
JOURNAL OF COMPUTER ANO SYSTEM SCIENCES 36, 158-224 (1988)

Transition Systems, Metric Spaces and Ready Sets in
the Semantics of Uniform Concurrency*

J. W. DE BAKKERt

Cenlre for Mathemalic·s and Compuler Science,
Kruislaan 413, !098 SJ Amsterdam, The Netherlands

J.-J. CH. MEYER

Su~faculreit Wiskunde en Jnfomwlica, Vrije Unfrersiteit Amsterdam,
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

E.-R. 0LDEROG

Jnstitut fur lnformatik, Christian-Albrechts-Universitiit,
O!shausenstrasse 40-60, 2300 Kiel /, Federal Republic of Germany

AND

J. I. ZUCKER~

Department of Computer Science, Unfrersity at Bu.fralo (SUNY),
226 Bell Hall, Buffalo, New York 14260

Received November 20, 1985; revised July 8, 1987

Transition systems as proposed by Hennessy and Plotkin are defined for a series of three
languages featuring concurrency. The first has shuffie and local nondeterminacy, the second
synchronization merge and local nondeterminacy, and the third synchronization merge and
global nondeterminacy. The languages are all uniform in the sense that the elementary actions
are uninterpreted. Throughout, infinite behaviour is taken into account and modelled with
infinitary languages in the sense of Nivat. A comparison with denotational semantics is
provided. For the first two languages, a linear time model suffices; for the third language a
branching time model with processes in the sense of de Bakker and Zucker is described. In the
comparison an important role is played by an intermediate semantics in the style of Hoare
and Olderog's specification oriented semantics. A variant on the notion of ready set is
employed here. Precise statements are given relating the various semantics terms of a number
of abstraction operators. ·(t 988 Academic Press, Inc.

*A short version of this paper appeared as [BMOZ].
t The research of J. W. de Bakker was partially supported by ESPRIT Project 415: Parallel Architec

ture and Languages.
: The research of J. I. Zucker was supported by the National Science Foundation under Grant MCS-

8010728.

1'i8

SEMANTICS OF UNIFORM CONCURRENCY 159

1. INTRODUCTION

Our paper aims at presenting a thorough study of the semantics of a number of
concepts in concurrency. We concentrate on parallel composition modelled by
shuffie and synchronization merge, local and global nondeterminacy, and
deadlocks. Somewhat more specifically, we provide a systematic analysis of these
concepts by confronting, for three sample languages, semantic techniques inspired
by earlier work due to Hennessy and Plotkin [HP, Pll, Pl2] proposing an
operational approach, De Bakker et al. [BBKM, BZl, BZ2, BZ3] for a
denotational one, and the Oxford School [BHR, Ho2, OH, RB] serving-for the
purposes of our paper-an intermediate role.

Our operational semantics is based on transition systems [Ke] as employed
successfully in [HP, PI!, Pl2, Mi, BHR, OH, ABKR]; applications in the analysis
of proof systems were developed by Apt [Apl, Ap2]. Compared with previous
instances, our transition systems exhibit some new properties: the transitions
describe only the successful steps of concurrent statements and, moreover, only
finitely many schematic axioms and rules are needed. A successful step arises from
the execution of an elementary action or the synchronization of two matching
communications c and c. Individually these communications fail or deadlock; only
the synchronized execution of both succeeds. To model this phenomenon, [Pl2, Mi,
BHR] add "virtual transitions" for the individual communications c and c.
However, these transitions violate the idea of deadlock.

In contrast, we follow Apt [Ap2] and formalize only the successful steps.
Whereas [Ap2] uses infinitely many schematic transition rules and deals only with
iteration, local nondeterminacy, and one level of parallelism, we show that finitely
many axioms and rules are sufficient even when dealing with full recursion, global
nondeterminacy, and nested parallelism with synchronization. (These points will be
discussed in more detail in the body of our paper, see in particular Sections 3.1
and 4.1.)

Throughout the paper, we restrict ourselves to uniform statements: by this we
mean an approach at the schematic level, leaving the elementary actions uninter
preted and avoiding the introduction of notions such as assignments or states.
Many interesting issues arise at this level, and we feel that it is advantageous to
keep questions which arise after interpretation for a treatment at a second level (not
dealt with in our paper).

We shall study three languages in increasing order of complexity:

.\! 0 : shuffie (arbitrary interleaving)+ local nondeterminacy

.\! 1 : synchronization merge +local nondeterminacy

.1! 2 : synchronization merge+ global nondeterminacy.

For .I!; with typical elements s, we shall present transition system T; of the type dis
cussed above and define an induced operational semantics &;[s], i = 0, 1, 2. We shall
also define three denotational semantics .@;[s] based, for i = 0, 1 on the "linear

160 DE BAKKER ET AL.

time" (LT) model which employs sets of sequences and, for i = 2, on the "branching
time" (BT) model employing processes (commutative trees, with sets rather than
multisets of successors for any node, and with certain closure properties) of
[BBKM, BZl, BZ2]. Both our operational and denotational semantics yield
languages with finite and infinite words (cf. Ni vat [Ni]) or streams [Br]. In
contrast to the operational semantics (!!; we provide the denotational semantics ft;
only for .\.!; restricted to guarded recursion (each recursive call has to preceded by
some elementary action); we then have an attractive metric setting with unique
fixed points for contractive functions based on Banach's fixed point theorem.

Our main question can now be posed: Do we have that

<'.D;[s] = f11;[s]. (I.I)

We shall show that (1.1) only holds for i = 0. For the more sophisticated languages
.\.! i' i = I, 2, we cannot prove (1.1). In fact, we can even show that there exists no
denotational tt; satisfying (1.1), i = 1, 2. Rather than trying to modify lO; (thus
spoiling its intuitive operational character) we propose to replace (1.1) by

(1.2)

where(/.;, i = 1, 2, is an abstraction operator which forgets some information present
in 9;[s]. The operator ix, turns each failing communication into an indication of
failure and deletes all subsequent actions. Thus, ix 1 is as Milner's restriction [Mi]
or ACP's encapsulation operator [BK!]. For i = 2, (/.; is composed of two
operators, one which is like ix 1 (but now defined for BT objects) and a second one
which abstracts the branching structure from the BT object by mapping it onto the
set of all its paths. The proof of (1.2) proceeds by introducing a transition based
intermediate semantics <'.Di[s]. For i= 1 we shall show that @t[s] = !2Js]. Next, we
introduce the operator a 1 and show that <'.D1[s] =ix 1(<'.Di[s]).

The idea of using an intermediate semantics as a stepping stone in the
equivalence proof of two semantics definitions is of course not new. For example,
Stoy uses it in [St I, St2]. Also in the area of compiler construction the use of a
suitable intermediate language and semantics is common practise. It allows decom
position of the compilation process of high level programs to machine code into
smaller steps. What appears to be new is our specific construction and use of inter
mediate semantics for languages with recursion, parellelism, and nondeterminism.

The case i = 2 is more involved, because i.! 1 has local, and B2 has global nondeter
minacy. Consider a choice a or c, where a is some autonomous action and c needs a
parallel c to communicate. In the case of local nondeterminacy (written as au c)
both actions may be chosen; in the global nondeterminacy case (written as a+ c
with "+" as in CCS [Mi]) c is chosen only when in some parallel component c is
ready to execute. Therefore, £! 1 and £! 2 exhibit different deadlock behaviours.

<'.D2 is based on the transition system T2 which is a refinement of T 1 , embodying a
more subtle set of rules to deal with nondeterminacy. The denotational semantics
£12 is as in [BBKM, BZl, BZ2]. In order to relate £12 and (02 we introduce the

SEMANTICS OF UNIFORM CONCURRENCY 161

notion of readies and an associated intermediate semantics (!)!, inspired by ideas
described in [BHR, OH, RB].

(!)! involves an extension of the LT model with some branching information
(though less than the full BT model) which is amenable to a treatment in terms of
transitions. Besides the operational (O! we also base an intermediate denotational
semantics fiJ! on the domain of readies. To prove the desired result (1.2) for l! 2 , we
shall show that (!)t[s] = ~![s] and then relate (1)2 with (IJ!, f2! with ~2 , and thus
l02 with f:t2 by a careful choice of suitable abstraction operators.

Summarizing, we see as the main contributions of our paper:

1. The three finite transition systems T;, i = 0, l, 2, formalizing as transitions
only the successful steps of concurrent statements.

2. Distinction of local vs global nondeterminacy and associated deadlock
behaviour in the transition systems T1 and T2 without use of virtual transitions.

3. The systematic treatment of the denotational definitions (for the guarded
case) together with the derivation of the relationship (!); =a; 0 f2; (with rx. 0 as
identity).

4. Application of the technique of intermediate semantics, both operational
and denotational, for languages with recursion, parallelism, and nondeterminacy, in
particular, the construction and use of the intermediate semantics (!)~, cr1t, and ~t

The rest of our paper is organized into Sections 2--4 dealing with the languages
.1! 0-i!2 . For each language .I.?; the corresponding section is divided into four subsec
tions. The first three introduce the transition system T;, the operational semantics
f!J; and the denotational semantics f2;, respectively. Most demanding is the fourth
one which settles the relationship between (9; and ~; by establishing (!); =a; 0 f2;. To
avoid repetitions, we elaborate on a different aspect for each i!;. For i!0 we
concentrate on recursion, for .l.? 1 on synchronization merge and for l!2 on the
intermediate ready semantics. ;J

Finally, the Appendix summarizes all results in a diagram. ;:~

2. THE LANGUAGE £ 0 : SHUFFLE AND LOCAL NONDETERM!NACY

Let A be a finite set of uninterpreted, elementary actions, with a, b EA. Let x, y

be elements of the set stmv of statement variables (used in fixed point constructs for
recursion). The set i!0 of (concurrent) statements, with s, t E i!0 , is given by the
following syntax:

Thus every action a EA denotes a statement, the one which finishes (successfully
terminates) after performing a. s 1; s2 denotes (sequential) composition such that s2

starts once s 1 has finished. s 1 u s2 denotes nondeterministic choice, also known as

162 DE BAKKER ET AL.

local nondeterminism [FHLR]. s 1 II s2 denotes concurrent execution of s 1 and s2

modelling shuffle (arbitrary interleaving) between the actions of s 1 and s2 . 1~x[s] is
a recursive statement. For example, with the definitions to be proposed presently,
the intended meaning of tn[(a; x) uh] is the set a* · h u {a"'}, where a"' is the
infinite sequence of a's.

Jn general, we will restrict attention to syntactically closed statements (i.e., those
witho~t free statement variables), since only such statements have a meaning under
the operational semantics to be defined below. (We will not always state this
explicitly.)

2.1. The Transition System T0

A transition describes what a statement s can do as its next step, using the suc
cessor relation between the configurations of an imaginary machine or automaton.
This concept of a transition dates back to [Ke] and to automata theoretic notions
[RS]. Following Hennessy and Plotkin [HP, PI!], a transition system is a syntax
directed deductive system for proving transitions (see also [Apl, Ap2, Pl2]). In this
section we use this idea for 12 0 .

First we have to discuss what form of configurations to use. For fully interpreted
languages configurations of the form

<s, a) and (J

are common where s is a statement and a is a state [HP, Pl2, Apl, Ap2]. We
would like to preserve this form also in our present setting of uniform, i.e., uninter
preted languages. The only difference is that here states are not mappings from
program variables to values, but words w over the set A of uninterpreted, elemen
tary actions.

More precisely, let l. ~A. Then the set A't of words [Ni] or streams [Br], with
u, v, w E Ast. is defined as

A St = A* u A"' u A* . { l. } .

Ast includes the set A" =A* u Aw of finite and infinite words or streams over A
[Ni], and additionally the set A* · { ..L} of unfinished words or streams. Let <: denote
the empty word and ~ denote the prefix relation over words. We define con
catenation u · t' as usual for u EA* and v EA '1, and we put u · v = u for u EA* l. u A"',
and v EA".

Thus in our case conFr,;urations will be of the form

(s, w) and w

with s E ~0 and w E A't. One advantage of this form is that it need not be changed if
an interpretation is added to actions and hence words w. (For details see the
operational semantics of a nonuniform, i.e., interpreted language in [BKMOZ].)

SEMANTICS OF UNIFORM CONCURRENCY 163

Another advantage is that the transition relation is now just a binary relation -+

over configurations [Ke]; there is no need to introduce additional labels dis
tinguishing various versions of -+.

Looking at the "classical" transition systems for languages involving concurrency

[HP, Pll, Pl2, Apl, Ap2, Mi, BHR], labels appear only for languages where com

munication between parallel components is possible as in CSP [Pl2] or CCS [Mi].

However, even for languages with communication, labelled transitions need not

occur. For instance, Apt [Ap2] provides a transition system for CSP where labels

are not needed. (In fact, Apt uses labels, but states himself [Ap2, p. 201] that these

labels are needed only in the completeness proof of a proof system for partial
correctness of CSP, not for providing the semantics.) Of course, the decision on the

appearance of configurations and whether or not to use labelled transitions is also a
matter of taste. Thus following [Mi, BHR] we could have chosen configurations to

be simply statements s, but then we would have to collect the labels of successive

transitions to yield the final word w. For the reasons just explained we prefer the
esent setting.

A transition relation being a binary relation -+ over configurations, a transition is

now a formula

<s, w) -+ (s', w') or (s, w)-+ w'

denoting an element of -+. A transition system T is a formal deductive system for

proving transitions. Using a self-explanatory notation, axioms have the format

I -+ 2, rules have the format t: ~, expressing that, if we have established that 1 -> 2
holds in T, we may infer that 3-> 4 holds in T. More precisely, axioms and rules

should be schenwtic, i.e., in their configurations 1, ... , 4 the statement component
should be built up from finitely many meta variables s, s 1 , s2 , ••• , s', s'1 , .1·~, ... ranging
over statements, a ranging over actions, and x ranging over statement variables,

and analogously for the word component. In an application of an axiom or rule
each metavariable can be replaced by any object of the corresponding range, e.g., a
metavariable s by any statement of i.l0 . For a transition system T, Tf--- I-+ 2

expresses that transition l -+ 2 is deducible in the system T. Then I -> 2 is also
called a T-transition. For a finite sequence l -> 2-> · · · --+ n of T-transitions we also

write T f-- 1 -> * n.
For a compact representation of closely related transitions, we follow

[Apl, Ap2] and allow (in configurations only) the empty statement E. E expresses

success/id termination, i.e., we shall always identify

(£, w) = w

and

s = E;s = s;E = E 11 s = s II E.

164 DE BAKKER ET AL.

For example, we can now represent the two transitions

(i) (s.w)->(s',w').

(ii) (s,w)->ir'

by one transition, viz ..

(s, w) -> (s', w'),

where s' ranges over i! 0 u { E}. To avoid any confusion, we shall always state
explicitly whether a statement can be empty.

We now present a specific transition system T0 for i! 0 • For w E A'" u A* · { J.. }
and s E .l.1 0 we put

(s, w)-> w,

and for 11· EA* we distinguish the following cases:

(elementary action)

(a, w)-> w ·a

(local nondeterminacy)

(recursion)

(s 1 us2 , w)-> (s 1 , w)

(-1· 1 us2 , w)-> (s2 , w)

(px[s], w)-> (s[px[s]/x], w).

where, in general, s[t/x] denotes substitution of t for x m s. Thus recursion is
described here by syntactic substitution or copying.

(composition)

where s' E .l.1 0 u {£}.

(shuf.lle)

where s' E i! 0 u { E}.

(s1 II S2, w)-> (s' II s2 , w')

(s 1 , w)-> (s', w')

SEMANTICS OF UNIFORM CONCURRENCY 165

Note that with s' = E the first shuffle rule amounts to

<s1,H')-->w'

At the beginning of this section we said that a transition describes what a
statement can do as its next step. For T0 this is made precise by the following
lemma.

2.1. l. LEMMA (Initial Step). T 0 1-- (s, 1r)--> (s', w') ijf there exists some h E

Au { £} with w' = w · h and T0 1-- <s, t:)--> (s', b).

Proof By structural induction on s. I

2.2. The Operational Semantics (10

By an operational semantics we mean here a semantics which is defined with the
help of a transition system. As a first example we now introduce an operational
semantics {f(1 for i.? 0 • Formally, (ibis a mapping

with § = 'l,1(A'1) denoting the set of infinitary languages, which may contain both
finite and infinite words over A.

We first give some definitions.

(1) A transition sequence is a (finite or infinite) sequence of T0 -transitions.

(2) A path from sis a maximal transition sequence

where s0 =sand w0 = 1:.

(3) The V.'Ord associated with a path n, word(n), is defined according to the
following three cases:

(a) n is finite, and of the form

Then word(n) = w.

(b) nisinfinite:

and the sequence (w,,),, is infinitely often increasing. Then word(n) =
supn w,, (sup w.r.t. the prefix ordering), an infinite word.

166

(c)

DE BAKKER ET AL.

n is infinite as in (b), but the sequence (w,,),, is eventually constant, i.e.,
for some n, w,, + k = ll',, for all k ~ 0.

Then word(n) = w11 • l.

It is easy to see that these are the only three possibilities for a path m T 0 .

We now define for s E 120 :

(i0 [s] = {word(n) I n is a path from s}.

l70 [px[(a; x) u b]] =a*· b u {a"'},

i1'0[px[(x;a)ub]]=b·a*u{1}.

We conclude with two simple facts about CCh.

2.2.1. LEMMA (Definedness). (00 is well defined, i.e., (00 [s] i= 0 for every s E i!0 .

Proof The claim follows from the fact that for each configuration < s, w) at
least one transition (s, w)-+ (s', w') exists in T0 . I

2.2.2. LEMMA (Prolongation). ff T0 1-- (s, e) -+* (s', w) and w' E (l,()~s'], then
also ir · w' E (1i1[s].

Proo(By the definition of (10 and Lemma 2.1.1. I
We remark that corresponding lemmas will also hold for the operational

semantics to be discussed subsequently.

2.3. The Denotational Semantics 010

The operational semantics (1(i for -1.! 0 is global in the following sense: to determine
l7(1[s] we first have to explore the T0 -transition sequences for all of s, and only then
we can retrieve the result (00 [s]. Further, in T0 , and thus in @o, recursion is dealt
with by syntactic copying. We now look for a denotational semantics ~o for i!0 . A
denotational semantics should be compositional or homomorphic, i.e., for every
syntactic operator op in i.1 0 there should be a corresponding semantic operator ops; 0

satisfying

and it should tackle recursion semantically with the help of fixed points. This of
course requires a suitable structure of the underlying semantic domain.

For 9 0 we shall use metric spaces (rather than the more customary cpos) as
semantic domain. Our approach is based on [BBKM, BZ2]; for general

SEMANTICS OF UNIFORM CONCURRENCY 167

topological notions such as closedness, limits, continuity, and completeness, see
[Du].

Following [BZ2], 9'o will be defined only for guarded statements, a notion which
we define below. We must first define the notion of an exposed occurrence of a
substatement in a given statement.

We now define the notion: an occurrence of a substatement t of sis <'xposed ins.
The definition is by induction on the structure of s:

(a) s is exposed in s. (More accurately, the unique occurrence of s in s is
exposed in s.)

(b) If an occurrence of t is exposed in .1· 1, then (and only then) the
corresponding occurrence is also exposed in s 1 ; s 2 , s 1 II s 2 , s c. II .1· 1 , s 1 u .1· 2 , s 2 u .1· 1,

and µx[s 1] (and also .1·1 +.1·2 and s2 +.1· 1, in the case of the language ~' of
Section 4).

EXAMPLE. In the statement x; au h; x, the first occurrence of x is exposed, while
the second is not.

A statement is now defined to be guarded (cf. [Mi] or [Ni]) if for all its
recursive substatements µx[t], t contains no exposed occurrenas of x.

EXAMPLES. px[a; (x II h)] is guarded, but px[x], py[y II h], and px[11y[x]] (as
well as statements containing these) are not.

One advantage of the guardedness restriction is that we will be able to invoke
Banach's classical fixed point theorem when dealing with recursion.

Let us now introduce the metric domain for £00 . For u EA ' 1 let u[n], n ~ 0, be the
prefix of u of length n if this exists; otherwise u[n]=u. E.g., a 1a2 a3 [2]=a 1a2 ,

a 1 a 2 a 3 [5] = a 1 a2a 1 . We define a natural (ultra)metric don A'1 by putting

d(u, V) = 2 maxinlu[n] ~ 1'[11]:

with the understanding that 2 _,·=0. For example, d(a 1a2 a3 ,a 1a2a4)=2· 2,

d(a", a'°)= 2 ". We have that (A'1, d) is a complete ultrametric space. For X£; A"
we put X[n] = {u[n] luE X}. A distance Jon subsets X, Yof A" is defined by

J(X, Y)=2 max{nlX[nJ~ Y[nJ}.

Let §,. c § denote the collection of all nonempty metrically closed subsets of A ' 1•

It can be shown that (§,., d) is a complete ultrametric space (see [Ha]), and that
d coincides with the Hausdorff metric (cf. [Ni]) induced on §,.by the metric d
on A'1•

A sequence (X;)/~ 0 of elements of§,. is a Cauchy sequence whenever Ve>O
3N Vn, m ~ N[d(X,,, Xml < e]. For (X;); a Cauchy sequence, we write lim; X; for
its limit (wich belongs to §" by the completeness property).

A function <f>: (§,., d) _, (§ 0 d) is called contracting whenever, for all X, Y,

168 DE BAKKER ET AL.

d(</>(X), </>(Y))::;;; IX. d(X, Y) for some real number IX with 0::;;; et< 1. A classical
theorem due to Banach states that in any complete metric space, a contracting
function has a unique fixed point obtained as lim; </>;(X0) for arbitrary starting
point X 0 .

We now define the semantic operators /' 0, u"' 0, and 11!.<' 0 on §". (For ease of
notation, we skip superscripts .@0 if no confusion arises.)

(a) X, Ys;; A* u A*· { .l }. For X; Y =cit X · Y (concatenation) and Xu Y (set
theoretic union) we adopt the usual definitions (including the clause .l · u for all u).
For XII Y (shuffie or merge) we introduce as auxiliary operator the so-called left
merge lL (from [BKl]). It permits a particularly simple definition of II by putting

XII Y=(Xli_ Y)u(Yll_X),

where lL is given recursively by X IL Y = U { u IL YI u EX} with e IL Y = Y,
(a · u) IL Y = a · ({ u} II Y) and .l IL Y = { ..L } .

(b) X, YE§,., where X, Y do not consist of finite words only. Then

X op Y = lim (X[i] op Y[i]),
i

for op E { ;, u, II}. In [BZ2] we have shown that this definition is well formed and
preserves closed sets, and the operators are continuous (assuming finiteness of A, as
in [BBKM]).

We now turn to the definition of E&0 • We introduce the usual notion of environment
which is used to store and retrieve meanings of statement variables. Let r 0 =
stmv--+§" be the set of environments, and let yEI'0. We write y'=ci1 y(X/x> for a
variant of y which is like y but with y'(x) = X. We define

g&o : guarded i? 0 --+ (r 0 --+ §cl

as follows:

1. g&o[a](y)={a}

2. g&0[s 1 op s2] (y) = g&o[s 1] (y) op E&0[s2] (y)

3. g&0 [x] = y(x)

4. g&0 [µx[s]](y)=lim;X;, where X0 = {..L} and X;+i =qJ0 [x](y(X;/x>).

By the guardedness requirement, each function <P=A.X·E&0 [s](y(X/x)) is contrac
ting, (X;); is a Cauchy sequence, and Jim; X; equals the unique fixed point of <P

[Ni, BBKM, BZ2]. For statements s without free statement variables we write
qJ0 [s] instead of qJ0[s](y). Since £&0 [s] is a set of (linear) streams, £&0 is called a
linear time semantics [BBKM]. (Such a semantics may constitute the basis for a
linear time temporal logic for £ 0 .)

SEMANTICS OF UNIFORM CONCURRENCY 169

Remark. An order-theoretic approach to the denotational model is also possible
([Br, Me, BMO], see also survey [BKMOZ]), but less convenient for our special
purposes. In fact, the order-theoretic approach does not provide a dirl!ct treatment
for the unguarded case either, it seems to require a contractivity argument for
uniqueness of fixed points just as well, and, last but not least, as far as we know, it
cannot be used as a basis for the branching time semantics used later in Section 4.3.
(In [R] an order-theoretic approach is employed and compared with a metric one,
but this setting uses an ordering on forests rather than one on the tree-like
structures we are dealing with in branching time semantics.)

2.4. Relationship between ((h and £210

In this section we will prove:

2.4.1. THEOREM. (1-h[s] = .P0 [s] for all (syntactically closed) guarded s E i?0 •

The proof of Theorem 2.4.1 is by induction on the structure of s. For the induc
tion argument we need two important facts about (!:0 which we develop first. The
first fact states that lTh behaves compositionally over the operators op E { ;, u, II} of
l!0 in the sense or Section 2.3:

We shall not give a full proof here, but refer to Section 3 where this result is
established in the more general setting of language i.! 1 •

Instead we concentrate here on the second fact dealing with recursion because its
proof carries over to the languages i.! 1 and .1! 2 virtually without change. We wish to
show that

@0[µx[t(x)]] =Jim ((h[t'"l(Q)],
n

where Q is a certain auxiliary statement and t<" 1(·) denotes n-fold substitution (to
be explained in the sequel). This proof is quite involved; it requires a number of
auxiliary results on the transition system T0 and the operational semantics (IJ0 .

In the following, we make the general assumption that all our statements are (syn
tactically closed and) guarded (unless explicitly stated otherwise). Guardedness
comes into our work in two ways:

(I) in proving the technical results below on transition sequences, notably the
Basic Lemma (2.4.4), and

(2) more fundamentally: ~0 [s] is only defined for guarded s! (On the other
hand, (1)0 [s] is only defined for syntactically closed s.)

Let us now turn to the first fact about @o.

170 DE BAKKER ET AL.

Compositionality of (1 0 •

We state (more generally):

2.4.2. THEOREM. (a) (1(1 [a] = {a }

(b) (1 0 [.1· 1 us2] = (10[s 1] u!/0 (l(i[s2]

(c) (1 0 [JLX[s]] = (10[s[µx[s]/x]]

(d) (1(1[s 1, s2] = l'"{1[s1] ;!!'" ll7a[s2]

(e) (lo[S1 lls2] = l'"(i[s1] ll!io (ljo[s2l

Proof (a), (b), and (c) are clear, by considering transition sequences from
(a, t:), (s, u s2 , t:), and (µx[s], t:), which must start with the transition rules of
elementary action, local nondeterminacy, and recursion, respectively. Part (d) is
proved like (e), but more simply, and the proof of (e) is postponed to Section 3
(Lemma 3.4.6), in a more general context. I

We now develop a series of auxiliary results leading to the main fact about recur
sion (Corollary 2.4.16) used in proving Theorem 2.4.1.

Basic Facts about T0 -Transitions

Notation. To display all free occurrences of a variable x in a statements, we can
writes= s(x). Then the result of substituting a statement t for all free occurrences of
x ins is denoted formally by s[t/x] and informally by s(t).

We also speak of the contexts(·) of the occurrence(s) oft displayed in s(t).
We indicate a specific occurrence of a substatement t of s by underlying it: s(1).

We also speak of the contexts(·) (ors(:)), meaning that part of the expression
s(t) (or s(l)) excluding the displayed occurrence(s) oft.

TYPES OF TRANSITIONS. We must make a closer analysis of T0 -transitions. Since
every deduction rule in T0 has only one premise, every T0 -transition

(s, w)-+ (s', w') (2.2)

is deducible from a single axiom: elementary action, nondeterminacy, or recursion,
by a sequence of applications of the rules composition and shuffle.

There may actually be more than one deduction of (2.2). For example, the
transition

(µx[x] llµy[y], w)-+ (µx[x] llµy[y], w)

has two different deductions, one starting from µx[x] and the other from µy[y].
Notice, however, that in this example the µ-substatements are unguarded. If
(according to our general assumption) we restrict our attention to guarded
statements, it is not hard to see that every deducible transition has a unique
deduction (although our results do not really depend on this fact).

SEMANTICS OF UNIFORM CONCURRENCY 171

According to which axiom was used in its deduction (elementary action,
nondeterminacy, or recursion), (2.2) is called (respectively) and a-transition,
u -transition, or µ-transition.

Suhstatement Involved in a Transition

Any transition

(s, w)-+ (s', w') (2.3)

involves some (unique) occurrence of a substatement of s. This notion can be defined
by induction on the length of the deduction of (2.3).

(i) Basis. If (2.3) is an axiom, then it invohies the occurrence of s shown.

(ii) Induction step. If the premise of an instance of one of the rules in T0

involves an occurrence of s, then the conclusion involves the corresponding
occurrence of s.

For example, in the following form of the shuffie rule:

if the premise involves the occurrence oft shown in s 1, then the conclusion involves
the corresponding occurrence oft shown in s' II s 1 •

It is clear that the substatement involved in a transition is the same as the
statement on the l.h.s. of the corresponding axiom.

EXAMPLES. (1) (s 1 ll(a;s2),w-+(s 1 lls2,wa) is an a-transition, involving the
occurrence of a shown.

(2) (((s 1 us2);s3)JJs4 ,w)-+((s2 ;s3)Jls4 ,w) is a u-transition, involving
the occurrence of s 1 u s 2 shown.

(3) (s 1 JJµx[s 2(x)], w)-+ (s 1 1Js 2(µx[s 2(x)]), w) is a µ-transition, involving
the occurrence of µx[s 2(x)] shown.

Passive Substatements. We say that a transition

(s(1), w) -+ (s', w') (2.4)

affects the substatement occurrence 1 if it involves some substatement of 1(perhaps1
itself). Conversely, 1 is said to be passive in (2.4) if it is not affected by (2.4). Denote
the (unique) statement occurrence involved in (2.4) by lo· Then it is easy to see that
the following three statements are equivalent:

(i) 1 is passive in (2.4).

(ii) lo is not contained in 1-
(iii) 1 is either disjoint from 10 , or properly contained in lo·

172 DE BAKKER ET AL.

Free Substatements. A substatement occurrence 1 of a statement s is said to be
free in s if 1 does not contain any free statement variables which are bound in s.

2.4.3. LEMMA (Substitution of Passive Free Substatements). Given a T 0 -

transition

(2.5)

if si has the form s'i(l), where 1 is free in Si and passive in the transition, then s 2 can
be written in the form s2(t) (displaying 0, 1, or more occurrences oft), such that for
any statement t', there is a corresponding T0 -transition

Proof By induction on the length of a deduction of (2.5). Briefly, the deduction
of the new transition is formed simply by replacing certain occurrences oft by t' in
the deduction of (2.5). The details are left to the reader. I

Basic Lemma on Transitions

The following basic lemma shows the significance of the guardedness assumption.
It enters three times into our working below!: (a) in the proof of Theorem 2.4.10
(via the Decreasing Exposure Lemma 2.4.7 and the Finiteness Lemma 2.4.8); (b) in
the proof of Theorem 2.4.11 ; and (c) in the proof of Lemma 2.4.14 (via
Corollary 2.4.13), which in turn is used in Theorem 2.4.15.

2.4.4. (BASIC) LEMMA. In the transition

<si, w1)-+ (s2 , w2), (2.6)

if a substatement occurrence 1 is not exposed in s 1, then 1 is passive (and so the
lemma of the previous subsection applies).

Proof By induction on the length of a deduction of (2.6).

Basis. Suppose (2.6) is an axiom. Then, since 1 is not exposed in Si, it cannot be
equal to s,, i.e., it is a proper substatement of si. Hence 1 is passive in (2.6) (since
by definition only the full statement s i is involved in an axiom (2.6)).

Induction Step. Consider first the composition rule, and take the case

<s,, w 1)-+ (s2 , w2)

(si; s, w 1)-+ (s2 ; s, w 2)"

By assumption, 1 is not exposed in Si; s. Hence (by definition) 1 is either ins or (not
exposed) in s i · If 1 is in s, then it is certainly passive in the conclusion. Suppose 1 is
(not exposed) ins,. By induction hypothesis, 1 is passive in the premise (i.e., the

SEMANTICS OF UNIFORM CONCURRENCY 173

substatement of s i involved in the premise does not occur in 1). Hence, clearly, 1 is
also passive in the conclusion.

The shuffle rule is handled similarly. I

A useful version of this lemma is given by:

2.4.5. COROLLARY. If a transition <si, »'i > ~ (s2 , w2 > involves a substatement
occurrence 1 in s 1 , then 1 is exposed in s i.

Proof This is a trivial consequence of the Basic Lemma. (It could also easily be
proved directly, by induction on the length of a deduction of the transition.) I

Passive and Active Successors

Consider a transition (s, w) ~ <s', w'). Let µ0 =µx[t 0(x)] be a µ-substatement
of s, and consider a particular occurrence of µ0 in s. Then there may be one or more
corresponding occurrences of µ0 in s', stemming from this occurrence of µ0 in s.
These are called the successor(s) of this occurrence of µ 0 ins.

We do not give a complete formal definition of the notion of successor; consider,
as an example, the following form of the rule of composition:

<si, w) ~ (s', w)

The displayed occurrence of µ0 Jn the r.h.s. is a successor of that on the 1.h.s.
Most other cases are just as trivial-call these passive successors-except for the

case that the transition actually involves the occurrence of µ0 considered:

(s(µ 0), w) ~ (s(t0 (µ 0)), w) (2.7)

(where, as stated above, µ0 = µx[t 0(x)]).
In this case, each occurrence of µ0 shown inside the occurrence of t0 on the r.h.s.

of (2.7) is an active successor of the occurrence of µ0 shown on the l.h.s.
The transitive relation generated by the successor relation is called descendant;

the converse of that is called ancestor.

2.4.6. LEMMA (Transitivity of Exposure). Given a statement si, containing a
substatement occurrence Ji, containing in turn a substatement occurrence §J:

(a) If J 3 is exposed in s2 , and Ji is exposed in Si, then J 3 is exposed in s 1 .

However, if either

(b) his not exposed in s2 or (c)Ji is not exposed in s 1 ,

then h is not exposed in s 1 •

Proof In all cases, by induction on the structure of s i. I

174 DE BAKKER ET AL.

Degree ol Exposure of a Statement; Decreasing Exposure Lemma

The degree (Jj exposure of s, de(s), is defined to be the number of exposed
occurrences of p-substatements of s. We have an important lemma, which uses the
guardedness of statements.

2.4.7. LEMMA (Decreasing Exposure). If (s, w) _, (s', w') is a p-transition, then
de(s') < de(s).

Proof Suppose this transition involves an occurrence of 11 0 = px[t0(x)], and
put s = s(p0), displaying this occurrence. Then s' = s(t 0(p0)). By the Basic Lemma,
Po is exposed in s. However, all its (active) successors are not exposed in t 0 (p 0)

(since, by assumption, 11 0 is guarded) and hence also not exposed in s' (by
Lemma 2.4.6 on transitivity of exposure).

Now consider all other occurrences of p-substatements in s(p 0). Any occurrence
which is contained in the context s(J (i.e., not in the displayed occurrence of p 0)

has exactly one (passive) successor in s(t0(p0)), which is clearly exposed if and only
if the original is.

Finally, consider an occurrence of another p-substatement, say p 1, within p0 ,

i.e., within 10 (•). Now p 1 may contain x, so we write µ 1 = µ 1(x) and 11 0 =
px"[t0 (p 1(x), x)] and so

s=s(µx[t0(~, x)]). (2.8)

Now µi(x) has, in general, many (passive) successors ins', which we can write as

s' =s(t0~, px[t0(~, x)])). (2.9)

The occurrence p 1(p 0) is exposed in (2.9) iff µ 1(x) is exposed in (2.8), that is (in
both cases), iff 11 1(x) is exposed in t 0 (µ 1(x), x) (by the lemma on transitivity of
exposure, since µ 0 is exposed in s(µ 0)). All the occurrences of µ 1(x) shown in (2.9)
are, in any case,not exposed in s',Since they are in µ0 = µx[t 0(µ 1(x), x)], which is
not exposed in t0(µ 0) (again, by the assumption that µ0 is guarded).

Putting all this together yields the result. I
The above lemma is used in the Finiteness Lemma in the following subsection.

Non-increasing Transitions and Transition Sequences; Finiteness Lemma

A transition (s, w)--+ (s', w') is said to be non-increasing if w' = w, and
increasing otherwise (i.e., if w' = w ·a for some a EA). Similarly, a transition
sequence (s, w) _, · · · --+ (s', w') is said to be non-increasing if w' = w.

Clearly, a transition is non-increasing iff it is a µ- or u -transition (cf. Types of
Transitions above), and increasing iff it is an a-transition.

We now give an important lemma, which will be used in the proof of
Theorem 2.4.10 (via Corollary 2.4.9).

SEMANTICS OF UNIFORM CONCURRENCY 175

2.4.8. LEMMA (Finiteness). Any non-increasing transition sequence is .fi"nite. Jn
fact, ./(1r any s, there is a positive integer C, depending only on the length <~ls (as a
string of s.vmbols), such that any non-increasing transition sequence of the j(mn

<s, w) = <s 1, w)-> · · ·--> <s 11 , w) = <s', \\')

(for any s', w) has length n at most C.

(2.10)

Proof Let I be the length of s, and d = de(s). Now a non-increasing transition
sequence (2.10) can only contain u -transitions and p-transitions. This can include
at most d p-transitions, by the Decreasing Exposure Lemma (2.4.7). Also, each
u -transition decreases the length of the statement. Hence (by a crude estimate,
since the length of a statement can be at most squared by a p-transition) (2.10) can
include at most 12" u -transitions. Hence the length of (2.10) is at most d + 121, and
so (since, trivially, d ~I) we can take C = l + 121• I

COUNTEREXAMPLE FOR AN UNGUARDED STATEMENT. Let s = px[x; au b].
Starting with <s, 1:), we can perform a µ-transition, followed by a u -transition, k
times (for any k), to get

a non-increasing transition sequence of length k.

2.4.9. COROLLARY. For a given s, w there are only finitely many transition
sequences of the form

(s, w)--> · · ·--> <s', w)--> (s", w ·a) (2.11)

(for any s', s", a).

Proof By the Finiteness Lemma, there is a finite upper bound to the length of
(2.11). Also, at each step there are only fi"nitely many possibilities for the next
transition (as is clear from an inspection of the transition rules). I

COUNTEREXAMPLE FOR AN UNGUARDED STATEMENT. Let (again) s =
px[x; au b]. For any k, we construct the sequence

(s, ~:) -->* <s; a\ i:)

--> <(s;aub);ak,i:)

--> (b; a\ i:)
--> (ak, b).

(as in counterexample after 2.4.8)

(µ-transition)

(u -transition)

Such sequences are distinct for different k.

176 DE BAKKER ET AL.

Metric Closure

2.4.10. THEOREM. For any s, i!h[s] is closed (in the metric on A 51 given in

Section 2.3).

Proof Let (u 1, u2 , ...) be a CS (Cauchy sequence) of words in ((b[s]. Let u=
lim 11 u11 • We must show: ue(l10 [s].

If u is finite, it is easy to see that (u,,),, is eventually constant, i.e., u11 = u for n

sufficiently large. Hence u E cTh[s].
So suppose u is infinite. The idea of the proof is to find a subsequence of (u11)"

such that not only do the words converge, but also the paths producing them
converge (in a suitable metric, to be discussed in 2.4.13) to a path re of s such that
u E word(n), from which the result follows.

(As before, we use the notation u[n] for the initial segment of a word u of
length n.)

We proceed inductively. Since (u,,) 11 is a CS, for n sufficiently large (say n ~ N 1)

u11[l] is constant, i.e., u11 begins with the same letter, say a 1 (which is also the first
letter of u).

For all n, let n11 be a path from s producing u11 • Consider the first part of n,,, up
to the first appearance of a 1 on the r.h.s. of a configuration:

n 11 : <s. 1:>--+ .. · --+ <s 1 , a1 >--+ .. -.

By the Corollary (2.4.9) to the Finiteness Lemma, there are only finitely many such
transition sequences possible. Hence there is a subsequence (u 111 , u112 , ...) of (u,J 11 such
that the corresponding n11, all begin with the same transition sequence (up to the
first appearance of a 1 on the r.h.s.).

Since (u 11,)k is a CS, for k sufficiently large u11J2] is constant, i.e., u 11k begins with
the same two letters, say a 1a 2 (which are also the first two letters of u). Again, by
the corollary to the Finiteness Lemma, we can get a subsequence of (u,,,) such that
the corresponding paths all begin in the same way, up to the first appearance of
a 1 a2 on the r.h.s.:

(s,e)--+ ... --+ <s1, a1>--+ ... --+ <s2 , a1a2>--+ .. .,

Continuing in this way, we get, for ail k, successive subsequences of (u11) 11 such that
the corresponding paths all begin in the same way, up to the first appearance of k
letters on the r.h.s., say a 1 a2 • • • ak, which are also the first k letters of u. Finally we
take the "diagonal sequence," by piecing together the initial segments of these paths,
to obtain the path

n: (s, e>--+ .. · --+ <s1> a1)--+ .. ·

... --+(s2,a1a2>--+ ...

... --+(sk>a 1a2 ... ak>--+ ···.

Clearly, nepaths(s) and u=a1a2 ... ak ... eword(n). I

SEMANTICS OF UNIFORM CONCURRENCY 177

Discussion (metric on the set of paths). We can define a metric a on the set
path(S) as follOWS: acn:, TC 1

) = 2 - /1 if n is maximal SUCh that TC and TC 1 agree Up tO the
first appearance of a word of length n on each:

(s, s)-+ · · ·-+ (s 11 , a1 •• -a 11)-+ ···.

(Note: this is not equivalent to agreeing up to the first n transitions!)
The proof of Theorem 2.4.10 produces a subsequence of (u11) 11 such that the

corresponding sequence of paths also converges (in the metric d) to a limiting path
TC, with u E word(TC).

COUNTEREXAMPLE TO THEOREM 2.4.10 FOR AN UNGUARDED STATEMENT. Again,
let s = µx[x; au h]. Then ~h[s] = b ·a* u { 1- }. This set is not closed, since if we
take u,, =h·a11 e(l';b[s], then lim 11 u11 =b·a'°~l1lo[s].

Note that the u 11 are produced by paths

TC 11 : (s, e)-+ ···-+ (a 11 , h)

··· ~b-a"

(as in counterexample after 2.4.9)

(by n a-transitions).

But the initial parts of these paths, up to the first appearance of b on the r.h.s., are
all different, so there is no limiting path (in the metric d)!

Linking Operational and Syntactic Approximation

Iterated Substitution; Depth of a µ-Statement in a Path. From now on, we will
concentrate on a specific 11-statement, µ = µx[i(x)] which, by our general
assumption, is syntactically closed and guarded).

We define the n-fold substitution in {(x) by a sequence of statements t''(x)
(n=O, 1, 2, ...),where

{ 0(x) = X

t"+ 1(x) = F(t''(x)) (= t"(F(x))).

Sinceµ. is syntactically closed, l(x) contains at most x free. However, there may be
many occurrences of x in l (none of them exposed!). If, for example F(x) = {(J, ~. ~)
(3 occurrences of x), then i2(x) = l(~, ~, x), l(x, ~. ~), l(;J:, J, ~)).

We call a transition involving an occurrence of µ a fa-transition.
Now consider a path from some statement s0 containing jj.:

We define the depth of an occurrence of jj. in s11 (in n), by induction on n.

Basis (n = 0). Every occurrence of jj. in s0 has depth 0.

Induction step (n ~ n + 1). Given any occurrence of jj. in s11 of depth d, any

178 DE BAKKER ET AL.

passive successor l cf. Passive and Active Successors above) of this occurrence also
has depth d; all actire successors have depth d + l.

In other words, the depth of an occurrence of ji inn counts the number of ji-tran-
sitions involving ancestors of that occurrence.

Srmactic Bottom Srmbol; Truncation of a Path. As a technical aid, we adjoin
the ·symbol ·'Q'' to th~ syntax of .\! 0 , and the transition rules (actually axioms):

(Q 1): (Q; s, w)-> (Q, It')
(Q!js, w)-> (Q, w)
(silQ, w)-> (Q, w)

(Q2): (Q, 11')-> li" J_

to r 0 . We also define .90 [Q]()')= {_L }. This symbol will not appear in our final
result (2.4.l).

We now define then-truncation of a path n (w.r.t. ji), truncn(n). This is the path
rr' formed by ·'truncating rr at a depth of n," by

(1) replacing all occurrences of ji in n, of depth 11, by Q, and

(2) replacing the first transition involving an occurrence of ji of depth n:

CD -) rr: · .. -> (s(~), w)---+ (s(t(ji)), w ->

by transitions involving Q:

n': ... -> (s(Q), w) ~* (Q, w) ~ w _l_,

thus terminating rr'.

The transitions in the sequence Q) are deduced from instances of axiom (Q 1)

by successive applications of the composition and shuffle rules, paralleling the
deduction of CD from an instance of the recursion rule.

Note that step (1) in the construction of truncn(n) above has the effect of
replacing ii-truncations, involving occurrences ofµ of depth n - 1, by "non-standard
µ-transitions," in which the active successor ofµ is not i(µ) but f(Q).

Next we give a notation for the word associated with the n-truncation of n:

wordn(n) = word(truncn(n))

and finally define the n-approximation of the operational meaning of s0 :

The following theorem shows that for (IJ0 , operational approximation (via
n-truncation) coincides with syntactic approximation (via n-fold substitution). This
result facilitates the subsequent considerations on metric limits.

SEMANTICS OF UNIFORM CONCURRENCY 179

2.4.11. THEOREM. (l;gl)[.U] = (l;b[l1"l(Q)] for n = 0, I, 2,

Proof We will actually prove, more generally: for any statement s 0(x) (with
only x free, and not containing Q),

(1) £;; (This is relatively straightforward.): Let n E path 11(s0 (,U)). We must find
n'epath(s0 (1" 1"l(Q))) such that word(n')=word(:n:). Note that each occurrence ofµ
in n has depth < n (by definition of path 11).

Form rr.' from n in two steps:

(a) Replace each occurrence ofµ of depth d(<n) by l" d(Q).

(b) Consider a µ-transition in rr.:

:n:: ···-+ (s(,U), w)-+ (s(i(,U)), w)-+ ·· ·.

Actually, s may contain a number (say m) of occurrences of ,U: s(,U)=s(f!., [!., ... , [!.).
Suppose w.1.o.g. that the first of these occurrences shown is involved in the
,U-transition:

n: · · ·-+ (s(fj., i!_, ... , [!.), w)

-+ (s(f(µ), [!., ... , [!.), w)

-+

Suppose that the m occurrences of µ shown on the l.h.s. of this transition have
depths d 1 , ••• , d111 (< n). Then all occurrences ofµ in l(µ) have depth d 1 + 1 (they are
the active successors of the first µ on the l.h.s.), and the remaining µ's on the r.h.s.
(still) have depths d1, ... , dm (they are the passive successors of the corresponding f!.'s
on the l.h.s.). Then from step (a), n' is so far (putting e; = n - d;):

:n:': ... -+ <sU''(Q), {el(Q), ... , {em(Q)), w>
-+ (s(i(l"'- l(Q)), {el(Q), ... , {em(Q)), w>
-+

Now collapse the above "identity transition" into a single configuration

n': · · · -+ (s(· · ·), w)-+ · · ·.

(2) 2 (Trickier, here we use the Basic Lemma, and the assumption that µ
is guarded.): Let n' E path(s0(f"(Q))). We want to find a path n E path,,(s0(,U)) with
the same associated word. Roughly, we replace occurrences of {e(Q) (0 < e ~ n) in
rr.' by µ (of depth n - e, as it turns out). We will construct n step by step from n'.
With each configuration (s, w > in :n:' will be associated a finite sequence

180 DE BAKKER ET AL.

(i"1(Q), ... , f"m(Q)) (0 < e; < n) of occurrences of substatements of s. Then n is exten
ded by adjoining a configuration <s', w), where s' is formed from s by replacing
l"'(Q) by j1 (of depth n - e;). In detail, the construction of n from n' proceeds as
follows. It-starts in the obvious way (displaying the different occurrences of i"(Q)
in s0):

n': <s0 (i''(Q), .. ., i"(Q)), e) ~ .. ·

n: <so(g,, ~), i::) ~ · · ·.

Now assume (inductively) that n has been constructed from n' up to a certain
stage:

'· < (""l(Q) t""m(Q))) <D n. ··· ~ s _t __ , .. ., __ , w ~

n: ·· · ~ <s(~, .. ., ~). w),

where (i'1(Q), .. ., ["m(Q)) is the sequence associated with the configuration inn', and
(by assumption) each t""1(Q) has been replaced in n by an occurrence of ii of depth
n - e; (1 ~ i ~ m). Now consider the next transition CD in n'. There are two
possibilities:

(a) Transition CD does not affect any of the t"'(Q) (i= 1, .. ., m). Then the
construction of n is extended another step in the obvious way.

(b) Transition CD affects one of the t"•(Q), say (w.l.o.g.) t''1(Q). There are
two subcases: -- ---

(i) e 1 > 1. Now since j1 is guarded, the occurrences of x are not exposed
in i(x), hence the occurrences of i'1 - 1(Q) are not exposed in
i(i'1 1(Q)) = f"•(Q), and hence (by the Lemma 2.4.6 on transitivity of
exposure) also not in s(i(r•-1(.Q)), ...).Hence by the Basic Lemma,
they are passive in CD. and so, by the Lemma 2.4.3 on the sub
stitution of passive free substatements (note that the t"' - 1 (Q) are
syntactically closed, and hence free ins), CD has the form:

n': .. ·~ <s(f"1(Q), i"2(Q), .. ., f'm(Q)), w)

= <s(i(i'' -- l(Q)), f"2(Q), .. ., f'm(Q)), W)

~ <s(t'(i"•- 1(Q)), f"2(Q), .. ., fem(Q)), w)

~
The sequence associated with this last configuration is the sequence
of occurrences of i'1- 1(Q) (shown in the context t'(·)), followed by
i'2(Q), .. ., f'm(Q) as before.

SEMANTICS OF UNIFORM CONCURRENCY 181

Now the construction of TC proceeds with a Ji-transition, followed
by a transition corresponding to CD (as given by the lemma on the
substitution of passive substatements):

n: · · · --+ (s(f!, [!, ... , t_l), w >
--+ (s({(ji), [!, ... , !J), w)

--+ (s(t'(µ), g, ... , g), w).

(ii) e1 = 1. Again, by the Basic Lemma, transition CD has the form:

n': · · ·----+ (s(i(Q), i"2(Q), ... , i"m(Q)), w)

~ (s(t'(Q), {"2(Q), ... , {'"m(Q)), w)

----+

The sequence associated with this last configuration is now
(l'2(Q), ... , {e"'(Q)), and the construction on TC proceeds with a non
standard µ-transition (converting ji. to l(Q): note that this occurrence
of ji. has depth n - 1), followed, again, by a transition corresponding
to CD:

TC: · · · -+ (s(f!, !J, .. ., !J), w)

-+ (s(i(Q), g, ... , !J), w)

--+ (s(t'(Q), [! • ... , g), w).

To show that TCEpath,,(s0 (,U)): notice that Q is introduced into TC

(only) from non-standard ji-transitions, involving occurrences ofµ of
depth n. Now we can construct a path from re, such that TC is its
n-truncation, by:

(1) replacing all non-standard µ-transitions by standard ji.-transitions,

(2) removing all Q 1 -transitions,

(3) replacing the 0 2-transition (assuming there is one!) by a
ji.-transition, and then continuing the path arbitrarily.

We leave the details to the reader. I

Although guardedness was used in this proof (via the Basic Lemma), we cannot
find a counterexample to the theorem by dropping this assumption.

182 DE BAKKER ET AL.

Taking Limits

2.4.12. LEMMA. Consider a path from jj.:

(f!, r.) _, (s, 11·) ___92__, (s 1
, w1

) • • •

< " If > G) < '" '" > s, w ---> s , w ·,

where transition CD inMlves an occurrence of jj (~(depth d and transition @ involves
an occurrence of a descendent of P. of depth d + 1. Then w" is longer than w'.

Proo{ By the Basic Lemma, only exposed occurrences ofµ can be involved in a
JI-transition. Since fl is guarded, no successor of this occurrence of ji. in CD is
exposed, and, in fact, no descendant of this occurrence of P. is exposed, as long as
there are only 11- and u -transitions (the proof of which is left to the reader).

Hence, before transition @, there must be at least one a-transition, which will be
lengthen the word. I

Let us write \ w\ to denote the length of the word w.

2.4.13. COROLLARY. If; in a path from fl:

(fl, t:) _, · · · ---> (s, w) ___92__, (s 1
, w')

the transition CD inrnlves an occurrence of Jl of depth d, then I w\ ;?: d.

COUNTEREXAMPLE FOR AN UNGUARDED STATEMENT. Let s = µx[x; au h].
Taking the sequence described in the counterexample following 2.4.8, with
transitions involving 11-statements of arbitrary depth, we remain with the empty
word.

2.4.14. LEMMA. The sequence ((l)~'l[p]) 11 is a Cauchy sequence in (§,., d) (see
Section 2.3).

Proof: This follows from the fact that for all n E path(jj.), wordll(n) word(n)
as /1 _, JJ, uniformly in /1 (i.e., independent of n) in A't. More precisely, by
Corollary 2.4.13, for all n E path(ji.), 11, k:

d(word 11 (n), word 11 +dn))::::; 2 -n.

Hence for all 11, k:

2.4.15. THEOREM. ~Jo[fi.] = limll @h11 l[µ].

SEMANTICS OF UNIFORM CONCURRFNCY 183

Proof: By Lemma 2.4.14, the limit on the r.h.s. exists. It is equal to (see [Ha])

{Jim w,, I (w,,),, is a CS in (A", d) and 11·11 E (rg•1[µ] }.
II

We will show that each side is a subset of the other:

(1) <;;:Clear, since for all nEpath(ji), word(n)=lim .. (word,,(n)).

(2) 2: Let w=lim,, w,,, where w,, Ecr'g' 1[ji]. For all n, there exists r 11 EC0 [ji]
which extends w,, and such that w = lim 11 l'n also. (Take P,, = word(n) for any
n such that wn =word,,(n).) Then also w=limn vw Since (10[,U] is closed (by
Theorem 2.4.10), w E crb [p]. I

We can now state the main fact about recursion used in proving Theorem 2.4. l.

2.4.16. COROLLARY. (f 0 ~ji~ = lim 11 (! 0 [i 11 (Q)].

Proof: By Theorems 2.4.15 and 2.4.11. I

SIMPLE EXAMPLE. Let {(x)=a·xuh, P=11x[i(x)]. For all ll, crnU"(Q)]=
(!i{'l[/i] = {a 1hlO,,;::; i < n} u {a" 1- }. This is a CS of sets, with limit a*h u {a"'), which
is equal to e0 [p], as promised by the theorem.

COUNTEREXAMPLE FOR AN UNGUARDED STATEMENT. Let {(x)=x·auh, P=

µx[F(x)]. For all 11, l!'o[{"(Q)] =crgl)[ji] = {ha;IO,,;::;i<n}u {1-}. This is again a
CS, with limit ha* u {ha''', 1- }. However this limit is not equal to

(r'0 [p] =ha* u { 1- },

which is not even a closed set!

Proof of Theorem 2.4.1

Finally, we are ready to prove that

@o[s] = ~o[s].

Since we are assuming that s is syntactically closed, we do not display the environ
ment with ~0 [s] above. However, in order to prove it, we must prove a more
general result, in which s is not necessarily syntactically closed (but still guarded!),

namely

(2.12)

where

184 DE BAKKER ET AL.

(b) I; is syntactically closed for i = 1, ... , k,

(c) =X,fori=l, .. .,k.

The theorem is then (of course) a special case of (2.12) with k = 0.
The proof of (2.12) is by induction on the structure of s. All cases are

straightforward (using Theorem 2.4.2) except for s = µy[s0] (assuming w.l.o.g.
yf.x 1 , ... ,xd. Now

where

and

where

(1 0[µy[s 0][t;/x;]1= 1]

= (G0 [µy[s 0 [t;/x,J1= J] (assuming w.l.o.g. no variable clashes)

= iim (\0 [r ,,] (by Corollary 2.4.16),
II

ro =Q,

r,, + 1 = s0 [t;/x;]7= 1 [r,,/y],

9 0 [py[s 0]](y(X;/x; >1= 1) =Jim Y,,,
n

Yo= { J_ },

Y,,+ 1 =.'.Zb[s0](y(X;/x;)7= 1 (Y,,/y)).

So it is sufficient to show

for all n, by induction on n.

(2.13)

For n = 0, this is clear. Assume (2.13). We must show (!Ur,,+ 1] = Y,, + 1 , i.e.,

But this follows by the main induction hypothesis on (2.12), with s0 replacing
sand k+l replacing k, and using (2.13) to establish the (k+l)th part of
condition (c). I

3. THE LANGUAGE Q 1 : SYNCHRONIZATION MERGE AND LOCAL NONDETERMINACY

For Q 1 we introduce some structure to the finite alphabet A. Let C <;;;.A be a
subset of so-called communications. From now on let c range over C, a over A\ C

SEMANTICS OF UNIFORM CONCURRENCY 185

and h over A. Similarly to CCS [Mi] or CSP [Ho] we stipulate a bijection - : C ->C

with c = c which for every c EC yields a matching communication c. There is a

special action r EA\ C denoting the result of a synchronization of c with c [Mi].

As syntax for s E i! 1 we now give:

Apart from a distinction between communications and ordinary elementary actions,

the syntax of~ 1 agrees with that of i! 0 • The difference between i! 1 and i.! 0 lies in a

more sophisticated interpretation of s 1 II s2 to be presented in the next subsection.

3.1. The Transition System T 1

The intuition about matching communications c and c is as follows: execution of

c and c individually fails or deadlocks; only execution of the parallel composition of

both succeeds. In other words c and c have to synchronize (see [Hol]). The result

of the synchronization will be denoted by the joint action r. Thus in the simplest

case a synchronization can be described by the transition

< c II c, Ii'> 4 w . T.

What makes synchronization of matching communications difficult to describe are

the synchronization-transitions of the form

where c appears at a suitable position in s 1 and likewise c in s2 •

Milner [Mi] and Plotkin [Pl2] solved this difficulty by introducing virtual

transitions for c and c. In our setting we would have

(c, w)-> w. c and < c, \\' > -> w. c. (2)

(In fact, [Mi] and [Pl2] use labelled transitions, but we may "code" these labels

into the words w.) Adding the axioms (2) to the previous transition system T0 , all

transitions of the form (l) can now be generated using only one further rule, viz.

(s 1 , w)-> <s'1 , w·c), (s2 , w)-> <s;, w·i')

<.1· 1 lls 2 , w)-> (s'1 lls;, W·T)
(3)

This is a simple and elegant solution, but we do have reservations against it because

the virtual transitions (2) violate the idea that individual communications deadlock.

In contrast, we follow Apt [Ap2] and formalize only the successful steps of

statements arising from the execution of elementary actions on the synchronization

of matching communications. In particular, we do not use virtual transitions (2) for

the individual communications. Instead the synchronization transitions (1) will be

186 DE BAKKER ET AL.

determined directly by induction on the structure of s i and s 2 . Individual com
munications c will fail immediately. This will be described by the transition

< c, w > _,. w. c5

where () is a special symbol which may appear only at the end of words and thus
signals failure or deadlock. (In Section 4 failure of individual communications c will
be modelled even stronger, viz. by the absence of any transition!)

Though Apt [Ap2] deals only with local nondeterminism, iteration, and one
level parallelism denoted by [s 1 II··· llsnJ, he uses infinitely many transition rules,
e.g., one schematic rule

for each n;;::: 2 and i E { !, .. ., n} (cf. the notion of schematic rule explained in
Section 2.1). Does the omission of virtual transitions necessitate infinitely many
rules? The answer is no; we show that finitely many schematic axioms and rules are
sufficient even when dealing with full recursion, nested parallelism, and (in
Section 4) with global nondeterminism.

Formally, let c5 rj: A u { .l} a new element satisfying c5 · w = c5 for all w. The set of
streams or words is extended to

with u, P, w now ranging over A"(c5).
In the transition system Ti (and in subsequent systems) we shall use the notation

n _,. n'

as shorthand for a number of rules i: L .. ., ~: ;,: .
The system Ti consists of all axioms and rules of T0 extended with

(s, w) _,. w for WEA'"uA*. {6, .l},

and for w EA* with (communication)

< c, w > _,. w. c5

(an individual communication fails); (synchronization)

(cllc, w) _,. w ·r;

SEMANTICS OF UNIFORM CONCURRENCY

(synchronization in a context)

((s 1 ; s) 11 s 2 , w > --> ((s'1 ; s) 11 s;, wr >
((s 1 ; s) II s 2 , w > --> ((s'1 ; s) 11 s;, wr >
((s, II s) II Sz, w > --> ((s; II s) II s;, wr >
(s1 II (s2 ; s), w>--> (s; II (s2; s), wr)

(s1 II (s2 II s), w > ~ (s'1 II (s2 II s), WT)

(s1 II (s II Sz), w) ~ (s; 11 (s II s;), WT),

187

where s; results from s 1 by replacing an occurrence of a communication c by E and
s2 from s2 by replacing an occurrence of a matching communication c by E. In
particular, s; or s2 or both may be E.

Let us briefly analyze the system T 1 • As for T0 (cf. Section 2.4, Types of
Transitions) every transition rule of T 1 has only one premise. Thus any deduction
starts from a unique axiom (Ax) so that the deduced transition will be called an
(Ax)-transition. For example, for a communication-transition the deduction starts
from the axiom

(c, w) ~ w · <5

and for a 5ynchronization-transition from the axiom

< c 11 c, w > ~ w. r.

Consider now a transition of the form

for s 1 , s 2 e.1! 2 and s'1 , s2 e£2 u {E}. Then(*) is called a synchronization-transition
between s 1 and s2 if (*) is a synchronization-transition in the above sense and if the
condition of the synchronization rule holds; i.e. s; results from s 1 by replacing an
occurrence of a communication c by E and s2 from s 2 by replacing an occurrence of
a matching communication c by E. Otherwise (*) is called a local transition.

EXAMPLE. (1) (c II c, w) ~ wr is a synchronization-transition between s 1 = c
and s2 =c. Note that here s; = s; =E. Thus the £-simplications explained in
Section 2.1 yield (E II E, wr) = wr.

(2) ((c; s'1) II ((ell c); s'), w > ~ (s; II (c; s'), wr) is a synchronization-transition
between s 1 = c; s'1 and s2 = (c II c); s'. Here s2 = c; s'.

(3) ((c; s'i) II ((c II C); s'), w) ~ ((c; s'i) II s', wr) is a local transition involving
only the second argument s2 = (c II c); s' of the top-level II operator.

188 DE BAKKER ET AL.

In general, the synchronization axiom introduces the basic form of a syn
chronization-transition between two statements whereas successive applications of
the synchronization rule generate all others. Finally, we remark that the Initial Step
Lemma (2.1.l) stated for T0 holds also for T1 but now with b EA u { c5, e }.

3.2. The Operational Semantics @1

Analogously to (l'.b we base an operational semantics @1 on T1. (!Ji is a mapping
(f1 : 1? 1 -+ §(c5) with §(o) = ~(A•1 (<5)), and (!J1[s] is defined exactly the same way as
(f0[s] in Section 2.2.

EXAMPLES. (I\ [c] = { c5}, (I\ [c II c] = { <5, r }, (!JI [(a; a') v (a; c)] = eua; (a' v c)] =
{aa',ac5}.

Thus under ('i1, communications c always create failures-whether or not they
can synchronize with a matching communication c. Also the two statements
(a; a') v (a; c) and a; (a' v c) obtain the same meaning under (91 • This is charac
teristic of local nondeterminacy s 1 u s2 where the choice of s 1 or s2 is independent
of the form of the other component s2 or s 1 , respectively. A more refined treatment
will be provided in Section 4. We remark that the Definedness Lemma (2.2.1) and
the Prolongation Lemma (2.2.2) of Section 2.2 hold also for @1 • Note also that for
C = 0 the semantics (I\ coincides with the previous (!J0 .

Remark I. It is possible to do away with occurrences of <5 in sets (!\ [s] in case
an alternative for the failure is available. Technically, this is achieved by imposing
the axiom

{<5} v X=X, x:1=0. (3.3)

In the above example applying the axiom would turn the sets { <5 }, { <5, r}, and
{aa',ac5} into {b}, {r}, and {aa'}, respectively. (For the latter case we take
{aa',ac5}=a-({a'}v{<5})=a·{a'}={aa'}.) One might argue that imposing
(3.3) throughout would be more in agreement with the intuitive understanding of
communication. The reader is, of course, free to do this throughout Section 3. Our
reason for not doing this is that our main result relating (!J1 and .@1 does not depend
on it. For both eJ1 and !ll1 , (3.3) may or may not be imposed (simultaneously)
without affecting the result of Section 3.4.

Remark 2. The elementary action r plays no special role in either T 1 or (91 (nor
in the definition of !ll1 which follows in a moment). Since r does serve a special
purpose in CCS (and many of the papers inspired by it) a comment may be in
order here: We have chosen the notation in the axiom <c II c, w)-+ wr to, indeed,
follow the standard conventions. However, we have preferred not to include into
our analysis of @1 (and .@i) a treatment of the notions of observational equivalence
(as in CCS) or abstraction (in the sense of ACP., see [BK2]). Apart from the
obvious justification that we do not want to further extend our already long paper

SEMANTICS OF UNIFORM CONCURRENCY 189

(and that a substantial part of the theory of CCS in [Mi] is developed as well
before issues of abstraction are addressed), let us point out that such r-abstraction
in the LT framework may be imposed, a posteriori, upon both (or none) of the
outcomes of cn1[s] and ~1 [s] Uust as in Remark I above). One obtains the desired
abstraction by equating r", n ~ I, with £ and r"' with l... Of course, this is no longer
so simple for the BT framework, and we refer to Section 4 on £1 2 for a remark on
the situation with respect to r-abstraction in the latter setting.

3.3. The Denotational Semantics ,0'1

This is as in Section 2.3, but extended/modified as shown below: First, we refine
the definition of II: S,(6) x §,(6)-+ §A6) as follows:

l. For X, Y<;;A*uA*·{.l,6} we define

where

XII Y=(XIL Y)u(YILX)u(X\ Y),

(i) x lL y = u { u lL Y: u E x}' .l IL.. y = { .l } ' () IL. y = { 6), c ~- y = Y,
(b·w) IL. Y=h·({w}ll Y).

(ii) X\Y=U{ulv: ueX, veY}, where (c·ui)\(c·v 1)=r({u 1 }ll{v 1 }) and
u\v= 0 for u, v not of such a form.

2. For X or Y with infinite words we define

XII Y = lim (X(n) II Y(n)),
n

where X(n), Y(n) are, as before, the sets of all 11-prefixes of elements in X and Y.
(This definition of XII Y is from [BK].) _

The definition of .011 is now as follows: Let I'1 = stmv-+ §,(6) and let }' E I'1 · We
define

by the clauses

£i71 [a] (y) = {a}

§ 1[c](y)={c}

for aEA\C,

for CE C,

.011 [.1· 1 op .1· 2](y) = .011[s1](y) opu' E21h](y)

foropE{6, u, 11},;u'= ·, uu'= u, 11"'=11,

,011 [x](y) = y(x),

011 [µx[s]] (y) =Jim X;,
i

where X0 = { .l} and

190 DE BAKKER ET AL.

Thus, apart from the clause for c, .@1 is as .@0 but for the refinement of llfl<l 1 with

respect to II T'o.

3.4. Relationship between @1 and .@1

Here we do not simply have that

(3.4)

holds for all guarded statements s E Q 1 • As a counterexample take s =c. Then
(i'\[c] = {b} but .Q\[s] = {c}. Even worse, we can state:

3.4.1. THEOREM. There does not exist any denotational (implying compositional)
semantics P- satisfying (3.4).

The proof is based on:

3.4.2. LEMMA. (l11 does not behave compositionally over II; i.e., there exists no
"semantic" operator

II!)': §(b) x §(c:5)-+ §(c:5)

such that

holds for all (guarded) s 1, s2 E Qi).

Proof Consider s 1 =c and s2 = c in Q 1. Then lD1[s 1] = lD1[s2] = {c:5}. Suppose
now that II"' exists. Then {b} = (i',Hs 1 lls 1] = @1[s 1] ll!i' @1[s 1] = @1[s 1] II!!' lD1[s2] =
cr11 [s 1 11 s2] = { c:5, r}. Contradiction. I

We remedy this not by redefining T1 (which adequately captures the operational
intuition for 5! 1), but rather by introducing an abstraction operator 11. 1 : §(c:5)-+ §((J)
such that

(3.5)

holds for guarded s E 5! 1 . We take 11. 1 = restr§ which for We §(c:5) is defined by

restr§(W) = { w \we W does not contain any c e C}

U { w · b \ 3c' EC, w' E A"1(b): w · c' · w' E W

and w does not contain any c e C}.

Informally, restr§ replaces all unsuccessful synchronizations by deadlock. It thus
resembles the restriction operator ·\C in CCS [Mi].

SEMANTICS OF UNIFORM CONCURRENCY 191

But how to prove (3.5)? Note that we cannot prove it directly by structural
induction ons, because ai = restr§ does not behave compositionally (over II) due to
Lemma 3.4.2. Our solution to this problem is to introduce a new intermediate
operational semantics {!! (such that we can show on the one hand

by purely operational, i.e., transition based arguments, and on the other hand

(l>([s] = :Zi[s]

for guarded s, analogously to @a[s] = 9 0 [s] in Section 2.4. Combining these two
results we will obtain the desired relationship (3.5).

For C1(we modify the transition system T 1 into a system T(which is the same as
Ti except for the communication axiom which now takes the form of a virtual
transition: (communication*)

(c,w)-+w·c.

We base (11(on T(as we based (11i on Ti.

EXAMPLES. (l;([c] = {c}, C1([cllc] = {ce,cc,r}, (ll([(a;a')v(a;c)] =
@([a; (a'uc)] = {aa', ac}.

Introducing virtual transitions in T(seems to violate our principles put forward
for the transition system Ti on .12 i. However, T(is only an auxiliary tool to define
the intermediate semantics {11(that is used in the proof of (1!1[s] =:xi(:a'1 [s]. Such
auxiliary tools may use any technical device that is convenient. In fact, as we shall
see in Lemma 3.4.6, the above virtual transition is just sufficient to make the
corresponding operational semantics (.n (behave compositionally over 11- This allows
us to prove (!) ([s] = .0'\ [s] by structural induction ons.

We begin with:

3.4.3. THEOREM. CQ1[s] =restr§((l"!([s])for every sE.1! 1•

The proof uses the following lemma which establishes the link between the
underlying transition systems Ti and T(.

3.4.4. LEMMA. For all SE.121, s'E.i.!1 u {£},and w, w'E(A\C)*:

(i) T 1 1- (s, w)-+ (s', w') iff

T(1- (s, w)-+ (s', w')

(ii) T 1 1- (s, w)-+ (s', w i5) if!

3c EC: T(1- (s, w)-+ (s', we).

192 DE BAKKER ET AL.

Prol?/ Recall that 6 if: A and that T 1 and n differ only in their communication

axioms:

< c, w > -+ w. 6 (3.6)

< c, w > -+ w . c (3.6 *)

in Tf. Therefore every transition in T 1 which is not a communication-transition, is

also a transition in Tf, and vice versa. This implies (i). On the other hand, every

communication-transition in T 1 corresponds to (another) communication

transition in T(which is obtained by replacing axiom (3.6) by (3.6*) at the root of

the proof tree, and otherwise applying exactly the same rules in Tf as in T 1 • This

argument also holds vice versa, thus proving (ii). I

With Lemma 3.4.4 we are prepared for the

Prol?f' if Theorem 3.4.3. Observe that both

cr11 [s], restr §((f1 f [s]) £(A\ C)* u (A\ C)"' u (A\ C)* · { .l, b }.

Therefore we consider the following cases.

Case!. wE(A\C)*u(A\C)"'u(A\C)*·{_l_}. Then as an immediate con
sequence of Lemma 3.4.4(i) we have

wE(f\[s] iff WE lOf[s].

Case 2. w 6 E (A\C)* · {6 }. Then

W 6 E (f\ [s]

iff T 1 r-<s,1:)-+*w6, iff 3c'EC, s'Ei! 1 u{E}: Tfr-<s,e)--><s',wc') (by

Lemma 3.4.4(ii). Note that the second alternative can arise.) iff

(3c' EC: T(r- <s, e) -->*we')

v (3c' E C, s' E B 1 , w' E A* u A"' u A* . { .l } :

T(r- <s, e)-+* <s', we) 11 w' E COf[s'])

(by the Definedness Lemma 2.2. l which also holds for CO i) iff 3c' E C, w' EA* u
A"' u A* · { J_}: we' w' E (I! f [s] (by the Prolongation Lemma 2.2.2 which also holds
for (! r).

Combining Cases 1 and 2 we find

l01[s] =restr§(0f[s]),

by the definition of restr §. This proves the theorem. I

SEMANTICS OF UNIFORM CONCURRENCY 193

Next we discuss

3.4.5. THEOREM. (D t[s] = ~i [s] for all (syntactically closed) guarded s E £l i ·

Its proof has the same structure as that of "(lh[s] = ~0[s]" (Theorem 2.4.1). In
fact, Theorems2.4.10, 2.4.11, and 2.4.15 also hold for @1, ~i. and £! 1 instead of~b.
~0 • and £1 0 , with identical proofs. We therefore concentrate here only on the proof
that @1 behaves compositionally over II (thereby completing the proof of
Theorem 2.4.2). More precisely, we show

3.4.6. LEMMA. @t[s1 lls2] =l1Jt[s1] 111:'' @t[s2] for all si, s2 Eil 1 .

As an auxiliary tool we need a result recalling Apt's "merging lemma" in [Ap2].

3.4.7. LEMMA (Synchronization). Vsi, S2 E £1 1 Vs;, s2 E i! 1 U {£} Vw, WI> w2 EA*:

where the considered transition is a synchronization-transition between Si and s 2 if!

and

Proof By the Initial Step Lemma it suffices to prove the present lemma for
W=Wi=W2=f; only.

"~" Suppose T1 r- (si II s2, e)--> (s; II s2, -r) as above. By the assumptions
about this transition, its proof in Tt starts with a synchronization-axiom of the
form

(c 11 c, t;)-->-r,

where c occurs in si and c in s2 • By the definition of Tt, Si and s'i (respec. s 2 and
s2) are obtained from c and E (c and£) by successive embeddings in contexts of the
form

·; s, · 11 s and sll · (3.7)

for arbitrary statements s E il i (by the rule "synchronization in a context" of Tf).
To construct a proof of (s i, <;) --.. (s'i, c) in Tt, we start with the axiom

(c,£)-+-c

in Tt and then lift this transition to

194 DE BAKKER ET AL.

by successive applications of the rules of sequential compos1t1on and shuffie
corresponding to the successive context embedding of c described in (3.7). This
proves Tf 1- (s1, e)-+ (s'1, c).Analogously we prove yt 1- (s2, e)-+ (s;, c).

"<=" Suppose Tf 1- (s 1 , e >-+ (s'1 , c). Let us analyze the structure of s 1 by
investigating the possible proofs in Tf leading to a transition which produces "c."
Clearly such a proof must start with the communication *-axiom

(c, e)-+ c,

and it can proceed only by applying the rules of sequential composition and shuffie.
Thus s1 has the BNF-syntax

(3.8)

where s is an arbitrary statement in B 1• An analogous analysis holds for s 2 in
n I- <s2, e)-+ <s;, e).

To show n I- <s I II S2, e)-+ <s; II s;, L), we start the proof with the syn
chronization axiom

<cllc, e)-+r,

and complete it by successive applications of the rule for synchronization in a
context according to the structure of s1 and s2 as determined in (3.8). Note that we
may arbitrarily "interleave" the applications concerning s 1 with those concerning s 2 .

This finally yields the proof of

in Tf. Now by its construction this transition is a synchronization transition
between s1 and s2 • This finishes the proof of the lemma. I

We now turn to the proof of the announced lemma.

3.4.6. LEMMA. CDf[s1 II s2] = CDf[s1] ll.r;i 1 CDf[s2] for all s 1, s2 E -2 1.

Proof "£"Let wECDf[s 1 lls 2], with wEA*uA'"uA* · {.l}. (Note that Ci's are
not present in CD f.) Then there exists a finite or infinite transition sequence

such that s~, s~ may be E, s~ stems from s1 and s~ from s2 , and the following hold:

(i) if w E A* then 3n ~ 0: s~ = s~ = E /\ w = w n

(ii) if WEA'" then w=supn wn

(iii) if WEA*·{.l} then 3n~O\lm~n:wm=Wn/\ w=wn.l.

We have to find words uE(i)f[s 1] and vECDf[s2] with wE {u}ll[',j, {v}. To this end,
we first establish the following claim.

SEMANTICS OF UNIFORM CONCURRENCY

CLAIM. There exist finite or infinite transition sequences

Tt I- (si. e) = (t~, Uo) ~ · · · - (t/0 uk) ~ ·· ·,

Tr 1-- (s2, e) = (10, v0) ~ ··· - (t;', v1) ~ •.• ,

such that there are sequences

with

for all n;::::: 0.

O~k0 ~k 1 ~k2 ~ ···,

0~/0 ~/ 1 ~12 ~ ···,

s;, =(kn and s"= t" n In'

Proof of the Claim. By induction on n;::::: 0.

Basis. n = 0. Clear: choose k 0 = I 0 = 0.

195

Hypothesis. Assume the claim holds for n;::::: 0, i.e., there are transition sequences

Tr 1-- (si. e) - · · · - (tkn• uk),

rr I- (s2, e) - ... - (t7., v,n>

Step. n - n + 1. Let us analyze the final transition producing wn +I in (3.9):

(3.10)

Note that s~ + 1 stems from s~ and s~ + 1 from s~.

Case 1. This is a local transition. Then, say, the first component is affected, i.e.,

Tr I- <s~, wn> - (s~+ I• Wn+ I> and

(Note that we may have w n = w n +I.) By the Initial Step Lemma, also

Combining this transition with the hypothesis yields

rr I- (SI• B) - · · · - ((kn• Uk) ~ (S~ + l • Ukn. (W n +I - W n))

(where, if w' is a word extending w, say w' = wu, we define w' -w to be u).

196 DE BAKKER ET AL.

Now we define

k,,+1=k,,+1, I,,+ 1 =I,,

By the definition of r,. 1 ,

and, of course, max { k..+ 1 , /,, + i};::::;: n + 1 ~ k,, + 1 +I,,+ 1 • This proves the claim for
n + 1 in Case 1.

Case 2. (3.10) is a synchronization-transition between s 1 and s 2 • Then
w n + I = w n r and, by the Synchronization Lemma, there exists some c E c with

Combining these transitions with the hypothesis yields

Obviously, we define

k,,+1=k,,+l,

t~,,+1=S~+1'

By the definition of 11 s;',

W11 +1=W 11 rE{uk,·c}ll!ki' {v 1.·C}={uk,+i}lls;' {v,n+J

and of course max{k,,+ 1 ,/11 + 1 };::::;:n+l~k 11 + 1 +/11 + 1 • This proves the claim for
n + 1 also in Case 2.

Hence the claim holds in general.

Using the claim, it is easy to find appropriate words u, v. The construction
corresponds to the case analysis (i)-(iii) of w above. For example, we define u as
follows:

if 3k > 0: sic = E, then u = u k E A*,

if'rfk>03K>k:wk<wK, then u=supkukeA'",

if3k>OVK~k:wk=wK, then u=uk_l_ eA*·{_l}.

SEMANTICS OF UNIFORM CONCURRENCY

Analogously we proceed for v. Clearly,

and

To verify

w E { u} II !Ii { v}

we examine the cases (i H iii) of w.
In case (i) we have a finite path

rr I- (si II S2, e)-+ (s~lls;;, wll) =(Ell E, w) = w.

By the claim and the definition of u, v,

Tr I- (Si, 8)-+ · · ·-+ (t~n' Uk,)=(£, Ukn) = U,

Tr 1- (s2, e)-+ · · ·-+ (t;", o,,) = (£, v,,) = o,

and thus (3.11) as required.

197

(3.11)

In case (ii) we have an infinite path (3.9) producing infinitely often increasing
words ww By the claim at least one of the paths of Si and s2 , say that of Si, must
also be infinite, producing infinitely often increasing words uk, yielding an infinite
u = supkuk. Now by definition

{u}ll!I' {o}=lim ({u[n]}ll"'' {v[n]}).
n

Consider now the approximation w11 of w. By the claim,

Since max { k 11 , / 11 } ~ n, we have

and

Thus 3we {u[n]}ll!/' {o[n]} with

This shows

w E lim ({ u [n J } II"'' { v [n J}),
II

and thus proves (3.11).
In case (iii) we have an infinite path

198 DE BAKKER ET AL.

with w = w 1 = ... and thus w = w,, ..L. By the claim ,, u +

Tt 1- (s 1 , e)-+ · · ·-+ (tk.• uk)•

T(1- (s2 , e)-+ · · ·-+ (t7., v1.>.
with w,, E { ukJ 11 "" 1 { viJ. Moreover, due to the condition "n ~kn+ 1,, for all n" in
the claim, at least one of the transition sequences of s1 (or s2) can be extended to an
infinite one without expanding uk. (or v ,J So u = uk, .l (or v = v '· .l). If the other
path of s2 (or si) is finite, we may assume w.l.o.g. that t7. = E (or '"· = £). So then
we have u = v1, (or u = uk). Combining these facts establishes (3.11).

"2" Let wEln([s1] 11 91 l9f[s2]. Then there exist words uEl9f[s1],

v E (I f[s 2] with

w E { u} II 91 { v}.

We have to prove

wE l9f[s1 lls2l
By the definition of (!j (there are corresponding finite or infinite transition sequen
ces in T(for u and v:

T(1- (s 1 , e) = (!~, u0) -+ · · · -+ (tk, II k) -+ · · ·,

T(1- (s2 , e) = (t0, v0)-+ · · ·-+ (t7, v,)-+ · · ·,

(3.12)

(3.13)

where (in case of finite sequences) '" and t/' may be E. Recall that u and v are
obtained from (3.12) and (3.13) just as described for w by the cases (i)-(ii) in part
"£."We now construct a finite or infinite path

(3.14)

which is maximal w.r.t.

wn~w

and which moreover satisfies the following properties: there are sequences

and

such that for each n ~ 0

s"= t" n In

max { k,,, l,, } ~ n,

The construction of (3.14) proceeds by induction on n ~ O.

Basis. n = 0. Choose k0 = 10 = 0.

SEMANTICS OF UNIFORM CONCURRENCY 199

Hypothesis. Assume the construction works already up to n ~ O. If the con
figurations

and (3.15)

in (3.12) and (3.13) are both final ones, i.e., with t;,.= r;:= E, the constructed path
(3.14) is already maximal because also

holds. In all other cases (3.14) has to be extended.

Step 11--. 11 + 1. We analyze the configurations (3.15).

Case la. Path (3.12) has a transition (t;, •• uk.)-.(tk.+i• uk.+i> with
uk. = uk.+ 1 • Then we put

and kn+ 1 =kn+ I, !,, + 1 = I 11 , s;, + 1 = tk. + t> s~ + 1 = s~, and add the transition

to (3.14).

Case lb. Symmetric to Case la, but with regards to path (3.13).

Case 2a. Path (3.12) has a transition (tk.• uk.) --. (tk. + 1, uk. + 1) with uk. + 1 =
uk.·b, where be A and w,,-b=s;;w.

(Note. b can be an elementary action a (including the case a= r), or a com
munication c. Also, w,, · h :s;; w is always true for b =a orb= r.) Now we put

W 11 +1=W11 ·b

to (3.14).

Case 2b. Symmetric to Case 2a, but with regards to path (3.13).

Case 3. Path (3.12) has a transition (tk.•uk.>-. (tk.+t• uk.+1> with uk.+1=
uk.·c, where ceC, but wn·c { w.

Since we{u}ll 21, {v}, we conclude that wn·r=s;;w and that path (3.13) has a
transition

with

200 DE BAKKER ET AL.

Then we put

l1'11+1=H'n·T

and

and add the transition

to (3.14). This finishes the construction of path (3.14). We now claim that (3.14)
yields w according to the definition of l1'1 n1' I II s2l This is clearly true for
w EA* u A"' due to the maximality of (3.14) and the conditions "w" E {uk,,} II"'' { v1,,}
for n ~ O" which link up with w E { u} II"'' { v} analogously to part "<;; ."

If w EA*· { .1 }, then at least one of u or v, say u, is in A*· { .1} as well. Then
path (3.12) is infinite. By the conditions "max{k 11 ,l,,}~n for n~O," also the
constructed path (3.14) is infinite. Thus (3.14) yields indeed win (()f[s 1 lls 2]. I

This also finishes our argument for Theorem 3.4.5. By combining Theorems 3.4.4
and 3.4.5 we finally obtain our desired result:

3.4.8. THEOREM. lC'1 [s] = restr § (£211 [s]) for every guarded s E il 1 •

4. THE LANGUAGE fl 2 : SYNCHRONIZATION MERGE AND GLOBAL NONDETERMINACY

We assume the same structure of the alphabet A as for i! 1 , and the same use of
the variables a, b, and c. But the syntax for s E il 2 is now given by

The symbol "+" denoting global nondeterminacy is taken from CCS [Mi].

Remark. Simultaneous incorporation of "u" and "+" into one language is in
principle possible. We prefer not to do this since it firstly conflicts with our aim to
clarify the two forms of non-determinism by treating them in an orthogonal setting.
Second, we observe that in the operational semantics, no serious complications
arise: we may essentially combine the two systems T 1 and T 2 • However, the
required modifications in the denotational semantics would be somewhat involved
since a "linear time version" of the operation of process union would have to be
combined with the (normal) set-theoretic union of two processes (cf. Section 4.3).

SEMANTICS OF UNIFORM CONCURRENCY 201

4. l. The Transition System T 2

The essential di~erence between local nondeterminacy s 1 u s2 and global non
deterninacy s 1 +.1· 2 1s the treatment of communications in s 1 and s2 • For example,
the .12 1-statement

auc

involving local nondeterminacy may choose "on its own" between a and c. In the
transition system T 1 this was formalized by the two transitions

(auc, w)-... (a, 1r),

(auc, w)-... (c, w).

The first choice leads to successful termination, viz.

(a, w)-... w ·a,

whereas the second choice leads to communication failure, in T 1 represented by

(c, w)-... w · 6.

Contrast this behaviour with that of the 2'rstatement

a+c

involving global nondeterminacy. Here the choice between a and c depends on the
context in which a+ c is placed. Considered in isolation, only the transition

<a+ c, f\")-... w -a

should occur. We then say that the first alternative of a+ c is selected by the action
a. The communication c should not produce anything. Now consider a+ c in the
context of a parallel composition with the communication c. Then the selection of a
is still possible yielding

< (a + c) 11 c, w) -... < c, w ·a)

but no further transition. Additionally, however, c can synchronize with the
matching communication c and lead to successful termination:

((a+c)llc, w)->w·T.

We say that the second alternative of a+ c is selected by the synchronization of c
with c.

This form of global nondeterninacy is typical for languaes like CSP[Ho l],
Ada[Ad], and Occam[In]. There the elementary action g. would correspond to a

202 DE BAKKER ET AL.

purely Boolean guard evaluating to true, and the synchronization of c with c to
matching communication guards in two parallel components. In the uninterpreted
setting of uniform concurrency global nondeterminacy was first discussed by Milner
[Mi] and later in [BHR, Ho2, OH]. In our approach, we follow [BHR, Ho2, Mi,
OH] in that recursive µ-unfolding does not select any alternative. For example, we
would like to have

(µx[a] +c, w)-+ (a+c, w).

This case does not arise in the original CSP[Hol], Ada[Ad] or Occam[In] due to
syntactic restrictions in these languages.

Obviously, formalizing global nondeterminacy in a transition system is more
demanding than formalizing local nondeterminacy. It is here where Milner [Mi],
Plotkin [Pl2], Brookes, Hoare, and Roscoe [BHR] and others profit most from
the introduction of virtual transitions

(c, w)-+w·c

for c EC (cf. Section 3.1). With them global nondeterminacy can be captured by
adding to rule (3) discussed in 3.1 a rule of the form

(s 1 , w)-+ (s', w')

(s1 +s2, w)-+ (s', w')

(s2 +si. w)-+ (s', w')

for both actions (w' = w ·a) and communications (w' = w · c) plus some extra rule
for µ-unfolding. In addition, they also have transition rules for a syntactical restric
tion operator that eliminates all virtual transitions that do not contribute to
synchronization transitions via rule (3).

But again, we would like to manage without virtual transitions and formalize
instead only the successful execution steps as in Apt [Ap2]. But is this possible for
the combination of synchronization merge and global nondeterminacy? Apt does
not consider this case. We give a positive answer by giving a finite transition system
T2 for l? 2 . Thus we provide further insight into the issue of local vs global
nondeterminacy for transition systems that describe only the successful steps of
concurrent statements and need only finitely many schematic axioms rules.

A final difference between our approach and that of Plotkin's [Pl2] consists in
our definition of @2 which collects information from a (finite or infinite) sequence of
transitions in a way which has no counterpart in [Pl2].

Formally, T2 is like T1 but without the axioms for local nondeterminacy and
for communication ((c, w)-+ wo). Instead we have new rules for global non
determinacy:

(µ-unfolding)

SEMANTICS OF UNIFORM CONCURRENCY

(s 1 +s2 , w)-+ (s'+s 2 , w)

(s 2 +s 1 , w) -+ (s2 + s', w)

203

Here the word on the r.h.s. of the premise is equal to the word on the l.h.s. (= w).
This implies that the premise (and hence the conclusion) is a recursion transition.

(selection by action)

<s 1 , w)-+ (s', wa)

(s 1 +s2 , w)-+ <s', wa)

(s2 +s 1, w)-+ (s', wa)

where s' may be E (and the premise is an elementary action transition or a syn
chronization transition (in this case a= r)).

(selection by synchronization)

((s1 + s) II S2, w)-+ (s'1 II s;, wr)

(s+si)lls2 , w)-+ (s'1 lls;, wr)

(s 1 II (s2 + s), w)-+ (s'1 II s;, wr)

(s 1 II (s+s 2), w)-+ (s; lls;, wr)

where s'1 results from s 1 by replacing an occurrence of a communication c by E and
s; from s 2 by replacing an occurrence of a matching communication c by E. This
condition is as for the synchronization rule (cf. Section 3.1). Note that the";" and
"II "-context rules for II remain valid.

4.2. The Operational Semantics (!)2

l!J2 is a mapping (!)2 : .12 2 -+ §(£5) with §(8) = ~(Asi(b)) as for 5! 1 • The definition of
l02 [s] is as for l!J0 and l01, i.e.,

(!)2 [s] = { word(n:) In is a path from s }.

However, there is now an additional fourth clause in the definition of word(n:),
namely:

(d) if n is finite, and of the form

(s, e) =<so, Wo)-+ ... -+ <sn, wn), with Sn#- E

where no further transition (sn, wn)-+(s',w') is deducible in T2 ,

then word(n:) = wn ·b.

204 DE BAKKER ET AL.

The pair (s n, w,,) in (d) is called a deadlocking configuration. (Such configurations
did not exist under T0 or T1.) Note that by (d) the Definedness Lemma 2.2.1
remains valid for (!2 : (112 [s] # 0 for all s E 2 2.

The following examples mark the differences from C\\.

EXAMPLES. (112[c] = {(5},(1'2 [c[[C] = {r},@2 [(a;a')+(a;c)] = {aa',aC5},
l'2[a; (a'+ c)] = { aa' }. (Remember, &1 [a; (a' u c)] = CD1 [(a; a') u (a; c)] = { aa', ao }.)

Because it is important to see the difference between the last two examples, we
shall show they are derived:

(i) (''2[(a; a')+ (a; c)] = {aa', ao}.

Proof Note that

(a; a', e)-+ (a', a)-+ aa'

and

(a; c, e)-+ (c, a)

are deducible. So by selection by elementary action we obtain also

((a; a')+ (a; c), e)-+ aa'

and

((a; a')+ (a; c), e)-+ (c, a).

So, since no further deductions can be made from (c, a), we get by the definition
of(' 2: l'i[(a; a')+ (a; c)] = {aa', ao}.

(ii) (''2 [a; (a'+ c)] = { aa' }.

Proof First note that

(a;(a'+c),e)-+(a'+c,a).

Since we have that

(a',a)-+aa',

we also have

(a'+ c, a)-+ aa',

and therefore

(a; (a'+ c), e)-+ aa'.

Since we cannot deduce anything from (c, a), aa' is all we can deduce from
(a; (a'+ c), e).Consequently, l!J2 [a; (a'+ c)] = {aa'}.

SEMANTICS OF UNIFORM CONCURRENCY 205

Thus with global nondeterminacy "+ ," the statements s 1 =(a; a')+ (a; c) and
s2 =a; (a'+ c) get different meanings under <!2 • This difference can be understood as
follows: Ifs 1 performs the elementary action a, the remaining statement is either the
elementary action a' or the communication c. In case of c, a deadlock occurs since
no matching communication is available. However, if s 2 performs a, the remaining
statement is a'+ c which cannot deadlock because the action a' is always possible.
Thus communications c create deadlocks only if neither a matching communication
c nor an alternative elementary action a' is available.

Remark (on the role of r). Again, in 02 (or in 9 2) we find no special treatment
for r, for the reasons mentioned earlier. In the branching time outcome (as
delivered by .@2), one may perform r-abstraction steps by (repeatedly) applying
Milner's r-laws (first described in [Mi] and studied in many places, see [BK2] for
an example). For (SJ2 this is not so clear, since the r-laws expect branching time
objects to operate upon. We have not studied the question whether it is possible to
define a modified version of T 2 which incorporates the effects of the r-laws in some
way. A relevant reference is [vG], where in an operational setting with transitions
of the form

" X----> y,

with x, y ACP processes, one encounters rules such as

X -->" y, y --> r Z

x ---:,." z

In fact, it may be seen that this rule embodies Milner's third law:

a(y + c) = a(y + r:::) + a:::.

4.3. The Denotational Semantics .'!}!2

We follow [BZl, BZ2, BBKM] in introducing a branching time semantics for ~ 2 •
Let, as usual, J_ ~A and let A 1 be short for Au { J_ }. Again, we assume a special
element r in A. Let the ultrametric spaces (IP,,, d,,), n;?;:O, be defined by

IP" + I = ~ (A .l \.) (A X IP n)),

where '-l,1(.) denotes all subsets of (.), and the ultrametrics d,, will be defined in a
moment. Let IP"'= U,, P,,. Elements of IP"' are called (finite) processes and typical
elements are denoted by p, q, Processes pin IP,, are often denoted by p,,, q,,, ·
For p E IP w we call the least n such that p E IP,, its degree. Note that each process 1~ a
set; hence, a process has elements for which we use x, y, ... (not to be confused with
x, yEStmv). For each p(elPwl we define its nth projection p(n) as follows:

206 DE BAKKER ET AL.

p(n) = {x(n)I xEp },

x(n)=xifxEA 1 ,

{ b,
[b,p](n)= [b,p(n-1)],

n=O, 1, .. .

n=O, 1, .. .

n=O
n = 1, 2,

(For easier readability, pair formation in processes is denoted by [" ·].) We can

now define d11 by

if p~ =p~

if p~ t= p~
d (I II)- 2-sup{klP~+i(k)=p;:+ilklf

11+! Pn+t•Pn+I -

with 2 - x = 0 as before.
On IP we define the ultrametric d by putting d(p, q) = dn(p, q), where

n=max(degree(p), degree(q)). We now define the set IP of finite and infinite
processes as the completion of IP'" with respect to d. A fundamental result of [BZ2]
is that we have the equality (more precisely, the isometry)

IP= 'i'c1osed(A J. v (A x IP)).

Examples of finite elements of IP are {[b, {b 1}], [b, {b2 }]} and { [b, {b1, b2 }] }.

The following trees represent these:

Thus, the branching structure is preserved. An example of an infinite element of IP> is
the process p which satisfies the equation p= { [b 1 ,p], [b 2 , p] }. Processes are like
commutative trees which have, in addition, sets rather than multisets for successors
of nodes and which satisfy a closedness property. An example of a set which is not a
process is {a, [a, {a}], [a, {[a, {a}]}] .. · }, where this set does not include the
infinite branch of a's.

Remark. One might wonder as to the relationship between the domain IP
described above and the domains obtained in terms of the familiar bisimulation
equivalence [Pa] on (graphs or) trees. We do not have a complete answer to this
question, but the following partial result is available (R. van Glabbeek and
J. W. Klop, personal communication). Let the alphabet A be finite (as usual in our
paper). Consider the set of process trees, i.e., the set of all (rooted directed) finite or
infinite trees with edges labelled by elements from A and leaves which may be
labelled by 0 or .l, which satisfy the restriction that each node has at most coun
table splitting degree. Assume, moreover, a natural definition of closedness for
process trees given (details omitted here), and let :T denote the set of all closed

SEMANTICS OF UNIFORM CONCURRENCY 207

process trees. Let +--> denote the bisimulation equivalence. We then have (with
some abuse of notation).

(.'Y / <-->) ::::: \.l3 cloml (A .l U A X (g / <-->)).

Further study is necessary for a full understanding of the above-mentioned car
dinality restrictions.

The empty set is a process and takes the role of ('i. Note that in the previous
linear time (LT) framework 0 cannot replace !J since by the definition of
concatenation (for LT) we have h · 0 = 0 which is undesirable for an element
modelling failure. (An action which fails should not cancel all previous actions!)
In the present branching time framework, { [h, 0]} is a process which is indeed
different from (and irreducible to) 0.

The following operations on processes are defined. We first take the case that
both processes are finite, and use induction on the degree(s) of the processes
concerned:

concatenation": p ,-, q = U { x u q: x E p }, where l. c q = l.,

h 0 q = [h, q], [h, p'] 0 q = [h, p') q].

union u: p u q is the set-theoretic union of p and q.

merge II: p II q = (p lL q) u (q ILP) u (p I q), where p lL q = U { x lL q: x E p },
l. llq=l., h ilq= [b,q], [b,p'] llq= [b,p' II q]. Moreover, plq=U {xly:
xEp,yEq}, where

[c, p'J I [C, q'] = { [r, p' 11 q'J}

[c,p']lc= {[r,p']}

c I [C, q'J = { [r, q'J}

clc={r}

and x I y = 0 for x, y not of one of the above four forms.
For p or q infinite we have (since IP is defined by completion of IP,,,) that

p=limnpn, q=lim 11 q11 ,p11 and qn finite, n=O, 1,. . ., and we define popq=
limn(P 11 op q11), where op E {-, u, II}. (By [BZ2], (p 11 op q11) 11 forms a Cauchy
sequence.) It is now straightforward to define .072 : guarded .12 2 -> (I'2 -> IP), where
I'2 = Stmv-> IP, by following the clauses in the definition of .070, ~1 • Thus, we put

EZl2 [a] (y) = {a }

.@2 [c](y)= {c}

EZl2[s 1 op s2] (Y) = EZl2[s 1] (y) op!ll 2EZl2[s2] (y)

208 DE BAKKER ET AL.

!:22 [x](y) = y(x)

9 2[px[s]](y) =limp;,
i

where p0 = { l.} and

pi+ I = 0)2 [S] (}' < p ;/ X >).
Mutatis mutandis, the contractivity results for 0>0 , 9 1 hold again.

4.4. Relationship between @2 and !3J2

For a suitable abstraction operator a2 we shall show that

holds for all guarded s E .12 2 . We define a 2 : IP ~ §(6) in two steps:

(4.2)

1. First we define a restriction mapping restr": IP---> IP. For p E IP"' we put
inductively (recall that a ranges over A\C):

restr"(p) = {a I a E p} u { l. I l. E p}

U {[a, restr"(q)] I [a, q] Ep }.

For p E IP\IP"' we have p = limnp,,, with p,, E IP' 11 , and we put

restr 0,(p) = lim (restr" (p11)).

II

EXAMPLE. Let p = 0J2[(a+c)ll(a'+c)] = .012 [(a;(a'+c)) + (c;(a'+c)) +
(a';(a+c))+(c;(a+c))+r]. Then restr"(p) ={[a, {a'}], [a', {a}],r} =
.ct:2 [(a; a')+ (a'; a)+ r].

2. Then we define a mapping streams: IP~ §,.(c5). For pE IP"' we put induc
tively (recall that b ranges over A):

{blbEp}u{.ll.1Ep}

streams(p)= U {b·streams(q)l[b,q]Ep} if pi= 0

if p=0.

Note that b ·streams(q) itself is a set of streams. For p E IP\ IP w we have p = limn p,,,
with p 11 EIP 11 , and we put

streams(p) = lim (streams(p,,)).
n

Note that "lim11" above is taken with respect to the metric on §c(c5) [see Sec
tion 2.3]. (For a proof that streams(p) is closed in §(c5) we refer to [BBKM].)

SEMANTICS OF UNIFORM CONCURRENCY 209

EXAMPLE. With pas in the previous example we have streams(p) = {aa', ac, ea',
cc, a'a, a'c, ea, cc, r} and streams(restri,(p)) = {aa', a'a, r }.

Finally we put

et 2 = streams o restr If'

in (4.2). Similarly to a 1 , we cannot prove (4.2) directly by structural induction on s
because ct 2 does not behave compositionally. Thus again the question arises how to
prove (4.2). Note that here things are rather more difficult than with ~\[s] =
a 1(E}i1[s]) because the semantic domains of (()1 and § 1 are quite different: linear
streams vs branching processes.

Our solution to this problem is to introduce

a new intermediate semantic domain IR,
- a new intermediate operational semantics (Of on IR,
- a new intermediate denotational semantics £02 on IR,

and then prove the following diagram:

(()2 restrR (()f = E}i f readies £02

~ ct 2 = streams o restr If' _)

= restr i;i o readies

where restri;i and readies are two further abstraction operators.

The Intermediate Semantic Domain IR

We start with the intermediate semantic domain. To motivate its construction, let
us first demonstrate that a simple stream-like variant of (()2 is not appropriate as
intermediate operational semantics (()f here. Indeed, if we base (()f-similarly to
(!) r-on a transition system obtained by just adding the axiom

(c, w) w · c

to T2 , we cannot retrieve (!)2 from (()f. As a counterexample consider the programs
s1 =(a; ci) +(a; c2), s2 =a; (c 1 + c2) and s = c1• Then (02 [s 1 II s] = {ar, ac5} # { ar} =
@2[s2 lls], but (!)t[s 1 lls] =(!)t[s2 lls]. Thus whatever operator et we apply to(()![·],
the results for s 1 II s and s2 II s will turn out the same. Thus we cannot retrieve f!J2

from this lOf.
To solve this problem, we introduce for (!)t a new semantic domain which,

besides streams we A"', also includes very weak information about the local
branching structure of a process. This information is called a ready set or deadlock
possibility; it takes the form of a subset X of C, the set of communications, and may
appear (locally) after every word we A* of successful actions. Informally, such a set
X after w indicates that after w the process is ready for all communications c e X

210 DE BAKKER ET AL.

and that deadlock can be avoided only if some communication c EX can syn
chronize with a matching communication c in some other parallel component. Thus
X can be seen as a "more informative o." This view is confirmed by the fact that
there will be no ready set X after w if the process can do an elementary action
a EA\ C and thus avoid deadlock on its own. With some variations this notion of a
ready set appears in the work of [BHR, FLP, OH, RB].

Formally, we take L1 = ~(C) and define the set of streams with ready sets as

Ard= A'1 u A*: L1

where A*: L1 denotes the set of all pairs of the form w: X with we A* and X e L1.
For X E L1, let X = {cl c EX}. As intermediate domain we take the ready domain

Just as we did for A'1 and Asi(o), we can define a metric d on Ard and a
corresponding metric d turns the collection IR, s IR of nonempty closed subsets of
Ard into a complete metric space (IR,., d).

The Intermediate Operational Semantics r9!
We now turn to the intermediate operational semantics (!)! on IR. It is based on

the following transition system T! which consists of all axioms and rules of T2

extended (for w EA*) by:

(communication*)

<c, w)-+ w · c

(ready sets cq. deadlock possibilities)

(i)

(ii)

(iii)

(iv)

where Xn Y=r/J.

< c, w > -+ w: { c}

<s 1 , w)-+ w: X

<s 1;s2 ,w)-+w:X

(s 1, w)-+ w: X, <s2 , w)-+ w: Y
<s 1 +s2 , w)-+ w: (Xu Y)

(s 1 ,w)-+w:X, (s2 ,w)-+w: Y

<s 1 lls2 , w)-+ w: (Xu Y)

Axiom (i) introduces ready sets or deadlock possibilities, and rules (ii}-(iv)
propagate them. In particular, rule (iii) says that s 1 +s2 has a deadlock possibility if
s 1 and s2 have, and rule (iv) says that s1 II s 2 has a deadlock possibility if both s1 and
s2 have, and no synchronization is possible. The transitions deducible with these

SEMANTICS OF UNIFORM CONCURRENCY 211

axioms and rules are virtual transitions, but they are needed only as a technical
device in the proof of C:'2 [s] = a 2 (qi2 [s]).

Since the rules (iii) and (iv) have two premises, deduction in Tf need not start
any more from a single axiom. But every deduction of a transition

(s, w >-> (s', w' >
or

(s, w)-> w'

or

(s, w)-> w': X

in Tf is such that all its axioms are instances of the same axiom scheme. Thus
similarly to Section 2.4 (see Types of Transitions) we may talk of an (Ax)-transition
if (Ax) is the name of the axiom. Note also that the Initial Step Lemma 2.1.1
remains valid for Ti.

The intermediate operational semantics

is defined in terms of Ti just as (92 was defined in terms of T2 • In particular, for
each finite path n of the form

we include word(n) = w: X in (I! i[s].

EXAMPLES. (i) (Di[a; (a'+ c)] = {aa', ac }.

Proof We explore all transition sequences in Tf starting in (a; (a'+ c), r.):

(1) (a, £ > -> a
(2) (a;(a'+c),c)->(a'+c,a)

(3) (a',a)->aa'

(4) (c,a)->ac

" a: { c}

(5) (a'+c,a)->aa'

" ac

(elementary action)

((1), composition)

(elementary action)

(communication)

((3), (4), global nondeterminacy).

No more transitions are deducible for (a'+ c, a).

212

(6) Thus

DE BAKKER ET AL.

<a; (a'+ c), e)--+ <a'+ c, a)--+ aa'

"" ac

are all transition sequences starting in (a; (a'+ c), e).
This proves the claim. I

(ii) (fij[a;a'+a;c]={aa',ac,a:{c}}.

Proof Here we only exhibit all possible transition sequences in Ti starting in
(a; a' +a; c, i:):

(a; a'+ a; c, e)--+ (a', a)--+ aa'

"" (c,a)--+ac

"" a: {c}. I

Note that we can prove (a;a'+a;c,e)--+(c,a) and (c,a)--+a: {c}, and
therefore (a;a'+a;c,e)--+*a:{c}. However, we have (a;(a'+c),e)_.
(a'+ c, a), but we cannot prove (a'+ c, a) --+a: { c }. (By rule (iii) of ready sets this
would only be the case if we could prove, besides < c, a> --+a: { c }, also
(a', a)--+ a: X for some X s; { c }. Since a' is not a communication and the
only possibilities for X are 0 and { c }, this cannot be proved.) Consequently,
(a; (a'+ c), e)-fr* a: {c }.

The Intermediate Denotational Semantics !!) i
We start by defining semantic operators /"i, + 1'i and II ~i on IR, .. (Again we

omit superscripts 9i whenever possible.) Let W1, W2 E IR"' w, w1, w2 E As', and
U1, U2 E Ard= Ast U A*: A.

(a) W 1 , W2 s;A*uA*·{j_}uA*:A. Then

W1; W2 = {w1 ·w2 lw 1 E W1 and w2E W2}

u{w 1:Xlw 1 :XeWi}

u {w 1 · w2 : XI w 1 E W 1 and w2 : XE W2 }

W1 + W2 = { w I w E W1 u W2}

u {e: (Xu Y)li:: Xe W 1 and i:: Ye W2 }

u{w:Xlw¥e and w:XeW1uW2 }

W1 II W2 = (W1 lL W2)U (W21L W1)U (W1 I W2) u (W1 # W2),

where W1 lL W2=U{u1 lL W2lu1E Wi} with e lL W2 = W2, (b-wi) lL W2 =

SEMANTICS OF UNIFORM CONCURRENCY 213

b·({wi} II W2), (b·w 1 : X) ~ W2 =b ·({w1 : X} 11 W2), .1 ~ W2 = {.1 }, e: X ~ W= 0.
and W1IW2=U {(u1lu2)lu1EW1 and u2EW2} with (c·ui)l(c·u2)=
r · ({u1} II {u2}) and w1 I w2 = 0 for w 1 , w2 not of the above form, and

W 1 #W2 ={e:XuYle:XEW1 and e:YEW2 and Xnf=0}.

(b) W1 , W2 E IR" and W1, W 2 also contain infinite words. Then extend the
previous definitions by taking limits in !Re.

Now we define

f0!: guarded .l.! 2 -+ (rt-+ IR")

with rt= Stmv-+ IR, in the usual way:

1. £2Jt[a](y) ={a}

2 . .@t[c](y)= {c, e: {c}}
3. 9/Jt[s 1 op s2](y) = f0Hs1](y) op f0t[s2](y)

4 . .@t[x](y)=y(x)

5. f0t[µx[s]](y)=lim; W;, where W0 = {.l} and Wi+ 1=.@t[s](y(W;/x)).

Relating (02 and (Of

The relationship between (92 and (!If is similar to that between @1 and (!J t m
Section 3.4. In fact, we shall prove:

4.4.1. THEOREM. l!Hs] = restr"'(@i'[s]) for every s E £ 2.

Here restr"': IR -+ § (<5) is a restriction operator similar to restr § : § (f>) -+ § (f>) of
Section 3.4. For We IR and we Ast we define

restr"'(W) = { w I we W does not contain any c e C}

u { w · f> J 3X e LI : w: X e Wand w does not contain any c E C}

For Theorem 4.1 we need the following result concerning the transition systems T 2

and Tt (compare Lemma 3.4.4).

4.4.2. LEMMA. Forallsei!2,s'ei!2u{E} andw,w'e(A\C)*:

(i) T2 r- (s, w) -+ (s', w') iff

Tf r- (s, w)-+ (s', w')

(ii) (s, w) is a deadlocking configuration for T 2 if!

3Xs C: Tt r- (s, w)-+ w: X.

214 DE BAKKER ET AL.

Proof ad (i): "=>"is clear because Tf is an extension of T2. For".;::" note that.
by the. assumption w, w' E (A\C)*, none of the new axioms and rules in Tf was
used in proving the transition

<s, w) -+ <s', w').

Hence it can also be proved in T2 •

ad (ii): First we analyze the structure of deadlocking configurations <s, w) in
T2 : their statements s (with possible subscripts 1 and 2) have the following BNF
syntax:

s ::= c for arbitrary c EC I
s 1 ; t for arbitrary tE £! 2 I s 1 + s2 I
s1 II s2 , where there is no synchronization-transition

possible between s 1 and s2 .

Thus in a deadlocking configuration <s, w) all the initial actions of s are com
munications and in the case of a shuffie s 1 II s2 no matching initial communications
(leading to a r-action) can be found in its components s1 and s 2 • We can express
this property more precisely by introducing a partial function

dead: £! 2 -"'-pa_rt__. LI= ~(C)

such that <s. w) is deadlocking iff dead(s) is defined. Its definition runs as follows:

(i) dead(a) is undefined, for aEA\C
(ii) dead(c)= {c}, for CE C

(iii) dead(s 1 ; t) = dead(s 1)

(iv) dead(s 1 + s2) = dead(s 1) u dead(s2)

(v) dead(si II 52) = { dead(si) u dead(s2), if dead(s 1) n dead(s2) = 0
undefined, otherwise.

Now we can prove (ii):

<s. w) is a deadlocking configuration in T2

iff dead(s) is defined (by the analysis above)

iff 3Xs;;C:Tff-<s,w)-+w:Xwith X=dead(s) (by the rules (i)-(iv) for
ready sets in Tf). I

Intuitively, Lemma 4.4.2(ii) says that the ready set rules (i)-(iv) of Tf are com
plete for detecting deadlocks. Using Lemma 4.4.6 we can now give the

SEMANTICS OF UNIFORM CONCURRENCY 215

Proof of Theorem 4.4.1. Let s E 5! 2• Note that

(Q2 [s], restrR(l0i[s]) s; (A\ C)* u (A\ C)"' u (A\ C)*. { .l, J }.

We distinguish the following cases.

Case l. we(A\C)*u(A\C)"'u(A\C)*·{.l}. As an immediate consequence
of Lemma 4.4.2(i) and the definition of restrR we have

Case 2. wb E (A\ C)* · { c5 }. Here we have the chain of equivalences

wb E (()2[s]

iff (s, w) is a deadlocking configuration in T2

iff 3X ELI: n 1- (s, w)---> w: X (by Lemma 4.4.2(ii))

iff3Xe.d:w:XECJt[s]

iff wb E restrR((Qt[s]). I

Relating ~2 and ~i

The relationship between ~2 and ~i is given by an abstraction operator
readies: lfl>--> lR, .. For p= {b 1 , ... ,bm, [b'1, q1], ... , [b~, qnJ}elfl>w, inductively we put

readies(p) = {bi. ... , brn}
u { bj · readies(q)I j = 1, ... , n}

u { e: x I x = { b I' ... , b m' b'i. ... , b~} s; C}.

For p E lfl>\lfl>'° we have p = limnPn• with Pn E IP,,, and put

readies(p) =Jim (readies(pn))
n

where "Jim,," is taken (as before) w.r.t. the metric on IR, ..

4.4.3. THEOREM. ~t[s] =readies(~2 [s])for all guarded se ~ 2 •

The proof follows from:

4.4.4. LEMMA. The operator readies: IP ---> lR" is continuous and behaves homo
morphically, i.e., for op E { +, ; , II} and p, p' E lfl>,

readies(p op"' 2p') = readies(p) op!t!i readies(p').

Proof Continuity is established by a variation of standard reasoning as in

216 DE BAKKER ET AL.

[BBKM, BZ2]. For the same reason it suffices to prove the homomorphism
property for p, p' E IP"' only. We proceed inductively and assume

p={b1,-·.,b,,,, [b'1,q1], ... , [b~,q,,]},

p' = { E1, .. ., E,,,., [b'1, q'1 J, .. ., [E;,., q;,.J}

with m, n, m', n';;:: 0.

Case 1 (op=+).

readies(p + !Y 2 p') =readies(pup')
- f - - 1 - (b 1, .. ., b,,,, b 1 , .. ., bmr

u {b; · readies(q;)I i= 1, ... , n}
f b' d. (' I . - I 1 u t .i · rea 1es qi) J - 1, ... , n f

u { e: (Xu Y) IX= { b1, .. ., b"', b'1, ... , b~} £ C,

Y = { E 1 , .. ., Em·, E~, .. ., E;,. } £ c }
= { w I w E readies(p) u readies(p')}

u { e: (Xu Y)I e: X E readies(p) and e: YE readies(p')}

u { w: XI w ol- e and w :X E readies(p) u readies(p')}

= readies(p) + !Y; readies(p').

Case 2 (op=;).

readies(p ;!Y 2 p') = readies(p. p')

=readies({[b 1,p'], ... , [bm,p'],

[b'1, qi ·p'], .. ., [b;,, q,, ·p']})

= { e: XI X = { b1 , ... , b,,,, b~, ... , h;,} £ C}
u { b; · readies(p') I i = 1, .. ., m }

u {bj ·readies(qi· p')I j= 1, ... , n}
= { e: X I .. · } u U { b; · readies(p') I .. · }

u {bj-(readies(q1) /";readies(p'))I .. ·}

= {t:: XI .. ·} u U {b; · readies(p')I .. ·}

u { (hj- readies(qi)) ;!Y; readies(p')I .. ·}

= ({ e: X I X = { b 1 , .. ., b m, b'1 ,. .. , b ~} £ C}
u{b1, .. .,bm}
u { bj ·readies(qi)});"'; readies(p')

=readies(p) ;"'; readies(p').

Case 3 (op= II). By definition

(by induction)

Pllp'=(p ILP')u(p' ilp)u(plp'),

where

Thus

SEMANTICS OF UNIFORM CONCURRENCY

p JLp'= {[b,.,p']li= 1, ... ,m}
u { [b/, qj 11p'JIJ=1, ... , n },

p' 1L P = { [Ek, p J I k = 1, ... , m'}
u {[b/, q/11p]ll=1, ... , n'},

plp'={rl3cEC:cE{b1, ... ,bm} and cE{b1, ... ,h,,,.}}
u{[r,q/Jl3cEC:cE{b1, .. .,b,,,}

and c = E; and / E { 1, ... , n'} }
u {[r, qJI 3cE C: CE {b1 , ... , E,,,.}

and c = bj and j E { 1, ... , n} }
u{[r,qillq;Jl3cEC:c=b/ and c=b/

and }E{l, ... ,n} and lE{l, ... ,n'}}.

readies(p II p')

= {e: (Xu Y)IXn Y=0, where
X= {b 1 , •• ,, bm, b'1 , ... , b;,} s C,
Y= {E1 , •.• ,Em'• E~ • ... , E~. s C}

u readies(p IL p') \e: LI

u readies(p' JLp)\e: L1

u readies(p I p') \8: L1

= readies(p) # readies(p')

u readies(p) IL readies(p')

u readies(p') IL readies(p)

u readies(p) I readies(p')

(by definition of readies and induction)
= readies(p) ll!l';readies(p').

Here we must simultaneously prove, by induction:

readies(p IL p')\e: L1 = readies(p) IL readies(p')

readies(p I p')\e: L1 = readies(p)lreadies(p')

readies(p # p')\e: L1 = readies(p) # readies(p').

The details are left to the reader. I

Relating l0 i and ~ i
Here we discuss

4.4.5. THEOREM. ((Ji[s] = ~i[s] for every guarded s E £ 2.

217

218 DE BAKKER ET AL.

Again, its proof follows the structure of that for "(1)0 [s] = 010 [s]" (Theorem 2.1).
In particular, Theorems 2.4.10, 2.4.11, and 2.4.15 remain valid with (l)i, f2i, and il 2

in place of l'o, .010 , and i.10 • Thus it remains to show compositionality of (!}f,
analogously to Theorem 2.4.2, but now involving the ready domain IR and global
nondeterminacy "+ ".

4.4.6. THEOREM. For op E { +, ; , II } and s 1 , s2 E £!,

(l)i[s1 op s2f-";= @Hs1] op!i'; (l)i[s2l

Proof Case 1 (op=+). First we state some simple facts about the rule of global
nondeterminacy in the transition system Ti :

iff

iff

iff

(i) µ-unfolding:

3s'1 ei!h' =s~ +s2 A Ti~ (s 1 , e)-> (s'1, e))

V 3s;E22(S1 =S1 +s; /\ Tf ~ (s2, e)-> (s;, e))

(ii) selection by an action be A:

(s'stemsfroms 1 A Tt~<s 1 ,e)->(s',b))

v (s' stems from s2 A Ti~ (s2 , e)-> (s', b))

(iii) ready sets:

3X, Y£C:Z=Xu Y

/\ Tt~<s 1 ,e)->e:X

A Ti ~ (s 2 , e) -> e : Y.

Let us now analyze the possible elements of @i[s 1 + s2]. These are of the form e: Z
or b. w with be A and w E Ard= A•1 v A*: A. (Note that e ~ @l[s] for any s E 2 2.)

SEMANTICS OF UNIFORM CONCURRENCY

Subcase 1.1 (e: Z). (e: Z) E (!)f[s 1 + s 2]

iff Ti r- < s 1 + s 2 , e) ----+- * e : Z

iff 3X, Ye;; C: Z=Xu Y /\Ti r-<s 1 , e) ----+-* e: X

219

/\ Ti r- <s 2 , e) ----+-* e: Y (by facts (i) and (iii) above)

iff3X, Yc;;C:Z=Xu Y /\ (e:X)e(f)i[s 1] /\ (e: Y)e(!)t[s 2].

Subcase 1.2 (b · w). b · w E @t[s 1 + s2]

iff 3s' E i.?2 U { £}:

(by convention, we put here e E @i [E])

iff 3s' E Q 2 u { E}:

(Ti f-- < s I ' e)----+- * < s'' b > /\ w E (!) n s'])
v (Ti r- <s2 , e) ----+-* <s', b) /\we (Oi[s'])

(by facts (i) and (ii) above)

iff h·we@j[s 1] v b·we("!i[s2].

By the analysis in Subcase 1.1 and 1.2, we finally have

@t[s 1 +s2] = {e: (Xu Y)le: Xec?Ji[s 1] /\ e: Ye@t[s2]}

u { w E A51 I w E @Hs 1] u @i[s2]}

u { w: x E A* : L1 I w :;6 e /\ w: x E ('! n s I] u lO n s 2] }

= &Hs1] + 'tl; l0i[s2].

Case 2 (op= ;). Straightforward.

Case 3 (op= II). First observe that the Synchronization Lemma 3.4.7 also holds
for £! 2 and Ti instead of £! 1 and Tt. Note that the rules for "global nondeter
minacy: selection by synchronization" in Ti are needed here because the contexts
considered under (3.7) and (3.8) in the proof of Lemma 3.4.7 may now contain
"+."E.g., in (3.8) we now have

s1 ::=cls1;sJ s 1 JJsJsJJs 1 ls1 +sls+s 1 •

Using the Synchronization Lemma we can prove, analogously to Lemma 3.4.6,

(4.3)

220 DE BAKKER ET AL.

In the process of proving (4.3), we obtain

ifT 3u, l' EA*:

V s 1 , s 2 E .I! 2 V s'1 , s; E .I! 2 u { E} V w E A* :

Tf 1- <s1 II S2, e) -+* <s'1 II s;, w>

Tf 1- <sI> e) -+* (s'1, u)

A Tf 1- (s2 , e)-+* (s;, v)

/\ w E { u } II !ii; { v}

(compare Lemma 3.4.6). Furthermore, we have

\lse.1! 2Vw:ZeA*:L1

w: ZE (l)i[s] iff 3s' E .1! 2 : Tf 1- <s, e) -+* <s', w>
/\ Tf 1- < s', e) -+ e : Z.

(4.4a)

Moreover, we have, as an immediate consequence of the rules for ready sets in Tf
(4.4.2), especially rule (iv):

ifT

3X, Y s; C: Z = Xu Y " X ("\ Y = 0

/\ Tf1-(s 1,e)-+e:X

/\ Tf 1- (s2, e)-+ e: Y.

Combining (4.4a), (4.4b), and (4.4c) yields

w: Z E (Oi[s1 II s2]

ifT

3u: X E @i[s 1], v: YE @i[s2]:

w= {u}ll!'.:A~ {v} /\ Z=Xu Y /\ Xr'\ Y=0.

With (4.3) and (4.5) we have indeed

@i[sl lls2] = mns1] ll!ll;<TJns2l

This finishes the proof of Theorem 4.4.6. I
With Theorem 4.4.6 also our argument for Theorem 4.4.5 is completed. I

(4.4c)

(4.5)

SEMANTICS OF UNIFORM CONCURRENCY 221

Putting It All Together

Before we can prove the desired relationship between f!'2 and 9 2 (cf. (4.2)). we
need one more lemma.

4.4.7. LEMMA. For every p E IP,

streams (restr"(p)) = restru;i(readies(p)).

Proof By limit considerations it suffices to prove the equation for p e ?'". We
proceed inductively and assume

with x = df { b I' ... , b m" b'i. ... , b~}. Then the l.h.s. yields

restr" (p) = { b; I b; E p and b; ~ C}

u{[b.J,restr"(q;)]l[b/,qi]Ep and h/~C}}

and thus

streams(restr II' (p))

{ h;I h;EP and h;~ C}

= u { bj · streams(restr"(qi)) I [bj, qJ E p and bj ~ C}

{£)}

Now the r.h.s. yields

readies(p) = { e: X I X £ C}

u {b;lh;EP}

u { bj · readies(q;) I [hj, qJ E p}

and thus

restru;i(readies(p)) l {h;lh;EP and h;~C}

= u { bj · restru;i(readies(q))I [bj, qJ E p

{ ()}

By induction, we have l.h.s. = r.h.s. I
Now we are prepared for the main result on B2:

and hj~C}

if Xct. C

if X£C

if x et. c

if X£ C.

222 DE BAKKER ET AL.

4.4.8. THEOREM. (1 2[s]==t2(2'2[s]) for all guarded sE.1!2, where ix 2=

streams restr ,,.

Pro4 Theorem 4.4.1 states (r'2[s] = restrR(lDi [s]) for s E .1! 2, Theorem 4.4.3
states Cl f [s] = readies(92[s]) for guarded s E .1! 2, and Theorem 4.4.5 states @t[s] =
9f[s] for guarded sE .\! 2 . Thus we obtain

Using Lemma 4.4.7 completes the proof of this theorem. I

APPENDIX: DIAGRAM OF RESULTS

l.!: Shz!t.fle and Local Nondeterminacy.

guarded s

linear streams

.\! 1 : Synchroni::ation Merge and Local Nondeterminacy.

Ti n guarded s
I I
I I

i restrs !
. t11[s] +-----@t[s]

linear streams with [>

.\! 2 : Synchronization Merge and Global Nondeterminacy.

T2 Ti guarded s
I I
I I
i !

t([] restrR /rJ [readies <1 s ,__ __ Cl i s] =.@ ns] -+----

streams o restr"'

--------streams with [>
~

ready domain branching processes

SEMANTICS OF UNIFORM CONCURRENCY 223

ACKNOWLEDGMENT

We are grateful to Joost Kok and Jan Rutten for various discussions on the material presented here.
and to the anonymous referees for numerous corrections and suggestions for improvements.

[ABKR]

[Ad]

[Apl]
[Ap2]

[BBKM]

[BHR]

[BK!]

REFERENCES

P. AMERICA, J. w. DE BAKKER, J. N. KOK, AND J. RUTTEN, Operational semantics of a
parallel object-oriented language, in "Proceedings, 13th ACM Principles of Programming
Languages, St. Petersburg, Florida, Jan. 1986," pp. 194-208.
"Reference Manual for the Ada Programming Language," American National Standards
Institute, Inc., ANSI MIL-STD 1815 A, Lecture Notes in Comput. Sci. Vol. 155, Springer
Verlag, New York/Berlin, 1983.
K. R. APT, Recursive assertions and parallel programs, Acta Jnfimn. 15 (1983), 219-232.
K. R. APT, Formal justification of a proof system for communicating sequential processes,
J. Assoc. Comput. Mach. 30 (1983), 197-216.
J. w. DE BAKKER, J. A. BERGSTRA, J. w. KLOP, AND J.-J. C'H. MEYER, Linear time and
branching time semantics for recursion with merge, Theoret. Comput. Sci. 34 (19841.
135-156.
S. D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE, A theory of communicating sequen
tial processes, J. Assoc. Comput. Mach. 31 (1984), 560-599.
J. A. BERGSTRA AND J. W. KLOP, Process algebra for synchronous communication, Jnfiirm.
and Control 60 (1984), 109-137.

[BK2] J. A. BERGSTRA AND J. W. KLOP, Algebra of communicating processes with abstraction,
Theoret. Comput. Sci. 37 (1985), 77-121.

[BKMOZ] J. w. DE BAKKER, J. N. KOK, J.-J. CH. MEYER, E.-R. 0LDEROG, AND J. I. ZUCKER, Con
trasting themes in the semantics of imperative concurrency, in "Proceedings. Advanced
School on Current Trends in Concurrency," (J. W. de Bakker, G. Rozenberg, and W. P. de
Roever, Eds.), pp. 51-121. Lecture Notes in Comput. Sci. Vol. 224. Springer-Verlag,

[BMO]

[BMOZ]

[Br]

[BZl]

[BZ2]

[BZ3]

[Du]
[FHLR]

[FLP]

New York/Berlin, 1986.
J. w. DE BAKKER, J.-J. CH. MEYER, AND E.-R. 0LDEROG, Infinite streams and finite obser
vations in the semantics of uniform concurrency, Theoret. Comput. Sci. 49 (1987), 87-112.
J. w. DE BAKKER, J.-J. CH. MEYER, E.-E. OLDEROG, AND J. I. ZUCKER, Transition systems,
infinitary languages and the semantics of uniform concurrency, in "Proceedings, 17 th ACM
Sympos. Theory of Comput., Providence, RI, May 1985, pp. 252-262.
M. BROY, A theory of nondeterminism, parallelism, communication, and concurrency,
Theoret. Comput. Sci. 45 (1986), 1-61.
J. W. DE BAKKER AND J. I. ZUCKER, Denotational semantics of concurrency, in
"Proceedings, 14th ACM Sympos. Theory of Comput. 1982, pp. 153-158.
J. W. DE BAKKER AND J. I. ZucKER, Processes and the denotational semantics of
concurrency, Inform. and Control 54 (1982), 7CH20.
J. W. DE BAKKER AND J. I. ZUCKER, Compactness in semantics for merge and fair merge, in
"Proceedings, Workshop Logics of Programs, Pittsburgh June 1983" (E. Clarke and
D. Kozen, Eds.), pp. 18-33, Lecture Notes in Comput. Sci. Vol. 164, Springer-Verlag,
New York/Berlin, 1984.
J. DuouNDJI, "Topology," Allen Bacon, Rockleigh, NJ, 1966.
N. FRANCEZ, c. A. R. HOARE, D. J. LEHMANN, AND w. P. DE ROEVER, Semantics of non
determinism, concurrency, and communication, J. Comput. System Sci. 19 (1979), 290-308.
N. FRANCEZ, D. J. LEHMANN, AND A. PNUELI, A linear-history semantics for languages for
distributed programming, Theoret. Comput. Sci. 32 (1984), 25-46.

224

l vG J

[GR]

[Ha]
[Ho!]
l HL,:]
[HP]

[In]
[Ke]
[Me]

[Mi]

[Ni]

[OH]

[Pa]

[PI!]

[Pl2]

LRJ

[RB]

[RS]

DE BAKKER ET AL.

R. J. VAN GLABBEEK. Bounded nondeterminism and the approximation induction
prnKiple in process algebra. in Proceedings, Sympos. Theoret. Aspects of Comput. Sci. J 987
1F. Brandenburg, G. Vidal-Naquet, and M. Wirsing, Eds.), pp. 336-347, Lecture Notes in
Ct>mput. Sci. V~I. 247. Springer-Verlag, New York/Berlin, 1987.
W. G. GOLSON AND W. C. ROUNDS, Connections between two theories of concurrencv:
Metric spaces and synchronization trees, lnj(Jrm. and Control 57 (1983 }, I 02-124. -
H. HAHN, "Reelle Funktionen," Chelsea, New York, 1948.
C. A. R. HOARE. Communicating sequential processes, Comm. ACM 29 (1980), 666-677.
C. A. R. HOARE, "Communicating Sequential Processes," Prentice--Hall, London, 1985.
M. HENNESSY AND G. D. PLOTKIN, Full abstraction for a simple programming language, in
"Prnceedings, Sth Math. Found. Comput. Sci. 1979 (J. Becvar, Ed.), pp. 108-120, Lecture
Notes in Comput. Sci. Vol. 74, Springer-Verlag, New York/Berlin, 1979.
lnmos Ltd., "The Occam Programming Manual," Prentice-Hall, London, 1984.
R. KELLER, Formal verification of parallel programs, Comm. ACM 19 (1976), 371 384.
J.-J. CH. MEYER, Merging regular processes by means of fixed-point theory, Theort'I.
Cumpw. Sci. 45 (1986), 193-260.
R. MILNER. ·'A Cakulus for Communicating Systems," Lecture Notes in Comput. Sci. Vol.
92, Springer-Verlag. New York/Berlin, 1980.
M. N1vAT, Infinite words, infinite trees, infinite computations, in Foundations of Computer
Science Ill, Part 2 (J. W. de Bakker and J. van Leeuwen, Eds.), pp. 3-52, Math. Center
Tracts Vol. 109, Math. Centrum, Amsterdam, 1979.
E.-R. OwEROG AND C. A. R. HOARE, Specification-oriented semantics for communicating
processes, A <'la lnf(mn. 23 (1986), 9-66.
D. M. R. PARK, Concurrency and automata on infinite sequences, in "Proceedings, 5th
Gl-Conf.. Karlsruhe, 1981," Lecture Notes in Comput. Sci. Vol. 104, Springer-Verlag,
New Y ork:Berlin, 1981.
G. D. PLOTKIN, "A Structural Approach to Operational Semantics," Report DAIMI
FN-19, Comp. Science Dept., Aarhus Univ., 1981.
G. D. PLOTKIN, An operational semantics for CSP, in "Proceedings, lnt. Fed. Inform.
Process. Working Conf., Formal Description of Programming Concepts II, 1983"
(D. Bjorner, Ed.), pp. 199 223, North-Holland, Amsterdam, 1983.
W. C. Rot'NllS, On the Relationship between Scott Domains, Synchronization Trees, and
Metric Spaces, Inform. and Control 66 (1985), 6-28.
W. C. ROl:sDs AND S. D. BRCXlKES, Possible futures, acceptances, refusals, and com
municating processes, in "Proceedings, 22nd IEEE Syrop. Found. of Comput. Sci., 1981,"
pp. 14(}..149.
M. 0. RABIN AND D. S. Scon, Finite automata and their decision problem, IBM J. Res. 3,
No. 2 (1959).

[St I] J. E. STOY, "Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory, MIT Press, Cambridge, MA, 1977.

[St2] J. E. STOY, The congruence of two programming language definitions, Theuret. Compur.
Sci. 13 (1981), 151~174.

