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Abstract

We study the problem of designing truthful mechanisms for cooperative cost

sharing games that realize (approximate) budget balance and social cost. Re-

cent negative results show that group-strategyproof mechanisms can only achieve

very poor approximation guarantees for several fundamental cost sharing games.

Driven by these limitations, we consider cost sharing mechanisms that realize the

weaker notion of weak group-strategyproofness. Mehta et al. [Games and Eco-

nomic Behavior, 67:125–155, 2009] recently introduced the broad class of weakly

group-strategyproof acyclic mechanisms and show that several primal-dual ap-

proximation algorithms naturally give rise to such mechanisms with good approx-

imation guarantees. In this paper, we provide a simple yet powerful approach

that enables us to turn any ρ-approximation algorithm into a ρ-budget balanced

acyclic mechanism. We demonstrate the applicability of our approach by deriv-

ing weakly group-strategyproof mechanisms for several fundamental scheduling

problems that outperform the best possible approximation guarantees of Moulin

mechanisms. The mechanisms that we develop for completion time scheduling

problems are the first mechanisms that achieve constant budget balance and

social cost approximation factors. Interestingly, our mechanisms belong to the

class of generalized incremental mechanisms proposed by Moulin [Social Choice

and Welfare, 16:279–320, 1999].

1 Introduction

Algorithmic Mechanism Design lies at the intersection of Operations Research and

Mechanism Design in that it unites ideas and methodologies from both research ar-

eas. It is about the development of mechanisms (or algorithms) that realize game-

theoretical objectives and at the same time are computationally efficient. One of

the most fundamental questions in this context is to which extent the restriction of

polynomial-time computability influences the feasibility of natural game-theoretic ob-

jectives such as truthfulness, efficiency, etc. As an example, consider a combinatorial

auction in which m indivisible items are to be auctioned off to n players. It is well

known that the VCG mechanism due to Vickrey [46], Clarke [12], and Groves [22] is
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truthful and optimizes social welfare even in the most general multi-parameter set-

ting, where players may value every possible subset of items differently. However, no

truthful mechanism that is additionally required to run in polynomial time can ap-

proximate social welfare by a factor of less than
√
m in general (unless NP ⊆ ZPP).

This result holds even in the very restricted single-minded setting, where every player

is only interested in receiving a specific subset of items (we refer the reader to [34] for

more details).

1.1 Cost Sharing Games

In this paper, we address the question mentioned above in the context of cooperative

cost sharing games: We consider the problem of designing truthful mechanisms for cost

sharing games arising from combinatorial optimization problems, with a particular

focus on scheduling problems. In this setting, we are given a set of n players that are

interested in a common service, e.g., being connected to a network infrastructure, or

being processed on a supercomputer, etc. The provision of the service incurs some cost

that is specified by a (player-set dependent) cost function. Every player announces a

bid which represents the maximum price he is willing to pay for the service. Based on

these bids, a cost sharing mechanism needs to decide which players receive the service

and at what price. Each player’s valuation for the service is private data only known

to the player himself. We assume that every player acts strategically in that he solely

aims for maximizing his own (quasi-linear) utility function. As a consequence, a player

may declare a false valuation if this is advantageous to him. We consider the setting

in which players can form coalitions in order to coordinate their bids and collectively

attempt to manipulate the outcome of the mechanism.

We are primarily interested in mechanisms that meet the following objectives:

1. Computational efficiency: The mechanism runs in polynomial time.

2. Truthfulness : The selection and payment scheme implemented by the mechanism

guarantee that it is a dominant strategy for every player to reveal his private

valuation, even if players form coalitions.

3. Budget balance: The sum of all payments charged to the players is equal to the

cost to establish the service.

4. Social cost : Assuming that every player bids truthfully, the servicing cost of

the selected players plus the sum of the valuations of the excluded players is

minimized.

Several natural cost sharing games exhibit cost functions that are given implicitly

by the optimal solution cost of an underlying optimization problem. For most of

the optimization problems that we consider here, achieving the budget balance or

social cost objectives exactly is tantamount to solving NP-hard optimization problems.

Since we insist on computational efficiency, we therefore relax these objectives and only

require that they are met approximately (formal definitions will be given in Section 2).

Our main concern is to derive mechanisms that guarantee good approximation factors

for Objectives 3 and 4 and at the same time satisfy Objectives 1 and 2.

1.2 Scheduling Problems

Scheduling problems constitute an important class of optimization problems with var-

ious applications in practice. They have been the subject of intensive research in
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Operations Research for decades. Many fundamental scheduling problems are rather

well-understood with respect to their complexity and approximability.

As an example, consider theminimum weighted completion time scheduling problem

without preemption P | |∑iwiCi. (We assume that the reader is familiar with the

three-field notation scheme by Graham et al. [19].) Here the task is to schedule n

jobs non-preemptively on m parallel machines such that the (weighted) sum of the

completion times of all jobs is minimized. Lenstra proved that this problem is NP-

hard (see [9]). Afrati et al. [1] gave a polynomial-time approximation scheme (PTAS)

for this problem. A simple scheduling rule, known as Smith’s rule [44], schedules

jobs by non-increasing weight per processing time ratios. Smith’s rule achieves an

approximation factor of (1+
√
2)/2 ≈ 1.21 for this problem. For unit processing times

or equal weights, Smith’s rule yields an optimal schedule.

The minimum completion time scheduling problem with release dates and preemp-

tion P |ri, pmtn|∑iCi is another classical scheduling problem. The goal is to schedule

n jobs on m parallel machines such that the total completion time is minimized. Each

job becomes available at its release date ri and jobs can be preempted, i.e., interrupted

and resumed later. The problem is known to be NP-hard [36]. The single machine case

is solved optimally by the shortest remaining processing time (srpt) algorithm [42].

Sitters [43] very recently showed that srpt achieves an approximation guarantee of

1.25 for the parallel machines case.

Only little attention has been given to studying these problem in the cost sharing

context described above, despite the fact that it is natural to assume that jobs (corre-

sponding to players) compete for machine resources and need to share the cost of the

resulting schedule. The main focus of this paper is to derive cost sharing mechanisms

with good budget balance and social cost approximation guarantees for fundamental

scheduling problems with completion (or flow) time objectives.

1.3 Moulin Mechanisms

In recent years, considerable progress has been made in devising truthful mechanisms

for cooperative cost sharing games. Most notably, Moulin [33] proposed a class of cost

sharing mechanisms (widely known as Moulin mechanisms) that realize the strong

notion of group-strategyproofness, which ensures that no coordinated bidding of a

coalition of players can ever strictly increase the utility of some player without strictly

decreasing the utility of another player in the coalition. Basically, a Moulin mechanism

can be viewed as an iterative ascending auction: In each iteration, the mechanism asks

every player to pay a certain cost share. If every player is willing to pay his cost share,

the mechanism outputs the respective player set together with their cost shares and

halts. Otherwise, it removes all players that are not willing to pay their cost shares

from the game and continues with the next iteration. Moulin [33] showed that this

mechanism is group-strategyproof if the proposed cost shares are cross-monotonic,

i.e., the cost share of a player does not decrease when some of the other players are

removed from the game. Moreover, he proved that for submodular cost functions,

Moulin mechanisms are the only cost sharing mechanisms that are budget balanced

and group-strategyproof. This result has very recently been complemented by Juarez

[27] who shows that every group-strategyproof cost sharing mechanism is a Moulin

mechanism and vice versa. A subtle point in this context is whether a player that is

indifferent, i.e., whose valuation is equal to the requested payment, prefers to accept

or reject the service (see [27] for a detailed discussion). Throughout this paper, we
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assume that such players always prefer to accept the service.

1.4 Limitations of Moulin Mechanisms

Based on Moulin’s original result [33], a lot of research in recent years has gone into

designing cross-monotonic cost sharing methods for the cost sharing variants of many

classical optimization problems. The cost functions induced by these optimization

problems are often neither submodular nor supermodular. However, most optimization

problems that have been considered in the literature bear the common characteristic

that larger sets of served players have a larger potential for individual cost savings

because the underlying cost functions are subadditive. Well-studied examples that

fall into this class are fixed tree multicast [2, 16, 17], minimum spanning tree [26, 29],

Steiner tree [26], price-collecting Steiner tree [23], facility location [35], connected

facility location [24, 31, 35], Steiner forest [30], and vertex and set cover [25]. In

general, scheduling problems do not have this characteristic because the objective

functions are usually superadditive and thus adding additional players corresponds to

a larger potential of individual cost increases. To the best of our knowledge, there

are only a few articles that study scheduling problems in the cost sharing context

introduced above [5, 6, 7].

Recent negative results showed that for several fundamental cost sharing games,

Moulin mechanisms inevitably suffer from poor approximation factors with respect to

budget balance [5, 7, 25, 30, 40] or social cost [7, 11, 40, 41]. For example, in [7] it

is shown that no cross-monotonic cost sharing method can achieve a budget balance

approximation factor of less than (n+1)/2 for the minimum weighted completion time

scheduling game P | |∑iwiCi mentioned above, even in the single-machine case and if

all jobs have unit processing times and weights. This is in stark contrast to the fact

that an optimal schedule can be computed in polynomial time in this case by Smith’s

rule.

1.5 Acyclic Mechanisms

Driven by shortcomings inherent to Moulin mechanisms, Mehta, Roughgarden, and

Sundararajan [32] recently introduced a general framework to derive so-called acyclic

mechanisms. These mechanisms implement a slightly weaker notion of group-

strategyproofness, called weak group-strategyproofness [13, 32], which ensures that

no coordinated bidding of a coalition of players can ever strictly increase the utility of

every player in the coalition. The authors show that primal-dual approximation algo-

rithms for several combinatorial optimization problems naturally give rise to acyclic

mechanisms that achieve good approximation guarantees both with respect to budget

balance and social cost.

Alike Moulin mechanisms, acyclic mechanisms are driven by cost sharing methods

that have to fulfill certain properties. However, these properties are less restrictive than

the cross-monotonicity requirement for Moulin mechanisms and therefore leave more

flexibility to define appropriate cost shares. Acyclic mechanisms therefore open new

ground for improving the approximation guarantees with respect to budget balance

and social cost. Nevertheless, finding such cost sharing methods is often still a highly

non-trivial and problem-specific task.
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Generalized incremental Lower bounds for
Problem mechanisms Moulin mechanisms

P | |∑iCi (1, 2) n+1

2
[7]

P | |∑i wiCi (1.21, 2.42) n+1

2
[7]

1|ri, pmtn|∑i Ci (1, 4) n+1

2
[7]

P |ri, pmtn|∑i Ci (1.25, 5) n+1

2
[7]

1|ri, pmtn|∑i Fi 1 n+1

2
[7]

Table 1: Summary of the approximation guarantees obtained by generalized incre-
mental mechanisms in this paper. (β, α) denotes the budget balance (β) and social
cost (α) approximation factors; all other entries refer to budget balance factors. The
respective lower bounds on the budget balance factors of Moulin mechanisms are given
in the right column.

1.6 Our Contributions

In this paper, we present a general approach to derive weakly group-strategyproof

mechanisms from approximation algorithms. We show how a ρ-approximation algo-

rithm for the underlying optimization problem of a cost sharing game can be turned

into a cost sharing mechanism that is ρ-budget balanced, and prove that this mech-

anism is weakly group-strategyproof. Our construction uses the approximation algo-

rithm as a black-box. The basic idea is very simple: According to the order on the

set of players that are remaining in the game, we charge every player his incremental

cost with respect to the approximate cost function induced by the approximation al-

gorithm. The key property of our approach is that the order on the remaining players

may change during the course of the mechanism.

A difficulty that arises is that in general the resulting mechanism per se does not

fulfill the no positive transfer property (which requires that all cost shares are non-

negative). While there are different ways to overcome this problem, we identify a

consistency property on the order in which players are considered and argue that the

mechanism guarantees no positive transfers whenever its approximate cost is non-

decreasing with respect to this consistent order. We provide a series of examples that

illustrate that several approximation algorithms naturally induce a consistent order

on the players such that its cost is non-decreasing.

Exploiting the consistency property, we also provide some general means that fa-

cilitate proving social cost approximation factors of our mechanisms. Essentially, we

determine a weak monotonicity property that, if satisfied by the incremental approxi-

mate cost shares defined by the mechanism, enables us to simplify bounding its social

cost approximation guarantee.

We demonstrate the applicability of our techniques by developing weakly group-

strategyproof mechanisms for completion time (and flow time) scheduling problems

with and without release dates and preemption. Our techniques turn out to be partic-

ularly effective in this scheduling context. The results are summarized in Table 1. Our

mechanisms outperform the strong lower bounds of (n+1)/2 on the budget balance fac-

tor of Moulin mechanisms for all completion time related objectives [7]. We emphasize

that these are the first cost sharing mechanisms that are weakly group-strategyproof

and achieve constant approximation guarantees with respect to both budget balance

and social cost. Moreover, for most of these problems our mechanisms achieve budget
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balance factors that match the current best approximation guarantees known for these

problems.

1.7 Consequences and Further Implications

While previously most cost sharing mechanisms were developed in case-by-case studies,

this is the first characterization of sufficient conditions that allow to derive mechanisms

from existing approximation algorithms, thereby exploiting their full strength. Our

results can therefore be seen as a first step towards quantifying the trade-off between

the best possible approximation guarantees achievable by approximation algorithms

and weakly-groupstrategyproof mechanisms.

Using our approach, deriving a weakly group-strategyproof mechanism essentially

boils down to identifying a consistent order on the players such that the cost of the

(approximation) algorithm is non-decreasing, which is an easy task in many cases.

Moreover, the resulting mechanism inherits the approximation guarantee as budget

balance factor. Hence, all that is left is to bound its social cost approximation guaran-

tee, for which we provide some general techniques. Our approach thus simplifies the

process of developing weakly group-strategyproof cost sharing mechanisms.

Besides the game-theoretical insights that we gain here, our results also have some

further implications in the scheduling context: Every mechanism that approximates

the social cost objective is at the same time an approximation algorithm for the respec-

tive scheduling problem with rejection [4] (formal definitions are given in Section 2). As

a by-product, we therefore obtain constant factor approximation algorithms for several

machine scheduling problems with rejection. These results might be of independent

interest.

1.8 Relation to Incremental and Acyclic Mechanisms

Another class of cost sharing mechanisms that have been introduced by Moulin [33]

are incremental mechanisms. An incremental mechanism considers players sequen-

tially according to an arbitrary but fixed order. The cost share offered to a player is

equal to his incremental cost, i.e., the increase in cost caused by adding this player

to the set of previously selected players. The player is added to the set of selected

players if he accepts his cost share. Moulin claimed that for supermodular cost func-

tions, incremental mechanisms are basically the only cost sharing mechanisms that

are group-strategyproof and budget balanced.1 Juarez [27] very recently showed that

group-strategyproof cost sharing mechanisms correspond to so-called sequential mech-

anisms if indifferent players prefer to reject the service. Sequential mechanisms define

a slightly more general class of cost sharing mechanisms than incremental mechanisms

(see [27] for precise definitions). Moulin also extended the class of incremental mech-

anisms by allowing that the order on the set of players that have not been considered

so far may change during the course of the mechanism. These mechanisms are called

generalized incremental mechanisms in [33].

Incremental and generalized incremental mechanisms are much less prevailing in

literature than Moulin mechanisms, especially in the context of deriving cost sharing

mechanisms for optimization problems. Interestingly, the mechanisms proposed in this

paper correspond to generalized incremental mechanisms as introduced by Moulin [33].

1However, the original characterization given in [33] is flawed (as indicated in [27]) and holds only
under the assumption that players are never indifferent.
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Our work therefore reveals that these mechanisms naturally arise as weakly group-

strategyproof mechanisms with good budget balance and social cost approximation

guarantees for several fundamental cost sharing games for which Moulin mechanisms

inevitably fail.

Our generalized incremental mechanisms belong to the class of acyclic mechanisms.

Indeed, we first encountered these mechanisms when studying the framework of acyclic

mechanisms (see also the exposition in [8]). We explain how in this framework gen-

eralized incremental mechanisms can be viewed as being complementary to Moulin

mechanisms regarding the degree of freedom that the mechanism has for ordering its

cost share proposals to players.

1.9 Further Related Work

Dobzinski et al. [14] recently showed that for cost functions comprising the public

excludable good problem, a logarithmic gap between the budget balance and social

cost approximation factors is inevitable, even if only strategyproofness is required.

Unfortunately, the situation is even worse for generalized incremental mechanisms.

As we will show, our generalized incremental mechanisms cannot achieve a social

cost approximation guarantee of less than n for the public excludable good problem.

The public excludable good example heavily exploits the fact that its cost function

is subadditive. With respect to social cost approximation, our mechanisms perform

poorly for these types of cost functions. However, most objective functions induced by

scheduling problems are superadditive and our mechanisms turn out to be particularly

effective for these kinds of cost sharing games.

Independently of our work, Bleischwitz et al. [6] recently defined egalitarian mech-

anisms, which belong to the class of acyclic mechanisms. The authors show how to

construct egalitarian mechanisms from approximation algorithms that fulfill a certain

monotonicity property, requiring that the approximate solution cost does not increase

when any player’s size (e.g., its processing time) is reduced. They apply their results

to makespan scheduling and bin packing problems. The authors also prove that acyclic

mechanisms are weakly group-strategyproof against collectors, a notion that strength-

ens weak group-strategyproofness to the setting where indifferent players are assumed

to strictly prefer receiving service at their valuation price over not receiving service.

Pountourakis and Vidali [37] very recently gave a complete characterization of

group-strategyproof cost sharing mechanisms and thereby settled a major open prob-

lem. They show that group-strategyproof cost sharing mechanisms are completely

characterized by a certain fence monotonicity property in combination with a stable

allocation rule and a valid tie-breaking rule (see [37] for definitions). It remains open

whether this characterization can be used algorithmically.

In scheduling problems with rejection, the algorithm may choose to schedule only

a subset of the jobs and pay a specified penalty for each job that is omitted. This

setting has been introduced by Bartal et al. [4] for an online minimum makespan

scheduling problem. Engels et al. [15] study the offline version for completion time

related problems. They give randomized algorithms for minimizing the weighted sum

of completion times on related machines which achieve expected approximation guar-

antees of 2 with and 3/2 without release dates, respectively. For the single machine

case, they were able to design optimal algorithms with pseudopolynomial running-time

(unless either weights or processing times are all equal). Bunde [10] gives an optimal

algorithm for the single machine case with release dates and unit processing times.
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He also proves that the completion time scheduling problem with rejection is NP-hard

even on a single machine if there are release dates. Bansal et al. [3] study the online

preemptive single machine case where flow time or job idle time is concerned.

2 Preliminaries

2.1 Cost Sharing

A binary demand cost sharing game is defined as follows. We are given a universe U

of players that are interested in a common service, and a cost function C : 2U → R
+

that specifies the cost C(S) to serve player set S ⊆ U . We require that C(∅) = 0. In

this paper, we assume that C is given implicitly by the cost of an optimal solution

to an underlying cost-minimization problem P . Every player i ∈ U has a private,

non-negative valuation vi and a non-negative bid bi for receiving the service.

A (direct revelation) cost sharing mechanism M takes the bid vector b := (bi)i∈U

as input and computes a binary allocation vector x := (xi)i∈U and a payment vector

p := (pi)i∈U . Let SM be the subset of players associated with the allocation vector

x, i.e., i ∈ SM iff xi = 1. We say that SM is the player set that receives service.

We require that a cost sharing mechanism complies with the following three standard

assumptions:

1. Individual rationality: A player is charged only if he receives service and his

payment is at most his bid, i.e., pi = 0 if i /∈ SM and pi ≤ bi if i ∈ SM .

2. No positive transfer : A player is not paid for receiving the service, i.e., pi ≥ 0

for all i ∈ SM .

3. Consumer sovereignty: A player is guaranteed to receive service if he is willing

to bid high enough, i.e., there exists a threshold value b∗i for every player i ∈ U

such that i ∈ SM for all bi ≥ b∗i .

In addition, the mechanism has to compute a (possibly suboptimal) feasible solution

to the underlying optimization problem P on the player set SM . We denote the cost

of the computed solution by C̄(SM ). A mechanism M is β-budget balanced for some

β ≥ 1 if

C̄(SM ) ≤
∑

i∈SM

pi ≤ β · C(SM ).

We assume that players act strategically and every player’s goal is to maximize

his own utility. The utility ui of player i is defined as ui(x, p) := vixi − pi. Since

the outcome (x, p) computed by the mechanism M solely depends on the bids b of

the players (and not on their true valuations), a player may have an incentive to

declare a bid bi that differs from his valuation vi. We say that M is strategyproof if

bidding truthfully is a dominant strategy for every player. That is, for every player

i ∈ U and every two bid vectors b, b′ with bi = vi and bj = b′j for all j 6= i, we have

ui(x, p) ≥ ui(x
′, p′), where (x, p) and (x′, p′) are the solutions output by M for bid

vectors b and b′, respectively.

We assume that players can form coalitions in order to coordinate their bids. A

mechanism M is group-strategyproof if no coordinated bidding of a coalition T ⊆ U

can ever strictly increase the utility of some player in T without strictly decreasing

the utility of another player in T . More formally, for every coalition T ⊆ U and every
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two bid vectors b, b′ with bi = vi for every i ∈ T and bi = b′i for every i /∈ T ,

∃i ∈ T : ui(x
′, p′) > ui(x, p) =⇒ ∃j ∈ T : uj(x

′, p′) < uj(x, p).

M is weakly group-strategyproof if no coordinated bidding can ever strictly increase

the utility of every player in the coalition. That is, for every coalition T ⊆ U and

every two bid vectors b, b′ with bi = vi for every i ∈ T and bi = b′i for every i /∈ T ,

∃i ∈ T : ui(x
′, p′) ≤ ui(x, p).

Intuitively, by requiring weak group-strategyproofness only, we assume that players

adopt a slightly more conservative attitude with respect to their willingness of joining

a coalition: While in the group-strategyproof setting a player only defects from a

coalition if he is strictly worse off, he defects already if he is not strictly better off in

the weakly group-strategyproof setting.

The standard notion that is used to assess the efficiency of a mechanism is its

social welfare, which is defined as the sum of valuations of all served players minus the

servicing cost. However, classical results in economics [21, 39] rule out the existence of

strategyproof mechanisms that achieve budget balance and social welfare at the same

time. Moreover, Feigenbaum et al. [16] showed that for the multicast cost sharing

game these two objectives cannot even be approximated simultaneously, even if only

strategyproofness is required.

Roughgarden and Sundararajan [40] proposed an alternative efficiency measure.

The social cost [40] of a set S ⊆ U is defined as

Π(S) := C̄(S) +
∑

i/∈S

vi.

A mechanism M is said to be α-approximate for some α ≥ 1 if, assuming that

every player i ∈ U bids truthfully bi = vi, the social cost of the served set SM output

by the mechanism satisfies Π(SM ) ≤ α · Π∗, where

Π∗ := min
S⊆U

(

C(S) +
∑

i/∈S

vi

)

denotes the optimal social cost.

It is not hard to verify that the social welfare and social cost efficiency objectives

coincide if they can be computed exactly; but they may differ with respect to their

approximability. Using this alternative efficiency measure, it became possible to derive

mechanisms with non-trivial approximation guarantees with respect to budget balance

and social cost. Roughgarden and Sundararajan also revealed a relation between the

social cost approximation factor of a Moulin mechanism and a summability property

of the underlying cost sharing method (see [40] for more details).
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2.2 Scheduling

2.2.1 Parallel Machine Scheduling

In a parallel machine scheduling problem, we are given a set U of n jobs that are to be

scheduled on m identical machines. Every job i ∈ U has a non-negative release date ri,

a positive processing time pi, and a non-negative weight wi. The release date specifies

the time when job i becomes available for execution. The processing time describes

the time needed to execute i on one of the machines. Every machine can execute

at most one job at a time. In the preemptive setting, the execution of a job can be

interrupted at any point of time and resumed later; in contrast, in the non-preemptive

setting, job interruption is not permitted. In the cost sharing variant of a scheduling

problem, each job is identified with a player who wants his job to be processed on one

of the machines.

Depending on the respective scheduling applications, there are various meaningful

objective functions for machine scheduling problems. Let Ci(S) denote the completion

time of job i ∈ S in the schedule for the set S ⊆ U computed by a given scheduling

algorithm. Among the most common objectives are the minimization of the total

weighted completion time, i.e.,
∑

i wiCi, and the makespan, i.e., maxiCi, over all

feasible schedules. The flow time Fi of a job is defined as the difference between its

completion time and its release date, i.e., Fi := Ci−ri. We will often use the three-field

notation scheme by Graham et al. [19] to refer to specific scheduling settings.

2.2.2 Scheduling with Rejection

In scheduling problems with rejection, the algorithm may choose to schedule only a

subset of the jobs and pay a specified penalty for each job that is omitted. This

setting has been introduced by Bartal et al. [4]. Consider an arbitrary scheduling

problem P with job set U and objective function C. A natural variant of this problem

is the following: Every job i ∈ U has a non-negative penalty zi. For every job i ∈ U ,

we now have the option to either schedule i and incur its respective contribution to the

objective function value, or not to schedule i and pay its penalty zi. More formally, the

problem is to compute a subset S ⊆ U of jobs such that the overall cost C(S)+
∑

i/∈S zi
is minimized.

3 Generalized Incremental Mechanisms

We describe our approach for converting approximation algorithms into weakly group-

strategyproof cost sharing mechanisms. Our mechanisms belong to the class of gen-

eralized incremental mechanisms as introduced by Moulin in [33], and we therefore

borrow this naming here.

3.1 Construction and Basic Properties

Suppose we are given a ρ-approximation algorithm alg for the underlying optimization

problem P . Let C̄ denote the cost function induced by alg, i.e., C̄(S) is the cost of

the solution computed by alg for player set S ⊆ U . Without loss of generality, we

assume that C̄(∅) = 0. Besides the approximation algorithm alg, the main ingredient

for our framework is an injective order function τ : U × 2U → R
+ which defines a
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Algorithm 1: Generalized incremental mechanism M(alg, τ) induced by alg

and τ .
Input: Set of players U and bid vector b = (bi)i∈U

Output: Allocation vector x = (xi)i∈U and payment vector p = (pi)i∈U

1 Initialize A := ∅, R := U .
2 while A 6= R do
3 Among all players i ∈ R \A, let i∗ be the one with minimum τ(i, R).
4 Define pi∗ := C̄(A ∪ {i∗})− C̄(A).
5 if bi∗ ≥ pi∗ then set A := A ∪ {i∗};
6 else set R := R \ {i∗}.
7 end
8

9 Output the characteristic vector x of A and payments p.

permutation for every subset S ⊆ U by ordering the elements in S with respect to

increasing τ -values.

The generalized incremental mechanism M(alg, τ) induced by alg and τ receives

the bid vector b as input and proceeds as indicated in Algorithm 1. Throughout its

execution, R refers to the set of players that currently remain in the game, and A

denotes the set of players that have been accepted so far. The mechanism starts with

the entire player set R = U and initializes A = ∅. In every iteration, it picks the

player i∗ from R \ A with the smallest τ(·, R)-value, and computes its incremental

approximate cost share pi∗ , defined as the increase in the approximate cost C̄ when

player i∗ is added to A. If player i∗ accepts this cost share, he is added to the set

A of accepted players; otherwise, he is removed from R and hence rejected from the

game. The mechanism continues like this until eventually all remaining players have

been accepted. It outputs the characteristic vector x of the accepted players A and

the corresponding payments p (where we implicitly set pi = 0 for all i /∈ A).

We remark that the cost shares assigned to the served players depend on the cost

function C̄ induced by the approximation algorithm alg and are not necessarily non-

negative. Thus, our generalized incremental mechanism does not necessarily satisfy

the no positive transfer property. We address this issue in Section 3.2 below.

It is straightforward to see that the generalized incremental mechanism inherits its

budget balance factor from the input approximation algorithm:

Lemma 1. The generalized incremental mechanism M(alg, τ) is ρ-budget balanced.

Proof. In every iteration of the mechanism, we have
∑

i∈A pi = C̄(A), since every

accepted player pays exactly the incremental approximate cost for adding him to the

current set A. In particular, this is true for the output set SM . Since alg is a

ρ-approximation algorithm, we obtain

C̄(SM ) =
∑

i∈SM

pi ≤ ρ · C(SM ),

which proves ρ-budget balance.

We next prove that the generalized incremental mechanism is weakly-

groupstrategyproof.

11



Lemma 2. The generalized incremental mechanism M(alg, τ) is weakly group-

strategyproof.

Proof. Fix a coalition T ⊆ U and a bid vector b with bi = vi for all i ∈ T . Assume for

contradiction that all members of the coalition can increase their utilities by changing

their bids to b′ (while bi = b′i for all i /∈ T ). The runs of the generalized incremental

mechanism on b and b′ are identical until the first member of T , say j, is offered a

cost share. Since the cost share offered to him depends only on the set A of previously

accepted players, which coincides in both runs, the utility of j is maximized when

bidding vj and cannot be influenced by other members of T . Hence j cannot increase

his utility by joining the coalition.

The following theorem follows from Lemmas 1 and 2.

Theorem 1. Let τ be an arbitrary order function and let alg be a ρ-approximate

algorithm for an optimization problem P. The generalized incremental mechanism

M(alg, τ) is a weakly group-strategyproof and ρ-budget balanced cost sharing mecha-

nism for P, which does not necessarily satisfy the no positive transfer property.

The following example shows that generalized incremental mechanisms are not

group-strategyproof in general.

Example 1. We define an instance of a cost sharing game on n = 2 players with

valuations v1 = 1 and v2 = 2. Let C̄({1}) = C̄({2}) = 1 and C̄({1, 2}) = 3. This cost

function is, e.g., realized by an optimal algorithm for the completion time scheduling

problem on one machine with two jobs of unit processing times. Let τ be the offer

function which orders players by their index. The induced generalized incremental

mechanism accepts both players and yields utilities u1(v) = u2(v) = 0. Consider the

forming of a coalition with bids b1 = 0 and b2 = 2. In this case, player 1 rejects, and

so u1(b) = 0 as before, but u2(b) = 2− 1 = 1. Hence, this coalition breaks the property

of group-strategyproofness.

3.2 No Positive Transfer

As mentioned above, our generalized incremental mechanism does not necessarily guar-

antee the no positive transfer property. Clearly, this property is satisfied if the approx-

imate cost function C̄ induced by the approximation algorithm alg is non-decreasing,

i.e., C̄(S) ≤ C̄(T ) for all S ⊆ T ⊆ U . However, this requirement is too restrictive in

general as many approximation algorithms do not satisfy it.

The following standard adaptation can be used to realize the no positive transfer

property if the optimal cost function C is non-decreasing, i.e., C(S) ≤ C(T ) for all

S ⊆ T ⊆ U : Simply charge a player zero if the incremental approximate cost of adding

this player is negative. That is, we redefine the incremental approximate cost share in

Line 4 of Algorithm 1 as

pi∗ := max

{

0, C̄(A ∪ {i∗})−
∑

i∈A

pi

}

.

Lemma 3. The adapted generalized incremental mechanism M(alg, τ) is ρ-budget

balanced if the optimal cost function C is non-decreasing.

12



Proof. The lemma is shown by induction on the cardinality of the set A of players

that are accepted. Clearly, the claim holds for |A| = 0. Whenever a player i∗ is added

to the current set A, we have

∑

i∈A∪{i∗}

pi = pi∗ +
∑

i∈A

pi ≥ C̄(A ∪ {i∗}).

If pi∗ > 0 the above inequality is an equality, and it holds that C̄(A ∪ {i∗}) ≤ ρ ·
C(A ∪ {i∗}) since alg is a ρ-approximation algorithm. Otherwise, pi∗ = 0 and we

have
∑

i∈A pi ≤ ρ · C(A) by the induction hypothesis and C(A) ≤ C(A ∪ {i∗}) since
C is non-decreasing.

We propose a different approach here for the following two reasons:

1. The above adaptation works only if the optimal cost function is non-decreasing.

This requirement might be too restrictive as the cost functions of several natural

optimization problems do not fulfill this property. A simple example is the

minimum spanning tree game given below.

2. The approach we propose here will enable us to derive a general technique to

prove social cost approximation guarantees. We use this technique to obtain

generalized incremental mechanisms that achieve constant approximation ap-

proximation factors with respect to both budget balance and social cost for

completion time scheduling problems (see Section 5).

Throughout this section, we consider the minimum spanning tree game as an il-

lustrative example. In the minimum spanning tree game, we are given an undirected

graph G = (V ∪{r}, E) with edge weights we ≥ 0 for all edges e ∈ E and a designated

root vertex r. We assume that there is an edge between r and every vertex in V .

Every player i ∈ U is associated with a unique vertex in V and the goal of player i is

to connect his node to the root r. A minimum spanning tree for a given subset S ⊆ U

of the players is a tree T in the subgraph induced by S ∪{r} that spans all vertices in

S ∪ {r} and minimizes the total weight w(T ) :=
∑

e∈T we. The cost C(S) to connect

a player set S ⊆ U is defined as the weight of a minimum spanning tree for S.

r

1 2

3

2

2

2

Figure 1:

The following example shows that the cost function

defined by the minimum spanning tree game is not non-

decreasing in general.

Example 2. Consider the instance of the minimum span-

ning tree game with player set U = {1, 2, 3} depicted in

Figure 1. All edges incident to vertex 3 have weight (1+ε)

with 0 < ε < 1

3
, and all other edges have weight 2 as in-

dicated. We have C({1}) = C({2}) = 2, C({3}) = 1 + ε,

C({1, 2}) = 4, C({1, 3}) = C({2, 3}) = 2 + 2ε and

C(U) = 3(1 + ε). Note that C is not non-decreasing be-

cause C({1, 2}) = 4 > 3(1 + ε) = C({1, 2, 3}) by our choice of ε.

Recall that Prim’s algorithm (prim) [38] solves the minimum spanning tree problem

optimally. It starts with the root vertex r as the initial connected component and then

iteratively picks a minimum weight edge that connects a new vertex to the current

component until all vertices are connected. (If there are several minimum weight edges

that might be chosen, we assume that an arbitrary but consistent tie breaking rule is

used.)

13



Suppose we want to use Prim’s algorithm to derive a generalized incremental

mechanism M(prim, τ) for the minimum spanning tree game that is weakly group-

strategyproof and budget balanced. How should we define the order function τ? As

the above example indicates, if τ orders players by increasing index then the resulting

mechanism does not satisfy the no positive transfer property because the cost share

of player 3 is 3(1 + ε) − 4 < 0 (assuming that players 1 and 2 have been accepted).

Clearly, the mechanism satisfies the no positive transfer property if τ orders players

by decreasing index. However, a fixed global ordering of the players does not work in

general as the following example shows.

r

1 2

Figure 2:

Example 3. Consider the instance of the minimum span-

ning tree game depicted in Figure 2. All edges incident to

vertex 1 have weight 1, all edges incident to vertex 2 have

weight (1 + ε) for some ε > 0 and all other edges (not

depicted) have weight equal to the shortest path distance

between their endpoints. Let L refer to the vertices in the

bottom layer.

The mechanism starts with the entire player set R =

U . A natural order τ(·, U) of the players in U that sat-

isfies the no positive transfer property is to first consider

player 1, then the players in L and finally player 2. Note

that if player 1 is rejected then the order τ(·, R) of the

remaining players R = U \ {1} has to change such that first player 2 is considered

and then the players in L. To see this, suppose that τ(·, R) orders the players such

that first the players in S ⊆ L, S 6= ∅, are considered, then player 2 and finally all

remaining players of R. The cost share of player 2 is then (1+ε)(|S|+1)−2|S|, which
is negative for a sufficiently small ε.

The above example illustrates some finer points of our approach. Essentially, we

will show that several approximation algorithms exhibit a natural order function that

ensures that the incremental approximate cost shares are non-negative. Hence, a much

weaker restriction than requiring monotonicity of the approximate cost function C̄ or

the optimal cost function C suffices if we define the order function τ appropriately.

As we will see, for some applications (see, e.g., Section 5.2) it will be crucial to allow

that the order of the remaining players may change as the generalized incremental

mechanism progresses.

3.3 Consistency

Consider a set S ⊆ U and order the players in S according to increasing τ(·, S) values,
i.e.,

S = {i1, . . . , ip} such that τ(ik, S) < τ(il, S) ∀1 ≤ k < l ≤ p.

We also say S is ordered by τ . We denote by Sk := {i1, . . . , ik} ⊆ S the set of the first

1 ≤ k ≤ p elements in S ordered by τ and define S0 := ∅.

Definition 1. An order function τ : U × 2U → R
+ is consistent if for all subsets

S ⊆ T ⊆ U , ordered by τ as S = {i1, i2, . . . , ip} and T = {j1, j2, . . . , jq}, the following

holds: If k is minimal with jk ∈ T \ S, then il = jl for all l < k.

Figure 3 illustrates the restriction imposed by the consistency property.
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T 1 2 3 4 5 6 7 8 9

S 1 2 3 4 7 9 6

Figure 3: Illustration of the consistency property for two sets S ⊆ T := {1, . . . , 9};
elements belonging to S are depicted in gray. Both sets are ordered according to τ .
Note that consistency requires that S has to be ordered like T up to the first element
jk of T that is missing in S (indicated in bold).

Reconsider the minimum spanning tree game introduced above. We claim that

Prim’s algorithm gives rise to a consistent order function. For a subset S ⊆ U of

vertices, let τ(·, S) be the order in which prim adds the vertices to the connected com-

ponent in the run on S. It is not hard to see that τ is a consistent order function: Let

S ⊆ T ⊆ U be two subsets ordered by τ as S = {i1, i2, . . . , ip} and T = {j1, j2, . . . , jq}.
Let k be minimal with jk ∈ T \ S. We need to argue that the order in which prim

picks the first k− 1 vertices in the run on S is the same as in the run on T , i.e., il = jl
for all l < k. The proof is by induction on the first 1 ≤ l < k vertices added by prim

in the run on T . The claim clearly holds for l = 1, since prim starts with the same

vertex in both runs. Suppose the claim is true for the first l− 1 vertices and consider

the iteration in the run on T in which vertex jl, 1 < l < k, is added. Then jl is a

vertex that is closest to the current connected component in the run on T . By the

choice of k, jl is also contained in S. Moreover, by the induction hypothesis, the l− 1

vertices that have previously been chosen in the run on T and in the run on S are

the same. Note that jl must also be closest to the current connected component in

the run on S because S ⊆ T . Thus il = jl (assuming a consistent tie-breaking rule).

However, note that the order in which the vertices in S \ {j1, . . . , jk−1} are considered

might differ from the respective order in T due to the absence of jk. Our consistency

property reflects exactly this.

We next show that a consistent order function τ in combination with a certain

monotonicity property of the algorithm alg guarantees that the resulting generalized

incremental algorithm M(alg, τ) (as defined in Algorithm 1) satisfies the no positive

transfer property. Consider the execution of the generalized incremental mechanism

M(alg, τ) induced by alg and a consistent order function τ . Recall that R refers

to the set of players that are currently remaining in the game. Note that the order

in which the players in R = {i1, . . . , i|R|} are considered remains the same until the

first player, say ik, is dropped. The consistency of τ now ensures that the ordered

sets R′ = R \ {ik} and R agree on the first k − 1 players. Said differently, only the

order of the players succeeding ik in R can change in R′. Hence, the first k− 1 players

correspond to the set A of currently accepted players. We prove this formally in the

next lemma.

Lemma 4. At the beginning of every iteration of M(alg, τ), we have R|A| = A.

Proof. We prove the lemma by induction on the number of iterations. In the first

iteration, R|A| = R0 = ∅ = A. For the induction step, assume that R|A| = A at

the beginning of some iteration. Let i∗ be the player that is picked in this iteration,

i.e., by the induction hypothesis, i∗ is the (|A| + 1)st player in the order on R. Let

R′ and A′ denote the updated sets at the end of this iteration. There are two cases:
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(i) If i∗ accepts, then R′ = R and A′ = A ∪ {i∗}. Hence, we can conclude that

R′
|A′| = R|A|+1 = A∪{i∗} = A′. (ii) On the other hand, if i∗ rejects, then A′ = A and

R′ = R \ {i∗}. Note that i∗ is the first element in the order on R which is not in R′,

and so by consistency of τ , we have R′
|A′| = R|A| = A = A′.

We can use this lemma to prove that the order in which players are added to the

set A during the course of the generalized incremental mechanism M(alg, τ) coincides

with the order induced by τ on the final output set SM .

Lemma 5. Let SM be the set of players output by M(alg, τ). During the course of

M(alg, τ), players are added to A by increasing τ(·, SM )-values.

Proof. Suppose SM is ordered by τ as SM = {i1, . . . , ip}. Let i be the kth player that

is added to A in the execution of M(alg, τ). We need to show that i = ik.

Consider the iteration in which player i is added to A. Let R and A be the sets

of remaining and accepted players at the beginning of the iteration, respectively, and

let R′ and A′ be the respective sets at the end of the iteration. We have R′ = R,

A′ = A ∪ {i} and |A′| = k. By Lemma 4, Rk−1 = A and R′
k = Rk = A′.

Note that all players in Rk−1 = A are contained in SM , so by consistency of τ , at

least the first k−1 elements of SM coincide with those of R, i.e., Rk−1 = SM
k−1

. By the

same argument, we have R′
k = Rk = SM

k . We conclude that SM
k \ SM

k−1
= Rk \ Rk−1

and thus i = ik.

Lemma 5 has an important consequence: If the cost function C̄ of the approxima-

tion algorithm alg is non-decreasing as players are added to SM one by one (in the

order of τ), then the final payments charged by the generalized incremental mecha-

nism M(alg, τ) to the players in SM are non-negative. Since potentially every subset

S ⊆ U might be chosen as the final output set, we require that the approximation

algorithm satisfies this property for every subset of players:

Definition 2. Let alg be a ρ-approximate algorithm for the underlying optimization

problem P . We say that alg is τ-increasing if for every S ⊆ U and every 1 ≤ k ≤ |S|,
we have C̄(Sk) ≥ C̄(Sk−1).

The following theorem now follows directly from Lemma 5 and Definition 2.

Theorem 2. Let τ be a consistent order function and let alg be a τ-increasing ρ-

approximate algorithm for an optimization problem P. The generalized incremental

mechanism M(alg, τ) is a weakly group-strategyproof and ρ-budget balanced cost shar-

ing mechanism for P, which satisfies the no positive transfer property.

Consider the minimum spanning tree game. We argued above that Prim’s al-

gorithms induces a consistent order function. It is not hard to verify that prim is

τ -increasing: Given an arbitrary subset S = {i1, . . . , ip} ordered by τ , prim adds the

vertices i1, . . . , ip one by one to the current component. The cost C(Sk) − C(Sk−1)

of adding a vertex ik, 1 ≤ k ≤ p, is equal to the weight of the edge that is added to

connect ik to the tree. Since edge weights are non-negative, it follows that prim is

τ -increasing. Theorem 2 yields the following result.

Corollary 1. The generalized incremental mechanism Mprim induced by Prim’s al-

gorithm and τ is weakly group-strategyproof and 1-budget balanced for the minimum

spanning tree problem.

In Section 4 we provide some additional examples of approximation algorithms

that are τ -increasing with respect to natural order functions that are consistent.
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3.4 Social Cost Approximation

In this section, we derive some general techniques that will be helpful in proving social

cost approximation guarantees of our generalized incremental mechanisms. These

techniques seem particularly applicable if the underlying approximate cost function is

superadditive. The following example shows that generalized incremental mechanisms

may have poor social cost approximation guarantees if the underlying cost function is

subadditive.

In the public excludable good problem, the serving cost is C(S) = 1 for every non-

empty subset of players ∅ 6= S ⊆ U and C(∅) = 0. Dobzinski et al. [14] showed that for

this problem no constant budget balanced and truthful mechanisms can approximate

social cost by less than a logarithmic factor, even if only strategyproofness is required.

The situation is worse for generalized incremental mechanisms.

Example 4. Consider an instance of the public excludable good problem with n play-

ers. Set the valuation of each player i ∈ U to vi = 1 − ǫ for an arbitrarily small

constant ǫ > 0. Assuming truthful bidding, any generalized incremental mechanism

serves the empty set incurring a social cost of Π(∅) = (1 − ǫ)n. On the other hand,

serving the whole set induces a social cost of Π(U) = 1. We therefore obtain a lower

bound on the social cost approximation factor of essentially n.

We define an incremental approximate cost share function ξ : U × 2U → R induced

by alg and τ as follows. Let S = {i1, . . . , ip} ⊆ U be an arbitrary subset of players

ordered by τ . The incremental approximate cost share ξi(S) of player i ∈ S is defined

as the increase in the approximate cost function C̄ caused by player i when the players

in S are added one by one according to the order τ . More formally, we define for every

player i = ik, 1 ≤ k ≤ p, ξi(S) := C̄(Sk) − C̄(Sk−1); for every player i /∈ S, let

ξi(S) := 0. Note that Definition 2 is equivalent to stating that for every subset S ⊆ U

and every player i ∈ S, ξi(S) is non-negative.

We next introduce a weak monotonicity property (which is reminiscent of the

inverse of the core property).

Definition 3. Let ξ be the incremental approximate cost share function induced by

an approximation algorithm alg and an order function τ . We call ξ weakly monotone

if for all subsets S ⊆ T ⊆ U ,
∑

i∈S ξi(T ) ≥ C̄(S).

Intuitively, the weak monotonicity property in Definition 3 is easier to satisfy if

the (approximate) cost function is superadditive.

Let S∗ refer to a player-set that minimizes the social cost objective function, i.e.,

S∗ := arg min
S⊆U

(

C(S) +
∑

i/∈S

vi

)

.

We obtain the following theorem for generalized incremental mechanisms that im-

plement weakly monotone cost share functions.

Theorem 3. Let τ be a consistent order function and let alg be a τ-increasing algo-

rithm. Suppose that the incremental approximate cost share function ξ induced by alg

and τ is weakly monotone. Then, the generalized incremental mechanism M(alg, τ)

approximates social cost by a factor of α if

C̄(SM ∪ S∗)

C(S∗) + C(SM \ S∗)
≤ α.
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Figure 4: Illustration of the consistency property as used in the proof of Theorem 3.

Proof. We can bound the social cost approximation factor by

Π(SM )

Π∗
=

C̄(SM ) +
∑

i∈S∗\SM vi +
∑

i/∈SM∪S∗ vi

C(S∗) +
∑

i∈SM\S∗ vi +
∑

i/∈SM∪S∗ vi
≤

C̄(SM ) +
∑

i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ vi

≤
C̄(SM ) +

∑

i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ ξi(SM )
≤

C̄(SM ) +
∑

i∈S∗\SM vi

C(S∗) + C(SM \ S∗)
.

Here, the first inequality follows from the fact that a
b ≤ a−c

b−c for arbitrary real numbers

a ≥ b > c ≥ 0. The second inequality holds because vi ≥ ξi(S
M ) for every player

i ∈ SM , since i accepted and we assume truthful bidding. The last inequality follows

from weak monotonicity of ξ and the fact that C̄(S) ≥ C(S) for every set S ⊆ U .

We conclude the proof by showing that

∑

i∈S∗\SM

vi ≤ C̄(SM ∪ S∗)− C̄(SM ).

Without loss of generality, number the players in S∗ \ SM in the order in which they

were rejected by M , i.e., S∗ \ SM = {1, . . . , ℓ}. Fix a player i ∈ S∗ \ SM and consider

the iteration in which player i was removed. Let R and A be the sets of remaining

and accepted players at the beginning of this iteration, respectively. Define Ri as the

subset of players in S∗ ∪SM that were still remaining in the game when i was picked,

i.e., Ri := SM ∪ {i, i + 1, . . . , ℓ}. Let k := |A|. By Lemma 4, we have Rk = A.

Moreover, since i is chosen, we have Rk+1 = A ∪ {i}. Note that A ∪ {i} is a subset of

Ri. By the consistency of τ , the first k+1 elements of Ri and R must coincide and we

thus have A∪{i} = Rk+1 = Ri
k+1

. The same argument also yields that A = Rk = Ri
k;

see Figure 4 for an illustration. Therefore,

pi = C̄(A ∪ {i})− C̄(A) = C̄(Ri
k+1)− C̄(Ri

k) = ξi(R
i).

Since i rejected, we have vi < pi = ξi(R
i). Note that Ri = Ri+1 ∪ {i}. Exploiting

that ξ is weakly monotone, we obtain that

C̄(Ri) =
∑

j∈Ri

ξj(R
i) = ξi(R

i) +
∑

j∈Ri+1

ξj(R
i) ≥ ξi(R

i) + C̄(Ri+1).

Summing over all i ∈ {1, . . . , ℓ} yields

∑

i∈S∗\SM

vi <

ℓ∑

i=1

ξi(R
i) ≤

ℓ∑

i=1

(
C̄(Ri)− C̄(Ri+1)

)
= C̄(SM ∪ S∗)− C̄(SM ).
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We use Theorem 3 in Section 5 to derive constant social cost approximation guar-

antees for our generalized incremental mechanisms for scheduling problems.

4 Applications

We demonstrate the applicability of our approach by deriving generalized incremental

mechanisms for a series of fundamental cost sharing games. For some of the examples

given here, better cost sharing mechanisms (with respect to social cost approximation)

exist in the literature. However, the main purpose of this section is to show that our

mechanisms can easily be derived from existing approximation algorithms.

4.1 Spanning Tree, Steiner Tree and Traveling Salesman

We already argued that Prim’s algorithms gives rise to a generalized incremental

mechanism Mprim that is budget balanced and weakly group-strategyproof for the

minimum spanning tree problem (see Corollary 1). We can use Prim’s algorithm to

obtain 2-budget balanced cost sharing methods for the Steiner tree problem and the

traveling salesman problem. The Steiner tree problem asks for a minimum weight

tree that spans a subset of prespecified terminal vertices, possibly including some

non-terminal vertices. In the traveling salesman problem, the goal is to determine a

minimum weight tour through all vertices such that every vertex is visited exactly

once. Both problems admit a simple approximation algorithm that constructs a 2-

approximate solution from a minimum spanning tree (see, e.g., [45]). Using standard

arguments, we can therefore use the cost sharing mechanism Mprim to obtain 2-budget

balanced generalized incremental mechanisms for these problems.

Corollary 2. Prim’s algorithm yields a 2-budget balanced and weakly group-

strategyproof generalized incremental mechanism for the Steiner tree problem and for

the traveling salesman problem.

Our generalized mechanisms for the above problems match the budget balance fac-

tors of previously known cost sharing mechanisms [26, 29, 32], but are inferior in terms

of social cost approximation. While the known mechanisms achieve polylogarithmic

social cost approximation factors (see [41]), the situation is much worse for our gener-

alized incremental mechanisms: It is not hard to see that the minimum spanning tree

game contains the public excludable good problem as a special case and thus inherits

the social cost inapproximability of n (see Example 4).

4.2 Makespan Scheduling

In the minimum makespan scheduling problem P | |Cmax, a set of jobs U is to be

scheduled on a set of identical parallel machines to minimize the latest completion time

of a job, also called the makespan. The problem is NP-complete (see [18]). Graham’s

largest processing time (lpt) algorithm [20] is a 4/3-approximation. lpt is a list

scheduling algorithm: It first orders the jobs by non-increasing processing times and

then adds jobs one by one (according to this order) to the current schedule. Every new

job is assigned to the machine which currently has the least amount of processing time

assigned to it. We use Graham’s lpt algorithm to obtain a generalized incremental
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mechanism which beats the corresponding lower bound of essentially 2 for Moulin

mechanisms [5]. Let M lpt := M(lpt, τ) be the generalized incremental mechanism

induced by lpt and the order function τ which sorts the jobs in lpt’s list scheduling

order. Clearly, M lpt satisfies the properties of Theorem 2.

Corollary 3. The generalized incremental mechanism M lpt induced by Graham’s

lpt algorithm and τ is weakly group-strategyproof and 4/3-budget balanced for the

makespan scheduling problem P | |Cmax.

The makespan scheduling problem contains the public excludable good problem

as a special case and thus M lpt suffers from the same inefficiency as outlined in

Example 4. Bleischwitz et al. [6] give a 4/3-budget balanced and O(log n)-approximate

weakly group-strategyproof mechanism for the makespan problem, which outperforms

our mechanism in terms of social cost approximation.

4.3 Weighted Completion Time Scheduling without Preemp-

tion

The weighted completion time scheduling problem without preemption P | |∑i wiCi

asks to schedule a set U of n jobs with non-negative weights wi on m parallel machines

such that the total weighted completion time is minimized. Smith’s list scheduling al-

gorithm (sm) [44] orders the jobs by non-increasing weight per processing time ratios

wi/pi and iteratively assigns each job to a machine with smallest total load. It is opti-

mal on a single machine and (1 +
√
2)/2 ≈ 1.21-approximate in the general case [28].

In the unweighted setting, i.e., when wi = 1 for all i ∈ U , it reduces to the shortest pro-

cessing time policy and also delivers an optimal schedule. Even in the unweighted case,

no Moulin mechanism can achieve a budget balance factor better than (n + 1)/2 [7].

Our generalized incremental mechanisms significantly improve upon this. We define

the generalized incremental mechanism M sm := M(sm, τ) induced by Smith’s rule and

the order function τ which orders all jobs in the list scheduling order. M sm satisfies

the conditions of Theorem 2.

Corollary 4. The generalized incremental mechanism M sm induced by Smith’s al-

gorithm and τ is weakly group-strategyproof and budget balanced for P | |∑iCi and

1| |∑iwiCi, and 1.21-budget balanced for P | |∑iwiCi.

We will show in Section 5 that M sm achieves constant social cost approximation

guarantees for these problems.

4.4 Completion and Flow Time Scheduling with Release Dates

and Preemption

In the completion time scheduling problem with release dates and preemption

P |ri, pmtn|∑iCi, the goal is to schedule a set U of n jobs on m parallel machines

such that the total completion time is minimized. Each job i ∈ U becomes available at

its release date ri and jobs can be preempted. The shortest remaining processing time

(srpt) policy is an effective approximation algorithm for this problem. At any point

of time, srpt executes the m available jobs with the smallest remaining processing

times. srpt computes an optimal schedule in the single-machine case for the total

completion time and flow time objective [42]. Sitters [43] very recently showed that

srpt achieves an approximation factor of 1.25 for P |ri, pmtn|∑i Ci. Moulin mecha-

nisms cannot achieve a budget balance factor better than Ω(n) for these problems [7].
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We obtain the following superior results. For a given subset of jobs S ⊆ U , let τ(·, S)
be the order induced by increasing completion times in the srpt schedule for S. (If

two jobs are completed at the same time, we assume an arbitrary but consistent tie

breaking rule.) Let M srpt := M(srpt, τ) be the generalized incremental mechanism

induced by the srpt algorithm and τ . We prove in Section 5 that τ is consistent and

that srpt is τ -increasing. Using Theorem 2, we obtain the following theorem.

Corollary 5. The generalized incremental mechanism M srpt induced by the srpt

algorithm and τ is weakly group-strategyproof and budget balanced for 1|ri, pmtn|∑i Fi

and 1|ri, pmtn|∑iCi, and 1.25-budget balanced for P |ri, pmtn|∑i Ci.

We will prove in Section 5 that this mechanism also achieves constant social cost

approximation guarantees for these problems.

5 Completion Time Scheduling: Social Cost Ap-

proximation

In this section, we exploit Theorem 3 to prove social cost approximation factors for

our generalized incremental mechanisms for scheduling problems with completion time

objectives.

5.1 Weighted Completion Time without Preemption

We reconsider the non-preemptive weighted completion time scheduling problems in-

troduced in Section 4. We already showed (Corollary 4) that the generalized incre-

mental mechanism M sm := M(sm, τ) induced by Smith’s rule and the offer function

τ defined by non-increasing weight per processing time is weakly group-strategyproof

and achieves ρsm-budget balance, where ρsm is the approximation guarantee of Smith’s

rule. In this section, we show that M sm approximates social cost by 2ρsm.

Theorem 4. The generalized incremental mechanism M sm induced by Smith’s algo-

rithm and τ is weakly group-strategyproof, ρsm-budget balanced, and 2ρsm-approximate

for the respective weighted completion time scheduling problem without preemption.

We first prove the following lemma.

Lemma 6. Let alg be an algorithm for P | |∑i wiCi with cost function C̄. Let X and

Y be two disjoint sets of jobs. Then, the cost of an optimal schedule for X ∪ Y can be

bounded by C(X ∪ Y ) ≤ 2(C̄(X) + C̄(Y )).

Proof. We prove the inequality individually for each machine M̂ . Consider the jobs

X̂ ⊆ X and Ŷ ⊆ Y scheduled on M̂ in the runs of alg on X and Y , respectively. We

denote by ci the completion time of job i in his respective schedule, i.e., ci := C̄i(X)

for all i ∈ X̂ and ci := C̄i(Y ) for all i ∈ Ŷ .

Consider the schedule which processes all jobs in X̂ ∪ Ŷ on M̂ according to non-

decreasing ci. The completion time of a job i ∈ X̂ in this schedule is ci + ci∗ , where

i∗ denotes the last job in Ŷ that is processed before i. Since i∗ is processed before i,

we have ci+ ci∗ ≤ 2ci. By exchanging the roles of X and Y , we can show the same for

the completion time of every job i ∈ Ŷ .
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Since the cost of an optimal schedule for X ∪ Y is at most that of the schedule

produced by repeating the above procedure for each machine, we have

C(X ∪ Y ) ≤
∑

i∈X∪Y

wi · 2ci = 2
(∑

i∈X

wici +
∑

i∈Y

wici

)

= 2
(
C̄(X) + C̄(Y )

)
.

We can now prove Theorem 4.

Proof. It follows from Corollary 4 that M sm is weakly group-strategyproof and ρsm-

budget balanced. In order to obtain the social cost approximation guarantee, we show

that the induced cost sharing method ξ is weakly monotone. Consider an arbitrary

subset S ⊆ U of jobs. Note that the incremental approximate cost share ξi(S) of a

player i ∈ S with respect to S equals his completion time in the schedule output by

Smith’s rule for S. It is not hard to see that Ci(T ) ≥ Ci(S) for every i ∈ S ⊆ T .

Hence,
∑

i∈S ξi(T ) ≥
∑

i∈S ξi(S) = C̄(S). The social cost approximation factor now

follows from Lemma 6 (letting alg refer to an optimal algorithm) and Theorem 3.

The following example shows that our social cost analysis is tight, even in the

unweighted single machine case.

Example 5. Consider an instance of the single-machine completion time scheduling

problem 1|pi = 1|∑iCi on an even number of n jobs with valuations vi = i for

all i ∈ [n] := {1, . . . , n}. Assume that M sm orders the jobs according to increasing

valuations (note that we can enforce this by slightly perturbing the processing times)

and thus accepts all jobs. We have Π(SM ) = C̄([n]) = n(n + 1)/2. However, if we

exclude the first n/2 jobs from the scheduled set, we obtain a social cost of

C
([n

2

])

+

n/2
∑

i=1

vi = 2 ·
(n

4

(n

2
+ 1
))

=
1

4
n(n+ 2) ≥ Π∗.

We thus obtain a social cost approximation ratio that approaches 2.

5.2 Completion Time with Release Dates and Preemption

We reconsider the preemptive completion (and flow) time scheduling problems intro-

duced in Section 4. We prove the following result:

Theorem 5. The generalized incremental mechanism M srpt induced by the srpt

algorithm and τ is weakly group-strategyproof, ρsrpt-budget balanced, and 4ρsrpt-

approximate for the respective completion time scheduling problem with release dates

and preemption.

For the sake of clarity, we first consider the single machine case and comment on

the extension of the results given below to the parallel machine case at the end of this

section.

5.2.1 Single Machine Case

Consider the problem 1|ri, pmtn|∑i Ci of scheduling a set of jobs U on a single machine

to minimize the total completion time. The shortest remaining processing time (srpt)

policy solves this problem to optimality [42]. Throughout this section, we denote by
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Ci(S) the completion time of job i ∈ S in the srpt schedule for S ⊆ U . Note that by

optimality of srpt, we have C̄(S) = C(S) =
∑

i∈S Ci(S). As in Section 4, we define

τ(·, S) to be the order induced by increasing completion times in the srpt schedule,

i.e., τ(i, S) := Ci(S) for all i ∈ S, and let M srpt := M(srpt, τ) be the generalized

incremental mechanism induced by srpt and τ .

The proof of Theorem 5 relies on Lemmas 7 and 8 below. The most work goes

into showing that the order function τ is consistent and that srpt is τ -increasing.

However, we defer this part of the proof to the end of this section. Lemma 8 is used

to prove the social cost approximation factor.

Lemma 7. The order function τ is consistent. Moreover, srpt is τ-increasing.

Lemma 8. Let alg be an algorithm for P |ri, pmtn|∑iCi with cost function C̄. Let

X and Y be two disjoint sets of jobs. Then, the cost of an optimal schedule for X ∪Y

can be bounded by C(X ∪ Y ) ≤ 4(C̄(X) + C̄(Y )).

Proof. Phillips et al. [36] prove that any preemptive schedule for P |ri, pmtn|∑i Ci

can be turned into a non-preemptive schedule np with at most twice the cost. With

Lemma 6, we obtain C(X ∪ Y ) ≤ 2(Cnp(X ∪ Y )) ≤ 4(C̄(X) + C̄(Y )).

Assuming that Lemma 7 holds true, we can now prove Theorem 5.

Proof. Lemma 7 together with Theorem 1 imply that M srpt is weakly group-

strategyproof and budget balanced. To prove that M srpt approximates social cost,

we first show that ξ is weakly monotone. Fix some set T and let S ⊆ T . Consider the

srpt schedule for T . By removing all jobs in T \ S from this schedule, we obtain a

feasible schedule for S of cost at most
∑

i∈S Ci(T ), hence
∑

i∈S Ci(T ) ≥ C(S). Subse-

quently, it will become clear that the incremental cost share ξi(T ) of a job i ∈ T with

respect to T is equal to its completion time Ci(T ). We conclude that ξ is weakly mono-

tone. Now, the bound on the social cost approximation factor follows from Lemma 8

(letting alg refer to an optimal algorithm) and Theorem 3.

It remains to show that the order function τ induced by increasing completion

times in the srpt schedule is consistent and that srpt is τ -increasing. To this end,

we study the effect of removing a single job from the srpt schedule. We claim the

following:

Lemma 9. Let T ⊆ U . Suppose we remove an arbitrary job j from T . Define

S := T \ {j} as the set of remaining jobs. Let Ci(S) and Ci(T ) denote the completion

times of job i ∈ S in the srpt schedules for S and T , respectively. Then

1. Ci(S) = Ci(T ) for every job i ∈ S with Ci(T ) < Cj(T ); and

2. Ci(S) ≥ Cj(T ) for every job i ∈ S with Ci(T ) > Cj(T ).

Suppose this lemma holds true. We can then prove that τ is consistent and that

srpt is τ -increasing:

Lemma 7. We first prove consistency. Let S ⊆ T ⊆ U be two subsets ordered by τ

as S = {i1, i2, . . . , ip} and T = {j1, j2, . . . , jq}. Let k be minimal with jk ∈ T \ S.

Define j := jk to simplify notation. By definition of τ , for every job i = jl with

1 ≤ l < k, we have Ci(T ) < Cj(T ). Also, for every job i = jr with k < r ≤ q, we have

Ci(T ) > Cj(T ). Thus, by removing job j from T we obtain a new set T ′ = T \ {j}
such that Ci(T

′) = Ci(T ) for all i = jl with 1 ≤ l < k and Ci(T
′) ≥ Cj(T ) for all
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1 33 5
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T 1 2 23 34 5
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Cj(T )

Figure 5: The effect of removing a single job j = 3 from the srpt schedule on T =
{1, . . . , 5}. The upper part represents the input instance for T ; jobs are numbered
by increasing release times. The lower part shows the two srpt schedules for T and
S := T \{j}. The winning and losing jobs are indicated in black and gray, respectively.

i = jr with k < r ≤ q. Repeating the above procedure (with T ′ instead of T ), we

eventually remove all jobs in T \ S from T and conclude that il = jl for all 1 ≤ l < k.

It remains to prove that srpt is τ -increasing. Consider an arbitrary subset S ⊆
U of jobs and suppose S is ordered by τ as S = {i1, . . . , ip}. We need to argue

that C̄(Sk) ≥ C̄(Sk−1) for every 1 ≤ k ≤ p. The proof is by induction on k. For

k = p the claim follows since we remove a job j = ip with Cj(S) > Ci(S) for all

i ∈ S \ {j} and by Lemma 9, the completion times of all remaining jobs remain the

same. Thus C̄(Sp) − C̄(Sp−1) = Cj(Sp) = Cj(S) ≥ 0. Suppose the claim holds true

for all k + 1 ≥ ℓ for some 1 < ℓ ≤ p. We show that it remains true for k. Let

j = ik. We have Cj(S) > Ci(S) for all i ∈ Sk−1. The consistency of τ implies that

Cj(Sk) > Ci(Sk) for all i ∈ Sk−1. Thus, by Lemma 9, the completion times of all

jobs i ∈ Sk−1 remain the same if we remove job j from the srpt schedule for Sk. We

conclude that the incremental cost share of player j is exactly its completion time,

i.e., C̄(Sk)− C̄(Sk−1) = Cj(Sk) ≥ 0.

Intuitively, it is relatively easy to verify that Lemma 9 holds true: During the

lifetime (i.e., between release and completion time) of job j in the srpt schedule for

T , job j prevents some jobs, call them losing jobs, to be executed (because they have

a larger remaining processing time) while some other jobs, call them winning jobs,

prevent j from being executed (because they have a smaller remaining processing

time). Clearly, every losing job has a larger completion time than j, while every

winning job has a smaller completion time than j. Now suppose we remove job j from

the input set and consider the resulting srpt schedule. There are two crucial insights:

(i) nothing changes for the winning jobs, and (ii) whenever j was processed in the

srpt schedule for T , a losing job might now be processed in the srpt schedule for S;

however, this losing job will not be completed before time Cj(T ). See Figure 5 for an

illustration.

In order to turn this intuition into a formal proof, we first introduce some more

notation. Let ei(t) be the amount of time that has been spent on processing job i up

to time t. The remaining processing time xi(t) of job i at time t is xi(t) := pi − ei(t).

We call a job i active at time t if it has been released but not yet completed at this
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time, i.e., ri ≤ t < Ci. Let A(t) be the set of jobs that are active at time t. srpt works

as follows: At any time t ≥ 0, srpt schedules an active job i ∈ A(t) with minimum

remaining processing time, i.e., xi(t) ≤ xk(t) for all k ∈ A(t). We assume that srpt

uses a consistent tie breaking rule, e.g., if xi(t) = xk(t) for two different jobs i and k,

then schedule the one with smaller index.

Consider the srpt schedule for a set T ⊆ U . Let i, j ∈ A(t) be two jobs that are

active at time t. We define i ≺t j iff either xi(t) < xj(t) or xi(t) = xj(t) and i ≤ j.

Note that at any point of time t, srpt schedules the job i ∈ A(t) with i ≺t j for all

j ∈ A(t). Thus, if i ≺t j for some t, then i ≺t′ j for all t′ ∈ [t, Ci). We therefore

simply write i ≺ j iff there exists a time t with i ≺t j. Let σ(t) denote the job that is

executed at time t in the srpt schedule for T ; we define σ(t) = ∅ if A(t) = ∅.
Let j ∈ T be an arbitrary job and consider the time interval [rj , Cj). We define the

set Cj of jobs that are competing with j as Cj := {i ∈ T \ {j} : [ri, Ci) ∩ [rj , Cj) 6= ∅}.
Note that j /∈ Cj. We partition the jobs in Cj into a set Wj of winning jobs and a

set Lj of losing jobs with respect to j: Wj := {i ∈ Cj : i ≺ j} and Lj := Cj \ Wj.

Intuitively, suppose i and j are both active at some time t. If i is a winning job, then

i prevents j from being executed by srpt. On the other hand, if i is a losing job, then

j prevents i from being executed.

We next investigate the effect of removing a job j from T . We use the superscript

S if we refer to the srpt schedule for S := T \ {j}.
Lemma 10. Consider the two srpt schedules on job sets T and S := T \ {j}. For

every job i ∈ Cj that is active at time t ∈ [rj , Cj),

xS
i (t) = xi(t) if i ∈ Wj and xS

i (t) ≥ xj(t) if i ∈ Lj .

Proof. We partition the time interval [rj , Cj) into a sequence of maximal subintervals

I1, I2, . . . , If such that the set of active jobs remains the same within every subinterval

Iℓ := [sℓ, eℓ). We prove by induction over ℓ that the claim holds for every t ∈ [rj , eℓ).

Note that both schedules are identical up to time rj = s1. If σ(s1) 6= j, then both

schedules process the same job during I1 and the claim follows. Suppose σ(s1) = j.

This implies that A(s1) ∩Wj = ∅ and thus all jobs in A(s1) \ {j} = AS(s1) are losing

jobs. If AS(s1) = ∅, the claim follows. Otherwise, let k := σS(s1) be the job that is

processed in the schedule for S. Since k is a losing job, we have xS
k (s1) = xk(s1) ≥

xj(s1). Since k and j receive the same processing time during I1 in their respective

schedules, the claim holds for all t ∈ [rj , e1).

Now, assume that the claim is true for every t ∈ [rj , eℓ−1) for some ℓ > 1. We

show that it remains true during the time interval Iℓ. By the induction hypothesis,

xS
i (t) = xi(t) for every job i ∈ Wj that is active at time t ∈ [rj , eℓ−1). This implies

that a job j ∈ Wi is executed at time t ∈ [rj , eℓ−1) in the schedule for T iff it is

executed at time t in the schedule for S. We thus have AS(sℓ) ∩ Wj = A(sℓ) ∩ Wj.

Moreover, xS
i (t) ≥ xj(t) for every job i ∈ Lj that is active at time t ∈ [rj , eℓ−1). Since

xj(t) > 0 for every t ∈ [rj , Cj), every job i ∈ Lj that is active at time t ∈ [rj , eℓ−1)

in the schedule for T must also be active at time t in the schedule for S. Thus,

AS(sℓ) ∩ Lj = A(sℓ) ∩ Lj . We now distinguish two cases:

(i) First, assume σ(sℓ) =: k ∈ Wj . Job k then has smallest remaining processing

time, i.e., xk(sℓ) ≤ xi(sℓ) for all i ∈ A(sℓ). We conclude that

xS
k (sℓ) = xk(sℓ) ≤ xi(sℓ) = xS

i (sℓ) ∀i ∈ A(sℓ) ∩Wj = AS(sℓ) ∩Wj

xS
k (sℓ) = xk(sℓ) ≤ xj(sℓ) ≤ xS

i (sℓ) ∀i ∈ A(sℓ) ∩ Lj = AS(sℓ) ∩ Lj .

25



Since we assume that srpt uses a consistent tie breaking rule, this implies that

σS(sℓ) = k and the claim follows.

(ii) Now, suppose σ(sℓ) = j. (Note that σ(sℓ) ∈ Lj is impossible.) Then xj(sℓ) ≤
xi(sℓ) for every i ∈ A(sℓ) and A(sℓ)∩Wj = ∅. But then we also have AS(sℓ)∩Wj = ∅
and thus AS(sℓ) ⊆ Lj . If A

S(sℓ) = ∅, the claim follows. Otherwise, let k := σS(sℓ) ∈
Lj be the job that is executed at time sℓ in the schedule for S. Since xS

k (sℓ) ≥ xj(sℓ)

and the remaining processing times of k and j in their respective schedules reduce by

the same amount during Iℓ, the claim follows.

Using Lemma 10, we can now easily prove Lemma 9.

Proof. Let i ∈ S be a job with Ci(T ) < Cj(T ). If i is not competing with j, then

rj ≥ Ci and thus removing j from the schedule does not change the completion time

of i, i.e., Ci(S) = Ci(T ). Otherwise, i is competing with j, but since Cj(T ) > Ci(T ),

i is a winning job with respect to j. By Lemma 10, job i is completed at the same

time in the srpt schedules for S and for T and thus Ci(S) = Ci(T ).

Next, consider a job i ∈ S with Ci(T ) > Cj(T ). The claim clearly holds if ri ≥
Cj(T ) since Ci(S) ≥ ri. Assume ri < Cj(T ). Then i is competing with j and i is a

losing job with respect to j. By Lemma 10, job i cannot be completed before time

Cj(T ) in the srpt schedule for S. Thus Ci(S) ≥ Cj(T ).

5.2.2 Parallel Machine Case

The crucial insight in the single machine case is Lemma 9. The same property holds in

the parallel machine case if we assume a consistent tie breaking rule between jobs with

equal remaining processing times. Showing that the computed output set is 4ρsrpt-

approximate proceeds exactly along the same lines as in Theorem 5 (in fact, Lemma 8

is formulated for the multiple machine case). The only difference is that srpt produces

a schedule whose total completion time is at most 1.25 times the optimum [43].

6 Connections to Other Frameworks

6.1 Acyclic Mechanisms

Mehta, Roughgarden, and Sundararajan [32] introduced the general framework of

acyclic mechanisms, which we briefly review here. Our generalized incremental mech-

anisms are a subclass of acyclic mechanisms and can be viewed as being complementary

to Moulin mechanisms in this framework.

An acyclic mechanism is defined in terms of a cost sharing method ξ : U × 2U → R

and an offer function τ , which defines for every subset S ⊆ U and every player i ∈ S

a non-negative offer time τ(i, S). The acyclic mechanism A(ξ, τ) induced by ξ and τ

receives the bid vector b as input and proceeds as described in Algorithm 2.

For a given subset S ⊆ U and a player i ∈ S, define the following partition of the

player set S into three subsets with respect to the offer time of i. Let L(i, S), E(i, S)

and G(i, S) be the sets of players with offer times τ(·, S) strictly less than, equal to, or

strictly greater than τ(i, S), respectively. The following definition is crucial to achieve

weak group-strategyproofness.

Definition 4. Let ξ and τ be a cost sharing method and an offer function on U .

The offer function τ is valid for ξ if the following two properties hold for every subset

S ⊆ U and player i ∈ S:
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Algorithm 2: Acyclic mechanism A(ξ, τ) induced by ξ and τ .

Input: Set of players U and bid vector b = (bi)i∈U

Output: Allocation vector x = (xi)i∈U and payment vector p = (pi)i∈U

1 Initialize S := U .
2 if ξi(S) ≤ bi for every player i ∈ S then halt and output the characteristic
vector x of S and payments p := (ξi(S))i∈U .

3 Among all players in S with ξi(S) > bi, let i
∗ be one with minimum τ(i, S)

(breaking ties arbitrarily).
4 Set S := S \ {i∗} and return to Step 2.

(P1) ξi(S \ T ) = ξi(S) for every subset T ⊆ G(i, S);

(P2) ξi(S \ T ) ≥ ξi(S) for every subset T ⊆ G(i, S) ∪ (E(i, S) \ {i}).

A cost sharing method ξ is called β-budget balanced if for every subset S ⊆ U

we have C̄(S) ≤ ∑

i∈S ξi(S) ≤ β · C(S). We summarize the main result of Mehta,

Roughgarden, and Sundararajan [32] in the following theorem:

Theorem 6 ([32]). Let ξ be a β-budget balanced cost sharing method on U and let τ

be an offer function on U that is valid for ξ. Then, the induced acyclic mechanism

A(ξ, τ) is β-budget balanced and weakly group-strategyproof.

Our interest in generalized incremental mechanisms was initiated by the following

simple observations. Consider the offer function τ of an acyclic mechanism. For a

given set of players S ⊆ U , τ divides S into subsets of players with equal offer times

τ(·, S). We like to think about acyclic mechanisms in terms of such maximal player

sets with equal offer times, and call them clusters. Depending on the size of these

clusters, we can illustrate the landscape of acyclic mechanisms as follows: Towards

one end, assume that every set S constitutes its own cluster containing all players in

S. Then, Definition 4 reduces to (P2), which is equivalent to the definition of cross-

monotonicity (cf. [33]). Hence, acyclic mechanisms with maximum cluster size are

Moulin mechanisms. Towards the other end, consider an acyclic mechanism for which

all clusters are singletons, i.e., in every set S, every player has a unique offer time. In

this case, Definition 4 reduces to (P1) and once a cost share is announced to a player,

it can never be changed again.

Following these observations, our order functions correspond to offer functions that

produce only singleton clusters, i.e., offer functions τ(i, S) in which each i ∈ S receives

a unique offer time with respect to S. We call this subclass of acyclic mechanisms sin-

gleton mechanisms (see also [8]). Here we study singleton mechanisms in which every

player is charged the incremental approximate cost share of adding him to the current

solution. It can easily be verified that consistent order functions are valid (according

to Definition 4) for the induced incremental approximate cost share functions defined

in this paper. Intuitively, the reason is that the cost share of a player only depends

on the set of players that precede him in the order of τ . As a consequence, gener-

alized incremental mechanisms fulfill all conditions of Theorem 6 and thus belong to

the class of acyclic mechanisms. Bleischwitz et al. [6] showed that acyclic mechanisms

are weakly group-strategyproof against collectors. As a consequence, our generalized

incremental mechanisms also satisfy this slightly stronger truthfulness notion.
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6.2 Scheduling with Rejection

It is easy to verify that every cost sharing mechanism that approximates social cost

by a factor of α defines an α-approximate algorithm for the underlying scheduling

problem with rejection. Let P be an arbitrary scheduling problem. For every job

i ∈ U , let zi be the rejection penalty for the price-collecting variant of P . We define

a cost sharing game on P by identifying every player’s valuation with the penalty of

his job, i.e., vi := zi for all i ∈ U . An α-approximate mechanism for this cost sharing

game outputs a served set of players SM and a feasible solution of cost C̄(SM ) for this

set, with social cost

C̄(SM ) +
∑

i/∈SM

vi ≤ α · min
S⊆U

(

C(S) +
∑

i/∈S

vi

)

.

Now, it is easy to see that the algorithm that schedules SM and rejects all other jobs

outputs an α-approximate solution to the scheduling problem with rejection.

Theorem 7. Let M be a mechanism that approximates social cost by a factor α for

a scheduling problem P. Then M is an α-approximation algorithm for the respective

scheduling problem P with rejection.

See Table 1 for the approximation ratios that we obtain for the respective schedul-

ing problems with rejection in this paper.

7 Conclusion

We presented a general approach to derive weakly group-strategyproof mechanisms

from approximation algorithms. The approach is applicable whenever the approxima-

tion algorithm exhibits an order function that is consistent and with respect to which

the approximate cost is monotonically increasing. We provided a series of examples

showing that many approximation algorithms naturally give rise to such order func-

tions. It turned out that our mechanisms are particularly efficient for completion time

scheduling problems. We are confident that our approach can be applied to various

other combinatorial optimization problems not considered in this paper. It would be

interesting to see more examples for which good social cost approximation guarantees

can be proven. The most promising problems in this context seem to be ones with

superadditive cost functions.

Our generalized incremental mechanisms belong to the class of singleton mecha-

nisms that constitutes a subclass of acyclic mechanisms which can be seen as being

complementary to Moulin mechanisms. Although different cost share definitions are

conceivable, we concentrated on singleton mechanisms with incremental approximate

cost shares in this paper. These type of mechanisms are sufficient to exploit the full

strength of existing approximation algorithms for completion time scheduling prob-

lems and allow to derive mechanisms with constant budget balance and social cost

approximation guarantees. It would be interesting to understand the limitations of

singleton mechanisms in general. Moreover, stepping back to the full generality of

acyclic mechanisms, some of the most intriguing open problems are to find a general

way to construct acyclic mechanisms from approximation algorithms and to find a

general property for proving approximate social cost, alike the summability property

for Moulin mechanisms (see [40]).
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