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Abstract

Firstly we consider a general linear 2nd order elliptic PDE in two
dimensions on a bounded domain. The diffusion coefficients and the
righthandside function are allowed to be discontinuous across internal
boundaries. We describe a multigrid method and a conjugate gradient
method respectively, both meant to solve the discretized equation. Sec-
ondly we extend the scope of the described conjugate gradient method
to a system of PDEs. Our first concern is robustness all along, our
second concern efficiency.

1 Introduction

We consider a general linear 2nd order elliptic PDE in two dimensions

-V - (DVu) + bl(z,y)%;-‘- + bg(z,y)g—: +c(z,y)u = f(z,y) (1)

on a bounded domain Q2. D(z,y) is a positive definite 2 x 2 matrix func-
tion and ¢(z,y) > 0. D(z,y) and f(z,y) are allowed to be discontinuous
across internal boundaries in 2. Already for a long time various incomplete
decompositions have been applied fruitfully both as smoother in multigrid
methods and as preconditioner in conjugate gradient methods. We choose
the incomplete line LU decomposition (ILLU) which has been originated
by Underwood [10], and has also been proposed and elaborated upon by
others [3,4,7,8]. We give an outline of ILLU in section (2), in [6,9] an exten-
sive description of this method can be found. In section (3) the blackbox
multigrid solver MGDYV is described. Within MGD9V we use ILLU as
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smoother and also matrix-dependent gridtransfer operators to ensure ro-
bustness. Recently Van der Vorst developed the Bi-CGSTAB method [11]
which is descended from the method of Induced Dimension Reduction (IDR)
as developed by Sonneveld [14]. A particular version of this method is de-
scribed in section (4). In section (4.2) we generalize ILLU for the case of
discretized systems of PDEs.

2 Incomplete line LU

Here we repeat the general outline of the method. We assume to have a
discretization on a rectangular computational grid that may be curvilinear in
the geometrical sense. Let n, denote the number of vertical lines in the case
of a vertex-centered discretization. Likewise we define n,, corresponding
with the y-direction. Further we assume the common five point coupling
(as with central differences) or nine point coupling (as with bilinear finite
elements). With these assumptions we obtain after discretization a block
tridiagonal linear system of the form

Az =) (2)
where
Dy U
Ly, D U,
A= Ls Ds (3)
Dy,
The block D; has the tridiagonal form:
di; uj
12]' d2J U2]'
D; = oy s . (4)
dﬂ:j

The blocks L;,D; and U; are of dimension n,. In case of five point stencils
the blocks L; and U; are diagonal-matrices, in case of nine point stencils
these blocks are tridiagonal. The ILLU-decomposition is defined by
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Li(j=2,...,ny),D;(j = 1,...,ny),U;(j = 1,...,ny — 1), with
D; = Dy, ()
D; = D;- l;ridiag(Ljﬁ;_l1 Uj-1), J=2()n,. (6)

The operator tridiag() forces a block (by clipping) into the sparsity pattern
of the D;. Without this particular operator, the factorization of A would
be a complete one.

3 A blackbox multigrid solver

The general concept of multigrid methods is assumed to be known [1,5]. We
have a set of increasingly coarser grids:

Q, -1, ., Q%,...,0.
"The discretization on the finest grid ©; evokes the linear system

Ay = fi (7)

We have to define our specific choice for the prolongation operator P, the
restriction operator Rx_; and the coarse grid matrices Ax_; (k = 2,... ).
For the restriction we choose

Ry =Pl (8)
Further we choose the Galerkin approximation
Ag-1 = Ry 1 AL Pr. 9)

Hence, once P has been chosen, Rx_; and Ak_ follow automatically. Def-
inition (8) is an essential ingredient for a blackbox algorithm because now a
user only needs to define his problem on the finest grid (for a discussion on
the concept of multigrid blackbox solvers see [13]). A standard choice for
the prolongation is bilinear interpolation. This works out fine for a certain
class of problems, but the multigrid rate of convergence deteriorates severely
at two different instances:

1. The diffusion coefficients in D(z,y) are discontinuous across certain
interfaces between subdomains.
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2. The convection term is dominating, roughly speaking hi|b|| > ||D||
with h the meshsize.

For an elaboration on the first instance we refer to [2]. A first example that
the second instance causes divergence, can be found in [17]. A new prolon-
gation operator has been proposed in [16], able to handle both the case of
dominant convection (in general directions) and interface problems at the
same time. The prolongation weights are determined by decomposing the
matrix Az in its symmetric and antisymmetric part. The symmetric part
is supposed to correspond with diffusion and the zeroth order term, the an-
tisymmetric part with convection. Thereupon we reconstruct the diffusion
and zeroth order coefficients, and the convection coefficients. From that the
prolongation weights are calculated. We adhere to (8) and (9), though the
implementation of the latter is far from trivial. The actual computation
of the coarse grid matrices takes less work than the ILLU-decompositions.
The above is employed in the code MGD9V (de Zeeuw), this code uses the
sawtooth multigrid correction scheme [12] and ILLU for smoother. For a
detailed motivation of the prolongation and a description of the code, to-
gether with numerical experiments to illustrate its good behaviour, see [16].
The code has been written in standard FORTRAN 77 and has the outer
appearance of a NAG-routine. Under (soft) conditions, the code is available
from the author.

4 Versions of Bi-CGSTAB

In this section we report the use of an application of Bi-CGSTAB (Van der
Vorst [11]). We have the linear system

Az = b. (10)

Firstly we consider an application for the same type of problems as described
in the previous section. Secondly we enhance the algorithm for systems of
PDEs as they arise e.g. within the context of semiconductor equations.

4.1 Bi-CGSTAB preconditioned from the left

We introduce a variant of Bi-CGSTAB, based on preconditioning from the
left.

left-Bi-CGSTAB:
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zo=0;

to o do ILLU(A, zo, b);

ro = b— Axg;

79 = 0; to o do ILLU(A, 7o, 10);

po=a=w =1

vo = po = {;

fori=1,2,3,..
pi = (Fo,Ti-1); B = (pi/ pi-1)(e/wi-1);
pi = i1 + B(pi-1 — wi—1%i-1);
v; =0; to o do ILLU(A,v;, Ap;)
a = pif(Fo, vi);
s = fim1 — av;
t=0;to o do ILLU(A,t, As)
w; = (t,s)/(t,t);
Ti = Zi—1 + ap; + w;s;
T = § — wgt;

end

At the i-th sweep this scheme delivers some approximation z; of the solution
z of (10). An important advantage of this version of Bi-CGSTAB is that
7; is a properly scaled residual. The #; will be a close approximation of the
error rather than the residual. This is of importance within the context of
semiconductor problems. Jacobians originating from this problems depict
entries that differ in orders of magnitude. This make it hard to decide
whether the residual is small or not. For making this kind of decisions
(criterions etc.) the 7; as approximation of the error, is a more convenient
tool. For a detailed discussion and numerical results see ([15]).

4.2 ILLU for a system of PDEs

Suppose we have a system of n coupled PDEs. For n = 1 we obtain the
matrix A as described in section (2). For n > 1 the entries of the matrix
A become blocks of dimension n instead of scalars. For the construction of
the incomplete line decomposition we have to replace operations on scalars
z and y by operations on matrices X and Y of dimension n as follows:

zxty — XY
zy — XY
zfly — Xy!
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However, an important difference is that multiplication is no longer commu-
tative. The ILLU-decomposition thus obtained, is used as preconditioner in
Bi-CGSTAB. For applications on semiconductor problems see [15).
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