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ABSTRACT

We build a feature vector that can be used for content-based image retrieval of grayscale images of objects against a
background of texture. The feature vector is based on moment invariants of detail coefficients produced by the lifting
scheme. The prediction filters in this scheme are chosen adaptively: low order (small stencils) near edges and high
order elsewhere. The aim is to retrieve similar images of an object irrespective of translation, rotation, reflection or
resizing of the object, light conditions and the background texture. We present. preliminary results.
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1. INTRODUCTION

Content-based image retrieval (CBIR) is a widely used term to indicate the process of retrieving desired images from
a large collection on the basis of features. The extraction process should be automatic (i.e. no human interference)
and the features used for retrieval can be either primitive (colour, shape, texture) or semantic (involving identity and
meaning). In this paper we confine ourselves to grayscale images of objects against a background of texture. This
class of images occurs in various databases created for the combat of crime: stolen objects,! tyre tracks and shoe
sole impressions.? Given an image of an object (a so-called query) we want to identify all images in the database
which contain the same object irrespective of translation, rotation or resizing of the object, light conditions and the
background texture. A classic approach to the problem of recognition of similar images is by the use of Hu's moment
invariants.®> In Do et al.* the wavelet transform modulus maxima is employed. To measure the (dis)similarity
between images, moments of the set of maxima points are determined (per scale) and subsequently Hu’s invariants
are computed. Thus, each image is indexed by a vector in the wavelet maxima moment space. By its construction,
this feature vector is predominantly a measure for shapes.

We propose to bring in adaptivity by using different wavelet filters for smooth and unsmooth parts of the image.
The filters are used in the context of the (redundant) lifting scheme. The degree of ”smoothness” is determined by
measuring the relative local variance (RLV). Near edges low order prediction filters are activated which lead to large
lifting detail coefficients along thin curves. At texture-like backgrounds high order prediction filters are activated
which lead to negligible detail coefficients. Moments and subsequently moment invariants are computed with respect
to these wavelet detail coefficients. With the computation of the detail coefficients a certain preprocessing is required
to make the method robust for shifts over a non-integer number of gridpoints. Further we introduce the homogeneity
condition which means that we demand a homogeneous change in the elements of a feature vector if the image seen
as a density distribution is multiplied by a scalar. We present preliminary results that demonstrate that the above
adaptivity leads to improvement of retrieval rates and discriminative power.

2. THE LIFTING SCHEME

The lifting scheme as introduced by Sweldens® in 1997 is a method for constructing wavelet transforms that are not
necessarily based on dilates and translates of one function. The construction does not rely on the Fourier transform at
all which makes it also suitable for functions on irregular grids. The transform allows for a fully in-place calculation,
which means that no auxiliary memory is needed for the computations.

The idea of lifting is based on splitting a given set of data into two subsets. In the one-dimensional case this
can mean that starting with a signal z € [2(Z) the even and odd samples are collected into two new signals, i.e.,
T = z, + T,, where z.(n) = z(2n) and z,(n) = z(2n + 1), for all n € Z. The next step of the lifting scheme is to
predict the value of z.(n) given the sequence z,. This prediction uses a prediction operator P acting on z,. The
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predicted value (Pz,)(n) is subtracted from z.(n) yielding a ‘detail’ signal d. An update of the odd samples z, is
needed to avoid aliasing problems. This update is performed by adding {/d to the sequence z,, with U/ the update
operator. The lifting procedure can also be seen as a 2-band filter bank. This idea has been depicted in Figure 1: T
is the splitting operator (the so-called lazy wavelet transform), generally T can be any bijective transform from 12(Z)
to I2(Z, IR?). The inverse lifting scheme can immediately be found by undoing the prediction and update operators.
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Figure 1. The lifting scheme: splitting, predicting, updating.

In Figure 1 this boils down to simply changing each + into a — and vice versa.
The lifting scheme can also be used for higher dimensional signals.® In two space dimensions we can split our

dataset into two quincunx grids, see Figure 2. This division is also called ”checkerboard” or ”red-black” division.
The pixels on the red spots (o) are used to predict the samples on the black spots (e), while updating of the red
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Figure 2. Two quincunx grids constituting a rectangular grid.

spots is performed by using the detailed data on the black spots. An example of a lifting transform with second
order prediction and update filters is given by

(P)(i,4) = [o(i~1,5) +2(i,5 — 1) + (i +1,3) +2(i, + D/4, imod 2 # j mod 2,
Uz)(4,7) = [=zG-1,/)+z({,j -1 +z@+1,7) + (2,7 +1)}/8, imod?2 = jmod 2.

The algorithm using the quincunx lattice is also known as the red-black wavelet transform by Uytterhoeven and
Bultheel.” In general P can be written as

(Px)(i,i)= 3. ag(n,m)z(i+n,j+m), imod2# jmod2, (1)
(n,m)eS,:,

with S a subset of {(n,m) € Z*| (n + m)mod 2 = 1} and aj(s), s € Sg, a set of coefficients in R. In this case a
general formula for U reads

Un)G,5) = Y an(n,m)z(i+n,j+m)/2 imod2 = jmod?2, (2)
(n,m)€Sn

with Sy depending on the number of required primal vanishing moments N. For several elements in Sy the
coefficients ay(s) attain the same values. Therefore we take these elements together in subsets of Sy, i.e.,

W = {(-‘-{Zl,O),(O, il)}’ Vo= {(i11i2)1(i2a il)}v Vs = {(iB,O),(O‘ :t3)},
i, = {(:1:2, +3), (%3, :EQ)}, Vs = {(:}:1,:}:4), (34, :i:].)}, Vs = {(ﬂ:S, 0), (0, :i:f))}, (3)
Vo = {(i3,i4)a (i41 i'B)} (4)
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order N Vi Vs Va Vs Vs Vi Va
2 1/4 0 0 0 0 0 0
4 10/32 ~1/32 0 0 0 0 0
6 87/28 ~27/29 2-8 3/2° 0 0 0
8 5825/214 -2235/21% 625/2'6 425/215 -75/216 g/916 5 /212

Table 1. Quincunx Neville filter coefficients

Table 1 indicates the values of all an(s), s € V;, for different values of N (2 through 8) when using quincunx Neville
filters,® which are the filters we use in our approach. We observe that Sg = V; + --- + V7 and so a 44 taps filter
is used as prediction/update if the required filter order is 8. For an illustration of the Neville filter of order 4 see
Figure 3. Here the numbers 1, 2 correspond to the values of the filtercoefficients as given in V; and V; respectively
at that position. -
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Figure 3. Neville filter of order 4

3. AFFINE INVARIANCES AND LIFTING COEFFICIENTS

Traditional wavelet analysis and the lifting scheme yield detail and approximation coefficients that are localised in
scale and space. Unfortunately, they are not translation invariant, which causes the coefficients to attain values in the
same range of the original values (after translation), but still different. For the classical wavelet transform a means
to translation invariance is given by the redundant wavelet transform,® which is a non-decimated wavelet transform
(at all scales). As a consequence the number of data in all subbands is the same as the number of input data of
the transform. Not only more memory is used by the redundant transform, also the computational complexity of
the fast transform increases. For the non-decimated transform the computional complexity is O(N log V) instead of
O(N) for the fast wavelet transform.

The redundant, wavelet transform has its analogue in the redundant lifting scheme. In one dimension this works
out as follows. Instead of partitioning a signal = € [*(Z) into z. and z, we copy z to both z, and z,. The next step
of the lifting scheme is to predict z. by

z, =z, — Pz, (5)

The prediction filter P{) is the same filter as used for the non-redundant case, but now it depends on the resolution
level, since at each level zero padding is applied to 7. This holds also for the update filters 2/(9). Hence, the update
step reads

To = o + U z,. (6)

In two space dimensions we use the red-black division instead of the even-odd division. We use zero padding for the
filters at each resolution level. Whether the said redundant transform is invariant under reflections and rotations
as well, depends on the filters (wavelets) themselves. Symmetry of the filters is a necessary condition to guarantee
certain rotation and reflection invariances. This is a condition that is not satisfied by many well-known wavelet
filters. Also a necessary condition for these invariances is that the values of the image on the grid points are not
affected by a rotation or reflection. In practice, this means that only reflections in the horizontal, the vertical and
the diagonal axis and rotations over multiples of 7/2 can lead to the same lifting coefficients.
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Figure 4. Generating coefficients via adaptive lifting

We observe that the Neville filters we use in our approach have the required symmetry properties, see (3). So
with these filters the redundant scheme does not only guarantee translation invariance, but also invariance under
rotations over multiples of 7/2 or reflections in the horizontal, vertical and diagonal axis is assured too. Therefore
we choose in our approach to use a redundant lifting scheme. In our application we also allow for rotations that are
not multiples of /2. Similitude invariance is discussed in Section 5.2.

4. ADAPTIVE LIFTING

When using the lifting scheme or a classical wavelet approach, the prediction/update filters or wavelet/scaling
functions are chosen in a fixed fashion. Generally they can be chosen in such way that a signal is approximated
with very high accuracy using only a limited number of coefficients. Discontinuities mostly give rise to large detail
coefficients which is unfortunate for applications like compression. For our purpose large detail coefficients near
edges in an images are desirable, since they can be identified with the shape of objects we want to detect. However,
they are undesirable if such large coefficients are related to the background of the image. This situation occurs if a
small filter is used on a texture-like background that contains irregularities locally. In this case a large smoothing
filter gives rise to small coefficients for the background. These considerations lead to the idea of using different.
prediction filters for different parts of the signal. The signal itself should indicate (for example by means of local
behavior information) whether a high or low order prediction filter should be used. Such an approach is commonly
referred to as an adaptive approach. Many of these adaptive approaches have been described already thoroughly in
the literature.*?® In this paper we follow the approach proposed by Baraniuk et al.'* called the space-adaptive
approach. This approach follows the scheme as shown in Figure 4. After splitting all pixels of a given image I into
two complementary groups I and I, (red/black), the pixels in I, are used to predict the values in J,. This is done by
means of a prediction filter acting on I, i.e., P(I;). In the adaptive lifting case this prediction filter depends on local
information of the image pixels I.. Choices for P may vary from high to low order filters, depending on the regularity
of the image locally. For the update operator, we choose the update filter that corresponds to the prediction filter
with lowest order from all possible to be chosen P. Baraniuk et al.'* choose to start the lifting scheme with an
update operator U followed by an adaptively chosen prediction operator. The reason for interchanging the prediction
and update operator is that this is convenient for compression. In particular they took for the filters of i and P the
(1, N) branch of the Cohen-Daubechies-Feauveau (CDF) filter family.’®* The order of the prediction filter N was
chosen to be 1, 3, 5 or 7, depending on the local behavior of the signal.

Relative local variance In our approach we use a second order Neville filter for the update step and an Nth
order Neville filter for the prediction step, where N € {2,4,6,8}. We cause the prediction filter to depend on the
relative local variance of an image. This relative local variance (RLV) of an image I is given by

i+T i+T
wl)@,5) = Y. Y (k1) - mg)? var (D), (7)
=i—-T l=j-T
with
i+T 4T
By o= 3, Y IkD/@QT+1)> (8)

k=i-T I=j-T
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a) original image b) decision map (RLV)

Figure 5. An object on a wooden background and its rel. local variance (decision map): white==8th order, black=2nd
order.

For the window size we take T = 5, since with this choice all I(k,!) that are used for the prediction of I(,j)
contribute to the RLV for (7, 7), even for the 8th order Neville filter. When the RLV is used at higher resolution
levels we first have to downsample the image I appropriately.

The first time the prediction filter is applied (to the upper left pixel) we use the 8th order Neville filter on the
quincunx lattice as given in Table 1. For all other subsequent pixels (¢, 7) to be predicted, we first compute rlv{I](4, 7).
Then quantizing the values of the RLV yields a decisionmap indicating which prediction filter should be used at which
positions. Values above the highest quantizing level induce a 2nd order Neville filter, while values below the lowest
quantizing levels induce an 8th order Neville filter. For the quantizing levels we take multiples of the mean of the
RLV. Test results have shown that [p(rlv) 1.5 u(rlv) 2 u(rlv)] are quantizing levels that yield a good performance in
our application. In Figure 5 we have depicted an image (left) and its decision map based on the RLV (right).

5. MOMENT INVARIANTS
5.1. Introduction and recapitulation

To construct a feature vector from the obtained wavelet coefficients at several scales we use invariants based on mo-
ments of the coefficients up to third order. Traditionally, these features have been widely used in pattern recognition
applications to recognize the geometrical shapes of different objects.3

We regard an image as a density distribution function f € S(IR?), the Schwartz class. In order to obtain
translation invariant statistics of such f we use central moments of f for our features. The (p + ¢)th order central
moment Ly, (f) of f is given by

ra() = [ [(@ =207 (0 = 9e)* F (@) o - 20) dy - ve), ©
R R
with the center of mass
[ ol dzdy J [uf (@) dedy
S T Tmwdedy %= T [fopdedy (10)
RIR RR

Proc. SPIE Vol. 4478 79




Computing the centers of mass z/, and y. of g(z,y) = f(z — a,y — b) yields z, = z. — a, Y, = y. — b. Combining
this with (9) shows that ppq(f) = tipe(9), i-e., the central moments are translation invariant.

We also require that the features should be invariant under rotations, reflections and scalar multiplications. Hu
showed in his paper® that from the introduced central moments py, expressions can be derived that are invariant
under both rotations and reflections. These invariants are

I = poo + poz, T2 = (pao — po2)® + 443y,

I, = 2 2 I=2 2 I=2( 3__3 2+3 2 _ 3)
3=p]+Ds, la=p3+py, Is P1P3 — SP1P3Py + 3P1P3P4 — P1Py) »

Is = 2pspj — 2psp; + 8p11Paps,

with
D1 = 30 — 312, P2 = o3 — 21, P3 = B30 + M2, P4 = po3 + Ha1-
To these 6 invariants we can add a seventh one, which is only invariant under rotations and changes sign under
reflections. It is given by
I = 2 (p1p§ + 3p2pspi — 3p1Papa — Papi) -
Since we want to include reflections as well in our set of invariant transformations we will use |I7| instead of I in
our approach. From now on, we will identify |I7| with I;. We observe that all possible linear combinations of these

invariants are also invariant under proper orthogonal transformations and translations. Therefore we can call these
seven invariants also invariant generators.

5.2. Normalization

Here we increase the number of circumstances under which images should be considered invariant. Firstly, if an image
consists of a crisp object against a neutral background, a change in the dimensions of the object should still lead
to the conclusion that the object remains the same. Invariance under this type of scaling, the similitude invariance,
can be obtained by normalizing the moments p,,. Secondly, differences in luminosity also affect images of the same

object. We will allow for a moderate variance with varying luminosity in the construction of a feature vector, see
Section 5.2.2.

5.2.1. Similitude invariance

Uniform dilations (by a scalar @ > 0) of the whole image or objects in an image against a neutral background will
result in new central moments given by*

l’«;;q =aPtitiy,,. (11)
1t follows in particular that phy = a®poo, and also phy + o, = a® (p20 + po2). Combining this result with (11) yields

T !
Hpq __ Hpg nd Fipg _ Hpg
; \2tet2 T phet2 & B ; \Rtat2 T ptat?2
(10g) Moo (Moo + po2) (120 + po2)

respectively. As we recall that both ppg and poo + poz are invariants w.r.t. rotation and reflection this shows how

to normalize the moments to achieve invariance under dilation. The first choice leads to the following new set of
invariant generators

I{ = Il/#%oa Ié = IZ/”'gﬂv Ié = I3/u'301 Iy = 14/.“80, Ié = I5//1'(1)81 Ié = Iﬁ/#gm I’; = 17/;168. (12)

The second choice leads to a different but similar result. It may be more suitable (as a starting point) in case the
density distribution is given by wavelet detail coefficients (Section 5.5).
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5.2.2. A feature vector of invariants

We introduce a feature vector, derived from the invariants discussed in the previous section. Distances between
feature vectors, measured by the Euclidean norm, are supposed to indicate the difference between, or resemblance
of, images. Obviously, the specific choice of the separate elements, e.g. the weights assigned to these (or alternatively
employed within a norm), may lead to highly different results. If, in a first and naive approach we compose the
following feature vector I € R":

IE(I1 Iz I3 I4 I5 Iﬁ I7)T (13)

with the I; as defined in Section 5.1, then, indeed, hereby obtained results turn out useless as the various elements
appear to operate in different orders of magnitude. We remedy the arbitrariness of the definition of the vector by
introducing an additional condition: the homogeneity condition, to be described and explained below.

Consider the simple model that for a change in luminosity of an object the distribution function f is mapped onto
a different f' by means of an affine transformation. For grayscale images this means that the grayvalue of ail pixels
is multiplied by a scalar A > 0 and shifted along a distance b (the offset). A scalar multiplication of the distribution
function f does not affect the center of mass (10). From (9) it follows directly that

Ppg(AS) = Apg(f), for all A # 0.

The homogeneity condition means that we demand a homogeneous change in the elements of a feature vector if the
density distribution f is multiplied by the said scalar. We observe that neither the vector I (13) nor the vector I
derived from (12), satisfies the homogeneity condition, as multiplication of f by X # 0 leads to the transforms:

IT— (AL NI, NI M1, X MBI M )T

and
I'— (A7 A72r X731 a7 atn o air asn )T
The following operator
Rp(u) = sign(u)|u|*/?, forpe IN and u € R (14)

when applied to an invariant I produces again an invariant. It is a "legal” operation that invariants can be subjected
to, i.e., neither their invariance properties nor their discriminative power are lost. The feature vectors

= (I Ra(lz) Ra2(l3) Ra(ls) Ra(Is) Rs(Is) Ra(l7))T, (15)

I
I = (I Ra(ly) Rs(l) Re(ly) Re(ls) Rall) Re(lp)” (16)
now satisfy the homogeneity condition as can be easily verified. By numerical experiments it is shown that hereby
the vector elements remain in comparable range. At this point we might consider to introduce a distance measure
between feature vectors F and F' which vanishes altogether if F = MF', A € IR. This is a matter for future
investigation.

We conclude this section by the remark that the detail coefficients produced by the lifting scheme (at all scales)
are invariant with respect to the offset in the above mentioned affine transform. We discuss this point in more detail
in the next section.

5.3. Lifting & Moment Invariants

Firstly we elaborate briefly on the numerical computation of moments. Secondly we discuss feature vectors applied
to selections of lifting (detail) coefficients.

5.3.1. Computation of moments

Using the values of the image pixels (or later on lifting coefficients) we construct an interpolating function based on
piecewise constant approximation. This interpolating function is normalized in such way that the shortest side of the
interpolated image has size 1. The central moments are now computed using these interpolating functions. These
interpolating functions are not in the Schwartz class but since they are measurable and have compact support it is
possible to perform the integration in (9)—(10) and compute the moments.
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5.3.2. Feature vectors revisited

To create feature vectors from a given image, using a wauvelet lifting approach, we first compute the detail coefficients
d; that appear in the lifting scheme for this image. The coarse scale approximation data s; is used again in the
lifting scheme to obtain dy and s2. After K recursive lifting steps we can use the detail coefficients dy,...,dg for
computing feature vectors, as follows. After each step we select a relatively small set of large detail coefficients.
Particularly, we take the L; largest coefficients in d; (in modulus). The set of these coefficients is given by W;. All
other detail coefficients d;(n, m), (n,m) ¢ W; are put to zero. Of this newly constructed ‘image’ d; the moments p{,q
are computed. However, before calculating the invariants at this scale j we have to take into account that the number
of coefficients L; may not be a constant as a function of j. This is due to the fact that at lower resolution levels
details in the picture that cause high-valued detail coefficients may be lost. Therefore we choose to use moments Vpq
that are normalized to the number of coefficients as well, i.e., ugq = p{,q /L;.

After K lifting steps we have at our disposal @), j = 1,..., K. Combining them into one 7K-dimensional
vectors yields the feature vector. We compute the distance between images as the variance weighted Euclidean
distance between two feature vectors. The weight factors are given by the inverse variances for each vector entry,
computed over all corresponding entries in the feature vectors resulting from the database we use. We take K = 4,
a common choice with other wavelet approaches.1®

Offset in the affine transform As already mentioned before the detail coefficients obtained in this way are
invariant to the offset b in the affine transform of our luminosity model. To show this we construct a new image
y € 12(Z?), given an image z € [2(Z?), by

y(i,7) = z(i,5) + b,
for all i, € Z and for a given b € IR. According to (1) the detail coefficients of y are given by

d‘y(":)j) = y(Z,J)_(’Py)('LvJ)
= z(i,j)+b— D ag(n,m)(z(i+n,j+m)+b)

(n,m)ESH{
= z(i,j)+b—b— Y ag(n,m)z(i+n,j+m)
(n,m)ESK
= dz(i)j)’
if and only if
Z aj(n,m) =1,
(n,m)eSg

for the given prediction filter. This necessary and sufficient condition is satisfied for the Neville filters we use in our
approach, independent of the filter order. Generally, the detail coefficients are invariant to offsets in the range of an

image if and only if the sum of the prediction filter coefficient is equal to 1. Also in classical wavelet analysis this is
a well-known and commonly used condition.

As discussed in the previous chapters, our approach is based on the computation of statistics of detail coefficients.
The magnitude of these coefficients depend on both the sharpness of transitions (e.g. edges) in the image and the
order of the prediction filter P. Since our database consists of images of single objects, detail coefficients are expected
to give a good representation of the contours around and within these objects. Prediction filters of a low order yield a
more crisp representation of these contours than high order prediction filters. Obviously, low order filters are bound
to match with highly irregular functions while high order filters are related to regular functions/smooth surfaces.
As mentioned already before, a prediction filter of low order is very undesirable if the single object is placed on
a texture-like background and we want to identify similar objects at different backgrounds. Texture can consist
of a smooth surface with sharp transitions superposed on it. When using a low order filter all these transitions
are translated into detail coefficients with high magnitudes. A high order filter takes a large region around these

transitions into account, see Table 1. Therefore the magnitudes of the coefficients related to the edges in the texture
drop.

Our approach combines both ingredients. We want to obtain a small set of large detail coefficients related to an
object photographed in an image and a large set of small detail coefficients related to the background in the same
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image. By doing this our image retrieval system becomes less dependent on the background, which will improve
retrieval rates. Following these observations we modify the algorithm as described in Section 5.3.2. Instead of using
a given prediction filter we choose a filter related to the content of the input image locally. For the update filter we
just use a 2nd order Neville filter. This lifting procedure is repeated over 4 levels to obtain a 28-dimensional feature
vector. As described before this feature vector is the result of computing moment invariants of some selected lifting
coefficients (W; at level j). In our approach we take a threshold value T} to select the set of coefficients W}, namely

dj(n,m) (S Wj — Id_.,(n,m)I > Tj.

The threshold value we propose is T; = 2 u;, with u; the mean magnitude of all detail coefficients at level j. We
observe that due to the adaptive character in our approach magnitudes of the detail coefficients related to the
background are likely to be less than the proposed threshold, since they let the mean of the magnitude fall. On the

other hand the most interesting coefficients will increase the mean and therefore they are likely to be picked out and
put into the set W;.

Finally, in this application we do not bother about reconstructing images from their lifting coefficients. We only
use the detail coefficients for computing statistics of an image. Since we do not need to know afterwards at which
place in the spatial domain which filter has been used, we do not have to keep track of the decisions we have made
during the prediction procedure. For coding for example this is necessary, which makes adaptive lifting not that
straightforward. By not keeping track of the filter orders one has used, different images may yield the same detail
coefficients. In our approach this is not really a problem, since all images in the database are of the same type and
are thus very unlikely to yield similar detail coefficients along 4 levels at the same spatial positions.

The algorithm is not yet complete: we need to take additional precautions, see Sections 5.4 and 5.5.

5.4. Filtering and Moment invariants: Preprocessing

‘When using our algorithm we have to deal with the fact that in practice most affine transformations do not map an
image on one (Cartesian) lattice onto an image defined on the same lattice. Generally, an interpolation filter is used
to get a new image, which is defined on the original lattice. It can be shown that if the difference between the image
I, that was not defined on the original lattice, and its interpolated version I, defined on the lattice, is small then
also the difference in the moments p,, will be small. So the moments are continuous in the image functions in some
set. More precise, we have

1f(@,9) = 9(z, )| <827 lyl™? = |ppq(f) — kpe(9)] <,
for0<p<a-land0<g<pB-1.

Applying a high pass filter (prediction filter) on both the interpolated and the original image yield some other
results. Although the detail coefficients of both images will only slightly differ from each other, they will induce
large differences in the central moments pz,,. This is due to the fact that the moments are computed out of the
magnitudes of these coefficients. So, relatively small differences are not canceled out against each other, but they
accumulate towards large differences in the moments. Simulation results have shown that they are highly influenced
by this phenomenon.

As a remedy we propose to use a smoothing filter on all images in the database at each resolution level. In this
way small blurring filters are used at the lowest resolution level and large blurring filters are used at the highest
levels. In our setup a (5 % 5) 2D cubic spline filter has been used, however also other smoothing filters (Gaussian) gave
a good performance. A rigorous and detailed mathematical treatment of the above can be found in a forthcoming
paper.t”

5.5. Filtering and Moment invariants: Similitude invariance

In Section 5.2.1 we have already seen that uniform dilations (by @ > 0) result in a multiplication of Hu’s moments by
Hpg = aPte+2,,.. However, if the object in an image can just be replaced by an orbit on a neutral background, e.g.,
a circle, then a uniform dilation yields p},, = a?*%"!p,,. Assuming that the selected detail coefficients also induce
orbits instead of regions, this change in moments also holds for the moments computed from these coefficients. To

increase stability in the lifting approach all moments were also divided by L; yielding new moments ui";q. For these
moments we have

J — oPta,i
Vpg = Q7" "Vpg.
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Figure 6. Object library of 8 images of size 128 x 128.

Following the computations in Section 5.2.1 invariance of the wavelet moments u{;q is achieved by dividing them by
(u;}, + l/gz) gif’“, yielding at level j the new moments
. . pra_
5 _ Vg _ M Ly’
" (vl + ng)pTﬂ B (1o ‘*‘%2)%1.

We observe that invariant I; is now always equal to 1 due to this normalization. Therefore we replace this invariant
by I1 = poo-

Of course the assumption that the detail coefficients are only grouped into orbits and not into regions is not always
justified. We expect that a small correction of this normalization factor will give a better performance. However,

testing this invariance on large test sets with several normalization factors has to confirm our expectations. This will
be reported in an upcoming paper.

6. SIMULATION

To give a “proof of principle’ of our proposed adaptive lifting approach, we constructed a synthetic database of 64
images. These images can be divided into 8 classes, each of one consisting of images of one of the objects depicted
in Figure 6, translated, rotated and reflected over various distances/angles and finally pasted on an arbitrary chosen
(out of 4) wooden texture background (256 x 256). For the simulation each image was used as a query to retrieve
the other 7 relevant ones. So far we have not really used the similitude transform. As mentioned before we want to
investigate this invariant in combination with high pass filters in the near future.

The effectiveness of our approach (solid line) is shown in Figure 7 with both the ideal case (crosses) and the case
in which the lifting scheme with a fixed prediction filter was used (dotted line). In this figure the performance using
an 8&th order filter has been depicted since it performed slightly better than lifting with low order filters. The average
number of retrieved images of the same class of the query image (vertical axis) has been plotted against different

number of allowed top retrievals. As we can see, retrieval rates increase by 5-10% by using an adaptive approach in
our test case.

Another result is the following. We sort the weighted Euclidean distances between one query image and all 63
other images in increasing order and collect them into one vector. This has been done for all 64 query images. The
mean of each entry in these 64 vectors has been plotted in Figure 8. In the left picture we see the mean mutual
distances for both the adaptive (solid line) and the non-adaptive (dotted line). In the middle and right picture we
depict respectively the lowest and highest mean distances. Obviously, distances amongst images in a similar class
(approximately first 8) are much smaller in the adaptive case than when using the classical lifting scheme. On the
other hand we see the distances become much larger in our approach if the query image belongs to different similarity

classes. This gives reason to believe that our approach is usable for other types of databases with background textures
quite different from the ones we have used so far.
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Figure 7. Retrieval performance of adapted (solid) and non-adapted (dotted) approaches.
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Figure 8. Mean mutual distances in object database.

7. CONCLUSIONS /FUTURE RESEARCH

In this paper we described how adaptive lifting can be used for certain types of content based image retrieval. Test
results show that the adaptive approach performs better than non-adaptive approaches both in a qualitative and
a quantitative manner. The combination of adaptive lifting coefficients and morment invariants yields an improved
retrieval system based on shape related information. Presumably the adaptive scheme can also be used in combination
with other methods to extract other types of features in an image. Besides, following quantitative results we

may expect that our approach can also work out for database of objects against many other types of texture-like
backgrounds.
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Furthermore, we have seen that the classical method of computing moment based invariants encounters some

serious difficulties when applying them on images, that have been filtered by a high pass filter (detail coefficients).
Both the computations of the moments themselves as well as certain invariants have to deal with these problems. In
this paper we suggested solutions to these problems, but further research has to be carried out for a better modeling
of these problems. Rigorous mathematical descriptions and solutions for these problems will be dealt with in an

upcoming paper.
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