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Synopsis 
We consider time-dependent perturbations of generators of strongly continuous semigroups on a 

Banach space. The perturbations map the Banach space into a bigger space, which is the second dual 

of the original space in a specific semigroup sense. Using the theory of dual semigroups we show that 

the solutions of a generalised variation-of-constants formula define an evolutionary system. We 

investigate continuity and differentiability properties of this evolutionary system and its dual system 

and examine in what sense the perturbed generator and its adjoin! generate these evolutionary 

systems. It is shown that the results apply naturally to retarded functional differential equations and 

age structured population dynamics. 

1. Introduction 

In a recent paper (5] we considered the abstract Cauchy problem 

du(t) --= A 0u(t) + Bu(t), 
dt 

u(O) =x EX, 

t>O} (1.1) 
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where A 0 is the infinitesimal generator of a C0-semigroup {1Q(t)},e:;0 of bounded 
linear operators on a Banach space X, and B is a bounded linear operator from X 
not into X but into a bigger space _x-0*. Here _x-0 = D (An is the largest subspace 
of X* (the normed dual of X) on which the dual semigroup {Tri(t)}1e:;o is strongly 
continuous and _x-0* is the dual of x 0 . The semigroup T(j(t) leaves x 0 invariant 
so by restricting {Tri(t)}1s;:;0 to X 0 one can define the strongly continuous 
semigroup {T~(t)},e;;0 on _x-0 with generator A~ (the part of A6 in X 0 ). If the 
canonical injection j:X-X0 *, defined by (x0 ,j(x))=(x,x0 ), maps X onto 
_x-0°, X is called sun-reflexive (with respect to A 0) and X00 is identified with X. 
For more details on dual semigroups, see [4, 15]. Those results needed in the 
present paper are summarised in [5]. 

In [5] we showed that if X is sun-reflexive, then the variation-of-constants 
formula 

T(t)x = To(t)x + [ TW*(t - r:)BT(r:)x dr:, x EX (1.2) 

uniquely defines a C0-semigroup { T(t)} 1s;:;0 on X with generator A =AW* + B, 
D(A) = {x E D(A~*): AW*x +Bx EX}. Thus T(t)x can be viewed as a mild 
solution to (1.1), where one actually should replace A 0 by A~*. 

In this paper we shall generalise the results in [5] to the case of non­
autonomous perturbations where Bis not fixed but depends on t. We show that if 
{B(t)},e(O,TJ is a strongly continuous family of bounded linear operators from X 
into ~*, then the variation-of-constants formula 

U(t, s)x = T0(t-s)x + f TW*(t- r:)B(r:)U(r:, s)x dr:, x EX, s < t, (1.3) 

determines an evolutionary system on X. We investigate whether it is possible, as 
in the autonomous case, to extend { U(t, s)}0:;;3 ;,;;1;,;;r to X 0 * by taking adjoints and 
restrictions. The answer to this question depends on continuity properties of 
{ U(t, s )}o:as;.;;1;,;;r, which in turn depend on continuity properties of the mapping 
t-B(t). 

Guided by the autonomous case one expects that {U(t, s)}o;,;;s;,;;1;,;;r is in some 
sense generated by the family {AW*+ B(t)}1e(O,TJ· We shall therefore investigate 
under what conditions and in what sense U(t, s) is a solution of the forward 
problem 

a 
ot U(t, s) =(AW*+ B(t))U(t, s), 

U(s, s) =I, 

and of the backward problem 

a 
as U(t, s):::: -U0 *(t, s)(A~* + B(s)), 

U(t, t):::: /. 

(1.4) 

(1.5) 

So the theory of this paper includes existence, uniqueness, representation and 
regularity of solutions as well as computation and representation of adjoints. 
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One of the main applications we have in mind concerns retarded functional 
differential equations 

i(t) = f x(t - 8)des(t, 8), t >s,} 
x(s + 8) = </>( 8), 8 e [-1, O], 

(1.6) 

where for each t, s(t, ·) is a normalised function of bounded variation on [O, 1], 
and <P is a given initial function, defined and continuous on [ -1, O]. The subscript 
8 of din (1.6) means that 8 is the integration variable. In his book [14, Chap. 6], 
Hale treats equation (1.6) using a variation-of-constants formula involving the 
so-ca!led fundamental matrix, which by definition is the solution of (1.6) with 
discontinuous initial condition x(t) = 0, s -1 ~ t < s, x(s) =I (=the identity 
matrix). Since Hale treats problem (1.6) in the space C of continuous functions, 
the fundamental matrix does not fit naturally into the framework of evolutionary 
systems on C. To obtain a variation-of-constants formula of the type (1.3) for the 
problem (1.6) we view (1.6) as a non-autonomous perturbation problem, where 
the equation i(t) = 0, regarded as a delay equation, plays the role of the 
unperturbed equation. The autonomous version of (1.6) has already been 
discussed in this framework by Diekmann [10]. It turns out that X 0 * = Rn x 
L""([-1,0];Rn) and B(t)</>=((</>,s(t,-)),0), see Examples 3.3 and 4.10 for 
more details. Of course the fundamental matrix solution is well-defined in Rn x 
L ""([ -1, O]; Rn). In this manner we find a framework which allows us to rewrite 
parts of [14] in a functional analytic spirit. 

Another important application concerns the dynamics of age-structured popu­
lations. The autonomous case was treated in detail in [5]. The results of the 
present paper apply to situations where fecundity depends explicitly on time. 

In both the aforementioned applications the operator B(t) or B*(t) has a fixed 
finite dimensional range. In Section 6 we will systematically investigate the special 
properties which derive from such a range condition. Thus it appears that the 
present functional analytic framework unifies at least the theory of delay 
equations and of age dependent population problems. Applications to parabolic 
equations are under study and the results obtained so far are promising. 

Abstract evolutionary systems and their connection with Cauchy problems have 
been studied by several authors, beginning with Kato [16] and including Tanabe 
[21], Belleni-Morante [3], Dorroh and Graff [U], Pazy [19] and Kellermann [17]. 
The theory of semigroups on sun-reflexive Banach spaces has been applied by 
Amann [1]. 

We close this section with some remarks on notation and terminology. If Z is a 
Banach space and Z* its dual, we use (z, z*) and (z*, z) interchangeably to 
denote the value of z* at z, whenever z E Z, z* e Z*. Elements of X and X 0 * 
will mostly be written to the left and elements of X* and x 0 to the right in the 
duality brackets. Although the weak*-topology will play an important role, all 
topological concepts relating to a Banach space or its dual will refer to their 
respective norm topologies, unless the contrary is explicitly stated. 

Integrals of functions with values in a dual Banach space are regarded as weak* 
Riemann integrals. This is sufficient for our purposes since we shall only 
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encounter integrals of weak*-continuous functions. So if Z is a Banach space and 
t~ z*(t) is continuous from [a, b] to Z* equipped with its weak*-topology, then 
f:z*(i')dr is defined as the unique element of Z* satisfying (z, f~z*('r)dr) = 
f~ (z, z*(r)) dr for all z e Z. 

If Y and Z are Banach spaces, then 9JJ(Y, Z) denotes the Banach space of all 
bounded linear operators from Y to Zand ~(Y, Y) is abbreviated to ~(Y). 

2. Evolutionary systems and the variation-of-constants formula 

Let X be a Banach space and let {1Q(t)}1;;:;0 be a C0-semigroup with generator 
Ao on X and assume that X is sun-reflexive with respect to A 0 • Let T > 0 and let 
{B(t)}te[O,T] be a family of bounded linear operators from x tor*. We assume 
that {B(t)}ie(O,TJ is strongly continuous, that is, for each x e X, the mapping 
t~ B(t)x is continuous from [O, T] to X 0 *. These basic assumptions will be valid 
throughout the paper. 

DEFINITION 2.1. Let T>O and let L\:={(t,s)eR2: O~s~t~T}, ..::\*:= 
{(s, t) e R2 : 0 ~ s ~ t ~ T}. A two-parameter family { U(t, s)}(t,s)e~ of bounded 
linear operators on a Banach space X is called a forward evolutionary system on 
X if the following two conditions are satisfied: 

(i) U(s, s) =I (the identity), 0 ~ s ~ T, 
(ii) U(t, r)U(r, s) = U(t, s), O~s ~r~t~ T. 

A two-parameter family {V(s, t)}(s,1)e~· of bounded linear operators on X is 
called a backward evolutionary system if 

(i)* V(t, t)=l, O~t~T; 
(ii)* V(s,r)V(r,t)=V(s,t), O~s~r~t~T. 

When no confusion can arise, or when a statement holds for both types of 
systems, we shall omit the adjective forward or backward. An evolutionary 
system {U(t, s)}(t,s)e~ [{V(s, t)}(s,i)e~·l is said to be strongly continuous if for 
every x eXthe mapping (t, s)~ U(t, s)x [(s, t)~ V(s, t)x] is (jointly) continuous 
from L\[ Ll *] to X. 

Let {U(t, s)}ci.s)e6 be a forward evolutionary system and, for every (t, s) e..::\, 
let U(t, s)* e @(X*) be the adjoint operator of U(t, s). Define (nota bene the 
position of the star) U*(s, t) = U(t, s)* for 0 ~ s ~ t ~ T. Since 

(x, U*(s, r)U*(r, t)x*) = (U(t, r)U(r, s)x, x*) 

= ( U(t, s)x, x*) = (x, U*(s, t)x*), 

we see that { U*(s, t)}cs.i)e6 • is a backward evolutionary system. We call it the 
dual system of { U(t, s)}(t,s)e6 · Exactly as above one shows that the dual of a 
backward system is a forward system. 

Our first objective is to show that the variation-of-constants formula (1.3) 
defines an evolutionary system on X and to derive some basic properties of the 
dual system. Suppose •~ U(r, s)x is continuous from [s, T] to X. Then the 
integral term on the right-hand side of (1.3) is a well-defined element of x0 *. But 
for (1.3) to hold, the integral should belong to X. The following lemma implies 
that this is indeed the case. 
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LEMMA 2.2. Let f: ~ ~ x8* be continuous. Then the function F defined by 

F(t, s) = f T'R*(t- r)f(r, s) d-r:, (t, s) E ~ 

is continuous from ~ to X. 

The proof is very similar to that of [5, Theorem 3.2] and is therefore omitted. 
The proof actually shows that F maps into .x8° and sun-reflexivity is only used to 
identify x00 with x. 

Lemma 2.2 makes it possible to prove existence and uniqueness of 
{ U(t, s)}(t,s)eA by successive approximations. 

THEOREM 2.3. The variation-of-constants formula 

U(t,s)x=T0(t-s)x+ f Tif*(t-r)B(-c)U(-r:,s)xdr, (t,s)E~, xEX, (2.1) 

uniquely defines a strongly continuous forward evolutionary system 
{ U(t, s )}(t.s)eA' satisfying 

JJU(t, s)JI ~ Melw+MK(1.s)J(1-s), (2.2) 

where Mand ware such that llTri(t)JI ~Mew' and K(t, s):= sup JIB(r)JI. The 
generation expansion S~t'~l 

"' 
U(t,s)= L Un(t,s), (2.3) 

n=O 

where U0(t, s) = To(t-s), Un(t, s)x = J~ Tr;}*(t- -c)B(-c)Un_ 1(-r:, s)xdr:, converges 
in the uniform operator topology of 9JJ(X) uniformly on ~. 

The proof employs only standard arguments very similar to those of [19, 
Proposition 1.2, p. 77] and is therefore omitted. Notice that whenever t~ llB(t)ll 
is measurable we can sharpen the estimate (2.2) and replace it by 

llU(t, s)JI ~ M exp {f [w + M llB(r)JI] dr: }. (2.4) 

In the autonomous case the infinitesimal generator of the perturbed system is 
given by the part A of Aif* + B in X. We close this section by deriving the 
non-autonomous analogues of this result both in the forward and backward 
setting. Let A(s) be the part of Aif* + B(s) in X, i.e. 

A(s)x = Aif*x + B(s)x, 

x E D(A(s)) := {x E D(Aif*): Aif*x + B(s)x EX}. 

LEMMA 2.4. Let x E D(A(s )). Then (1/(t - r))( U(t, r)x - x) ___,. A(s )x as r, t--c> s, 
r <t. 

Proof The variation-of-constants formula (2.1) implies that 

1 1 1 J' - (U(t, r)x - x) =- (T0(t - r)x - x) +- Tif*(t - r:)B(-r:)U(-r:, r)x dr:. 
t-r t-r t-r r 
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By the strong continuity of {B(t)}1E[O.TJ and {U(t, s)}u.s)•~' it follows that fort 
and r tending to s, r < t, we have 

0 = lim {-1-(U(t, r)x -x) - - 1-('I;it- r)x -x) 
t-r t-r 

- - 1-J' T~*(t - r)B(s)x dr} 
t - r r 

= lim {-1- ( U(t, r)x -x) - - 1- ('-' T~*(r)(A~*x + B(s)x) dr:}. 
t - r t - r Jo 

As A~*x + B(s )x e X, the assertion follows. D 

THEOREM 2.5. Let x E D(A(s)). Then 

a+ 
at U(t, s)xli=s=A(s)x, 

a 
- U(t, s)x = -U(t, s)A(s)x, os 

(2.5) 

(2.6) 

where the right derivative in (2. 5) and the derivative in (2. 6) are in the norm 
topology of X. 

Proof. Formula (2.5) immediately follows from Lemma 2.4. In order to show 
(2.6) let h > 0. Then 

1 1 h ( U(t, s - h) - U(t, s))x = U(t, s) h ( U(s, s - h)x - x)~ U(t, s)A(s)x, 

by Lemma 2.4. Further 

1 h (U(t, s)- U(t, s + h)) 

1 = U(t, s + h) h ( U(s + h, s )x - x) 

= U(t, s +h)(l(u(s +h, s)x-x)-A(s)x) + U(t, s + h)A(s)x 

~ U(t, s )A(s )x for h i 0, 

by Lemma 2.4, the strong continuity of U(t, s) on ~ and the uniform 
boundedness of llU(t,s+h)ll, O~h~l. D 

Theorem 2.5 gives our first answer to the question of the sense in which 
A~*+ B(s) generates the evolutionary system { U(t, s)}(t,s)E~· It should be 
compared with [19, Theorem 5.3.1]. 

3. Continuity of the dual system and invariance of X(') 

Recall that x8 is by definition the largest subspace of X* on which the 
semigroup {T~(t)},;;;;0 is strongly continuous. In [5, Lemma 4.3] we showed that 
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in the case of a time-independent perturbation B: X-7 X 0 * the adjoint 
{ T*(t)} 1;;:; 0 of the perturbed semigroup leaves X 0 invariant and X 0 is the largest 
subspace on which {T*(t)}i;;:;0 is strongly continuous. However, when the 
perturbation B depends on time, the situation is not that simple and we have to 
investigate carefully the relation between various continuity properties of the dual 
evolutionary system {U*(s, t)}(s,t)E6" and invariance of x 0 . Invariance of x 0 is 
important, since it enables us to define { U0 (s, t)}(s,r)et!.* and hence to obtain the 
extension { U 0 *(t, s)}(t,s)E6 of { U(t, s)}(t,s)e6· 

LEMMA 3.1. The following conditions are equivalent: 
(i) x* E x8. 
(ii) llU*(s, t)x* -x*ll-+0 as (t-s) t 0 uniformly for (s, t) E ~*. 

(iii) II U*(s, t)x* - x*ll-+ 0 ass it for all t E (0, T]. 
(iv) llU*(s,t)x*-x*ll-+OasttsforsomesE[O, T). 
(v) t-+ U*(s, t)x* is continuous [s, T]-+ X* uniformly for s E [O, T]. 

Proof. We have 

U(t, s) = T0(t-s) + W(t, s) 

where 

W(t, s)x = f T~*(t - r:)B(r)U(r, s)x dr:. 

(3.1) 

(3.2) 

Since the integrand in (3.2) is bounded, we have llW(t, s)*ll = llW(t, s)ll ~ 
C(t-s) for some constant C<oo. Therefore llW(t,s)*ll-70 as (t-s)tO 
uniformly for (s, t) E ~ *. The identity 

U*(s, t)x* -x* = [n(t- s)x* - x*] + W(t, s)*x* 

together with the definition of x 0 now prove that: 

(iii) 

(i) =?(ii)~ ');(i). 
(iv)'l" · 

Let (ii) hold. Then the estimates 

and 

llU*(s, t+h)x* - U*(s, t)x*ll 

=II U*(s, t)U*(t, t + h)x* - U*(s, t)x*ll 

~ llU*(s, t)ll llU*(t, t+h)x*-x*ll 

II U*(s, t - h)x* - U*(s, t)x*ll 

= 11 U*(s, t - h )x* - U*(s, t - h) U*(t - h, t)x* II 
~ 11 U*(s, t - h) 11 llx* - U*(t - h, t)x* 11 

(3.3) 

(3.4) 

(3.5) 

and the fact that II U*(s, t)ll is uniformly bounded on ~ * show that (v) holds. 
Finally (v) trivially implies (iv). D 
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LEMMA 3.2. The subspace r is invariant under U*(s, t) if and only if 
s-+ U*(s, t)x0 is left-continuous from [O, t] to X* for every x 0 e X 0 and every 
t e (0, T]. 

Proof. This follows immediately from the equivalence (i) <:::>(iii) of the preced­
ing lemma and the identity 

II U*(s - h, t)x0 - U*(s, t)x0 11 

=II U*(s - h, s)U*(s, t)x0 - U*(s, t)x0 11, h > 0. (3.6) D 

The following example shows that r need not be invariant. 

EXAMPLE 3.3. Retarded functional differential equations (cf [10]). 
We consider the retarded functional differential equation (1.6). As the space X 

we choose X= C([-1, O];W) of initial functions. X can be identified with 
{(a, </>) e Rn X C([-1, O]; Rn): <J>(O) =a}. X* is represented by NBV([O, 1]; Rn'), 
the space of all row-vector-valued functions of bounded variation which vanish on 
(-oo, O], are right-continuous on (0, 1) and constant on [1, oo), with duality pairing 

(</>,/) = f df(•)<J>(-•), <P eX, f eX*. (3.7) 

The unperturbed equation x = 0, considered as a delay equation, gives rise to a 
C0-semigroup {T0(t)}1;;:;o on X defined by 

[T.(t)</>](8)={<f>(8+t), 8+t~O, 8e[-1 O]. (3.8) 
0 cf>(O), 8 + t > 0, ' 

{T~(t)} 1;;:;o is translation in the other direction and fer if and only if it is 
absolutely continuous on (0, 1). It follows that X 0 is the space of all functions f of 
the form 

{
O, 

f(8) = c + f g(r:) dr, 

8 e (-oo, O], 

8>0, 
(3.9) 

for some row vector c e Rn" and g e L 1(R+; w·) with supp g c [O, 1]. Thus r 
can be represented by w· x L1, L 1 = {g e L 1(R+;Rn"): suppg c (0, l]}, and x 0 * 
can be represented by Rn x L 00([-l, O]; Rn) with pairing 

((a,cf>),(c,g))=ca+ f g(•)<P(-r)dr:, (3.10) 

(a, </J) er*, (c, g) er. {T~(t)}1 ;;:;0 is given by 

and A~* by 

T~(t)(c, g) = (c + f g(r:) dr:, g(t + ·)), 

D(A~*) ={(a, </J): <P Lipschitz continuous, </J(O) =a}, 

Agi*(a, </J) = (0, </>'). 
For more details, see (10]. 

(3.11) 

(3.12) 
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When the perturbation B(t): X ~ X 0 * is defined by 

B(t)</> = ( ( </>, '(t, ·)}, 0) 

the problem (1.6) can be written abstractly as 

du(t) dt = A:f*u(t) + B(t)u(t), 

u(s) = </>. 

153 

(3.13) 

(3.14) 

A rigorous proof that the evolutionary system { U(t, s )}(t.s)et. corresponding to 
(3.14) (i.e. given by the variation-of-constants formula (2.1)) is indeed the 
evolutionary system corresponding to (1.6) (i.e. [ U(t, s )<I>]( 8) = x(t + 8; <I>), 
8 E [-1, OJ) will be given in Section 6. 

For the rest of this example we take n = 1. Assume that ' is given by 
'(t, 8) = H(8 - t), t E (0, 1). Here His the Heaviside function. Then B(t)<j> = 
(</>(-t), 0) so {B(t)}1e[o.i] is strongly continuous. In this case equation (1.6) 
reduces to 

i(t) = x(O), t > s, } 

x(s+8)=<j>(8), 8e[-l,O]. 

The solution x(t; <I>) of (3.15) is given by 

{ <j>(t-s) 
x(t)= </>(0)+</>(-s)(t-s), 

and thus 

s-l~t~s, 

s~t~l. 

(3.15) 

(3.16) 

{ </>(t-s + 8), -1~8~ -(t-s), 
[U(t, s)</>)(8) = </>(O) + <j>(-s)(t-s + 8), -(t-s)~ 8 ~O. (3. l7) 

Let f Er have the representation (3.9). Then 

( U(t, s )</>, f) 

= c[ U(t, s )<I> )(0) + f g( r)[ U(t, s )</> )( -r) dr 

= [ c + L-s g(r) dr ]<P(O) + L-s [ c + r g(8) de J dr<j>(-s) 

11-(t-s) 

+ 
0 

g(t-s+r)</>(-r)dr, (3.18) 

from which it follows that 

[ U*(s, t)f]( 8) = [ c + f-s g( r) dr JH( 8) . 

+ L-s [ c + r g(u) du J drH(8 - s) + L~s+li g(r) dr. (3.19) 
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We see from (3.19) that unless f = 0 (i.e. c = 0, g = 0) U*(s, t)f is discon­
tinuous at () = s, where it has a jump of magnitude (t - s)c + Jh-s (t- s -
-r)g('r) d-r. Thus U*(s, t)f is not of the form (3.9) and hence it does not belong to 
r. It is also easy to check that s - U*(s, t)f is not left-continuous as prescribed 
by Lemma 3.2. 

In Section 5 we shall impose stronger conditions on B in order to obtain 
invariance of r. 

4. Differentiability of orbits 

In Theorem 2.5 we obtained a result on the differentiability of the orbit 
t- U(t, s)x with respect to the norm topology of X. Since X is embedded into 
r*, there are at least two other natural topologies in which orbits can be 
differentiable. We start by looking at weak differentiability. 

THEOREM 4.1. For all x EX, s E [O, T) and x 0 e D(Ati) the real valued function 
t- ( U(t, s)x, x0 ) is continuously differentiable with derivative ( U(t, s)x, (Ari + 
B*(t))x0 ). 

In this theorem we put no restrictions on the initial datum x, but only on the 
test-functionals x 0 . Later we shall consider X as a subspace of r* and consider 
weak*-differentiability of orbits. Since the function t- (U(t, s)x, x0 ) must then 
be differentiable for all functionals x 0 e X 0 , it is clear that extra conditions have 
to be imposed on x. 

As with continuity, the fact that B depends on time creates a distinction 
between "local" properties for (t - s) i 0 and "global" properties of orbits. In 
particular the invariance of D(A[f*) requires special conditions on B(t). 

Proof of Theorem 4.1. If x 0 E D(A[f), it follows from 

that 

(U(t, s)x, x0 ) = (x, T[f(t-s)x0 ) + f (B(-r)U(-r, s)x, Tif(t- •)x0 ) d-r (4.1) 

a 
- ( U(t, s)x, x 0 ) = (x, T~(t - s)A~x0 ) at 

+ (B(t)V(t, s)x, x0 ) 

+ f (B(-r)U(-r, s)x, T[f(t - -r)A[fx0 ) d-r 

= (U(t, s)x, A[fx0 ) + (B(t)U(t, s)x, x 0 ). (4.2) 

By the strong continuity of B., the right-hand side of ( 4.2) is a continuous function 
oft. 

Now let x 0 E D(Ari) and define x~ = n Sc\'n T[f(-r)x 0 dt. Then x~ E D(AiP) and 
llx~ -x0 11-0 as n- 00• We claim that 

:t ( U(t, s )x, x~) 
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converges to ( U(t, s)x, Atix 0 ) + (B(t)U(t, s)x, x0 ) uniformly for t E [s, T] as 
n--+ oo. The assertion then follows from this result by a well-known theorem on 
termwise differentiation of a sequence (see e.g. [20, Theorem 7.17]). 

Since llB(t)U(t, s)xll is uniformly bounded, it is clear that 
(B(t)U(t, s)x, x~)--+ (B(t)U(t, s)x, x 0 ) uniformly on t E [s, T]. Next, observe 
that 

fn(t): = ( U(t, s)x, A~x~) = ( U(t, s)x, n [ T~ (~)x0 - x0 ]). 

converges pointwise to 

f (t): = ( U(t, s )x, Atix0 ), t E [s, T]. 

The estimate 

lfn(t1)- fn(t2)I = )( U(tt> s)x - U(t2, s)x, n[ T~ (~)x0 -x0 ])) 

~II U(t1, s)x - U(t2, s)xll n llr~(~)x0 -x0 11 

~ llV(t,, s)x - U(t2, s)xll n sup {llTo(r)ll} 11Atix0 11 _!. 
o;;o,;;;11n n 

shows that {fn} is equicontinuous. Since a pointwise converging equicontinuous 
sequence converges uniformly (cf. [11, Theorem 7.5.6]) the proof is 
complete. D 

Remark. If x 0 e D(An, one cannot conclude directly from (4.1) that (4.2) 
holds with A~ replaced by Ad'. The reason is that the expression (B(r)U(r, s)x, 
Tti(t - r)Atix 0 ) in the intermediate step is undefined (there is no pairing between 
X* and X 0 *). 

We now turn our attention to weak*-differentiability. We start with some 
lemmas. The first lemma is an analogue of [5, Lemma 4.4) and the proof is 
omitted. 

LEMMA 4.2. For all x EX, (l/(t -s)) J~ T~*(t - r)B(r)U(t, s)x dr converges in 
the weak*-topology of X 0 * to B(s)x as (t-s) i 0 uniformly in (t, s) E Ll. 

LEMMA 4.3. The following conditions are equivalent 
(i) x E D(Aif*). 
(ii) (l/(t-s))(U(t,s)x-x) converges in the weak*-topology of X 0 * as 

(t- s) t 0, uniformly for (t, s) e Ll. 
(iii) (l/(t-s))(U(t,s)x-x) converges in the weak*-topology of I'* as ds 

for alls e (0, T). 
(iv) There exists ans E [O, T) such that (l/(t-s))(U(t, s)x -x) converges in the 

weak*-topology of X 0 * as t t s. 
When the mutually equivalent conditions (i)-(iv) are satisfied, the limit is 
(Aif* + B(s ))x. 

The proof, which is based on Lemma 4.2 and the variation-of-constants 
formula (2.1) is straightforward and therefore omitted. 
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DEFINITION 4.4. A function f: [a, b ]-X0 * is weak*-differentiable [from the 
right] with [right-] weak*-derivative g if for every x 0 E x8, the real valued 
function 1- (f(t), x 0 ) is differentiable [from the right] with [right-] derivative 
(g(t), x 0 ). A weak*-di:fferentiable function f is continuously weak*-differentiable 
if in addition the function t- \g(t), x0 ) is continuous for all x0 E X 0 . 

LEMMA 4.5. The following conditions are equivalent. 
(i) U(t, s)D(Agi*) c D(Agi*) V(t, s) E ~-
(ii) t- U(t, s)x considered as a function [s, T]-X0 * is weak*-differentiable 

from the right for alls E [O, T) and all x E D(Agi*). 
When the equivalent conditions (i) and (ii) are satisfied, the right-weak*-derivative 
of U(t, s)x equals (Agi* + B(t))U(t, s)x. 

Proof. Since (1/h ){ U(t+h, s)x- U(t, s)x} =(l/ h ){ U(t+h, t)U(t, s)x- U(t, s )x}, 
the assertion follows from the equivalence (i) <=>(iii) of Lemma 4.3. D 

THEOREM 4.6. The following conditions are equivalent: 
(i) U(t, s)D(Agi*) c D(Ag>*) V(t, s) E ~and for all x E D(Agi*), s E [0, T) 

sup llAgi*u(t, s)xll < 00• 
s~t~T 

(ii) For every x E D(Agi*) and s E [O, T) the function t- U(t, s)x from [s, T] 
into X0 * is continuously weak*-differentiable. 

When the equivalent conditions (i) and (ii) hold, the weak*-derivative of U(t, s )x 
equals (A~*+ B(t))U(t, s)x. 

Proof. By Lemma 4.5 the first part of (i) implies that a+ I at< U(t, s)x, x 0 ) = 
((Agi* + B(t))U(t, s)x, x0 ) 'rJx 0 E x8. To prove that (ii) holds it suffices to 
show that the right derivative is continuous. If x 0 E D(Agi), then 
a+Jat(U(t, s)x, x 0 ) = (U(t, s)x, Agix0 ) + \B(t)U(t, s)x, x 0 ) is indeed con­
tinuous in t. If x 0 EX'\ x~ E D(Agi), llx~ -x0 11- 0, then the latter part of (i) 
shows that ((Agi* + B(t))U(t, s)x, x~)- ((Agi* + B(t))U(t, s)x, x 0 ) uniformly in 
t E [s, T], and hence the limit is continuous in t E [s, T]. 

Conversely, if (ii) holds, then by Lemma 4.5 U(t, s)D(AiP*) c D(A;f*) \:f(t, s) E 

~and o/2t(U(t,s)x,x0 )=((A;f*+B(t))U(t,s)x,x0 ). Since the derivative is 
now continuous on [s, T] we have 

sup I ((A~*+ B(t))U(t, s)x, x 0 ) I< x 
s-:!&1;&.T 

for all x 0 E X 0 and hence the latter condition in (i) holds by the uniform 
boundedness principle. D 

It is often possible to verify that condition (i) of Theorem 4.6 holds by 
exploiting special properties of the range of B(t) or additional smoothness of 
B(t). 

HYPOTHESIS 4. 7. A subspace Z of X0 * is said to satisfy the hypothesis if for 
every s E [O, T) and every continuous function h: [s, T]- X0 * the range of which 
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is contained in Z, we have 

(i) f~ Tg'*(t - r)h( r) dr E D(Ag'*), s ~ t ~ T, 

(ii) llAif'* f~Tg1*(t-r)h(r)drll~M sup llh(T)ll, s~t~T. 
S~T~t 
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These conditions are inspired by and should be compared with those of [7, p. 
330-331], see also [8, 9]. 

THEOREM 4.8. If the range of B(t), for all t E [O, T], is contained in a subspace 

Z satisfying Hypothesis 4. 7, then U(t, s) satisfies the mutually equivalent condi­
tions in Theorem 4. 6. 

Proof Let x E D(Ag'*). Since T0(t) leaves D(A~*) invariant, the first term to 
the right of the variation-of-constants formula (2.1) belongs to D(Ag'*) and since 
T:-?B(r:)U(r, s)x is continuous from [s, T] into x8*, condition (i) above 
guarantees that the latter term also belongs to D(Ag'*). 

From (2.1) it follows that 

Ag'*U(t, s)x = Tg1*(t-s)Aif'*x +Ag'* f Tg'*(t- r)B(r)U(r, s)x dr, (4.3) 

so, by (ii) above, 

11Ag1*U(t, s)xll ~ Mew(t-s) llAif*xll + M sup llB(r)U(r, s)xll, (4.4) 
S~T;'§t 

and hence condition (i) of Theorem 4.6 holds. D 

THEOREM 4.9. If t~ B(t) is Lipschitz continuous from [O, T] to 9i3(X, X0 *), 
then the mutually equivalent conditions of Theorem 4.6 hold. 

Proof. The proof is based on the characterisation of D(A~*) as the Favard 
class of {Tci(t)} 1~0 (cf. [4, Corollary 2.1.5] and [6, Section 3.4]): x E D(Ag'*) if and 
only if llT0(h)x -xii= O(h) ash! 0. 

We first show that if x E D(AiP*); then there is a constant L < oo depending only 
on x such that 

llU(t+h,s)x-U(t,s)xll~Lh, (t,s)E~, h>O. (4.5) 

Using the variation-of-constants formula (2.1) one finds 

U(t + h, s )x - U(t, s)x = Tci(t - s )[Tci(h )x - x] 

+ L~,, rg>*(t- r)B(r + h)U(r + h, s)x dr 

+ f T~*(t - r)[B(r + h) - B(r)]U(r + h, s)x dr 

+ f T~*(t- r)B(r)[U('z: + h, s)x - U(r, s)x] dr. 

(4.6) 

Since t-?B(t) and h~ T0(h)x are Lipschitz continuous and llTo(t)ll and llU(t, s)ll 
are bounded on [O, T] and~. respectively, (4.5) follows from Gronwall's Lemma. 

Fix (t, s) E tl, x e D(Agi*). Applying Tci(h) - I to both sides of the variation-of-
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constants formula (2.1) one obtains 

T0(h)U(t, s)x - U(t, s)x 

= To( t - s )[ 7;i(h )x - x] + f _,, T<[/* ( t - T )B ( T + h) u ( T + h, s )x dr 

+ L-h Tif>*(t-r){B(r+h)U(r+h,s)x-B(r)U(r,s)x}dr 

-Jt T~*(t-r)B(r)U(r,s)xdr. 
t-h 

(4.7) 

Using the Lipschitz continuity of B, (4.5) and the fact that x is in the Favard class 
of {T0(t)L~0 , one finds that 

llT0(h)U(t,s)x-U(t,s)xll~L'h (t,s)E~, h>O (4.8) 

for some finite constant L' depending only on x. In particular U(t, s )x E D(A~*). 
Moreover, since by definition A<[/*U(t, s)x equals the weak*-limit of 
(1/h)[T~*(h)U(t, s)x - U(t, s)x] as h t 0, it. follows from a corollary of the 
uniform boundedness principle that 

llA~* U(t, s )x II~ li1;:1 ~sr~p II~ [Tif*(h) U(t, s )x - U(t, s )x ]II 
~L'. 

Thus condition (i) of Theorem 4.6 holds. D 

We illustrate the use of the preceding theorems by a couple of examples. 

EXAMPLE 4.10. Retarded functional differential equations. 
We consider the retarded functional differential equation (1.6) as a perturba­

tion problem as explained in Example 3.3. For the sake of simplicity we take 
n=l. We assume that t~~(t, ·) is a weak*-continuous function [O, TJ~ 
NBV[O, 1]. Then {B(t)}tE[O,TJ defined by (3.13) is strongly continuous. 

Let Z be the one-dimensional subspace { (a, 0): a ER} of X 0 *. Then the range 
of B(t) is contained in Z. We verify conditions (i) and (ii) of Hypothesis 4.7. Let 
h: [s, T]~X0 * be continuous with h(t) E Z, t E [s, T], h(t) = (a(t), 0), a a 
continuous scalar function and let (c, g) E x0 . Then 

(f r~*(t-r)h(r)dr, (c,g)) 

= f (h(r), T~(t- r)(c, g)j dr 

= f ( (a(r), 0), (c + f _, g(e) de, g(t - r + ·))) dr 

= f [ca(r) + a(r) f-r g(e) de J dr 



where 

It follows that 
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=c f a(r)dr+ L-sg(8) r-0 C'i(T)drd8 

=c r a(r)dr+ r'g(8)1jJ(-8)d8 
s Jo 

=(({ a(r)dr, 1/J), (c,g)). 

{lt+li 

1/1(8 )= s a(r)dt, -min{l,t-s}~8~0 

0, -1~8~-min{l,t-s}. 

f T~*(t- r)h(r) dr = (f a(r) dr, 1jJ ). 

and since 1jJ is Lipschitz continuous on [-1, OJ and 

1/J(O) = f a(r) dr, f T'/?*(t - r)h(r) dr e D(A~*). 

Moreover 

Agi* f T'/?*(t - r)h(r) dr = (0, 1/J'), 

where 
1Jl'(8)={a(t+8), -min{l,t-s}~e~o 

0, -1~8~-min{l,t-s)}. 
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Since a is continuous, the supremum of 1/J'(B) overt E [s, T] is obviously finite. 
Thus Z satisfies Hypothesis 4.7 and Theorem 4.8 can be applied. 

EXAMPLE 4.11. Age-dependent population dynamics. 
We consider the following dual formulation of the age-dependent population 

problem: 

a a 
at u(t, a)= aa u(t, a)+ (3(t, a)u(t, 0), 

a E (0, 1), t > 0, 

u(t, 1) = 0, t > 0, 

u(O, a)= <j.>(a), a E (0, l]. 

(4.9) 

This problem, with (3 independent of t, was treated in the context of perturba­
tions of dual semi groups in detail in [ 5]. The unperturbed semi group { 'fc,(t)} iSio 

corresponding to the equation au I at = au I aa is translation to the left acting 

on X = C0[0, 1) = {<PE C[O, 1): Jim <j.>(a) = O}. Then X* = M[O, 1), the Banach 
a i 1 

space of all Borel measures on [O, 1), X 0 is the subspace of all absolutely 

continuous measures identified with L 1[0, 1 ], and X 0 * = L ""[O, 1]. The unper-
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turbed generator on X 8 * is given by D(Aijl*) = {<PE Co[O, 1): <P Lipschitz 
continuous}, Ai?* qi = cp '. { ygi*(t) Ls:o is translation to the left. 

When the fecundity function {3(t, a) depends on both age and time the 
perturbation B(t): X - x8* is time-dependent and given by B(t)<P = <f>(O)f3(t, ·). 
It is immediately seen that if f3 is Lipschitz continuous in t, with Lipschitz 
constant independent of a E [O, l], then t- B(t) is Lipschitz continuous from 
(0, T] to @(X, X8 *) and hence by Theorem 4.9 the conditions of Theorem 4.6 
hold. On the other hand, if f3 is Lipschitz continuous in a, uniformly for t E [O, T], 
condition (i) of Theorem 4.6 can easily be verified directly. We therefore 
conclude that in order to have (o/ot)U(t, s)x = (AiP* + B(t))U(t, s)x in the 
weak*-sense for x E D(Ag'*) it is sufficient that the fecundity function f3 is 
Lipschitz continuous in either the time or age variable, uniformly in the other 
variable. 

We close this section by noting that the differentiability results can be 
reformulated in terms of solutions to the Cauchy problem 

(4.10) 

d 
dt u(t) = (AiP* + B(t))u(t), 

in an appropriate weak or weak*-sense. 
In order to be a weak solution to (4.10), u must take values in X and 

t- (u(t), x0 ) must be differentiable for every x 0 E D(A~). Weak*-solutions are 
in principle x8*-valued functions, which are weak*-differentiable. Hence the 
class of test-functionals is larger in the weak*-case. The price one has to pay for 
this is that the class of initial data has to be smaller and, in particular, the 
solutions will actually take values in D(Aijl*). We give a formal definition. 

DEFINITION 4.12. (a) A function u: [s, T]-X is called a weak solution (cf. (2]) 
to the Cauchy problem ( 4.10) with x 0 * = x EX if u(s) = x and if for every 
x 0 E D(A~) the real-valued function r- (u(t), x 0 ) is continuously differentiable 
and 

d 
dt (u(t), x 0 ) = (u(t), (A~+ B*(t))x8 ) (4.11) 

for s < t ~ T. 
(b) A function u: [s, T]-x8* is called a weak*-solution to (4.10) if u(s) = 

x0 *, u(t) E D(Agi*), s < t~ Tand u is continuously weak*-differentiable on (s, T] 
with weak*-derivative (AiP* + B(-))u(-). 

THEOREM 4.13. For all x EX, s E (0, T), t-U(t, s)x is the unique weak solution 
to the forward problem ( 4.10). 

Proof. That t- U(t, s )x is a weak solution is just Theorem 4.1. 
To prove uniqueness, let u be an arbitrary weak solution to ( 4.10) and let 
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x 0 E D(A~). Then TiP(t - r)x0 E D(Ai) and hence 

d 
dt (lii(t- r)u(r), x 0 ) 

d 
= dt ( u( r), TiP(t - r)x 0 ) 

= (u(r), (Ai+ B*(r))T~(t- r)x(:)) - (u(r), A~T~(t- r)xcv) 

= (u(r), B*(r)TiP(t- r)x 0 ) 
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= ( T~*(t - r)B( r)u( r), x 0 ). ( 4.12) 

By integrating both sides of ( 4.12) from s to t one obtains 

(u(t), x 0 ) - ( T0(t- s)u(s), x 0 ) = { ( T~*(t - r)B(r)u(r), x0 ) dr. (4.13) 

Since D(Ai) is weak*-dense in X*, ( 4.13) implies that 

u(t) = 7i1(t-s)u(s) + { T~*(t- r)B(r)u(r) dr (4.14) 

and therefore u(t) = U(t, s )x by Theorem 2.3. O 

THEOREM 4.14. Let condition (i) in Theorem 4.6 hold. Then for every 
x E D(AiP*), s E [O, T), the function f--'> U(t, s)x is the unique weak*-solution of 
the forward problem (4.10). 

Proof That t--'> U(t, s)x is a weak*-solution of (4.10) is the content of 
Theorem 4.6. The uniqueness proof is very similar to that of Theorem 4.13 and 
therefore omitted. 0 

5. Going full circle 

In the autonomous case, where X 0 is always invariant under the perturbed 
dual semigroup, one can define by duality a semigroup on x8* which is an 
extension of the semigroup given by the variation-of-constants formula on X. In 
this sense the circle of the four spaces X, X*, X 0 , X 0 * and the corresponding 
semigroups is closed. As Example 3.3 shows, strong continuity of the time­
dependent perturbation B(t) is not enough to guarantee invariance of X 0 under 
the dual evolutionary system. From now on we shall therefore make the stronger 
assumption: 

ASSUMPTION 5.1. The mapping t--'> B(t) is continuous from [O, T] to qJ(X, x8*) 
equipped with the operator norm. 

If we make the slightly weaker assumption that both B(t) and B*(t) are 
strongly continuous, we can define U0 (s, t) directly by solving a variation-of­
constants formula "at the right-hand side" (i.e. with x8 as the small space 
embedded into the big space X*). However, we have not been able to show that 
under merely this assumption necessarily U0 (s, t) is the restriction of U*(s, t) to 
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r. Moreover, in our main applications the range of B(t) is a fixed finite 
dimensional subspace of r* and strong continuity of both B(t) and B*(t) 
implies Assumption 5 .1 so the possible loss of generality is only minor. 

The first lemma shows that Assumption 5.1 guarantees that U(t, s) (and 
consequently U*(s, t) as well) is continuous along lines t - s =constant in Li 
(resp. Li*) with respect to the operator norm. 

LEMMA 5.2. The norm llU(t+h, s+h)-U(t,s)ll-+0 as h-+O uniformly for 
(t,s)eLi. 

Proof. Using the variation-of-constants formula we have, independently of the 

sign of h, [U(t + h, s + h)x- U(t, s)x] 

= { Tgi*(t- r)[B(r + h)- B(r)]U(r + h, s + h)x dr 

+ f Tgi*(t - r)B('r)[ U( r + h, s + h)x - U(r, s)x] dr. (5.1) 

There is a constant M < oo such that 

llU(t+h,s+h)x-U(t,s)xll~Mllxll sup llB(i-+h)-B('r)ll 
o;;;;r;;;i;T 

+ M f II U(i- + h, s + h)x - U(i-, s)xll di-. (5.2) 

The assertion now follows from Gronwall's Lemma. D 

THEOREM 5.3. The subspace r is invariant under U*(s, t). 

Proof. By Lemma 3.2 we have to show that s-+ U*(s, t)x0 is left-continuous 
for all t E (0, T] and all x0 E x0 . But this follows from the fact that 

U*(s - h, t)x 0 = U*(s - h, t - h)U*(t-h, t)x 0 , 

since U*(t - h, t)x0 -+x0 by (i)::} (iii) of Lemma 3.1 and U*(s - h, t - h )--+ U*(s, t) 
in norm by Lemma 5.2. D 

Since X 0 is invariant under U*(s, t), (s, t) e Li*, U0 (s, t):= U*(s, t)!x0 is a 
backward evolutionary system on x 0 and U0 *(t, s) is a forward system on X 8 *, 
which extends U(t, s). By Lemma 3.1 and Lemma 3.2 we know that u0 (s, t)x0 is 
continuous in t e [s, T], uniformly for s e [O, T] and left-continuous in s e [O, t] for 
all t e [O, T]. Our next result states that U0 (s, t)x0 is actually jointly continuous. 

THEOREM 5.4. The system { U0 (s, t)}(s,t)et.• is a strongly continuous backward 
evolutionary system. 

To prove Theorem 5.4 one only has to show that (s, t)-+ U0 (s, t)x0 is 
continuous from Li* to x 0 for all x 0 E x0 • But this is a straightforward 
estimation of l!U0 (s, t)x 0 - U0 (s0 , t0)x0 11 using Lemma 3.1, Lemma 3.2 and 
Lemma 5.2. 

We now state a result, which tells us in what sense {U(t, s)}(t.s)et. is a solution 
to the backward problem (1.5). Later (Theorem 5.8) we shall reformulate the 
result as a statement about { U0 (s, t)}cs.1)eti..•· 
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THEORE~ 5.5. The function s- U0 *(t, s)x0 * is continuously weak*­
differentiable on [O, t] if and only if x0 * = x e D(Ai;*) and in that case the derivative 
equals -U0 *(t, s)(Ag'* + B(s))x. 

Proof. Let us first consider x e X. Then 

~ ( U0 *(t, s - h)x - U0 *(t, s)x, x0 ) = ~ ( U(s, s -h)x -x, U0 (s, t)x 0 ). 

By Lemma 4.3, the right-hand side converges as h t 0 if and only if x e D(AW*) 
and the limit is then ((Ag'*+ B(s))x, U0 (s, t)x 0 ). Thus 

a-
as ( U(t, s)x, x 0 ) =-((Ag'*+ B(s))x, U0 (s, t)x 0 ) 

if and only if x e D(Ag'*). By Theorem 5.4 U0 (s, t)x0 is continuous and hence 
the left-derivative is continuous, implying that ( U(t, s)x, x0 ) is continuously 
differentiable. The lemma has now been proved for the case x e X. 

Assume that s~ U 0 *(t, s)x0 * is continuously weak*-differentiable. Take 
x0 e _x0. Then (1/ h) ( U0 *(t, t - h )x0 * - x 0 *, x0 ) converges as h t 0, in particu­
lar it is bounded. By the uniform boundedness principle (1/ h) II U0 *(t, t - h )x0 * -
x 0 * II ~ M for some M < oo and h sufficiently small. Lemma 3.1 (with U* replaced 
by U0 * and _x© by X00) then implies that x 0 * E X00 = X. 0 

In the autonomous case we derived an alternative variation-of-constants 
formula for the semigroup on X with the roles of the perturbed and unperturbed 
semigroups interchanged [S, Section 4]. The proof was based on the unique 
correspondence between a C0-semigroup and its generator. In the next proposi­
tion we derive by a more direct proof a similar formula for U(t, s) and by duality 
we obtain a variation-of-constants formula for U0 (s, t). 

THEOREM 5.6. The following variation-of-constants formulae hold. 

U(t, s)x = T0(t-s)x + f U0 *(t, a)B(a)To(a-s)xda, x eX, (5.3) 

U0 (s, t)x0 = Tg'(t - s)x0 + f nca - s)B*(a)U0 (a, t)x0 da, x 0 E x 0 , (5.4) 

U0 (s, t)x0 = Tg'(t- s)x0 + f U*(s, r)B*(r)T~(t- r)x0 di, x 0 Er. (5.5) 

Proof. Let x 0 e x 0 , x e D(A0). By Theorem 5.5 we obtain 

:a ( U(t, a)T0(a - s)x, x0 ) 

= ( U(t, a)A0 !(1(a -s)x, x0 ) 

- ( U0 *(t, a)A~*T0(a -s)x, x 0 ) 

- ( U0 *(t, a)B(a)1(1(a - s)x, x 0 ) 

= - ( U0 *(t, a)B(a)T0(a - s)x, x0 ). (5.6) 

., 



164 Ph. Clement et al. 

It follows from (5.6) that 

(f U0 *(t, a)B(a)To(a-s)x da, x0 ) 

= f (U0 *(t, a)B(a)T0(a-s)x,x 0 ) da 

f.1 a = - - ( U(t, a)To(a-s)x, x 0 ) da 
s as 

= -(T0(t-s)x, x0 ) + ( U(t, s)x, x0 ). (5.7) 

Since D(A0) is dense in X and both sides of (5.7) are continuous in x (also if 
x e X) it follows that (5.3) holds. 

We obtain (5.4) from (5.3) by duality and (5.5) from the original variation-of­
constants formula (2.1) for U(t, s). 0 

With the aid of the variation-of-constants formula (5.4) analogues of Theorem 
4.13 and Theorem 5.5 can be proved. 

THEOREM 5.7. The function t~ U*(s, t)x* is continuously weak*-dijferentiable 
in t e [s, T] if and only if x* = x0 e D(Ati) and in that case the derivative equals 
U*(s, t)(Ati + B*(t))x0 . 

THEOREM 5.8. For all x0 eX0 , te(O, T], s~u0(s, t)x 0 is the unique weak 
solution to the backward problem 

d . } ds u(s) =-(Ag>+ B*(s))u(s), 0 ~ s < t 

u(t) =x0 eX0 

(5.8) 

onX0 . 

Except for uniqueness this is simply a reformulation of Theorem 5.5. 
Uniqueness is proved as in Theorem 4.14. 

For the sake of completeness we close this section by stating the analogue of 
Theorem 4.14 on X 0 . 

THEOREM 5.9. Suppose U0 (s, t)D(Ati) c D(Ati) for all (s, t) e ~ * and 
sup llA6U0 (s, t)x 0 11 < oo for all x 0 e D(Ati) and all t e (0, T]. Then for every 

O;a!s;at 

x0 e D(A(\') the function s~ U0 (s, t)x0 is the unique weak*-solution to the 
backward problem (5. 8). 

Remark 5.10. If B is a Lipschitz continuous mapping from [O, T] to 
911(X, X0 *), then B* is Lipschitz continuous from [O, T] to 91J(r, X*) and one 
can prove exactly as in Theorem 4.9 that the assumption U0 (s, t)D(A~) c D(AcD, 

(s,t)e~* and sup 11Aci'U0 (s,t)x0 1!<oc, x 0 eD(A6), te(O, T] is automatically 
O=:!s~t 

satisfied and Theorem 5. 9 can be applied. 
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6. Perturbations with fixed finite dimensional range 

In many applications (for instance retarded functional differential equations 
and age dependent population dynamics) the range of B(t) lies in a fixed finite 
dimensional subspace of X 0 * for all t E (0, T]. In this section we show in general 
that in such cases the problem of constructing the evolutionary system 
{U(t, s)}(t,sJe.o. reduces to solving a Volterra integral equation on Rn. Since we do 
not have an equation for U0 *(t, s), the only way to obtain {U0 (t, s)}(t,sJe.o. is to 
take adjoints, restrictions to r and adjoints once more. When the perturbation 
has finite dimensional range, however, we derive an explicit formula for 
{ U0 *(t, s )}(t,S)EA' again in terms of the solution of a Volterra equation on Rn. 
This aspect was not treated in our previous paper [5]. 

We assume that for all t E [O, T] the range of B(t) lies in a fixed finite 
dimensional subspace of X 0 * spanned by r~*, ... , l/;*. Then B(t) has the form 

n 

B(t)x = L (x, r7(t))r~*. (6.1) 
i=I 

Since we still assume that B is continuous from [O, T] to !JJ(X, r*) we require 
that r7 is continuous from [O, T] to X*. We define the entries qij(t, u) of the 
matrix-valued function Q by 

q;/t, u) = \f T~*(i)r'f* di, r7(t)), t E [0, T], u E (0, T]. (6.2) 

For fixed t E [O, T], u - q;i(t, u) is Lipschitz-continuous on [O, T] and therefore Q 
has a representation of the form 

Q(t, u) = r K(t, i) dT, Jo (6.3) 

where the entries k;/t, •)of K(t, i) satisfy k;/t, ·)EL "'[O, T], t E (0, T]. Note that 

I q;/t1, U2)- q;j(t1, U1) - qij(t2, U2) - q;/t2, U1) I 
U2-U1 U2-U1 

Hence r- K(t, ·) is continuous from [O, T] into L "'[O, T]. (As a consequence 
t- f~ K(t, t - •)h( •)di is continuous even if r- h( •) is only L "'.) 

It is implied in [5, Lemma 5.1] that if t E [O, T] and h is a continuous real 
valued function on [O, T], then 

\f T1[/*(r)r'f*h(u - i) di, r7(t)) = f k;i(t, u - r)h(i) di. (6.4) 
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Now, as before, let U(t, s) be defined by the variation-of-constants formula 

U(t,s)x=To(t-s)x+ LT~*(t-r)B(r)U(-r,s)xdr, xeX, (6.5) 

and define for every x EX, the Rn-valued functions y(·, ·; x) and f(·, ·; x) on L\ 
by 

Y;(t, s;x) = (U(t, s)x, r7(t)), 

fi(t,s;x)= (To(t-s)x, ri(t)). 

By applying ri(t) to both sides of (6.5), one obtains 

(6.6) 

(6.7) 

y;(t, s; x) = f;(t, s; x) + j~ (f Tf(*(t - r)r?*yj(r, s; x) dr:, ri(t) ). (6.8) 

It follows from (6.4) with h( •) = yj( r + s, s; x ), 0 ~ r ~ t - s, that 

(f T~*(t - r)r?*yj( r, s; x) dr, ri(t)) 

= (J:-s T~*(t - s - r)r?*YA r + s, s; x) d-r, ri(t)) 

lt-S 

= 
0 

k;j(t, t-s - r)yj(• + s, s; x) dr 

= f kii(t,t--r)yj(r,s;x)dr. 

By substituting (6.9) into (6.8), one obtains the Volterra equation 

y(t, s; x) = f(t, s; x) + f K(t, t - t')y(r, s; x) dr. 

(6.9) 

(6.10) 

Once y(t, s;x) is solved from (6.10), the evolutionary system {U(t, s)}(r,s)e.:1. is 
obtained by substituting y(t, s; x) into the right-hand side of the variation-of­
constants formula (6.5): 

n J' U(t, s )x = T0(t - s )x + j~l s T</.?*(t - r)r?*Y;( r, s; x) dt'. (6.11) 

Next we derive a Volterra equation and a representation similar to (6.11) for 
the backward system on I'. Note that 

n 

B*(t)x0 = 2: \rr*, x 0 )ri(t) (6.12) 
i=l 

and thus the range of B*(t) varies with t and is in general not contained in a fixed 
finite dimensional subspace of X* for all t E [O, T]. The derivation of the integral 
equation is therefore slightly more involved in the backward case. 
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LEMMA 6.1. For any continuous real valued function h on [O, T] the identity 

\rf*, [T<Ha-s)r;*(a)h(a)daJ= {k;1(a, a-s)h(a)da, O~s~t~T (6.13) 

holds. 

Proof. We first show that 

\LT't}*(r)x 0 *dr,x*)=\x0 *, f Ti(r)x*drJ (6.14) 

for all x* EX*, x 0 * E X 0 *. Formula (6.14) obviously holds for x 0 * == x EX. 
Therefore 

\x0 *, LTS(r)x*drJ 

= lim .!. /lh T't}*(a)x 0 * da, J' T<Hr)x* dr \ 
h!;oh\ 0 0 / 

=1im.!.IJ' T;f*(r)Jh Tf/*(a)x 0 *dadr,x*\ 
h!;oh\o o / 

= lim -h1 lfh (' Tf/*( r + a)x 8 * dr da, x*J 
h 1 o \ o Jo 

= lim -h1 Jh If' Tf/*( r + a)x8* dr, x*J da 
h!;o o\o 

= \L T't}*( r)x 0 * dr, x* ), 

since obviously a~ (JS Tf/*(r + a)x0 * dr, x*) is continuous. This proves (6.14). 
We now prove (6.13) by noting that the formula holds for s == t, and that by 

integrating both sides with respect to s from u to t one obtains the same result. 
Indeed, on changing the order of integration and using the definition of k;1, one 
finds 

ff k;1(a, a-s)h(a) dads= f \f T't}*(s - u)rf* ds, r;(a)J h(a) da. (6.15) 

On the other hand 

f \rf*, f T~(a-s)r;(a)h(a) daJ ds 

= f \r(*, r T~(a-s)r;(a)dsJh(a)da. (6.16) 

By taking x 8 *=rJ*, x*=rr(a) and t=a-u in (6.14), one finds that the 
integrals in (6.15) and (6.16) are equal for all u E [O, t]. This proves (6.13). D 
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Define z r (s, t; x0 ) and gr (s, t; x 0 ) as the row-vectors with components 

z;(s, t;x0 )= <rP*, u0 (s, t)x0 ), (6.17) 

g;(s, t;x0 )= <rP*, Tif(t-s)x0 ), (6.18) 

where x0 E x.8, (s, t) E ~ *, 1;;; i;;; n. On applying r'f* to both sides of the ad joint 
variation-of-constants formula (5.4), one finds with the aid of Lemma 6.1 that 
z T (s, t; x0 ) satisfies the Volterra equation 

z 7 (s, t;x0 ) =g 7 (s, t;x0 ) + f z 7 (a, t;x0 )K(a, a-s) da 

and that u0 (s, t) has the representation 

U0 (s, t)x 0 = Tif(t - s )x0 + 1~ f T~( a - s h*( a)z/ a, t; x 0 ) da. 

(6.19) 

(6.20) 

Our next objective is to derive a representation of the form (6.11) for the 
forward system on the big space. Therefore we must give a meaning to 
y(t, s; x 0 *). In order to do so we replace lf* by an arbitrary element x 0 * of x.8* 
in the definition (6.2) of q;/t, u) and call the function so obtained p;(t, u;x0 *). 
Then p;(t, u; x0 *) = f0 m;(t, r; x 0 *) dr for some m;(t, ·; x 0 *) EL "'[O, T]. Let 
f;(t, s; x 0 *) = m;(t, t-s; x0 *). Then formally f;(t, s; x0 *) = ( Tif*(t- s)x0 *, r7(t)) 
although this latter expression does not make sense. It is easily seen that 
f;(·, s;x0 *) is measurable and essentially bounded on [s, T]. It follows that the 
Volterra equation (6.10) with x replaced by x 0 * admits a unique L "'-solution 
y(t, s;x0 *) on [s, T]. In an exactly analogous way we define g 7 (s, t;x*) for all 
x* EX* and conclude that equation (6.19) with x 0 replaced by x* has a unique 
C-solution zr(s, t;x*) on [O, T]. 

It remains to show that we can represent U0 *(t, s)x0 * in terms of y(t, s;x0 *) 
and U*(s, t) in terms of z T (s, t; x*). It turns out to be convenient to express 
y(t;s;x0 *) and zr(s, t;x*) with the aid of the resolvent. Let R(t, s) be the 
resolvent kernel corresponding to the kernel K(t, t - s). By definition, R(t, s) is 
the solution of the matrix equation 

R(t, s) = K(t, t - s) + f R(t, r)K(r, r - s) dr. (6.21) 

or, equivalently, 

R(t, s) = K(t, t-s) + f K(t, t- r)R(r, s) dr. (6.22) 

Note that the (i, j) element of R(t, s) is given by y1(t, s; r'f*). One has the explicit 
representations t 

y(t,s;x0 *)=f(t,s;x0 *)+ l R(t,-r:)f(r,s;x0 *)dt: (6.23) 

and 

zr(s, t;x*) =gT(s, t;x*) + f gr(a, t;x*)R(a, s) da, (6.24) 

see [18, Chap. 4] or [13]. 
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We are now ready to state the main result of this section. 

THEOREM 6.2. Let y(t, s;x8 *) and zT(s, t;x*) be the unique L "'-solutions of the 
Volterra equations 

y(t, s; x 0 *) = f(t, s; x0 *) 

+ f K(t, t - r)y( r, s; x0 *) dr, t E [s, T], (6.25) 

and 
zr (s, t; x*) =gr (s, t; x*) 

+fzT(a,t;x*)K(a,a-s)da, sE[O,T], (6.26) 

respectively. Then 
n (' 

U0 *(t, s)x0 * = T'ti*(t - s)x 0 * + ~l JS T~*(t - r)rf*y/i:, s; x 0 *) dr, 

U*(s, t)x* = T 0(t - s )x* + 1~1 f TQ( a - s )r1*( a)z1( a, t; x*) da, 

for all x 0 * E X 0 *, x* EX*, O~s ~ t~ T. 

Proof. For x 0 E x8 one has 

J_± (' T'/i*(t-r)r?*y/r,s;x0 *)dr,x0 ) \=l JS 

= f gT(r, t; x 0 )y(r, s;x8 *) dr 

= f gT(r, t;x 0 )[f(r, s;x0 *) + f R(r, a)f(a, s;x0 *) da J dr 

= f [gT(a, t; x0 ) + L gT(r, t;x0 )R(r, a) dr ]f(a, s; x0 *) da 

= f zT(a, t; x 0 )f(a, s; x 8 *) da. 

On the other hand, 

( U0 *(t, s )x 0 * - T'ti*(t - s )x0 *, x 0 ) 

= (x0*, Jtl f TO'(a -s )rt(a)z1(a, t; x0) da J 

= lim - T~*(r)x0* dr, ,2: T 0(a-s)rt(a)zJ(a, t; x0 ) da \
1 Ih n ft . ) 

h t 0 h 0 j=l s 

= 1i1ni f zr(a, t;x 0 )f( a, s; k f T'ti*(r)x0 * dr) da 

= f zr(a, t;x0 )f(a, s;x0 *) da, 

(6.27) 

(6.28) 

(6.29) 

(6.30) 
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where the last equality follows from the dominated convergence theorem and the 
fact that 

t:( a, s; if Tg-1*(r)x8 * dr) 

= ( T;i(t- s) ~ f T~*(r)x0* dr, r7(t)) = ~ (f T~*(r + t - s)x0 * dr, r7(t) J 

= ~ [p;(t, t - s + h; x0 *) - p;(t, t - s; x0 *)-7 f;(t, s; x0 *) almost everywhere. 

ash t 0 by the definition off(t, s;x0 *). The formulae (6.29) and (6.30) together 
imply (6.27). Formula (6.28) is proved in exactly the same way. 0 

To conclude this section we identify the kernel, forcing function and solution of 
the Volterra equation (6.10) in the application to the retarded functional 
differential equation (1.6) and show that the forward evolutionary system 
corresponding to the abstract problem is the evolutionary system corresponding 
to equation (1.6). 

The element r;*(t) is the ith row of ~(t, ·) and r~* = (e;, 0), where e; denotes 
the ith unit column vector in Rn. It is convenient to combine these into matrices 
r*(t) = ~(t, ·) and r0 * =(I, 0), where I is the identity matrix. Then 

yg-i*(t)r 0 * =(I, H(t + · )/). (6.31) 

Substituting (6.31) into (6.11) one finds 

[U(t, s)</>](8) = [7;i(t -s)</>](8) 
rmax{s,t+li} 

+J, y(r,s;<j>)dr, 8 E [-1, o]. (6.32) 

Define x(t;<j>)=[U(t,s)<j>](O). Then (6.32) implies that x(t;cp)=<j>(O)+ 
J~.y(r, s; <P) dr and hence 

x(t; <f>) == y(t, s; cp). (6.33) 

It follows from (6.32) and (6.33) that 

r+o 
[U(t,s)</>](8)=</>(0)+ J, y(r,s;<j>)dr 

=x(t+8,cp), t+8?;;s. (6.34) 

On using (6.6) and (6.34) one finds that 

y(t, s; <P) = ( U(t, s )</>, r*(t)) = f 1 x(t - 8; <P )d11 ~(t, 8). (6.35) 
(I 

Formulae (6.33)-(6.35) show that { U(t, s) }u.sJEL<. is indeed the evolutionary 
system corresponding to the solution to (1.6). We remark that we have only 
considered the forward problem and therefore we have not made use of the norm 
continuity of r*(t). Thus everything applies to the problem considered in 
Example 3.3. 
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It follows from (6.31) that 

%(t, u) = (f T<t*( r)r<[* dr, r'((t)) 

= r (u - 8)dB,ij(t, 8) 

= r ,;j(t, 8) d(), 

and hence K = '· The forcing function is obtained as follows: 

f (t, s; </>) = ( T0(t - s)<J>, r*(t)) 

= f [To(t-s)</>](-O)d8 {;(t, 8) 

= f ~. </>(t- s - 8)d8 ,(t, 8) + s(t, t -s)cp(O). 
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(6.36) 

Note that the fundamental matrix solution of [14, Chap. 6] is, in our setting, 
equal to U0 *(t, s)r0 * and therefore corresponds to the resolvent of the Volterra 
equation. 

Finally, we point out that the action of r 0 * corresponds to taking the limit from 
above in zero. Therefore for s < t we have gT (s, t; x*) = x*((t - s)+) = x*(t - s). 
In other words, the forcing function in the Volterra equation and the dual state 
x* are one and the same thing! One can consequently interpret the action of 
U*(s, t) in terms of transformations of the forcing function in the Volterra 
equation (see [10] and the references given there for a more detailed elaboration 
in the autonomous case). 
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