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ABSTRACT

Models of interaction tasks are quantitative descriptions of relation-
ships between human temporal performance and the spatial charac-
teristics of the interactive tasks. Examples include Fitts’ law for
modeling the pointing task and Accot and Zhai’s steering law for
the path steering task, etc. Models can be used as guidelines to de-
sign efficient user interfaces and quantitatively evaluate interaction
techniques and input devices.

In this paper, we introduce a 3D object pursuit interaction task,
in which users are required to continuously track a moving target in
a virtual environment. The entire movement of the task is broken
into a tracking phase and a correction phase. For each phase, we
propose a model that has been verified by two experiments. As the
experimental results show, the time for the tracking phase is fixed
once a task has been established, while the time for the correction
phase usually varies according to some characteristics of the task.
It can be modeled as a function of path length, target width and the
velocity with which the target moves.

The proposed model can be used to quantitatively evaluate the
efficiency of user interfaces that involve the interaction with moving
objects.

Index Terms: H5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; H5.2 [Information Interfaces and Presentation]: User
Interfaces—Ergonomics, Theory and methods

1 INTRODUCTION

In physiology, pursuit is defined as the action of the eye in following
a moving object. In this paper, we introduce the term to describe an
interaction task, in which users are required to continuously track
a 3D moving object with a tracker held in their hands in a virtu-
al environment. Object pursuit tasks can be found extensively in
gaming, video surveillance system, air traffic control system, etc.
A shooting game with moving targets, for example, is a typical pur-
suit task. As with pointing and path steering, object pursuit can be
considered to be a primitive but unique interaction task. One major
characteristic it differs from pointing and steering tasks is that in
an object pursuit task, subjects interact with a non-stationary target
which is usually kept stationary in a pointing or a path steering task.

In human computer interaction, modeling is the approach to
quantify interaction tasks. Widely used and well known examples
include Fitts’ law [7] for modeling pointing task and Accot and
Zhai’s steering law [1] for path steering task, etc. Models formal-
ly describe quantitative relationships between human temporal per-
formance and the spatial characteristics of an interactive task. In-
teraction models have guided user interface designers in designing
efficient user interfaces [20, 16]. They also provide a quantitative
approach to evaluate the efficiency and performance between e.g.
input devices [17, 2] or interaction techniques [15], etc.
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The goal of this paper is to derive a model for the 3D objec-
t pursuit interactive task. The complete object pursuit movement
is divided into a tracking phase and a correction phase. For each
phase, we propose a model to describe the temporal information.
The time for the tracking phase is fixed once a task has been estab-
lished, while the time for the correction phase usually varies with
the characteristics of the task. The correction time can be mod-
eled as a function of the size and velocity of the target and the path
length crossed by the target. The model has been verified by two
experiments with repeated measures design.

As indicated by the experimental results, the growth of the veloc-
ity with which the target moves usually results in longer correction
time, but shorter tracking time. Therefore, the selection of the tar-
get velocity is important on reducing the total time (tracking time
+ correction time) of an object pursuit task. By analyzing the pro-
posed model, we manage to derive a velocity, with which the total
movement time reaches its minimum. This velocity, described as a
function of path length and target width, can be used as a guide in
designing user interfaces with moving targets.

Furthermore, there are several aspects that we can learn from
modeling the object pursuit task for a general interaction task. The
way that the influence of path length and target width combines in
object pursuit tasks very much resembles the way how it affects
pointing and path steering tasks. This fact may be interpreted as ev-
idence of such combination in modeling a general interactive task.
In addition, the model also reveals that at least one time-related
factor, besides spatial factors, is required to model an interactive
task that involves a non-stationary target. The time-related factor,
e.g. the target velocity in the object pursuit task, plays such an
important part that it may even become an overwhelming factor in
affecting users’ performance time. We suggest that both time and
space-related factors should be taken into account when modeling
an interaction task with moving targets.

The main contributions of this work focus on the following
points:

• We propose to analyze an object pursuit task in such a way
that the complete movement should be broken into a tracking
phase and a correction phase (see Section 3.3 for details);

• We point out that the time for the tracking phase is fixed if the
task has been established. It can be described by

Ttracking =
L
v

(1)

when the target moves a distance L with a uniform velocity v
(see Section 4);

• We propose a model for the time of the correction phase,
which has been experimentally verified. It has the following
form (see Section 4.2.3):

log(Tcorrection) = a+b
L
W

+ c v (2)

where a, b and c are the empirically determined constants, and
L, W and v are the path length, target width and target velocity.



• We manage to derive an optimal target velocity with which
the total time (Ttracking +Tcorrection) can be minimized. This
velocity can be expressed with path length and target width
(see Section 5).

2 RELATED WORK

2.1 Pursuit Task
Pursuit is one of the important human skills that have been used,
for example, to differentiate normal subjects from psychiatric pa-
tients [12, 8, 9] or to qualify a pilot [11, 19]. Given the parts of
the human body that are used, pursuit can be categorized into eye
movement [13, 3], locomotion [4], manual tasks [21], etc. It has
been extensively studied in the discipline of psychology, but has
never been systematically investigated as an interaction task in hu-
man computer interaction. In this paper, we use the term to describe
an interaction task that requires subjects to manually steer an input
stylus in pursuit of a 3D target that moves with uniform velocity in
a virtual environment.

2.2 Modeling Interaction Task
In human-computer interaction, there are quite a few well-
formalized and accepted quantitative models that can be used as
tools to compare the efficiency between interaction techniques or
input devices. One of the best known model Fitts’ law, proposed
by Paul Fitts in 1954 [7], has a long history and a widely applied
scope [22, 6, 17]. It predicts that the time required to rapidly move
to a target is a function of the distance to and the size of the tar-
get. Fitts’ law has been used to model the act of pointing in both
the physical world [5] and the virtual environment [10, 24]. One
common formulation of the law is as follows:

T = a+b ID = a+b log2(
L
W

+1) (3)

where a and b are experimentally determined constants, L is the
distance to the target, and W is the target width. The term
log2(L/W + 1) is referred to as the index of difficulty (ID) of a
pointing task.

It was not until a few decades later that Accot and Zhai derived
the steering law [1, 25] from Fitts’ law for path steering tasks. The
idea of the steering law assumes that a path steering task is com-
posed of an infinitive number of goal crossing tasks, each of which
could be separately modeled by Fitts’ law. If the path width varies
with the path, the generic steering law can be expressed in the fol-
lowing formula:

TC = a+b ID = a+b
∫

C

ds
W (s)

(4)

where a and b are empirically determined constants, C is a curved
path, s is the elementary path length along C and W (s) is the path
width at path length s. If the path width keeps fixed, the steering
law can be rewritten as:

TC = a+b
L
W

(5)

with L and W representing the length and width of the path, respec-
tively.

However, as Liu et al. [14] questioned, it is counterintuitive to
describe the steering time only as a function of path length and
width. They proposed to involve other factors to the steering law as
shown below:

log(T ) = a+b ID = a+b(log
L
W

+ cρ) (6)

where ID is redefined as log(L/W )+ cρ , introducing the influence
of curvature ρ of the steering path, together with length L and width
W .

It is important to note that the models mentioned above all de-
scribe the temporal information with the spatial characteristics of
the tasks. In this paper, we use a similar way to propose a model
for 3D object pursuit task.

3 EXPERIMENT

3.1 Apparatus and Environment

The experiment was performed in a desktop virtual environment as
shown in Figure 1. The specific apparatus includes:

• a desktop PC equipped with high end GPU,
• a Samsung 67-inch 3D-capable LED DLP HDTV,
• a pair of Crystal Eyes stereoscopic LCD glasses,
• a Polhemus FASTRAK connected with one 6DOF stylus

tracker (sampling @ 120Hz),
• a 6DOF ultrasound Logitech head tracker (working @ 60Hz).

During the experiment, the resolution of the Display was set to 1920
× 1080 @ 120Hz. The end-to-end latency was measured to be
approximately 80ms with the method proposed by Steed [23].

Figure 1: The experimental environment: a head tracked stereo dis-
play and a 6DOF input stylus. Several depth cues were created dur-
ing the experiment, including the stereoscopic viewing, head track-
ing, head lighting, wire-frame box and the chessboard pattern floor.

The experiment was set up in a non-colocated environment with
a distance of 0.65m between the visual and motor space (see Fig-
ure 2). The control and display ratio was always kept 1. The origin
of the visual space was set to 0.4m in front of the display and 0.6m
above the desktop, while that of the motor space was 0.3m ahead
of the subject and 0.3m above the desktop. Subjects were seated
1.35m away from the display and were required not to rest their
arms on the table.

3.2 Subject

Twenty right-handed subjects voluntarily participated in the exper-
iment. There were six females and fourteen males, aged 24 to 35.
Five of them were invited to perform a pilot study, while the re-
maining fifteen subjects were instructed to take part in the following
main experiment. The experienced and non-experienced subjects
were kept in a ratio of 2:3 in both pilot study and main experiment.
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Figure 2: The experimental setup [14] (units: meter): Motor and vi-
sual space were not co-located and C-D ratio=1.

3.3 Task
The experiment was designed to examine the object pursuit tasks
performed by the subjects. For this, subjects were required to hold
an input stylus, represented as a 3D pen in the virtual environ-
ment, with their dominant hands to trace a target (3D ball) mov-
ing in the visual space. To enhance the visual feedback, 3D co-
ordinate axes were attached to the tip of the pen. The space in
which the 3D ball moved were encapsulated in a 0.72×0.4×0.4m3

(length× height × depth) sized wire-frame box, whose floor was
covered with a chessboard pattern (See Figure 1 and 2).

In the initial phase, subjects were shown a stationary target ball
and both the ball and the axes attached to the pen were colored
red. The target ball started to move with a uniform velocity, once
the tip of the pen, i.e. the origin of the 3D axes was inside the
target ball (see Figure 3, right). Meanwhile, the ball and the axes
turned to green. Subjects were asked to track the moving target
by keeping the tip of the pen within the ball as possible as they
could. If they failed, the moving target stopped, making the axes
and the ball red again (see Figure 3, left). Subjects had to correct
this movement by steering the pen back to the ball and resuming
the tracking where they left off. A trial started when the target ball
left the initial position and proceeded until the target ball moved
to a predefined destination that was not known to the subjects in
advance. Consequently, subjects were shown the number of trials
left on the screen.
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Figure 3: The correction phase (left) and the tracking phase (right)
for an object pursuit task.

The time when the tip of the pen was within the target ball and
moved with it was defined as the tracking time, i.e. the total time
when target ball remained green, while the time when the tip of the
pen deviated from target ball and the subject made a correction was
defined as the correction time, i.e. the total time when the target ball
remained red. The time for completing an object pursuit task, i.e.
the sum of the tracking time and the correction time, was defined as
the total time.

3.4 Procedure

A pilot study was carried out before the main experiment with the
purpose of acquiring a proper model and parameter setting for the
upcoming main experiment. The design of the pilot study was d-
ifferent from that of the main experiment in a way that it distin-
guished the effect of velocity of the moving target from that of
target width and path length, examining the effect of only a min-
imum number of independent variables at a time. Therefore, the
study was split into four independent pilot studies. In pilot study
1 and 2 where velocity was fixed, we examined linear and circular
paths respectively with 2 target widths and 3 path lengths, while in
pilot study 3 and 4 where path length and target width were kept
constant, linear and circular paths were studied with 10 velocities.
As a result, two sizes for the target ball, three lengths for path and
five constant velocities of the target ball were selected for the main
experiment.

We have conducted two main experiments of repeated measures
design, in which two types of paths of the moving target were ap-
plied. The target ball always made a uniform motion on a straight
path (see Figure 3.4, left) in experiment 1, while it moved along
a segment of a circular path (see Figure 3.4, right) with a con-
stant velocity in experiment 2. The radius of the target ball was
set to 0.015m and 0.02m, constraining the movement of the pen
to 0.03m and 0.04m in amplitude. We chose 0.24m, 0.30m and
0.36m as the path length so that completing an object pursuit task
only required the extension of the arm, keeping the body relative-
ly still. The velocity of the moving target, including 0.10, 0.15,
0.20, 0.25, 0.30m/s, was tested to be suitable to track for both non-
experienced and experienced subjects. Each combination of the
above parameters was repeated three times, resulting in 2×3×5×3
(target size× path length×motion velocity×repeats) trials in each
experiment and a total number of 180 trials for a subject. To com-
pensate the practice effect, trials were presented in a random order
that differed from one subject to another. Subjects were allowed to
have a break whenever they suffered from fatigue between trials.
This was, however, strictly prohibited during a trial.

ρ=0                                                    ρ=8

Figure 4: Two types of paths used in Experiment 1 (left) and 2 (right).
The curvature of the path, represented by ρ, is defined as the recip-
rocal of the path radius. The paths were not shown to the subjects.

4 RESULT

To model the object pursuit tasks, inspired by Fitts’ law and steer-
ing law, we chose to statistically explore a relationship between the
temporal information, e.g. the tracking time Ttracking, correction
time Tcorrection and total time Ttotal = Ttracking +Tcorrection, and the
characteristics of the tasks, e.g. the target size W , the velocity of the
moving target v and the path length L crossed by the target during a
trial.

The tracking time, i.e. the time when the target ball moves with
a constant velocity, can be described as:

Ttracking =
L1

v
+

L2

v
+ ...+

Ln

v
=

L
v

(7)

where Ln is the length of the n-th path segment crossed by the target
ball without a correction. As can be seen, Ttracking is constant if L
and v have been fixed.

Different from Ttracking, modeling Tcorrection requires ANOVA
and regression analysis. It is, therefore, necessary to verify if the



data is normally distributed. Figure 4 plots the associated proba-
bility density function of Tcorrection for experiment 1 and 2, corre-
spondingly. As shown, both histograms considerably deviate from
the normal distribution that fits onto the data (right-skewed). A da-
ta transformation is needed to bring the density function closer to
that of a normal distribution. Our approach was to apply natural
logarithmical transformation (base e) to Tcorrection. As illustrated in
Figure 6, the data after transformation approximately follow a bell-
shaped density function. The Kolmogorov-Smirnov test shows that
the null hypothesis, i.e. the transformed data have a normal distri-
bution, can not be rejected (h = 0) at the 5% significance level in
each experiment.

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
correction

d
en

si
ty

 

 

T distribution
Normal distribution

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
correction

d
en

si
ty

 

 

T distribution
Normal distribution

Figure 5: The distribution of Tcorrection in experiment 1 (left) and exper-
iment 2 (right). The histograms represent the distribution of Tcorrection,
while the red curves represent the pdf (probability density function)
of the normal distribution fitting onto the data.
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Figure 6: The distribution of log(Tcorrection) in experiment 1 (left) and
experiment 2 (right). The histograms represent the distribution of
log(Tcorrection), while the red curves represent the pdf of the normal
distribution fitting onto the data.

4.1 Pilot Study
The pilot study, prior to the main experiment, was conducted with
five subjects. It aims at roughly revealing how Tcorrection could be
modeled with W , L and v. Intuitively, a smaller W , a longer L or
a larger v is expected to result in a longer Tcorrection. In pilot study
1 and 2, therefore, we simply hypothesize that the relationship has
the following form:

log(Tcorrection) = a+b
L
W

(8)

The idea above is based on the fact that the temporal characteristics
of both pointing task (Equation 3) and steering task (Equation 6)
could be successfully modeled by term L/W . Since the definition
of L and W is quite similar in these interaction tasks, we assume
that there should be some correlation between the correction time
and L/W for an object pursuit task.

Figure 7 illustrates how model 8 fits onto the data from lin-
ear paths. As shown, there is a strong linear relationship between
log(Tcorrection) and L/W , evidenced by the fact that the linear mod-
el passes through the 95% confidence intervals of the six means and
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Figure 7: Pilot study 1: Linear regression between log(Tcorrection) and
L/W for linear paths where each asterisk represents a mean correc-
tion time of a certain L/W and the corresponding error bar is its 95%
confidence interval calculated using the method in [18]. The oblique
line is the model fitting onto log(Tcorrection) using Equation 8.

the goodness of the fit can be evaluated by R2=0.9528 (close to 1).
A similar plot for pilot study 2 which studies the same L/W values
for circular paths is demonstrated in Figure 8. The model fits the
data with R2=0.9686.
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Figure 8: Pilot study 2: Linear regression between log(Tcorrection) and
L/W for circular paths.

As the values selected above provide widespread representation,
they were appointed as the values of L and W for the main experi-
ments.

In pilot study 3 and 4, we hypothesize a linear relationship be-
tween log(Tcorrection) and v in a formula below:

log(Tcorrection) = a+b v (9)

Figure 9 and 10 specify log(Tcorrection) in terms of various values
of v and how Equation 9 fits onto log(Tcorrection) for linear paths
and circular paths.
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Figure 9: Pilot study 3: Linear regression between log(Tcorrection) and
v for linear paths. Asterisks represent the average log(Tcorrection) for
different values of v, while the error bars represent the associated
95% confidence intervals. The oblique line is the linear model fitting
onto the data using Equation 9.
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Figure 10: Pilot study 4: Linear regression between log(Tcorrection)
and v for circular paths.

It can be seen that there is a strong linear correlation between the
log(Tcorrection) and v in both linear and circular paths, evidenced by
R2=0.9410 and 0.9418, respectively. However, as reported by the
subjects, a tracking task with a target moving faster than 0.35m/s
is too difficult to achieve, we decided to control the velocity of the
moving target below 0.35m/s. There is also a velocity threshold, as
indicated in Figure 9 and 10, under which subjects find the track-
ing task so easy to fulfil that the correction time stays relatively
constant. This threshold should fall between 0.05m/s and 0.1m/s.
Therefore, we chose five proper velocities for the main experiments,
including 0.10, 0.15, 0.20, 0.25, 0.30m/s.

4.2 Main Experiment
We have conducted two main experiments of repeated measures de-
sign, in which object pursuit tasks were examined in terms of linear
(experiment 1) and circular paths (experiment 2), respectively. The
main experiments, carried out with 15 subjects, were designed to
evaluate the linear relationship between log(Tcorrection) and L/W in
Equation 8 and that between log(Tcorrection) and v in Equation 9.

4.2.1 Modeling Correction Time with L/W

First of all, a repeated measures ANOVA of experiment 1 has been
performed for the average correction time that arises from differ-
ent values of L/W . The corresponding results are demonstrated in
Figure 11.
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Figure 11: Experiment 1: The repeated measures ANOVA on the
average correction time of different values of L/W for linear paths.
The error bars represent the corresponding 95% confidence interval-
s. The oblique line that crosses through the confidence intervals is
the linear model fitting with Equation 8.

As shown, there is a statistically significant difference be-
tween log(Tcorrection) of different values of L/W (F(5,70)=13.922,
p <0.0001). Generally speaking, the correction time has an up-
ward tendency as the value of L/W grows. This can be statistically
modeled by a linear function that passes through the confidence in-
tervals of the means as illustrated in Figure 11. A R2=0.8978 and a
SSE=0.1498 (sum of square error) indicate a conclusive correlation

between the actual data and the result of the fit. The regression pa-
rameter estimates are shown in Table 1. The fact that the 95% con-
fidence intervals of coefficient b does not include zero illuminates
that L/W is an independent variable that significantly influence the
correction time of the object pursuit tasks.

Coef. Value [95% Conf. Interval]
a -2.287 [-3.316, -1.258]
b 0.245 [0.130, 0.360]

Table 1: Experiment 1: regression parameter estimates on
log(Tcorrection) fitting onto Equation 8 for linear paths.

A similar analysis has been done for the circular paths in exper-
iment 2 (see Figure 12). As indicted by the results of the repeated
measures ANOVA (F(5,70)=20.225, p <0.0001), there is a signif-
icant difference between the log(Tcorrection) of different values of
L/W for circular paths as well. The change of log(Tcorrection) can
be modeled by a linear function of L/W shown as the oblique line in
Figure 12. The goodness of the fit can be measured by R2=0.9337
and SSE=0.0996. That the confidence interval of coefficient b ex-
cludes zero as presented in Table 2 illustrates that L/W is a statis-
tically influential term on modeling the correction time of object
pursuit tasks.
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Figure 12: Experiment 2: The repeated measures ANOVA on the
average correction time of different values of L/W for circular paths
and a linear model for correction time fitting onto Equation 8.

Coef. Value [95% Conf. Interval]
a -1.841 [-2.680, -1.002]
b 0.2531 [0.160, 0.347]

Table 2: Experiment 2: regression parameter estimates on
log(Tcorrection) fitting onto Equation 8 for circular paths.

4.2.2 Modeling Correction Time with v

For the data collected from experiment 1, we have done another
repeated measures ANOVA for the average correction time of dif-
ferent velocities. Figure 13 shows the results. It can be seen that
the difference of correction time that arises from the velocity with
which the target moves is statistically significant (F(4,56)=9.942,
p <0.0001). The correction time tends to increase as the velocity
rises. Consequently, it is possible to establish a linear model that
passes through the confidence intervals of all the means and very
much resembles the change of the correction time as velocity varies
(the oblique line in Figure 13, R2=0.9255, SSE=0.1178). The pa-
rameters of the model in Equation 9 can be estimated using Table 3.
As shown, the 95% confidence intervals of both coefficients a and b
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Figure 13: Experiment 1: The repeated measures ANOVA on the
average correction time of different values of v for linear paths. The
oblique line that crosses through the confidence intervals is the linear
model fitting onto Equation 9.

Coef. Value [95% Conf. Interval]
a -1.671 [-2.517, -0.825]
b 7.648 [3.661, 11.640]

Table 3: Experiment 1: regression parameter estimates on
log(Tcorrection) fitting onto Equation 9 for linear paths.

exclude 0. It indicates that velocity is definitely an influential factor
in terms of correction time.

Analogous to the analysis above, the repeated measures ANOVA
has been applied to the circular paths. As illustrated in Figure 14, a
significant difference can be found between correction time of var-
ious velocities (F(4,56)=15.620, p <0.0001). The linear model fits
the data with reasonable goodness of fit (R2=0.8823, SSE=0.1134).
The term v is proved to exist on modeling the correction time of
circular path object pursuit tasks, as specified in Table 4.
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Figure 14: Experiment 2: The repeated measures ANOVA on the
average correction time of different values of v for circular paths. The
oblique line that crosses through the confidence intervals is the linear
model fitting onto Equation 9.

4.2.3 Modeling Correction Time with L/W and v
As described above, there is statistically conclusive evidence show-
ing that the correction time of the object pursuit tasks, either with a
linear or circular moving target, can be successfully modeled with
a linear function of L/W and v, separately. Figure 15 shows the
correction time as a function of L/W for each v. As illustrated, the
effect of v is evident as a percentage increase (almost parallel) in
the correction time. This indicates that there should be a possibility
to construct a new model that integrates the two models (Equation 9
and 8) as shown in Equation 10:

log(Tcorrection) = a+b
L
W

+ c v (10)

Coef. Value [95% Conf. Interval]
a -0.792 [-1.622, 0.038]
b 5.832 [1.918, 9.745]

Table 4: Experiment 2: regression parameter estimates on
log(Tcorrection) fitting onto Equation 9 for circular paths.

where a, b and c are empirically determined constants. A surface
fitting, illustrated in Figure 16, is required to deal with a fitting
that involves two independent variables. The surface fits the data
of experiment 1 well so that the goodness of fit can be described
with R2=0.9534 and SSE=0.8097. Table 5 shows the corresponding
parameter estimates of the surface fitting. It can be seen that no
confidence interval of the coefficients includes 0, specifying L/W
and v are all important for modeling the correction time.
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Figure 15: Experiment 1: Relationship between log(Tcorrection) and
L/W . Points with different shapes and colors represent the raw
data with different velocities, while lines represent the models
(log(Tcorrection) vs. L/W ) fitting onto data with different velocities.

Figure 16: Equation 10 fits onto data of Experiment 1. The verti-
cal bars represent the distances between the empirical data and the
plane.

Similarly, Figure 17 demonstrates how Equation 10 fits onto the
data of circular paths (R2=0.9553, SSE=1.1830) and Table 6 is the
related parameter estimates. Both of them confirm the existence of
term L/W and v.

5 DISCUSSION

Several aspects need to be discussed for the results provided above.
Fist of all, it is interesting to investigate if the total movement

time (Ttracking + Tcorrection) of an object pursuit task can be mini-



Coef. Value [95% Conf. Interval]
a -2.491 [-2.846, -2.135]
b 0.329 [0.295, 0.363]
c 5.631 [4.714, 6.549]

Table 5: Experiment 1: the parameter estimates of surface fitting
(Equation 10) onto data collected for linear paths.

Figure 17: Equation 10 fits onto data of Experiment 2.

mized. Note that the tracking time of a uniform motion pursuit task

Ttracking =
L
v

(11)

is fixed only if L and v has been fixed. If we treat v as a variable,
Ttracking is a monotone decreasing function of v. Whereas, The time
for the correction phase

log(Tcorrection) = a+b
L
W

+ c v (12)

is a monotone increasing function of v. Consequently, there should
be a velocity v with which Ttotal , of the following form

Ttotal = Ttracking +Tcorrection =
L
v
+ ea+b L

W +cv (13)

reaches its extremum. Figure 18 demonstrates the relationship ex-
pressed by Equation 13 given L,W,a,b and c. The optimal velocity
can be derived by taking the derivative to the right side of Equa-
tion 13 in terms of v and making it equal to 0, i.e.

d
dv

(
L
v
+ ea+b L

W +cv) = 0 (14)

It is just to solve the function:

− L
v2 + ea+b L

W cecv = 0 (15)

The solution of Function 15 can be described as:

v =
2ProductLog[ 1

2 c2e−(a+b L
W )

√
ea+b L

W

c2L L]

c
(16)

Coef. Value [95% Conf. Interval]
a -2.931 [-3.361, -2.502]
b 0.407 [0.366, 0.448]
c 6.944 [5.834, 8.053]

Table 6: Experiment 2: the parameter estimates of surface fitting
(Equation 10) onto data collected for circular paths.
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Figure 18: The relationship between the velocity v and the total move-
ment time Ttotal given that L = 0.24, W = 0.04, a = −2.491, b = 0.329
and c = 5.631.

where ProductLog(x) is the Lambert W function (also called
Omega function or product logarithm) which gives the principal
solution for w in x=wew (Complex-valued solutions for v have been
discarded). It can be seen from Equation 16, if the target size
W and the path length L are known, an optimal velocity to min-
imize the total pursuit time can be derived. This can be used as
a guideline when designing user interfaces with moving targets.
Assigning the specific values of a, b and c from Table 5 and 6 to
Equation 16 (L/W ∈ [6,12]), we manage to approximately derive
v ∈ [0.093,0.167] and [0.067,0.143] that minimizes Ttotal for the
object pursuit task of linear and circular paths, respectively.

Secondly, ID (index of difficulty) for a uniform motion object
pursuit task needs to be defined, as in Fitts’ law and steering law.
We propose to define ID in such a way:

log(Tcorrection) = a+b ID = a+b(
L
W

+ c′v) (17)

where c’ is experimentally determined constants and calculated as
c/b from the previous model (Equation 10). It can be seen that the
definition of ID above involves the effect of both L/W and v, and
c’ determine the way how they influence the correction time. As
calculated from Table 5 and 6, c’ has approximately a value of 17,
indicating that velocity has a much bigger effect on the correction
time than L/W and velocity is therefore a dominant factor influenc-
ing an object pursuit task. It is very interesting to find out that a
time-related factor v appears in modeling an interactive task which
has a non-stationary target. This breaks the rule in previous models
(Fitts’ law and steering law) where human temporal performance
can be modeled only with spatial characteristics of the tasks.

Moreover, it is important to note that although Fitts’ law, path
steering law and the model we proposed (object pursuit law) de-
scribe three types of totally different interaction tasks, they have
something in common. All of them present a quantitative relation-
ship between human temporal performance and the characteristics
of the tasks (both time and space-related). As experimentally veri-
fied, the relationship provides a good way to model the interaction
tasks, especially the introduction of term L/W , which seems to be
one of the most important indices for the difficulty of a task. It
therefore deserves a careful examination while modeling new inter-
action tasks. Inspired by the fact that Fitts’ law and steering law are
applicable to both 2D and 3D tasks, object pursuit law, originally
proposed for 3D tasks, may be also applied to the similar 2D tasks.
It is sound and reasonable to predict the movement time of a 2D
object pursuit task with the size and velocity of the moving target
and the path length crossed by the target.

The last issue needs to be discussed is the restriction of the model
proposed. As the tracking time always equals to the actual time that
the target moves, Ttracking is constant under such circumstances. It



is therefore not necessary to stress the tracking time of an objec-
t pursuit task, but the correction time. Depending on the veloc-
ity with which the target moves (a uniform or variable motion),
Tcorrection may be influenced in different manners. The reason is
that the correction time may strongly reply on the extent to which
the velocity and the trajectory of the moving target is predictable.
In a variable motion, however, such prediction is highly restricted.
We may need the change of the velocity, i.e. the acceleration, to
fully address the problem. Accordingly, to model the tracking task
of a variable motion is beyond the scope of the model.

In addition, there are some factors, e.g. the curvature and ori-
entation of the target trajectories, that are not taken into account
in the model, since the number of trials required to observe the in-
dependent variables exponentially increases as the number of the
variables goes up. Conducting an experiment with a large amount
of trials causes much fatigue for subject, which can ultimately un-
dermine the results of the experiment. Examining the two models
for the linear and the circular paths (see Figure 16 and 17), the cor-
rection time on the circular path (curvature ρ = 1/R) is on average
greater than its counterpart on the linear path (ρ = 0). This indi-
cates that path curvature may play a part in the correction time and
that there tends to be an increment in the correction time as the path
curvature increases. Therefore, the effect of path curvature on ob-
ject pursuit tasks needs to be experimentally studied in the future
work.

6 CONCLUSION

In this paper, we introduced the object pursuit as an interaction task
that requires subjects to continuously track a 3D target that moves
with a uniform velocity in a virtual environment. A complete pur-
suit movement was broken into a tracking phase and a correction
phase. For each phase, we proposed a model that has been ex-
perimentally verified for target moving on linear paths and circular
paths. As the experimental results indicate, the tracking time is on-
ly governed by the path length crossed and the velocity with which
the target moves in a uniform motion. Therefore, the tracking time
is fixed once a task has been established. The correction time, how-
ever, can be modeled as a function of path length, target width and
the velocity with which the target moves. As shown in Section 5,
target velocity has a much bigger effect on the correction time than
the target width and path length. An optimal target velocity, depen-
dent on target width and path length, can be derived to minimize the
total movement time of an object pursuit task. These could be used
to design more efficient user interfaces and interaction techniques.

This is the fist attempt to model the object pursuit task in virtual
environment, which is therefore of great importance. It is interest-
ing to find out that the temporal characteristics of such a primitive
interaction task can be partially described as a function of the spa-
tial properties of the tasks, especially the existence of term L/W
that can also be found in Fitts’ law and steering law. In addition,
we proved that the time-related factor is necessary to model a task
with a non-stationary target. These points could serve as guidelines
for modeling a general interaction task.
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