g \) stabilizes \(R_0(f) \) and \(R_1(f) \cup \{0\} \), so after multiplication by an element of \(A \), we may restrict attention to \(g \) of the form

\[
g = \begin{pmatrix}
a & 0_{3 \times 4} \\
\alpha & 0 & 0 \\
0_{3 \times 3} & I_4
\end{pmatrix}
\]

for some \(\alpha \in F \) and \(a = (a_{ij}) \in GL(3, F) \). Now,

\[
g^{-1} f_4 = (a_{11} a_{22} - a_{12} a_{21}) I_{62} + (a_{11} a_{23} - a_{13} a_{21}) I_{63} +
+ (a_{12} a_{23} - a_{13} a_{22}) I_{263} + \alpha (a_{23} a_{32} - a_{22} a_{33}) I_{23} +
+ (a_{22} a_{31} - a_{21} a_{32}) I_{24} + (a_{23} a_{31} - a_{21} a_{33}) I_{34} +
+ (a_{23} a_{32} - a_{22} a_{33}) I_{234} + (a_{11} a_{33} - a_{13} a_{31}) I_{35} +
+ (a_{12} a_{33} - a_{13} a_{22}) I_{325},
\]

by straightforward use of (5), so that \(g f_4 = f_4 \) implies \(a = 0 \) and \(a = \pm I_3 \). It follows that \(g \in A \).
3.5. The form $f_5 = 123 + 456 + 147$ has stabilizer $G_5 = A$, where

$$A = \begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 \\
\lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \lambda_5 & \lambda_6 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix} \quad \text{where } \lambda_1, \ldots, \lambda_6 \in F^*$$

so $G_5 \cong (F_1^{10}):(GL(2,F) \times GL(2,F)), \mathbb{Z}_2$.

Proof. By computation, $R_{<1}(f_5) = \langle e_1, e_2, e_3, e_4, e_5, e_6, e_7 \rangle \cup \langle e_2, e_3, e_4, e_5, e_6, e_7 \rangle$. Suppose $g \in G_5$. Then either g stabilizes each of the two 3-dimensional subspaces in $R_{<1}(f_5)$, or interchanges them. Hence g stabilizes their linear span $\langle e_2, e_3, e_4, e_5, e_6, e_7 \rangle$ as well as their intersection $\langle e_7 \rangle$. After multiplication of g by a suitable element of A, we may, therefore, assume that g stabilizes $\langle e_1, e_4 \rangle$. But then g either interchanges $\langle e_1, e_4 \rangle$ or stabilizes each of them (as it stabilizes $R_{<1}(f_5) \cap \langle e_1, e_4 \rangle$). In the former case, multiply by $\pi_{14(25 \times 36)} \in A$, so as to reduce study to the case where $g \langle e_i \rangle = \langle e_i \rangle$ for each $i (i = 1, 4)$. In fact, by multiplication with a suitable diagonal element of A, we may even assume $ge_i = e_i$ for $i = 1, 4$. Since $R_{<1}(f_5) \cap \ker f_5^1 = \langle e_5, e_6 \rangle$ and $R_{<1}(f_5) \cap \ker f_5^1 = \langle e_2, e_3 \rangle$, these subspaces must be g-invariant. It readily follows that g belongs to A.

3.6. The form $f_6 = 152 + 174 + 163 + 243$ has stabilizer $G_6 = A$, where $A = A_1A_2$ with

$$A_1 = \begin{bmatrix}
\lambda_1^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix} \quad \text{where } \lambda_1, \ldots, \lambda_7 \in F^*$$

$$A_2 = \begin{bmatrix}
1 & 0 & 0 \\
0 & a & 0 \\
0 & h & (a^T)^{-1}
\end{bmatrix} \quad \text{where } h \in F^3, a \in SL(3, F), h = h^T$$

so $G_6 \cong F_2^{12}:(SL(3,F) \times F^*)$.
Proof. Notice that $R_{\leq 1}(f_6) = \langle e_5, e_6, e_7 \rangle$ and $R_{\leq 2}(f_6) = \langle e_5, \ldots, e_7 \rangle$. Suppose $g \in G_6$. After multiplication of g by an element of A_1 from the left, we may assume that $g e_i = e_i$. Since g stabilizes $\langle e_5, e_6, e_7 \rangle$, after multiplication of g by an element of A_2, we may restrict attention to the case where g has the form

$$
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & a_4 & a_3 & a_1 & 0 & 0 \\
0 & 0 & a_2 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
$$

for some $a \in GL(3,F)$, with $a_1 \in F^*$, and $a_2, a_3, a_4 \in F$. By a computation using (5), we obtain

$$
f_6 = g^{-1} f_6 = a_1 15(2a^T) + a_3 14(2a^T) + a_4 13(2a^T) + 17(4a^T) + 16(3a^T) + a_1 14(3a^T) + (\det a) 243.
$$

It follows that $3a^T = 3$, $4a^T = 4$ and $2a^T = a_1^{-1} 2$, so that

$$
a = \begin{pmatrix}
\alpha_1^{-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
$$

Hence,

$$
243 = f_6 - 152 - 174 - 163 = 14(\alpha_1^{-1} a_3 2 + a_2 3) + 13(a_4 2) + (\det a) 243.
$$

This implies $\alpha_1 = (\det a)^{-1} = 1$ and $a_2 = a_3 = a_4 = 0$, so that $g = 1 \in A$, indeed.

3.7. The form $f_7 = 146 + 157 + 245 + 367$ has stabilizer $G_7 = A$ where $A = A_1 A_2$ with

$$
A_1 = \begin{pmatrix}
\alpha_1 & \beta_1 & \beta_3 & -\alpha_3 \\
1_3 & \alpha_2 & \beta_2 & \beta_1 & -\alpha_1 \\
\alpha_3 & \beta_2 & \gamma_3 & \delta_3 & \alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \gamma_3, \delta_3 \in F
\end{pmatrix}, \quad
$$

and

$$
0_{4 \times 3} & 1_4
$$

and

$$
0_{4 \times 3} & 1_4
$$
so \(G_7 \cong F^8 : ((GL(2,F) \times GL(2,F)) / F^*) \).

Proof. A direct computation leads to the relations

\[
R_{\leq 1}(f_7) = \{ x_1e_1 + x_2e_2 + x_3e_3 \mid x_1^2 = x_2x_3 \}, \quad \text{and}
\]

\[
R_{\leq 2}(f_7) = \{ \sum_{i=1}^{7} x_i e_i \mid x_4x_6 + x_5x_7 = 0 \}.
\]

Suppose \(g \in G_7 \). Since \(\langle e_1, e_2, e_3 \rangle \) is the linear subspace of \(E \) spanned by \(R_{\leq 2}(f_7) \), it is left invariant by \(g \). Write \(W_0 = \langle e_4, e_5, e_6, e_7 \rangle \).

Let \(W \) be a 4-dimensional subspace of \(E \) with \(W \cap \langle e_1, e_2, e_3 \rangle = \{0\} \) and \(f_7(W, W, W) = 0 \). Then there is an element \(r \in G \) of the form

\[
\begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix}, \quad \text{with} \quad a = (a_{ij}) \in F^{3 \times 4},
\]

such that \(W = rW_0 \). The requirement \(f_7(W, W, W) = 0 \) implies

\[
\begin{aligned}
0 &= g^{-1}f_7(e_4, e_5, e_6) = -a_{12} + a_{23} \\
0 &= g^{-1}f_7(e_4, e_5, e_7) = a_{11} + a_{24} \\
0 &= g^{-1}f_7(e_4, e_6, e_7) = a_{31} + a_{14} \\
0 &= g^{-1}f_7(e_5, e_6, e_7) = a_{32} - a_{13}.
\end{aligned}
\]

Hence, \(r \in A_1 \). Thus, up to multiplication of \(g \) by an element of \(A_1 \), we may assume that \(g \) stabilizes \(W_0 \). Consider the group \(H \) generated by the elements of \(A_2 \) restricted to \(W_0 \). This is a subgroup of index 2 in the full subgroup of the linear group on \(W_0 \) preserving the quadric

\[
\left\{ \sum_{i=1}^{7} x_i e_i \mid x_4x_6 + x_5x_7 = 0 \right\},
\]

see Dieudonné [4]. In fact, \(H \) is isomorphic to \((GL(2,F) \times GL(2,F)) / F^* \), the central product of two copies of \(GL(2,F) \). Multiplication of \(g \) by a suitable element of \(A_2 \), therefore leads to the case where we have either \(g \mid W_0 = 1 \) or...
\[g \mid w_o = \sigma_{(46)}. \] However, \(\sigma_{(46)} \) cannot be extended to a linear transformation on \(E \) preserving \(f_7 \) (i.e., to a member of \(G_7 \)), for, denoting such an extension by \(h \) and writing \(he_2 = x_1e_1 + x_2e_2 + x_3e_3 \), we would then have
\[1 = h^{-1}f(e_2, e_4, e_5) = f(he_2, e_6, e_5) = \sum_{i=1}^{3} x_i f(e_i, e_6, e_5) = 0, \]
which is absurd. The conclusion is that we are left with the case where \(g \mid w_o = 1 \).

Explicit verification of \(h = g^{-1}h \) by means of (5), yields that \(g = 1 \), so that \(g \in A \).

3.8. The form \(f_8 = 123 + 145 + 167 \) has stabilizer \(G_8 = A \) with \(A = A_1A_2 \), where
\[
A_1 = \begin{pmatrix}
\lambda^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix} \quad a \in F^6 \times 1, \lambda \in F^*, \text{ and } A_1 \in GL(6, F).
\]
\[
A_2 = \begin{pmatrix}
1 & 0_1 \times 6 \\
0_1 \times 6 & h \\
\end{pmatrix} \quad h \in GL(6, F), \text{ and } h \text{ preserves } 23 + 45 + 67.
\]

Thus \(G_8 \cong F^6 \cdot (Sp(6, F), F^*) \).

Proof. Observe that \(R_{<1}(f_8) = \langle e_2, ..., e_7 \rangle \). Let \(g \in G_8 \). Since \(g \) stabilizes \(R_1(f_8) \), we may assume that \(G \) fixes \(e_1 \) (after multiplication by a suitable element of \(A_1 \)). But then \(g \) fixes \(f_8' \), whence \(g \in A_2 \), so \(g \in A \).

3.9. The form \(f_9 = 123 + 456 + 147 + 257 + 367 \) has stabilizer \(G_9 = A \), with \(A = G_2(F)_{\mu_3} \), where \(G_2(F) \) is the Chevalley group of type \(G_2 \) over \(F \), and \(\mu_3 = \{ a \in F \mid a^3 = 1 \} \).

Proof. Direct computation shows
\[R_{<2}(f_9) = R_2(f_9) \cup \{ 0 \} = \{ \sum_{i=1}^{7} x_i e_i \in E \mid x_1^2 = x_1x_4 + x_2x_5 + x_3x_6 \}. \]
Let \(H \) denote the full subgroup of \(G \) preserving the quadric \(R_2(f_9) \) and set \(H_1 = H \cap SL(E) \). Then \(H_1 \) preserves the quadratic form
\[Q(x) = -x_1^2 + x_1x_4 + x_2x_5 + x_3x_6 \quad (x = (x_1, ..., x_7) \in E) \]
and each \(h \in H \) is of the form \(\lambda h_1 \) for some \(\lambda \in F^* \) and some \(h_1 \in H_1 \). More-
over, $G_2(F)$ is the subgroup of H_1 preserving f_9, cf. Springer [9]. In fact, one
can show that the bilinear multiplication \cdot on E defined by $f_9(x,y,z) = B(x,y,z)$ for
all $x,y,z \in E$, where B is the bilinear form associated with Q, is the restriction to
the orthoplement of unity in the 8-dimensional split algebra of the octonions. In
order to see this, take the 8-dimensional split algebra of the octaves to be the set of
matrices of the form

$$\begin{pmatrix}
\alpha & v \\
w & \beta
\end{pmatrix}$$

where $\alpha, \beta \in F$ and $v, w \in F^3$

supplied with the usual matrix addition, with multiplication

$$\begin{pmatrix}
\alpha & v \\
w & \beta
\end{pmatrix} \cdot \begin{pmatrix}
\alpha' & v' \\
w' & \beta'
\end{pmatrix} = \begin{pmatrix}
\alpha\alpha' - v\cdot w' & \alpha v' + \beta'v + \omega\times\omega' \\
\alpha'w + \beta w' + \omega\times\omega' & \beta\beta' - v'\cdot w
\end{pmatrix}$$

where \cdot and \times stand for the standard inner and outer product on F^3, respectively,
and with quadratic form Q given by

$$Q\left(\begin{pmatrix}
\alpha & v \\
w & \beta
\end{pmatrix}\right) = \alpha\beta + v\cdot w.$$

The unity of this algebra is $\begin{pmatrix} 1 & 0 \\
0 & 1 \end{pmatrix}$; its orthoplement is spanned by the basis

$$e_1 = \begin{pmatrix} 1 & 0 \\
0 & -1 \end{pmatrix}, \quad e_{i+1} = \begin{pmatrix} 0 & \epsilon_i \\
0 & 0 \end{pmatrix}, \quad e_{i+4} = \begin{pmatrix} 0 & 0 \\
\epsilon_i & 0 \end{pmatrix}$$

where $i = 1, 2, 3$ and $(\epsilon_i)_i$ is the standard basis of F^3. A straightforward computation
shows that the restrictions of Q and $(x,y,z) \mapsto B(x,y,z)$ to the orthoplement of
the unity are as indicated above when taken with respect to e_1, \ldots, e_7.

We need two properties of the group A in order to finish the proof. They are
formulated in the following lemma.

Lemma. (i) The group $G_2(F)$, viewed as subgroup of G preserving f_9 and B is transi­tive
on the set of unordered pairs of mutually non-orthogonal (with respect to B) totally
isotropic 1-dimensional subspaces of E.

(ii) If $g \in G$ and $\mu \in F^*$ satisfy $gf_9 = \mu f_9$, then there is $\lambda \in F^*$ with $\mu = \lambda^{-3}$ and
$g \in \lambda A$.

Statement (i) is a well-known property of $G_2(F)$, see for instance Springer [9].
Before proving part (ii) of the lemma, let us show how it leads to $G_9 = A$. Suppose
$g \in G_9$. Write $g = \lambda h$ with $\lambda \in F^*$ and $h \in H_1$. Then $f_9 = gf_9 = \lambda^{-3}(hf_9)$, so
$hf_9 = \lambda^3 f_9$. By part (ii) of the lemma, we have $h \in \mu_3 \lambda^{-1} A = \lambda^{-1} A$, whence
$g = \lambda h \in A$, as wanted.

It remains to prove part (ii) of the lemma. To this end, let g, μ be as in the hy­pothesis. Notice that g preserves $R_3(f_9)$, the quadric defined by Q. By part (i) of
the lemma, we may assume that $g < e_1 > = < e_1 >$ and $g < e_4 > = < e_4 >$
(after multiplication of g by a suitable member of A). Thus, g preserves e_1^+ and
where \perp is taken with respect to B. The following subspaces of E are preserved by g: $R_0(f'_0) \cap e_{4}^\perp = \langle e_5, e_6 \rangle$, $R_0(f'_0) \cap e_{4}^\perp = \langle e_2, e_3 \rangle$, and $(R_0(f'_0) + R_0(f'_0))_{\perp} = \langle e_7 \rangle$. Therefore, g must have the form

$$
\begin{bmatrix}
\alpha_1 \\
\alpha_4 \\
\alpha_7 \\
\end{bmatrix}
\begin{bmatrix}
\alpha \\
 b \\
\alpha_7 \\
\end{bmatrix}
$$

where $\alpha_1, \alpha_4, \alpha_7 \in F^*$ and $a, b \in GL(2, F)$.

Since

$$
\begin{bmatrix}
\det a^{-1} \\
 a \\
\det a \\
1 \\
\end{bmatrix}
$$

for $a \in GL(2, F)$,

represents an element of $G_2(F)$, we may restrict attention to the case where $ge_2 = e_2$ and $ge_3 = e_3$. But then g preserves $e_{4}^\perp \cap \langle e_5, e_6 \rangle = \langle e_6 \rangle$ and $e_{4}^\perp \cap \langle e_5, e_6 \rangle = \langle e_3 \rangle$, so g has diagonal form $(\alpha_1, 1, 1, \alpha_4, \alpha_5, \alpha_6, \alpha_7)$. From $gf_9 = \mu f_9$, we get $\mu^{-1} = \alpha_1 = \alpha_4 \alpha_5 \alpha_6 = \alpha_1 \alpha_4 \alpha_7 = \alpha_5 \alpha_7 = \alpha_6 \alpha_7$, whence $\alpha_1 = \mu^{-1}$, $\alpha_4 = \mu$, $\alpha_5 = \alpha_6 = \alpha_4 \mu^{-1}$, $\alpha_7 = \alpha_4^{-1}$. Set $\lambda = \alpha_4^{-1}$. Then $\mu = \lambda^3$ and g has diagonal form $(\lambda^3, 1, 1, \lambda^{-1}, \lambda^2, \lambda, \lambda) = \lambda (\lambda^2, \lambda^{-1}, \lambda^{-1}, \lambda^{-2}, \lambda, \lambda, 1)$, whence $g \in \lambda A$.

3.10. Fix $\lambda \in F$ such that the polynomial

$$
P_\lambda(X) = \begin{cases}
X^2 - \lambda & \text{if } F \text{ has odd characteristic} \\
X^2 + \lambda X + 1 & \text{if } F \text{ has even characteristic}
\end{cases}
$$

is irreducible, and set $K = F(\alpha)$, where α is a root of $P_\lambda(X)$. Then, the form

$$
f_{10, \lambda} = \begin{cases}
(123 + \lambda(156 + 345 + 426)) & \text{if } F \text{ has odd characteristic}, \\
(126 + 153 + 234 + \lambda(156 + 345 + 426) + (\lambda^2 + 1)426) & \text{otherwise}
\end{cases}
$$

is K-equivalent but not equivalent to f_3. Furthermore, let σ denote the generator of the Galois group of K over F, and set

$$
g = \begin{bmatrix}
1_3 & -\alpha_1 & 0_{3 \times 1} \\
1_3 & \alpha_1 & 0_{3 \times 1} \\
0_{1 \times 3} & 0_{1 \times 3} & 1_4
\end{bmatrix}
$$

if F has odd characteristic,
The stabilizer of $f_{10,\lambda}$ is $G_{10,\lambda} = g^{-1}A g$,

\[
A = \begin{cases}
 \begin{bmatrix} k & 0_{3\times 3} & 0_{6\times 1} \\ 0_{3\times 3} & k^a & a^o \\ a & a^o & \rho \end{bmatrix} & \text{if } k \in SL(3, K) \\
 \begin{bmatrix} 0_{3\times 3} & 0_{6\times 1} \\ 0_{1\times 6} & 1 \end{bmatrix} & \text{otherwise}
\end{cases}
\]

In particular, $G_{10,\lambda} \cong (F^* \times SL(3, K)) \cdot \mathbb{Z}_2$.

Proof. Since

\[
g_{f_{10,\lambda}} = \begin{cases}
 A f_{10,\lambda} & \text{if } F \text{ has odd characteristic}, \\
 f_{f_{10,\lambda}} & \text{otherwise},
\end{cases}
\]

$f_{10,\lambda}$ is K-equivalent to f_3. Put $G_{f_{10,\lambda}}^K = G_{f_{10,\lambda}}^K$. For $h \in G_{f_{10,\lambda}}^K$, its conjugate $g^{-1}h g$ belongs to G if and only if it is fixed by σ, i.e., if and only if

\[
h^o = (g^o g^{-1}) h (g^o g^{-1})^{-1}.
\]

But $g^o g^{-1} = \begin{bmatrix} 0_{3\times 3} & 1_3 \\ 1_3 & 0_{3\times 3} & 0_{6\times 1} \\ 0_{1\times 6} & 1 \end{bmatrix}$, so by use of 3.3, we readily find that the elements $h \in G_{f_{10,\lambda}}^K$ satisfying (8) are contained in A. The conclusion is that any $x \in G_{10,\lambda}$ is of the form $x = g^{-1}h g$ with $h \in A$, so that $G_{10,\lambda} = g^{-1}A g$.

It may be worthy of note that the restriction of $f_{10,\lambda}$ to $<e_1, ..., e_6>$ can be obtained as the restriction to $<e_1, e_2, e_3 > \otimes K$ (viewed as a vector space over F) of trace $K/ F(g^K)$.

3.11. Let λ, $P_\lambda(X)$, $K = F(\alpha)$, σ, g be as in 3.10. The form $f_{11,\lambda} = f_{10,\lambda} + 147$ is K-equivalent but not equivalent to f_5. The stabilizer of $f_{11,\lambda}$ is $G_{11,\lambda} = g^{-1}A g$, where
In particular, $G_{11,\lambda} \cong (F^{10}.GL(2,K)).\mathbb{Z}_2$.

Proof. Since $g f_{11,\lambda} = \mu f_5$, with $\mu = 4$ if F has even characteristic and $\mu = 1$ otherwise, $f_{11,\lambda}$ is K-equivalent to f_5.

Put $G_f^K = G_{f_5}^K$, and recall that this group has been described in §3.5. For

$$h = \begin{vmatrix}
\operatorname{det} g_1^{-1} & 0 & 0 & 0 & 0 & 0 \\
\alpha_2 & -\lambda_1 & 0 & 0 & 0 \\
\alpha_1 & \lambda_2 & 0 & 0 & 0 \\
0 & 0 & 0 \operatorname{det} g_2^{-1} & 0 & 0 \\
-\lambda_1^g & 0 & 0 & \alpha_4 \\
\lambda_2^g & 0 & 0 & \alpha_5 \\
\alpha_5 & \lambda_2 & \lambda_1 & \alpha_6 & \lambda_4 & \lambda_3 \det (g_1 g_2)
\end{vmatrix}
$$

with $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in K$ and $g_1, g_2 \in GL(2,K)$, we have $g^{-1} h g \in G_{11,\lambda}$ if and only if $h^g \in G$, i.e., if and only if $h \in A$. This settles 3.11.

3.12. Suppose $K = F(\alpha)$ is a cubic field extension of F with $\alpha^3 = \mu$ for some $\mu \in F^*$. Then $f_{12,\mu} = \mu f_9$ and $f_{12,\mu^2} = \mu^2 f_9$ are mutually inequivalent forms, both inequivalent but K-equivalent to f_9, and the stabilizer G_9 of f_9 coincides with both the stabilizer $G_{12,\mu}$ of $f_{12,\mu}$ and G_{12,μ^2}.

Proof. This is immediate from the lemma in 3.9.

4. The Classification over an Algebraically Closed Field.

In this section, we prove Theorem 2.1. Thus, we assume that $F = \overline{F}$ is an algebraically closed field, and set $E = F^3$.

The following result will be used frequently.
4.1. Lemma. Suppose \(D \) is a linear subspace of \(E \) of dimension \(m \geq 3 \). If \(f \in \text{Alt}_3(D) \) and \(e_1, e_2, e_3 \in D \) satisfy \(f(e_1, e_2, e_3) \neq 0 \), then \(e_1, e_2, e_3 \) can be extended to a basis \(e_1, \ldots, e_m \) of \(D \) such that

\[
f(e_1, e_2, e_3) \neq 0 \text{ and } f(e_i, e_j, e_k) = 0 \text{ for } 1 \leq i < j \leq 3 \text{ and } 4 \leq k \leq m. \quad (9)
\]

Proof. The intersection of the kernels of the three linear functionals \(x \mapsto f(e_i, e_j, x) \) for \(1 \leq i < j \leq 3 \) is a linear subspace of \(D \) of dimension \(m - 3 \). Taking \(e_4, \ldots, e_m \) to be a basis of this subspace, we obtain \(e_1, \ldots, e_m \) as stated.

Notice that the relations in (9) are invariant under linear transformations preserving the subspaces \(\langle e_1, e_2, e_3 \rangle \) and \(\langle e_4, \ldots, e_m \rangle \). Let \(f \in \text{Alt}_3(E) \). Write \(C = \ker f \) and let \(D \) be a complement of \(C \) in \(E \), so that \(E = C \oplus D \). Let \(m \) be the dimension of \(D \). Now, \(G = \text{GL}(E) \) is transitive on ordered pairs of subspaces of given dimensions forming a decomposition of \(E \). Hence, for any basis \(e_1, \ldots, e_7 \), we can replace \(f \) by an equivalent form whose kernel is \(C = \langle e_m+1, \ldots, e_7 \rangle \) (completed by \(D = \langle e_1, \ldots, e_m \rangle \)).

From now on, let \(f \in \text{Alt}_3(E) \).

4.2. Lemma. Suppose \(f \neq 0 \). Then \(\text{rk} f \geq 3 \). If, moreover, \(\text{rk} f \leq 4 \), then \(\text{rk} f = 3 \) and \(f \) is equivalent to \(f_3 \).

Proof. Set \(r = \text{rk} f \), and let \(D \) be a complement of \(\ker f \) with basis \(e_1, \ldots, e_r \). If \(r < 3 \), then \(f \mid D = 0 \), so \(f = 0 \), a contradiction. Hence \(r \geq 3 \). If \(r \leq 4 \), then \(f \mid D \) is equivalent to \(f_1 \mid D \), whence \(f \) is equivalent to \(f_1 \) by Lemma 4.1.

4.3. Lemma. If \(\text{rk} f = 5 \), then \(f \) is equivalent to \(f_2 \).

Proof. Let \(e_1, \ldots, e_5 \) be a basis of a complement \(D \) of \(\ker f \) such that (9) is satisfied for \(f \mid D \). Since \(\text{rk} f = 5 \), one of the values \(f(e_i, e_4, e_5) \), for \(i = 1, 2, 3 \), must be nonzero. Without loss of generality, we may assume \(f(e_1, e_4, e_5) = 1 \). Thus,

\[
f = 123 + 145 + \lambda 245 + \mu 345 \quad \text{for some } \lambda, \mu \in F.
\]

Taking \(g \in G \) with \(g \cdot 1 = 1 - \lambda^2 - \mu \) and \(g \cdot i = i \) for \(i > 1 \), we get \(gf = f_3 \), whence the lemma.

4.4. Lemma. Suppose \(\lambda \in F^* \), \(\mu \in F \), and let

\[
h_{\lambda, \mu} = \frac{123 + 146 + 356 + \lambda 456 + \mu 36}{4}, \quad \text{and}
\]

\[
h_{\lambda} = \frac{123 + 146 + \lambda 456}{4}.
\]

Then \(h_{\lambda, \mu} \) and \(h_{\lambda} \) are both equivalent to \(f_3 \).

Proof. Take \(g \in G \) with \(g \cdot 4 = 4 - \lambda^{-1} \), \(g \cdot 2 = 2 - (\lambda^{-1} - \mu) \), \(g \cdot i = i \) for \(i = 1, 3, 5, 6, 7 \). Then \(g \cdot h_{\lambda, \mu} = h_{\lambda} \). It therefore remains to prove that \(h_{\lambda} \) is equivalent to \(f_3 \). Take \(g_1 \in G \) with \(g_1 \cdot 5 = 5 - \lambda^{-1} \) and \(g_1 \cdot i = i \) for \(i \neq 5 \). Then \(g_1 \cdot h_{\lambda} = \frac{123 + \lambda 456}{4} \), which is clearly equivalent to \(f_3 \).
4.5. Lemma. For $\lambda, \mu \in F$, suppose $f=145+246+356+\mu 123+456$. Then f is equivalent to f_4 whenever $\mu=0$ or $\lambda^2\mu=-4$, and equivalent to f_3 otherwise.

Proof. If $\mu=0$, it is readily checked that f is equivalent to f_4. Thus, let $\mu \neq 0$. There is $\chi \in F^*$ with $\chi^2=\mu$ (since F is algebraically closed). Now, $h \in G$, determined by $h_i=\chi_i$ for $i=1,2$, $h_j=I$ for $j=3,5,6,7$ applied to f yields $h \cdot f = 145+246+356+123+\lambda x 456$. Therefore, without loss of generality, we assume that $\mu=1$. Let $\alpha, \beta, \gamma, \delta, \xi, \eta \in F$ satisfy $\alpha \beta, \gamma \delta, \xi \eta \neq 1$, and take $g \in G$ with $g \cdot 7 = 7$ and

$$
g \cdot 1 = 1 + \alpha \delta, \quad g \cdot 2 = 2 + \gamma \xi, \quad g \cdot 3 = 3 + \xi \delta, \\
g \cdot 4 = 4 + \beta \gamma, \quad g \cdot 5 = 5 + \delta \xi, \quad g \cdot 6 = 6 + \delta \gamma.
$$

Then

$$g \cdot f = [(1-\beta \gamma + \beta \xi - \gamma \xi + \beta \lambda)145 + \\
(\beta - \delta - \beta \xi + \xi - \beta \lambda)123 + \\
(\eta - \beta \gamma \eta + \beta - \gamma + \beta \lambda)135 + \\
(-\delta \eta + \beta \eta - \beta \delta + 1-\beta \delta \lambda \eta)123 + \\
(\alpha - \gamma + \xi - \xi \gamma + \lambda)456 + \\
(-\alpha \delta + 1-\xi \delta - \alpha \xi - \lambda \delta)246 + \\
(1+\alpha \eta - \gamma \eta - \alpha \gamma + \lambda \eta)356 + \\
(\eta - \delta - \alpha \eta \delta + \alpha - \lambda \eta \delta)236].$$

First of all, assume that F has odd characteristic. Putting $\eta = \delta = \alpha = 0$ and $\beta = \gamma = -\xi = \frac{1}{2} \lambda$, we get the form $g \cdot f = (1+\frac{1}{4} \lambda^2)145 + 123 + 246 + 356$. If $\lambda^2 + 4=0$, then the form is equivalent to f_4. Otherwise, rescaling 1 reduces the proof to the case where $\lambda=0$. Thus we may assume $f = 145 + 246 + 356 + 123$. Now, applying the transformation g of (10) again, but now with $\beta = \delta = \eta = 1$ and $\alpha = \gamma = \xi = -1$, we get by (11) that $g \cdot f = 2(135 + 246)$, so that f is equivalent to f_3. This settles the case of odd characteristic. From now on in this proof, assume that F has even characteristic. Take $\psi \in F^*$ such that $\psi^2 + \lambda \psi + 1=0$, and consider the transformation g of (10), but now with $\alpha = \delta = \eta = 0$ and $\beta = \gamma = \xi = \psi$. Then $g \cdot f = 123 + 246 + 356 + \lambda 456$. Thus, f is equivalent to f_4 if $\lambda=0$, and equivalent to f_3 otherwise according to Lemma 4.4.
4.6. Lemma. If \(\text{rk} f = 6 \), then \(f \) is equivalent to either \(f_3 \) or \(f_4 \).

Proof. Let \(e_1, \ldots, e_6 \) be a basis of a complement \(D \) of \(\ker f \) such that (9) is satisfied for \(f|_D \). First, suppose that \(f(e_4, e_5, e_6) \neq 0 \). Then, up to rescaling \(\delta \), we have

\[
f = 123 + 456 + \sum_{\sigma=1}^{3} (\alpha_{\sigma}i45 + \beta_{\sigma}i46 + \gamma_{\sigma}i56) \text{ for } \alpha_{\sigma}, \beta_{\sigma}, \gamma_{\sigma} \in F.
\]

Applying a suitable transformation in \(E \) preserving the subspace of \(E^* \) spanned by \(1, 2, 3 \) and the subspace spanned by \(4, 5, 6 \), we can easily reduce study to the case where \(f = 123 + 456 + \alpha_{1}i45 + \beta_{2}i46 + \gamma_{3}i56 \) for \(\alpha, \beta, \gamma \in F \). If at least two of \(\alpha, \beta, \gamma \) are zero, we are done. Without loss of generality, suppose \(\beta \gamma = 0 \). After rescaling by \(g \in G \) with \(g \cdot 4 = \beta \), \(g \cdot 5 = \gamma \) and \(g \cdot 6 = \beta^{-1} \gamma^{-1} \), we may assume that \(f = 123 + 456 + \lambda i45 + \mu i56 + \nu i246 \) for some \(\lambda, \mu, \nu \in F \). If \(\lambda = 0 \), then \(f \) is equivalent to \(f_3 \) by Lemma 4.4, and if \(\mu = 0 \), the desired result follows from Lemma 4.5 after rescaling of \(\gamma \) by \(\lambda^{-1} \). Next, suppose that \(f(e_4, e_5, e_6) = 0 \). Since \(\text{rk} f = 6 \), without loss of generality we may assume that \(f(e_1, e_4, e_6) = 1 \). Replacing \(e_2, e_3 \) by a basis of the kernel of the linear functional \(\langle x, e_4, e_6 \rangle \) on \(\langle e_1, e_2, e_3 \rangle \), if necessary, we get \(f(e_2, e_4, e_5) = 0 \). Replacing \(e_6 \) by \(e_6 + f(e_1, e_5, e_6) e_4 \), we also have \(f(e_1, e_5, e_6) = f(e_1, e_4, e_6) = 0 \). Thus we are left with the case where \(f = 123 + 456 + \alpha i45 + \beta i56 + \gamma i246 + \delta i256 \) for some \(\alpha, \beta, \gamma, \delta \in F \). Since \(\text{rk} f = 6 \), at least one of \(\alpha, \beta, \gamma, \delta \) must be nonzero. Thanks to symmetry, we only need consider \(\delta = 0 \). After rescaling, \(\beta \), we may put \(\beta = 1 \). Let \(g_1 \in G \) be such that \(f_3 = 123 + 456 + \gamma i246 \). Thus, either \(\gamma = \alpha \delta \) and \(f \) is equivalent to \(f_4 \), or \(\gamma \neq \alpha \delta \) and after rescaling \(2 \), we arrive at the form discussed in Lemma 4.5 (with \(\lambda = 0 \)). Hence \(f \) is equivalent to \(f_3 \) or \(f_4 \) in all cases.

If \(f \) and \(f' \) are forms on \(E \) and \(D, D' \) are linear subspaces of \(E \), then \(f|_D \) is said to be equivalent to \(f'|_D' \) on \(D' \), if there is \(g \in G = GL(E) \) with \(g(D) = D' \) and \((gf)|_{D'} = f'|_{D'} \). Furthermore, given the standard basis \(e_1, \ldots, e_7 \) of \(E \), we shall write \(W \) for the subspace spanned by \(\{ e_j \mid j \neq i \} \).

4.7. Lemma. If \(\text{rk} f = 7 \) and \(E \) has a 6-dimensional subspace \(W \) such that \(f|_W \) is equivalent to \(f_3 \) on \(W_7 \), then \(f \) is equivalent to one of \(f_5, f_7, f_9 \).

Proof. Let \(e_1, \ldots, e_6 \) be a basis of \(W \) such that \(f|_W = (123 + 456)|_W \). Choose \(e_7 \in E \) such that \(f(e_i, e_j, e_7) = 0 \) whenever \(i, j \) satisfy \(1 \leq i, j \leq 3 \) or \(4 \leq i, j \leq 6 \) (cf. Lemma 4.1). Then

\[
f = 123 + 456 + \sum_{i=1}^{3} \sum_{j=4}^{6} \alpha_{ij} i7 \text{ for some } \alpha_{ij} \in F.
\]
By use of a linear transformation stabilizing the linear subspaces of E spanned by $1, 2, 3$, by $4, 5, 6$, and by 7 respectively, we can restrict attention to the case where

$$f = 123 + 456 + 367 + \alpha 257 + \beta 147$$

for some $\alpha, \beta \in F$.

If $\alpha = \beta = 0$, then f is equivalent to f_2. Without harming generality, assume $\beta \neq 0$. Rescaling 1 and 2 by β^{-1} and β respectively, we may take $\beta = 1$. If $\alpha = 0$, then f is equivalent to f_1. If $\alpha \neq 0$, then choose $\gamma \in F$ with $\gamma^3 = \alpha$ and rescale $1, 2, 3, 7$ by $\gamma, \gamma^{-2}, \gamma, \gamma^{-1}$, respectively. The resulting form is f_0. This proves the lemma.

4.8. **Lemma.** Suppose $\text{rk} f = 7$ and E has no 6-dimensional subspace U such that $f|_U$ is equivalent to f_3 on W_7. If there is a subspace W such that $f|_W$ is equivalent to f_4 on W_7, then f is equivalent to f_6.

Proof. Let W be as stated. There is a basis e_1, \ldots, e_6 of W such that $f|_W = 125 + 134 + 236$. Choose $e_7 \in E$ such that $f(e_i, e_j, e_7) = 0$ for $i, j, 1, 2, 3$. Then

$$f = 125 + 134 + 236 + \sum_{i=1}^{6} \sum_{j=4}^{6} a_{ij} e_j e_i$$

for some $a_{ij} \in F$.

Replacing f by $g \cdot f$, where $g \in G$ is given by $g \cdot 1 = 1 - a_{25} 7$, $g \cdot 2 = 2 - a_{36} 7$, $g \cdot 3 = 3 + a_{26} 7$, and $g \cdot i = i$ for $i = 4, 5, 6, 7$ we have that $a_{25} = a_{26} = a_{36} = 0$.

First of all, assume that $a_{15} \neq 0$. Then $a_{16} \neq 0$, because otherwise $f|_{W_4} = (125 + 236 + a_{15} 157 + a_{35} 357 + a_{56} 677) | W_4$ would be equivalent to f_3 on W_7. (Take $h \in GL(W_4)$ with $h \cdot 1 = 1 - a_{15} 15 3$, $h \cdot 6 = 6 - a_{35} 35 15 7$, and $h \cdot i = i$ for $i = 1, 2, 3, 5, 7$, and apply the 6-dimensional analogue of Lemma 4.4 to $h(f|_{W_4})$.)

We claim that $a_{56} = 0$. For if $a_{56} \neq 0$, then $g_1 \in G$ with $g_1 \cdot 1 = 1 - a_{56} a_{16} 15 7$, $g_1 \cdot 4 = 4 - a_{35} 35 a_{16} 15 7$, and $g_1 \cdot i = i$ for $i \neq 1, 4$ applied to f yields

$$(g_1 \cdot f)|_{W_4} = (125 + 236 + a_{15} 157 + a_{16} 167 + \gamma 137) | W_4$$

for some $\gamma \in F$. This implies by Lemma 4.4 that $f|_{g^{-1} \cdot W_4}$ is equivalent to f_3 on W_7, contradictory to the assumption. Thus, $f = 125 + 236 + a_{35} 357 + a_{16} 167 + a_{15} 157 + 134 + \sum_{i=1}^{6} \delta_i 47$, for certain $\delta_i \in F$. Consider $f|_{W_4}$, once again. In view of Lemma 4.4 and the assumption, we have $a_{15} \neq 0$, and in view of Lemma 4.5, we have $a_{15}^3 = 4 a_{35} a_{16}$. In particular, F has odd characteristic and $a_{15} \neq 0$. Applying $g_2 \in G$ with $g_2 \cdot 1 = 1 - a_{15} a_{16} 13 2$, $g_2 \cdot 2 = 2 - a_{15} a_{16} 13 2$, $g_2 \cdot 6 = 6 - a_{15} a_{16} 13 2$, $g_2 \cdot 7 = a_{16} 15 7$, and $g_2 \cdot i = i$ for $i \neq 1, 2, 6, 7$ to f leads to the form

$$f' = g_2 \cdot f = 125 + 236 + 134 + 167 + \sum_{i=1}^{6} \delta_i 47$$

with $\delta_i \in F$.

Now, consider $(f')|_{W_1} = (236 + \sum_{i=2}^{6} \delta_i 47)|_{W_1}$.
Clearly, this form is equivalent to f_3 on W_7 if it is nondegenerate on W_1. Hence $a_{15} = 0$. Next, consider

$$f'(u_3) = \left(125 + 1(3 + \delta_1 4)(4 + 7) + \delta_2 24(4 + 7) + \delta_3 (3 + \delta_1 4)(4 + 7) \right) | w_6.$$

By Lemma 4.4, this form is equivalent to f_3 on W_7, unless $\delta_3 = 0$. Hence, $\delta_3 = 0$. Then (without loss of generality) are nonzero. We are done. Since $\delta_5 = 0$, at least one of a_{16}, a_{24}, a_{35} is nonzero. Suppose therefore, that at least two of them, say a_{16} and a_{24} (without loss of generality) are nonzero. Suppose that H is even characteristic. Then $g_{16} \in G$ determined by $g_{16} l = l + 2\mu_2^2$, $g_{16} 4 = 4 + A_{16} \mu_2$, $g_{16} 7 = 7 + 2\mu_2$, and $g_{16} i = i$ for $i = 2, 3, 5, 6$, where $\mu \in F^*$ is such that...
\(\mu^2 + \mu + (\alpha_1 \alpha_2)^{-1} = 0 \), satisfies

\[
(g_6f)|_{W_5} = (134 + \alpha_1 16^7 + \alpha_2 24^7 + \alpha_2 \mu 23^4)|_{W_5}.
\]

The latter form is equivalent to \(f_3 \) on \(W_7 \) by Lemma 4.4. This contradiction shows that \(F \) has odd characteristic. But then \(f|_{W_5} \) is equivalent to \(f_3 \) on \(W_7 \) by Lemma 4.5, leading to the final contradiction. This ends the proof of Lemma 4.8.

4.9. Lemma. Suppose \(\text{rk} f = 7 \) and \(E \) has no 6-dimensional subspace \(U \) such that \(f|_U \) has rank 6. Then \(f \) is equivalent to \(f_8 \).

Proof. In view of the assumption, there must be a 5-dimensional subspace \(W \) of \(E \) such that \(f|_W \) is equivalent to \(f_2 \) on \(<e_1, \ldots, e_5> \). Take such a subspace and let \(e_1, \ldots, e_7 \) be a basis of \(E \) such that \(W = W_6 \cap W_7 \) and \(f|_W = (123 + 145)|_{W_5} \).

Now, \(f(e_6, e_i, e_j) = f(e_7, e_i, e_j) = 0 \) for \(i, j = 1, \ldots, 5 \), for otherwise \(E \) has a 6-dimensional subspace \(V \) on which \(f|_V \) has rank 6. If \(f(e_2, e_6, e_7) \neq 0 \), then \(f|_{W_5} \) clearly has rank 6, a contradiction. Hence, \(f(e_2, e_6, e_7) = 0 \), and similarly, \(f(e_3, e_6, e_7) = 0 \). Since \(\text{rk} f = 7 \), we must have \(f(e_1, e_6, e_7) = 0 \), and \(f \) is equivalent to \(f_8 \).

Now, Lemmas 4.7, 4.8, and 4.9 classify all forms \(f \in \text{Alt}_3(E) \) with \(\text{rk} f = 7 \). Thus, together with Lemmas 4.2, 4.3, and 4.6, this completes the proof of Theorem 2.1.

5. The Classification over Perfect Fields of Cohomological Dimension at most 1.

Let \(E \) be a vector space of dimension \(n < \infty \) over a perfect field \(F \), and let \(\overline{F} \) be the algebraic closure of \(F \). Galois cohomology provides a tool to keep track of the inequivalent forms for \(E \) which become equivalent when extended to forms \(f|_{\overline{F}} \) on \(E = E \otimes_F \overline{F} \). We shall first recall some basic notions from Serre [8].

5.1. Definitions. For \(L \) a Galois field over \(F \) (within \(F \)), denote by \(\Gamma_L \) the Galois group of \(F \) over \(L \), and set \(\Gamma = \Gamma_F \). The latter is a profinite group, i.e., it is compact and discontinuous when topologized in such a way that the groups \(\Gamma_L \) for \(L \) an extension field of \(F \) (contained in \(F \)) form the collection of open subgroups of \(\Gamma \). Set \(G = GL(E) \) and suppose \(A \) is a subgroup of \(G \) topologized by the discrete topology. Then \(\Gamma \) has a natural action from the right on \(A \) given by

\[
a^\sigma = (a_{ij}^\sigma)_{1 \leq i, j \leq n} \quad \text{for} \quad a = (a_{ij})_{1 \leq i, j \leq n} \in A \quad \text{and} \quad \sigma \in \Gamma.
\]

A cocycle of \(\Gamma \) with values in \(A \) is a continuous map \(\Gamma \rightarrow A \), denoted by \(\sigma \mapsto a_\sigma \) (\(\sigma \in \Gamma \)), such that \(a_{\sigma \tau} = a_\sigma a_\tau \) for any \(\sigma, \tau \in \Gamma \). Two such cocycles \(a \) and \(a' \) are called cohomologous if there is \(b \in A \) with \(a_\sigma = b^\sigma a_\sigma b^{-1} \) for every \(\sigma \in \Gamma \). This defines an equivalence relation on the set of all cocycles of \(\Gamma \) with values in \(A \). The set of equivalence classes is called the first cohomology of \(\Gamma \) in \(A \) and denoted by \(H^1(\Gamma, A) \). If \(A \) is abelian, \(H^1(\Gamma, A) \) can be given a group structure and higher cohomology groups \(H^i(\Gamma, A) \) can be defined. Of course, there is always a distinguished element \(1 \in H^1(\Gamma, A) \), namely the class corresponding to the trivial cocycle \(\sigma \mapsto 1 \) (\(\sigma \in \Gamma \)). We recall that a perfect field \(F \) is said to have cohomological dimension at
most 1 if the cohomological dimension of the Galois group Γ is at most 1. (This means that for each prime p and each discrete simple Γ-module A with $pA = 0$, we have $H^2(\Gamma, A) = 0$.) The reader is referred to SERRE [8] for further details. Here, we just mention that finite fields have cohomological dimension at most 1.

Suppose $f \in \text{Alt}_3(E)$. We are interested in the set $T(F, f)$ of equivalence classes of forms $f' \in \text{Alt}_3(E)$ such that f and f' are equivalent forms in $\text{Alt}_3(E)$.

5.2. Theorem. Let F be a perfect field, and suppose $f \in \text{Alt}_3(E)$. Retain the above notation, and put $A = \overline{G_f}$. Then the following holds:

(i) There is a bijective map $\theta: T(F, f) \to H^1(\Gamma, A)$, given by $\theta(f') = g\sigma g^{-1}$, where $g \in \overline{G}$ is such that $g \cdot f' = f$.

(ii) If F has cohomological dimension at most 1, and if A^0 denotes the connected component of unity in A, viewed as a linear algebraic group over F, then A^0 is a normal subgroup of A preserved by f, and the natural map $H^1(\Gamma, A^0) \to H^1(\Gamma, A/A^0)$ is bijective.

(ii) See SERRE [8] Chapter III, Theorem 1, Conjecture 1, Supplement 2, and Corollary 3.

We are now ready for the

5.3. Proof of Theorem 2.2. Suppose $f \in \text{Alt}_3(E)$, $f \neq 0$, and set $A = \overline{G_f}$. If f of the form f_i for some i (1 ≤ i ≤ 9) with $i \neq 3, 5, 9$, then A is connected, cf. Table 1, so f is equivalent to f_i by the above theorem.

Suppose $f = f_3$ (in other words, $G_f \in T(F, f_3)$). Then $A/A^0 \cong \mathbb{Z}_2$ by Table 1 and Γ acts trivially on A/A^0. It is easy to see that $H^1(\Gamma, A/A^0)$ coincides with the set of continuous group morphisms $\Gamma \to A/A^0$. But any such morphism is related to a subgroup Δ of Γ of index 2, whence to a quadratic extension K of Γ (determined by $\Delta = \Gamma_K$). By Theorem 5.2 and § 3.10, there is a unique quadratic extension K of F (within \overline{F}) such that f is equivalent to $f_{10, \lambda}$ for each $\lambda \in F$ such that $P_3(X)$ is irreducible in $F[X]$ and reducible in $K[X]$. The same argument holds for $f = f_5$, with $f_{11, \lambda}$ instead of $f_{10, \lambda}$.

Finally, suppose $f = f_5$. If F has characteristic 3, then A is connected, as $\mu_3 = \{1\}$, so f is equivalent to f_3 by Theorem 5.2. Suppose from now on that the characteristic of F is distinct from 3. If $A/A^0 = \{1\}$, there is nothing to prove. So, suppose $A/A^0 \neq \{1\}$. Then, by Table 1, we get $A/A^0 \cong \mathbb{Z}_3 \cong \mu_3$ and there is $\sigma \in \Gamma$ acting on A/A^0 as it does on $\mu_3 \subset F$. Write $\mu_3 = \{1, \omega, \omega^2\}$.

Assume, first of all, that $\mu_3 \subset F$. Then the action of Γ on μ_3 is trivial, so a cocycle is a continuous group morphism $\Gamma \to \mu_3$ whose kernel is a normal subgroup of Γ of index 1 or 3. Of course, index 1 only occurs in the case of the trivial cocycle. Thus, any nontrivial cocycle has a kernel Δ of index 3 in Γ corresponding to a Galois extension of F of degree 3 with group Γ/Δ. Applying this to the cocycle $\theta(f)$ of Theorem 5.2, this means that for f there is a unique cubic Galois extension K of F
such that \(f \) is \(K \)-equivalent to \(f_9 \). Let \(\gamma \in \Gamma \) be such that \(\Gamma = \Delta \cup \Delta \gamma \cup \Delta \). There are two cocycles in \(H^1(\Gamma, A) \) whose kernel is \(\Delta \); they are determined by \(\omega \) and \(\gamma \mapsto \omega^3 \), respectively. Hence, there are exactly two classes of forms \(T(F, f_9) \) which are \(K \)-equivalent to \(f_9 \) but not equivalent to \(f_9 \). Writing \(K = F \) where \(\omega^3 = \mu \in F \) (see LANG [6] Chapter 8, Theorem 10), we can represent the \(\mu \) by \(f_{1,2,\mu} \) and \(f_{1,2,\mu}^\prime \), respectively (cf. § 3.12).

Suppose, next, that \(\mu_3 \) is not contained in \(F \). Let \(X \) be the kernel of the action \(\langle \rangle \) on \(\mu_3 \). Then \(X \) has index 2 in \(\Gamma \). Given a cocycle \(\sigma \mapsto a_\sigma (\sigma \in \Gamma) \), call the group \(\Delta_a = \{ a \in X | a_\sigma = 1 \} \) the kernel of the cocycle. Clearly, \(\Delta_a \) has index 3 in \(\Gamma \), and it is the kernel of the trivial cocycle. Suppose that \(\Delta_a \) has index 3 in \(\Gamma \). Then \(\Delta_a \cap X \) is a subgroup of \(X \) of index 3, which is normal in \(X \) since it is the kernel of the group morphism \(\gamma \mapsto a_\gamma \) from \(X \) to \(\mu_3 \). Thus, there is \(\sigma \in X \) such that \(\sigma \) partitioned by \((\Delta_a \cap X)a_i^r \) for \(i = 0,1,2 \), whence \(\Gamma = \Delta_a \cup \Delta_a \sigma \cup \Delta_a \sigma^2 \). \(\forall \) \(a \in X \) has index 2 in \(\Delta_a \), and we have \(\tau \in \Delta_a \) such that \(\omega^r = \bar{\omega} = \omega^2 \) and \(\Delta_a \cap X \) is a subgroup of \(\Delta_a \). If \(\Delta_a \cap X = \{ 1, \omega, \omega^{-1} \} \), then \(\mu \) is \(K \)-equivalent to \(f \). Writing \(K \) for the extension of \(F \) corresponding to \(\Delta_a \), we obtain that \(K(\omega) \) is Galois over \(F \) with group \(\langle \sigma | K(\omega), \tau | K(\omega), K(\omega) \rangle \approx S_3 \), that \(f \) is \(K(\omega) \)-equivalent to \(f_9 \) and that the \(K(\omega) \)-equivalence class contains \(f_9 \) consists of exactly three equivalence classes of forms on \(E \). (For, there are exactly three classes of cocycles \(b \) with \(\Delta_b \cap X = \Delta_8(f) \cap X \), cf. Theorem 5.2.) By 3 the forms \(f_9, \lambda f_9, \lambda^2 f_9 \), where \(\lambda \in F(\omega) \) is such that \(X^3 - \lambda = 0 \) is irreducible \(F(\omega) \) but reducible over \(K(\omega) \), are mutually \(F(\omega) \)-inequivalent, and \(K(\omega) \)-equivalent to \(f_9 \). Let \(\alpha \in K \) satisfy \(\alpha^3 = \lambda \). Then \(\alpha^\sigma \alpha^{-1} = \alpha \) for \(\sigma \in \{ 1, \omega, \omega^2 \} \), and \(\alpha^i \alpha^{-1} = \alpha^{-1} \) for \(\sigma \in \{ 1, \omega, \omega^2 \} \), whence \(\alpha^i \alpha^{-1} = \alpha \in F(\omega) \). By Hilbert 90, LANG [6], there is \(\beta \in F(\omega) \) such that \(\beta^i = 1 \) for \(\sigma \in \{ 1, \omega, \omega^2 \} \). Let \(\mu = \lambda \beta^{-3} \). Then an element of \(E \). As for \(i = 0, 1, 2 \) the forms \(\mu f_9 \) are clearly \(F(\omega) \)-equivalent \(\lambda_9 \), they are mutually inequivalent forms on \(E \) which are \(K(\omega) \)-equivalent to \(f_9 \). Since \(f \) is \(K(\omega) \)-equivalent to \(f_9 \), it follows that \(f \) is, up to equivalence, one of \(\mu f_9 = f_{1,2,\mu} \). \(\langle i = 1, 2 \rangle \). Also from the above we have that for \(\lambda, \mu \in F \) the element \(\lambda^{-1} \mu \) has a cube root in \(F(\omega) \) if and only if \(f_9 \) is equivalent to \(\lambda^{-1} \mu f_9 \), which sufficiently amounts to the equivalence of \(\lambda f_9 \) and \(\mu f_9 \). This establishes Theorem 2.2.

5.4. Concluding remark. It is not hard to generalize part of Theorem 2.2 to case of an arbitrary perfect field \(F \) by use of SERRE [8]. For, by Proposition 6, 1 position 3 and Lemma 1 of Chapter III [loc. cit.], we have \(H^1(\Gamma, U) = 0 \) whenever one of the groups \((F)\hat{}^N \), \(Sp(2m, \hat{F}) \), \(GL(m, \hat{F}) \) \((m \in N) \), and using the exact sequences of Propositions 6 and 8 of Chapter I [loc. cit.], we get \(H^1(\Gamma, SL(m, \hat{F})) \) so that

\[
H^1(\Gamma, G_i) = 0 \quad \text{if} \quad i = 1, 2, 4, 6, 8 \quad \text{and}
\]

\[
H^1(\Gamma, G_i) \cong H^1(\Gamma, Z_2) \quad \text{if} \quad i = 3, 5.
\]
This implies that for \(i = 1, 2, 3, 4, 5, 6, 8 \), any trilinear form which is \(\overline{F} \)-equivalent to \(f_i \) must be equivalent to either \(f_i \) or one of \(f_{j,t} \) (where \(j = 10, 11 \), if \(i = 3, 5 \), respectively).

Acknowledgement. We are grateful to Professor T.A. Springer for a helpful discussion.

6. References

Received: May 1984
Revised: April 1987