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§0. Introduction. 

This paper gives a survey of the remarkable results on S-unit equa­
tions and their applications which have been obtained, mainly in the 
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last five years. It is impossible to cover all applications within the scope 
of this paper, but the wide range of applications illustrates how funda­
mental these developments are. The developments are still going on and 
several of the mentioned results are new. 

In §1 we introduce notation which will be used throughout the pa­
per. In §§2-5 five theorems on S-unit equations are treated. The Main 
Theorem on S-Unit Equations (Theorem 1), which deals with general 
S-unit equations 

xo + X1 + ... + Xn = 0 in S-units Xo,x1, ... ,xn, (0.1) 

is stated in §2 and its deduction from the Subspace Theorem is sketched 
in §4. Theorem 1' is a version of Theorem 1 dealing with arbitrary finitely 
generated multiplicative subgroups of C \ {O}. Theorems 2-5 stated in 
§3 deal with S-unit equations in two variables, 

(0.2) 

where a 1 and a 2 are constants. Theorem 2 gives an upper bound for the 
number of solutions of (0.2). A proof of it, this time not derived from 
the theory of hypergeometric functions, but from a variant of Roth's 
theorem, is given in §4. Theorem 3 was proved during the conference 
in Durham. It says that apart from finitely many equivalence classes 
of equations only, equation (0.2) has at most two solutions. Its proof 
is sketched in §5. Theorems 1-3 are ineffective and hence the methods 
do not yield upper bounds for the sizes of the solutions. In contrast, 
Theorems 4 and 5 are effective. They are based on Baker's method 
concerning linear forms in logarithms of algebraic numbers. Theorem 4 
gives an upper bound for the sizes of the solutions of (0.2). Theorem 
5, which is new, is an effective, but weaker version of Theorem 3. The 
proofs of Theorems 4 and 5 in the rational case are given in §5. The 
formulations of Theorems 1-5 in the case of rational integers are given 
as Corollaries 1.3 and 2-5. Both §5 and §6 deal with rational integers 
and can be read independently of the rest of the paper. They are meant 
for those readers who want to understand and apply the results on S-unit 
equations for rational integers only. 

In §§6-9 applications of Theorems 1-5 are given which are more 
or less straightforward. Theorems 6 and 7 in §6 are new. Theorem 7 
resolves a conjecture of D. Newman on the number of representations of 
an integer in the form 2°3P +2-Y +35 where a, (3, 'Y and 8 are non-negative 
integers. Theorem 8 in §7 is also new. It gives a result on groups which 
has been applied in the study of ellipticity problems in group theory. 
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Theorem 9 in §8 is an extension of a result of Evertse [20]. It implies 
several known results on recurrence sequences as is shown in §§8, 9. 

The more classical applications of S-unit equations are mentioned 
in §§10-12. There is a strong connection between the theory of S-unit 
equations and the theory of decomposable form equations (which covers 
the Thue-Mahler equations). The two theories are in fact equivalent ( cf. 
§11 ). Siegel proved the finiteness of the number of solutions of unit equa­
tions in two variables via Thue equations. The opposite approach has 
also proved applicable, even for decomposable form equations in more 
than two unknowns. There are several consequences of unit equations 
which can be deduced via complicated systems of unit equations. All 
these results can be proved by using the same "intermediate" results, 
Theorems 10 and 11, which are applications of Theorems 4 and 2 and 
are presented in §10. The versions of Theorems 10 and 11 presented 
here had only appeared in Hungarian [42] before. These results are im­
provements of results in Gyory [35]. Theorem 12 in §10 is an application 
of Theorem 11 to irreducibility of polynomials. Theorems 13-15 in §11 
provide general finiteness results for decomposable form equations which 
imply several known results on Thue equations, Thue-Mahler equations, 
norm form equations, discriminant form equations and index form equa­
tions. Theorems 16-18 in §12 give finiteness results for algebraic integers 
and polynomials with a given non-zero discriminant. They have many 
applications in algebraic number theory. 

Finally, in §13, a remarkable application of the Main Theorem on 
S-unit Equations to algebraic independence of function values due to 
Nishioka [60, 61] is mentioned. Nishioka solved in this way a conjecture 
of D. W. Masser and a more general problem which had been open for 
several years. 

For more information on S-unit equations and their applications, 
see [25], [36], [51] and [77]. 

The authors thank the organisers of the conference in Durham, A. 
Baker and R. C. Mason, for the excellent opportunity offered to the 
authors to discuss mathematics and to work together. They further 
thank F. Beukers and P. Erdos for valuable discussions and Lianxiang 
Wang for remarks on an early draft of the paper. 

§1. Notation and simple observations 

The notation introduced in this paragraph will be used throughout 
the paper without further mention. Let K be an algebraic number field 
with ring of integers OK. Let d, hK, rK and RK denote the degree, class 
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number, unit rank and regulator of I<, respectively. Let MK be the set of 
places on K (i.e. equivalence classes of multiplicative valuations on K). 
A place v is called finite if v contains only non-archimedean valuations 
and infinite otherwise. K has only finitely many infinite places. The 
rational number field Q has only one infinite place oo, containing the 
ordinary absolute value, and a finite place for each prime number p. In oo 
we choose a representative I· loo which is equal to the ordinary absolute 
value. In the place corresponding to p (which is also denoted by p) we 
choose the valuation I -Ip such that IPIP = p-1 as representative. In each 
place v of MK we choose a valuation I· Iv as follows. Let p E MQ be such 
that vlp (i.e. the restrictions to Q of the valuations in v belong to p; in 
particular vis infinite if and only if vloo ). We put dv = [Kv : Qp], where 
Kv and Qp denote the completions of K at v and Q at p, respectively. 
In v we choose the valuation I -Iv satisfying 

lo:lv = lal;v/d for each o: in Q. 

By these choices for the valuations we have the Product Formula 

II lalv = 1 for a EI<*. 
vEMK 

Here and elsewhere we put V* = V\ {O} for any set V. Put 

s(v) = { ~/d 
2/d 

Then L:veMK s( v) = 1 and 

if v is a finite place, 
if Kv = R, 
if Kv =C. 

10:1 + ... + arlv:::; rs(v)max(la1lv, ... , larlv) 

The height function h( . ) on K is defined by 

h(o:) = II max(l, io:lv) for a EK. 
vEMK 

(1.1) 

(1.2) 

(1.3) 

This height depends only on a, and not on the choice of the algebraic 
number field I<. The following elementary properties of h can be proved. 

for o: E I<*, 

for a1, ... ,ar EI<, (1.4) 

h(o:1 + ... + CXr):::; rh(ai) ... h(o:r) for 0:1, ... , O:r EK, 

h( o:) = 1 if and only if o: = 0 or a root of unity. 
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Other heights of algebraic numbers a which are often used in diophan.­
tine approximation, are r@ (the maximum ~f the absolute values of the 
conjugates of a over Q) and H(a) (the maximum of the absolute values 
of the coefficients of the minimal polynomial of a over Z). If o: is an 
algebraic number of degree m, then 

raJ :::; ( h( a)) m 5 r@m, if a is an algebraic integer, 

21-mH(a):s;(h(a))msJm+lH(a), ifaisanarbitrary (1.5) 

algebraic number. 

The first inequality is obvious, while the second follows from Lang [51] 
Ch. 3, Theorem 2.8. Consequently, for each positive number C there 
are only finitely many a in K with h( a) S C and these belong to an 
effectively determinable finite subset of ]{. 

Let S00 be the set of all infinite places on J{, and let S be a finite 
subset of MK containing S00 • Let s denote the cardinality of S. An 
element a of K is called an S-unit if lalv = 1 for each v t/:. S (i.e­
v E MK \ S). The S-units form a finitely generated multiplicative group 
of ranks - l which is denoted by US· If S contains no finite places, the:n. 
Us is just the group of units, UK, of OK. Note that if a E Us, then, by 
(1.2) and (1.4), 

IT ia!v = 1, h(a) = TI max(l, lalv)· (1.6) 
vES vES 

Suppose that the finite places in S correspond to the prime ideals 
~1, •.. , Pt and that these prime ideals lie above rational primes not ex­
ceeding P( 2 2). An element a of K is called an S-integer if I a Iv :::; 1 for 
all v $. S. The S-integers form a ring which is denoted by Os. If a E K 
then the principal ideal (a) can be written uniquely as a product of tW"c 
ideals .A.1, .A.2 where .A.1 is composed of p1, ... , Pt and .A.2 is composed 
solely of prime ideals different from p 1 , •.. , Pt· We define N s( 0t ), which 
is sometimes called the S-norm of a, by Ns(a) = NK/Q(A2 ). Thi~ 
function N s has several useful properties. We have 

Ns(a) = (IJ la!v) d for all a in K. 
vES 

Further N s is multiplicative, N s( a) 2 1 if a E 0 5 , and N s( a) = 1 i:f 
a E Us. Finally we note that if S = S00 , then Ns(a) = INK;Q(a)I-
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We shall deal with the (general homogeneous) S-unit equation 

aoxo + ... + anxn = 0 in Xo,x1, ... ,xn E Us (1.7) 

where ao, ai, ... , an E K*. In the study of this equation we can identify 
pairwise linearly dependent non-zero points in Kn+l, that is, consider 
solutions in then-dimensional projective space pn(K). Points in pn(K), 
so-called projective points, are denoted by X = (x0 : x1 : ..• : xn), where 
the homogeneous coordinates are in K, and are determined up to a 
multiplicative factor in K. Alternatively we can divide all coefficients a; 

by a 0 and all variables x; by -xo and study the inhomogeneous S-unit 
equation 

Since Us is finitely generated, S-unit equations are in fact exponential 
diophantine equations. Most of our attention will be focussed on the 
(inhomogeneous) S-unit equation in two variables, 

in x,y E Us. (1.8) 

It is implicit in the work of Mahler [56] and explicitly stated by Lang 
[50] that (1.8) has only finitely many solutions. Denote the number of 
solutions of (1.8) by v(ai, a2)· 

In §3 we shall give upper bounds for max(h(x), h(y)) and for 
v( ai, a2) when x, y satisfy (1.8). In view of the symmetry in (1. 7) 
we can distinguish equivalence classes of equations such that the sets 
of solutions of two equations from the same class are isomorphic: two 
tuples (ao,ai, . .. ,an) and (f3o.f31, ... ,f3n) in (K*)n+l (resp. the corre­
sponding homogeneous S-unit equations) are called S-equivalent if there 
is a permutation O" of {O, 1, ... , n }, a .A E K* and S-units Eo, E1, ... , En 

such that 
for i = 0, , ... , n. 

Observe that the solution (eu-i(o)XO : Eu-1(1)X1 : ... : Eu-l(n)Xn) of 
aoxo + a1x1 + ... + anXn = 0 corresponds to the solution (xu(o) : Xu(l) : 

... : Xu(n)) of /3oxo + f31x1 + ... + /3nXn = 0 so that there is indeed a 
simple bijection between the solutions of both equations. Transferring 
the concept of S-equivalence to the inhomogeneous case, we find that the 
S-equivalence class of equation (1.8) consists of the following six classes 
of inhomogeneous S-unit equations: 
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-1 + -1 1 a 1 a2€1X al £2Y = , 
-1 + -1 1 0'.2 E1 X 0'.1 0'.2 ez Y = , (1.9) 

a2€1X + a1e2Y = 1, 

-1 + -1 1 al E1X 0'.1 a2t2Y = ' 
-1 + -1 1 a 1a 2 €1X a 2 e2Y = , 

where <:1 and e2 are arbitrary S-units. 
We now show that if Us is infinite (which is the case ifs> 1), then 

there are infinitely many S-equivalence classes of S-unit equations with 
at least two distinct solutions. Let ~ E Us, ~ =f. l. For each 'T] in Us with 
T/ =f. ~, T/ -:j:. 1 we define a1 , a2 by 

TJ-l ~-1 
a1 = --, a2 = --. 

TJ-~ ~-,,, 

Then (1.1) and (~, T/) are distinct solutions of a1x + a2y = 1 in x, y E 
Us. The equations a 1x + a2y = 1 constructed in this way must belong 
to infinitely many S-equivalence classes, since the number of equations 
constructed in this way is infinite, but each S-equivalence class contains 
only finitely many equations with solution (1,1). This last fact follows 
from applying Lang's result to (1.9) with x = y = 1, a1 and a2 fixed 
and ei, €2 E Us variables. 

§2. The General Case: The Main Theorem on S-Unit Equations 

In this paragraph we deal with equations (1.7). The results in 
this paragraph are all based on p-adic versions of the Thue-Siegel-Roth­
Schmidt method. Both Schlickewei [68], [69], [70] and Dubois and Rhin 
[14] gave such a p-adic version and used it to prove that, for any given 
set of prime numbers T = {p1 , ... , Pt}, the equation 

Xo + X1 + ... + Xn = 0 in xo, X1, ... , Xn E Z (2.1) 

has only finitely many solutions x 0 , x 1 , ••• , Xn each composed of primes 
from T such that 

for i =f. j. (2.2) 

Actually they proved the following more general result. Let .t:., 6 be real 
constants with b.> 0, 0 s; b < 1. Then the number of solutions of (2.1) 
satisfying (2.2) and 

n 

IT (lxk I IT lxk IP) s; .t:. (max(lxo I, lx1 I, ... , lxn I)) 6 (2.3) 
k=O pET 
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is finite. The restriction of pairwise coprimality may be too severe, but 
some restriction is needed in view of the equation Xo + X1 + ... + Xs = 0 
with T = {2, 3} which has the solution x0 = 2H1 , x1 = 2k, x 2 = -3. 2k, 
X3 = 233L, X4 = 3L, xs = -3l+2 for all positive integers k, £. 

Van der Poorten and Schlickewei [67] proved that (2.1) has only 
finitely many solutions xo, xi, ... , Xn each composed of primes from T 
such that 

gcd(xo, ... , xn) = 1 and no proper non-empty subsum 

Xi1 + ... + Xik of xo + x1 + ... + Xn vanishes. (2.4) 

Condition (2.4) is necessary and sufficient. Their result holds for alge­
braic number fields ( cf. Corollary 1.1) and even for finitely generated 
subgroups of C* ( cf. Theorem 1'), but they have not yet published the 
complete proofs of their claim. Independently of van der Poorten and 
Schlickewei, Evertse [20] proved that (2.1) has only finitely many so­
lutions satisfying (2.3) and (2.4) and extended this result to algebraic 
number fields. By using these results of van der Poorten and Schlickewei 
and Evertse, a further extension for subgroups of C* of finite rank was 
given by Laurent (52]. 

To state Evertse's result in full generality we need some more no­
tation. For any projective point x = (x0 : x 1 : ••• : x 12 ) in P12(K) and 
for any v E MK we put lxlv = max(lxolv, ... , lxnlv)· We define the 
projective height1) of x as 

1-l(x) = IT lxlv· (2.5) 
vEMK 

This height is well-defined, since it is independent of the multiplicative 
factor by the Product Formula. There is a simple relation between the 
height h and the projective height 1-£, namely 

h(a) = 1-£(1 : a) for a EK. (2.6) 

Let, as always, S be a finite subset of MK containing all infinite places. 
Let 6., 8 be real constants with 6. > 0, 8 ~ 0. A projective point 
x E pn(K) is called (6., 8, S)-admissible 1) if its homogeneous coordinates 
can be chosen such that 

l) The valuation 11 · llv in [20] is not the same as the valuation I· Iv· 
The relation between them is given by !lallv = ial~ for a E K. Hence 
the notation of (6.,8,S)-admissibility here corresponds with (6.d,8,S)­
admissibility in Evertse's paper. 
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(i) all Xk are S-integers 

and 
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n .; 

(ii) II IT lxk!v ~ ~(1i(x)) . 
vES k=O 

Clearly the homogeneous coordinates of (1, 0, B)-admissible projective 
points can all be chosen to be S-units. 

Theorem 1. (The Main Theorem on S-Unit Equations for Algebraic 
Number Fields) (Evertse [20]). 

Let t:.. > 0, O ~ o < 1. There are only finitely many (t:.., 8, S)­
admissible projective points x = (x0 : x1 : ... : xn) E pn(K) satisfying 

Xo + X1 + ... + Xn = 0 (2.7) 

but 

Xi 1 + ... + x;. -=/= 0 for each proper, non-empty subset 

{i1,. . ., ik} of {O, 1, ... , n} (2.8) 

We express (2.8) succinctly by saying that no subsum of xo + ... + Xn 

vanishes. When we use the word 'subsum' we exclude the full and empty 
sum. 

For general homogeneous S-unit equations (1. 7) we derive the fol­
lowing consequence of Theorem 1. 

Corollary 1.1. Let ao, a1, ... , O:n EK*. There are only finitely many 
projective points x = (xo: X1 ••• : Xn) E pn(K) with xo,x1 , ... ,xn E Us 
such that aoxo+a1x1 + . .. +anXn = 0, but no subsum of a 0x 0 +a1x1 + 
... + O:'nXn vanishes. 

This implies for inhomogeneous S-unit equations: 

Corollary 1.2. Let o:i, a2, ... , an E K*. There are only finitely many 
tuples (x1, ... ,xn}E Us such that a1x1 + .. . +anxn = 1, but no subsum 
of 0:'1X1 + ... + O:'nXn vanishes. 

By a specialisation argument, Theorem 1 can be extended as follows. 

Theorem l' (The Main Theorem on S-Unit Equations for Groups) (Van 
der Poorten and Schlickewei [67]). 
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Let G be a finitely generated multiplicative subgroup of C*. There 
are only finitely many projective points x = (xo : x1 : ... : Xn) E pn(G) 
sati.8/ying (2. 7) and (2.8). 

Laurent [52] proved Theorem 1' in the more general case of multi­
plicative subgroups of C* of finite rank. He used it to prove a special 
case of a conjecture of S. Lang which is an assertion on commutative 
algebraic groups. 

§3. Upper bounds in the two variables case 

In this section we deal with the S-unit equation in two variables 

in x,y E Us, (1.8) 

where a 1 , a 2 E K*. It is implicit in the work of Siegel [78, 79] that 
equations of the form (1.8) have only finitely many solutions in units x, 
y, and implicit in the work of Mahler [56] that (1.8) has only finitely 
many solutions (in S-units x, y). As remarked before, Lang (50] proved 
this result explicitly. Siegel developed the so-called Thue-Siegel method 
involving hypergeometric functions. By combining his method with ideas 
of Mahler about p-adic approximation of algebraic numbers, Evertse 
proved the following result on the number of solutions 11( a1, a 2 ) of (1.8). 

Theorem 2. (Evertse (19]). 

This bound has the remarkable feature of being dependent only on the 
degree of K and the cardinality of S. Theorem 2 is a considerable im­
provement and generalisation of a result of Lewis and Mahler [54] who 
derived an upper bound for 11(1, 1) in the rational case which depends 
on the primes involved in S and not only on their number. Indepen­
dently of Evertse, and by a different method, Silverman [81] showed 
11(1, 1) ::::; C x 2208 . Here and elsewhere C is a constant, the value of 
which may be different at each occurrence. Later, Evertse and Gyory 
[22] derived an upper bound for the number of solutions of (1.8) inde­
pendent of a 1 and a2 in the general case that the variables x, y belong 
to a finitely generated multiplicative subgroup of C*. 

The dependence of Evertse's bound on the degree of K and the 
cardinality of S is necessary. Nagell [59] proved that for d ~ 5 there 
exists a number field K of degree d such that x + y = 1 has at least 
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3(2d - 3) solutions in units x, y of K. Erdos, Stewart and Tijdeman 
[17] proved that in the case K = Q the equation x + y = 1 can have 
more than exp( C s112 /logs) solutions x, y E Us. This implies that 
the best improvement of Theorem 2 one can hope for is v( ai, a 2 ) ::; 

exp(sl/2 ). According to a conjecture which Stewart presented during the 
conference, the exponent ! should be replaced by ~. In great contrast to 
this result is the observation made during the conference that for most 
pairs a 1, az we have v(a1,a2) 5 2. 

Theorem 3 (Evertse, Gyory, Stewart, Tijdeman [26]). 

There are only finitely many S-equivalence classes of equations (1.8) 
with more than two solutions. 

As observed at the end of §1 there are infinitely many S-equivalence 
classes of equations (1.8) with two solutions. The proof of Theorem 3 is 
based on Corollary 1.1. Its principle will be explained in §5. Theorem 3 
can be extended to finitely generated multiplicative subgroups of C*. 

Up to now all the upper bounds we have mentioned were proved 
by ineffective methods. This has the important disadvantage that it is 
impossible to derive upper bounds for the solutions themselves or to de­
cide from the proof that for given ai, a2 (1.8) has no more than two 
solutions. Skolem [83], using Skolem's method, and Cassels [9], using 
Gelfond's results, showed how certain classes of S-unit equations in ra­
tionals can be solved effectively, at least in principle. The important 
breakthrough was Baker's method for estimating linear forms in loga­
rithms and its p-adic analogue by Coates. Implicitly in Coates' work on 
the Thue-Mahler equation [11] there are $-unit equations in two vari­
ables and upper bounds for their solutions. The first explicit mention 
of such an application is in Sprindzhuk [84]. Gyory [34] worked out an 
explicit upper bound for the heights of the solutions of (1.8). We state 
his result in a slightly different and less precise form. To state his re­
sult we transform (1.8) into an equivalent equation. By multiplying a 1 

and a2 by the product of their denominators, (1.8) transforms into an 
equivalent equation of the form 

in x,y E Us (3.1) 

Theorem 4 (Gyory [34]). Let e > 0. Every solution (x, y) of (3.1) 
satisfies 

(3.2) 
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where A= max(h(a1),h(a2),h(ao),3) and C(I<,E) is an expression, 
explicitly given in [34], involving the parameters d, hK, rK and RK of 
J{ and E. 

It is most likely that the right-hand side of (3.2) cannot be improved 
on in an essential way when we use the presently available estimates for 
linear forms in logarithms of algebraic numbers. However, if we assume 
that (3.1) has at least s + 2 solutions, then it is possible, after having 
replaced ( a 1, a2, ao) by an appropriate S-equivalent triple, to derive a 
result similar to (3.2) with a bound independent of A. A first step 
in this direction was made by Gyory. Recall the definition of N s( a) 
given in §1. Gyory [34] proved the following statement in a more precise 
form. Here and in the sequel we use C(K) for an effectively computable 
number depending only on I< which may have a different value at each 
occurrence. 

Let 0 < E < 1. For each triple (a1 ,a2 ,ao) of elements in OK\{O} 
with 

min(Ns(a1),Ns(a2)) :S Ns(a0 ) 1-' 

such that (3.1) has at least s + 3t + 1 solutions, we have 

N s( ao) :S exp { €-1 sC(K)s pd+1 log~}. 

(3.3) 

An upper bound for Ns(ao) of the same form can be given if 
max(logNs(a1),logNs(a2)) :::; (logNs(ao)) 1_, and there are at least 
s + t + 1 solutions. 

There are infinitely many S-equivalence classes which have a repre­
sentative satisfying (3.3), but there are also infinitely many S-equivalence 
classes which do not have such a representative. (If p1 , .•. , Pt are the 
rational primes in g:J1, •.• , Pt and P = P1 ... Pt, then for all sufficiently 
large positive integers a the triples (Pa + 1, 2Pa - 1, 2Pa + 1) will be 
pairwise S-inequivalent and they do not satisfy (3.3).) 

Recently we considerably relaxed Gyory's conditions and moreover 
slightly improved upon the bound for the number of required solutions. 

Theorem 5 (Evertse, Gyory, Stewart, Tijdeman [26]). For each 
(a1 ,a2,ao) E (OK\{0})3 such that (3.1) has at least s+2 solutions, 
there exists an S-equivalent triple (/31 ,/32 ,/30 ) E (OK\{0})3 such that 

(3.4) 

Since there are only finitely many S-equivalence classes which have a 
representative satisfying (3.4) (cf. (1.5)), this result implies that (3-1) 
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has at most 8 + 1 solutions for all but the finitely many $-equivalence 
classes determined by (3.4). It follows from Theorem 4 that the solutions 
of f31x + f32 y = f30 in x,y E Us subject to (3.4) satisfy 

ma.x(h(x), h(y)) :$ exp{sC(K)s p2(d+l)}. (3.5) 

§4. On the proofs of Theorems 1 and 2 

In this section we shall describe some ideas behind the proofs of 
Theorems 1 and 2. 

Theorem 1 (the Main Theorem on S-Unit Equations) is a conse­
quence of the Subspace Theorem of Schmidt and Schlickewei, stated be­
low. We use the notation introduced in §§1, 2. By a projective subspace 
we shall mean a set of the type 

{x = (xo: ... : Xn) E pn(K): £1(x) = ... = lr(x) = o} 

where li, ... ,er are linear forms in K[Xo, ... ,Xn]· 

Subspace Theorem. Let K be an algebraic number field, S a finite set 
of places on K with S00 ~ S, and n :::'.'. 1 an integer. For each v in S, let 
{i;v}?,,::0 be a collection of linear forms in K[Xo, ... , Xn] of rank nv + l; 
th'l.I.-' nv :$ n for v E S. Then for every c > 0 and e: > 0, the solutions of 
the inequality 

IT IT j£;.,(x)!., :$ c'H(xrn-l-e in x E pn(K) (4.1) 
vES i=O lxlv 

are contained in finitely many proper, projective subspaces of pn(K). 

This theorem was proved by Schmidt [73, 74] in case that S contains 
only infinite places, and by Schlickewei [69] in full generality. 

We remark that Schlickewei's formulation of the Subspace Theorem 
is different from ours. Schlickewei considered the inequality 

nv 

IT ITl.eiv(x)lv :$ c!lxll-e in x E Ok-+l ( 4.2) 
vES i=O 

where llxll = ~axlo-;(xi)I and o-i, ... ,o-d are the different Q-
1,3 

isomorphisms of K. Inequality (4.1) is easily reduced to an inequality 
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of type ( 4.2) and vice versa, by observing that there are positive inte­
gers ci, c2 , c3 depending on K only, such that each x E pn(K) can be 
represented by homogeneous coordinates (xo : x1 : ••. : xn) for which 

x·o, ... ,Xn E OK, 

NK;Q((xo, ... ,xn)) S: c1, 

c2llxll S:1t'.(x) S: c31ixl1. 

Sketch of proof of Theorem 1. We shall proceed by induction on n. 
For n = 1, Theorem 1 is trivial. Suppose that Theorem 1 has been proved 
for equations xo + ... + Xn' = 0 with n' < n (induction hypothesis). 
Consider the equation 

xo + X1 + ... + Xn = 0 in S-integers xo, x1, ... , Xn (4.3) 

satyisfying 
n 

IT IJ lx;lv S: ~'h'.(x)l-e, ( 4.4) 
vES i=O 

where S is a finite subset of MK containing all infinite places, ~ > 0 
and e = 1 - 8. Now (4.4) can be rewritten as 

II ( lxolv · ·. lxn-llvlxo + · · · + Xn-1lv) < 'l.1(-)-n-E 
lxin+1 - c1 L x 

vES 

(4.5) 

where x = (xo : ... : Xn-d E pn-1(K) and c = n~. Consider the 
solutions of (4.5) with !xiv= lxi(v)lv, where (i(v))vES is any fixed tuple 
of subscripts taken from { 0, 1, ... , n - 1}. For v E S, let { R;v} ?::-l be the 
set of linear forms 

Then ( 4.5) can be written as 

(4.6) 

By the subspace Theorem, the solutions of (4.6) in x E pn-1 (K) are 
contained in finitely many proper projective subspaces of pn-l (K). This 
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implies that the solutions of ( 4.3) satisfying ( 4.4) are contained in finitely 
many linear subspaces of Kn+l of the type 

{ x E Kn+l : OloXo + 011X1 +. · · + Oln-lXn-1 = 0} 

where a 0,. .. ,0ln-1 E K and (ao, .. .,an-1) # (0, ... ,0). Fix 
a 0 , ... , Oln-i. fix a non-empty subset J of {O, ... , n - 1}, and consider 
all solutions of ( 4.3) satisfying 

L OljXj = 0, but no subsum of I: OljXj vanishes. 
jEJ jEJ 

By the induction hypothesis, there is a finite number of tuples (/3j )jEJ 

such that each Xj (j E J) can be written as Xj = ~/3j where~ is some 
S-integer. By substituting this into ( 4.3) we obtain 

(Lf3i)~ + I: Xj = 0. 
jE] jE{O, ... ,n}\J 

By applying the induction hypothesis again we conclude that there are 
only finitely many possible projective solutions (~ : Xii,: ... : x;,) where 
{ i 1 , ... , it} = { 0, .. ., n} \ J. Combining this with the facts that the 
numbers of possible tuples (ao, .. .,an-1), sets J and tuples /3j (j E J) · 
are finite, we obtain that the total number of solutions of ( 4.3) subject 
to ( 4.4) is finite. Ill 

We shall now sketch the ideas behind the proof of Theorem 2. We 
use the notation of §§1-3. For i = 1,2, ... let c;( ... ) denote effectively 
computable numbers depending only on the parameters written within 
the parentheses. Hence c6 and c 13 are absolute constants. 

Equation (1.8) can be rewritten as 

Yo+ Y1 + Y2 = 0 in (yo : Y1 : Y2) E P2(K) 

with yifv; S-units for i = 0, 1,2, (4.7) 

where vo, v 1 , v2 EK* are fixed. Put 

A = IT I Vo v1 v2 Iv x IT { rnax ( I Vo I v, I V1 [ v , I v2 I v) } 3 . 
vES v<(:.S 

A straightforward computation shows 
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where Y = (Yo : Y1 : Y2). Let (i(v))ves be subscripts such that 

IYi(v)lv = min(IYolv,IY1lv,IY2lv). If IYi(v)lv $ IY;(v)lv $ IYk(v)lv with 
{i(v),j(v), k(v)} = {1,2,3}, then IYk(v)lv $ 2s(v)IY;(v)lv by (1.3). Hence 

II IYi(v) Iv $ 2A1i(y)-3. 
vES IYlv 

(4.8) 

One possible way to deal with inequalities of type ( 4.8) is to use a quan­
titative version of Roth's theorem of the type below. If £(X0 ,X1) = 
aoXo + aiX1, we put j.e!v = max(laolv, la1lv)· 

Roth's Theorem. Let K be an algebraic number field of degree d.Let 
S C MK be a finite set of cardinality s, containing all infinite places. 
Let C 2 1 be a constant. Let F(Xo,X1) E Z[Xo,Xi] be a binary form of 
degree m, of which the absolute values of the coefficient8 are at most M. 
Finally, let {.ev}ves be a set of linear forms in K[X0 , X1], all dividing 
F. Then the number of solutions of the inequality 

(4.9) 

in x E P1(K) with 1i(x) 2 c1(d, m, E)(C + M + l)C2 (d,m,E) is at most 

c3(d,m,E) x (c4(€))8. 
As far as we know, no explicit proof of this result has been published. 

In [51] Ch. 7, Lang proved that (4.9) has only finitely many solutions. 
It is possible to prove Roth's theorem above by making explicit all argu­
ments in Lang's proof, and combining this with ideas of Davenport and 
Roth [13]. In [82] Theorem 2.1, Silverman stated and sketched a proof 
of a result which is equivalent to Roth's Theorem stated above. 

Roth's Theorem is a quantitative version of the Subspace Theorem 
in the special case n = 1, nv = 0 for v E S\ S00 • It would be of great 
interest to derive a quantitative version of the same type for the general 
Subspace Theorem. 

Using Roth's Theorem with F(Xo,X1) = XoX1(-Xo - X1), it fol­
lows that inequality ( 4.8) has at most c5 ( d) x c~ solutions with 

H(y) 2 c1(d)(2A)cs(d)_ 

Our purpose is to obtain an upper bound for the number of solutions 
of ( 4.8) which is independent of A. Below we state a "gap principle" 
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which enables us to derive such a bound. First we reduce ( 4.8) to a 
finite number of systems of inequalities 

for v ES, ( 4.10) 

where r" ~ 0 for v ES, l:vesrv = B for some B with f < B < 1, 
and the tuple (rv)ves can be chosen from a set of cardinality at most 
( c1( B) )8. This can be achieved by taking a sufficiently fine grid of r v's 
( cf. [19] Lemma 4). 

Gap Principle. Let y(l), y<2> be different solution8 of ( 4. 7) satisfy­
ing the same system of inequalities (4.10), and suppose that 'H(y<1>) $ 

'H(y<2>). Then 

'H(y<2>) 2:: rB-1 Al-B ('H(y(1>))3B-1. (4.11) 

Proof. Let y(l) = (y~l) : yp> : y~1», y(2) = (y~2) : y~2) : y~2)). Put 

I <1> <2> <1> c2> I 
~ _ Yi Y; - Y; Yi v 

v - !y(l) Iv X !y(Z) Iv 
where i, j are distinct elements of {O, 1, 2}. Obviously,~" is independent 
of the choice of i, j. For v ES, take i = i(v), j =/= i(v). Then, by (4.10), 
for v ES, 

/::i. < 2s(v) ('Y~t~)lv IY~~~)'") 
" - max iy(l)lv' iy<2>lv 

:::; 2s(v) (2A'h'.(y(l) )-3 )r v. 

Hence 

IT l::i.v $ 2(2A'h'.(y(l))-3 )Evesr" (4.12) 
vES 

= 2(2A'h'.(y(l))-3 ) B. 

Fiko~ ~ ~ S we have, on choosing i, j such that lvilv $ lv;lv $ lvklv for 
r i,;, 

!::i. < lvw;lv 
" - {max(lvolv, lv1lv, lv2lv)}2 

= lvov1v2lv 
{max(lvolv, lv1 Iv, lv2 lv)}3 • 
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Together with the Product Formula this shows that 

By combining this with ( 4.12) and the Product Formula we obtain 

1 - II A < 2i+BAB-l'1...J( (1))-3B 
'H.( (1) )'H.( (2)) - L.l.v - n. Y • 

y y vEMK 

This implies (4.11). • 
Since in (4.11) the exponent of A is positive and that of 'H.(y(l)) is 

greater than one, the number of solutions of (4.10) with 

'H.(y) < c1(d)(2AY8(d) 

is bounded above by cg(B, d). We infer that the total number of solutions 
of ( 4.8) is at most C10 ( B' d) (Cu ( B) r. By choosing B appropriately and 
observing that equation ( 4. 7) can be reduced to at most 38 different 
inequalities ( 4.8), we conclude that the number of solutions of ( 4. 7) is at 
most c12(d) x c~3 -

We remark that it is possible to prove that ( 4.8) has at most c5 (d) x 
c~ solutions with 1t(y) ~ c7 (d)(2A)cs(d) by techniques which are less 
powerful than Roth's (cf. [19], [21]). 

§5. The rational case 

We specialise the theorems of §§2, 3 to the case K = Q. This 
paragraph can be read independently of §§ 1-4. The text between square 
brackets indicates the connection with the preceding paragraphs. 

For any prime number p and any rational number a we define !alp= 
p-k if p-ka is the quotient of two rational integers both coprime top. 
Let M denote the set of valuations on Q consisting of the absolute value 
I . I and the valuation I . IP just defined for each prime number p. Then 
we have the Product Formula 

II lalv = 1 for all a E Q*. (5.1) 
vEM 
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Here and elsewhere we put V* = V \ { 0} for any set V · Furthermore, we 
define the height h( a) of a by 

h(o:) = II max(l, ladv)· (5.2) 
vEM 

Hence, if a = a/b with a,b E Z and gcd(a,b) = 1, then h(a) = 
max(lal, !bi). Note that, by (5.1), 

h(o:) = h(a-1 ) = II min(l, lalv)-1 • (5.3) 
vEM 

Let t 2 2. Let T = {p1 , .•. , Pt} be a set of prime numbers not exceeding 
P. Let S be the set of valuations I· I, I· lp 1 , ••• , I -Ip,· [Hence s = t + 1, 
the number of valuations in S.] By v ~ S we mean v E M \ S. For 
0: E Q* we write a= [a]s{o:}s where [o:]s := npET lal;1 is the T-part 
of a and {a}s := io:I flpET jo:jp = flves jaiv is the T-free part of a::. The 
set Us of S-units consists of the rational numbers a with {a} s = 1. 
Hence every a in Us is of the form ±p~1 ••• p:• with k1, ... , kt E Z. Put 
S=Usnl. 

Since there are exactly two tuples ( xo, . .. , Xn) of rational integers 
with gcdl which correspond with a given projective point in pn(Q), we 
have the following consequence of Theorem 1. 

Corollary 1.3. Let .6., 8 be real constants with .6. > 0, 0 ::=; 8 < 1. 
Then there are only finitely many tuples x = (xo, x 1 , .•• , Xn) of rational 
integers such that 

Xo + X1 + ... + Xn = 0, 

Xi1 + ... + Xik -::/= Q 

for each proper, non-empty subset {i1 , •.• ,ik} of {0,1, ... ,n}, 

gcd(xo,x1, ... ,xn) =1, 

and 
n 

II { x i} s ~ .6. ( . max Ix j I )'5. 
j=O J=O, ... ,n 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

We express (5.5) succinctly by saying that no subsum of x 0 + x 1 + ... Xn 

vanishes. Taking .6. = 1, 8 = 0 means requiring that x 0 , x 1 , ... , Xn 

are all elements of S. Obviously Corollary 1.3 generalises the result of 
Schlickewei [70] and Dubois and Rhin [14], mentioned at the beginning 
of §2, who required pairwise coprimality instead of (5.5) and (5.6). 
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The subsequent results deal with the case n = 2. Let v( a, b, c) 
denote the number of solutions of the equation 

ax +by= cz in x,y,z ES with gcd(x,y,z) = 1, (5.8) 

where a, b, c E Z*. Since every solution X1, X2 E Us of ax1 + bx2 = c 
corresponds to exactly two solutions of (5.8), the following result follows 
from Theorem 2. 

Corollary 2. v( a, b, c) S 6 x 7zt+3 . 

Erdos, Stewart and Tijdeman [17] have proved that there exist sets 
S of arbitrarily large cardinality t for which v(l, 1, 1) > exp( Ct112 log t). 
Here and elsewhere C is a constant, but the constant may have a different 
value at each occurrence. 

We call a triple (a,b,c) E (Z*)3 $-normalised if a, b, c, p1 , ... , Pt 

are pairwise relatively prime and 0 < a S b S c. [Then each S­
equivalence class in (Z*)3 contains exactly one $-normalised triple: Sup­
pose (ao,a1,a2) E (Z*)3 • Put>.= gcd(ao,a1,a2). Then (ao,ai,a2) 
is S-equivalent with ({ao/.A}s,{aif.\}s,{a2/.A}s). Arrange the three 
numbers in the latter tuple in increasing order and call them a, b, c, 
respectively. Then (a, b, c) is the unique $-normalised triple in the S­
equivalence class of ( a0 , ai, a2 ). ] The following result is an immediate 
consequence of Theorem 3. 

Corollary 3. There are only finitely many S-normalised triples 

(a, b, c) E (Z*)3 for which (5.8) has more than two solutions with positive 

z. 

Corollary 3 can be derived from Corollary 1.3 as follows. Let 
(a, b, c) E (Z*)3 be an S-normalised triple and suppose there are three 
distinct triples (xi, Yi, z;) E S 3 satisfying (5.8) and Zi > 0 for i = 1, 2, 3. 
Then we obtain 

X1 Xz X3 

Y1 Y2 Y3 = 0. (5.9) 
ZJ Zz Z3 

Note that the expression on the left-hand side does not change value if 
we permute x, y, z or subscripts 1, 2, 3 consistently. Furthermore, if 
x1y2z3 = x2y1z3, then X1Y2 = x2y1, hence x1 = ±x2, Y1 = ±y2 and 
therefore z1 = ±z2 • Since z1 and z2 are positive, we obtain 

(5.10) 
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We first prove that there are only finitely many possible values for 
x1z2/x2z1 and y1z2/Y2Z1. To do so we apply Corollary 1.3 with .6.. = 1, 
6 = O in the following way. If all conditions with the possible excep­
tion of (5.5) are satisfied, then there are only finitely many possibil­
ities for the quotients x;/x; (0 :::; i :::; j :::; n). If no (proper, non­
empty) subsum of (5.9) vanishes, then Corollary 1.3 implies that there 
a.re only finitely many possibilities for x1yaz2/x2yaz1 = x1z2/x2z1 and 
x3y1z2/x3y2z1 = y1z2/y2z1. In this case our claim is correct, but we 
cannot be certain that no subsum vanishes. Suppose that there is 
a vanishing subsum. Then the complementary subsum vanishes too 
and we can apply Corollary 1.3 to both subsums. There a.re a great 
many cases to be considered, but, by using the symmetry and (5.10), 
their number can be brought down to five. The most difficult one is 
x1y2za + x2yaz1 + X3y1z2 = 0, x2y1za + xay2z1 + x1y3z2 = 0. By 
Corollary 1.3 there are only finitely many possibilities for the quo­
tients xay1z2/x1y2za, x2yazi/x1y2z3, x1y3z2/x2y1za and xay2zifx2y1za, 
hence for x~y2z2/x~y1z1 and x1yizifx2yf z2, whence for x~zVx~z~ and 
yfzVy~zf, whence for x1z2/x2z1 and y1z2/Y2Z1. The other cases can be 
treated similarly. We conclude that there a.re only finitely many possible 
values of x1z2/x2z1 and Y1Z2/Y2Z1, hence of X1Y2/X2Y1. Since (x1, Y1, z1) 

and (x2,y2,z2) satisfy (5.8), we have 

a Y1Z2 - Y2Z1 b X1Z2 - X2Z1 
- = 

' -= 
c X2Y1 - X1Y2 c X1Y2 - X2Y1 ' 

hence 
ax1 Y1Z2/Y2Z1 - 1 by1 x1z2/x2z1 -1 -= -= 
CZ1 X2Yi/X1Y2 -1' cz1 X1y'J./x2Y1 - 1. 

Since a, b, c, Pl, ... , Pt are pairwise coprime and x1, y1 , z1 are composed 
of P1, ... , Pt, we obtain that there are only finitely many possible values 
for ax1 / cz1 and by1 / cz1, whence for a, b and c. Thus there are only 
finitely many normalised triples (a, b, c) E (Z*)3 for which (5.8) has more 
than two solutions. 

Corollaries 1.3, 2 and 3 do not provide any upper bounds for the 
solutions themselves. We shall show how such bounds can be derived 
from results on linear forms in logarithms of algebraic numbers. 

Lemma 1. Let 'Yi, ... ,"'fn E Q* with h("f;) :::; r; where I'i ;::: 3 for 
~ = 1, ... , n and n ~ 2. Let B ~ 2 and b; E Z with lbil :$ B for 
i = 1, . .. ,n. Put 

A - ,.,,b1 b,. 1 
- 11 •• ·'Yn - ' 
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i=l 

n-1 
n' = II logri. 

i=l 

a) Then either A= 0 or IAI ~ exp(-n°nnlog11'logB). 

b) Let p be any prime number. Then either A = 0 or 

!Alp~ exp(-n°np11(logB)2 ). 
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The proofs of Lemma la) and 1 b) can be found in Baker [3] and van der 
Poorten [65], respectively. For defects in the latter proof, see Yu [91], 
[92]. 

Gyory [34] proved the Corollary below by applying a variation on 
Lemma 1. 

Corollary 4. If the triple a, b, c E (Z")3 is S-normalised, then each 
solution (x,y,z) of (5.8) satisfies 

max(lxl, IYI, lzl) < exp(tCtp4 / 3 1ogA) 

where A = max( a, b, c, 3). 

We shall give a simple proof of a slightly weaker assertion, namely 
with log A replaced by log A( log log A )2 : 

Let (x, y, z) E 5 3 satisfy (5.8). Put z = max(lxl, IYI. lzl). Then 
each of x, y, z is of the form ±p~1 ••• p:• with k1, ... , kt E Z. Observe 
that lkil ~ Clogp~' ~ ClogZ. Let p ET. Suppose !zip# l. Then 
lxlp = IYIP = 1 and 

!zip= lczlp =lax+ bylp =I-~; -lip. 
Hence, by Lemma 1 b ), 

lzlp ~ exp(-t0 tP(logP)tlogA(logB)2 ), (5.11) 

where B = max(lk1 I, ... , lktl) ~ C logZ. Inequality (5.11) is also valid 
if lzlp = 1. It follows that 

lzl = II lzl;1 

pET 

~ exp ( tct P(log P)t log A(log log Z)2). 
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By the symmetry of (5.8), the right-hand side is also an upper bound 
for lxl and \y\. (We have not used the fact that 0 <a$ b $c.) Hence 

logZ < tctP(logP)t logA. 
(log log Z) 2 -

By transferring secondary factors we obtain 

log Z $ tct P(log P)t+3 1og A(log log A)2 • 

If log P S t4 then (log P)H3 $ tCt, otherwise 

(log P)t+3 $ (log P)3 t 

Thus 

which is our claim. 

::::; exp(3(1ogP) 114 loglogP) 

s cp1/3. 

log Z $ tCtp4 / 3 1ogA(log logA)2 

An upper bound depending on P and t only can be given for the 
coefficients and the solutions of those S-normalised S-unit equations 
which have more than t + 2 solutions. This follows from the follow­
ing consequence of Theorems 4 and 5. (Observe that for each triple 
(a',b',c1 ) E (Q*)3 we have max(h(a'),h(b'),h(c1)) ~ max(\al,\bJ,\ci) 
where (a, b, c) is an S-normalised triple of non-zero integers which is 
S-equivalent to (a', b', c').) 

Corollary 5. Each S-normalised triple (a,b,c) E (Z*)3 such that (5.8) 
has at least t + 3 solutions (x, y, z) with z > 0 satisfies 

max(\a\, \bi, lei) $ exp(tct P 2 ) 

and each solution of such an equation sati:Jji,es 

max(lx\, \y\, \zl) $ exp(tct P3 ). 

Proof. Put a= a/c, /3 = b/c, A= c = max(a, b, c). Then 0 $a$ f3 $ 1. 
If (5.8) hast+ 3 solutions with z > 0, then the equation 

ax + f3y = 1 (5.12) 
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has t+3 solutions, (xo, Yo), (xi, Y1 ), ... , ( Xt+2, Yt+2) E U~, say. Without 
loss of generality we may assume 

(5.13) 

We shall prove that 
log A ::; tct p4/3. (5.14) 

By Corollary 4, this suffices to prove Corollary 5. In the sequel we shall 
assume A> 210 • 

First we prove that for i = 1, ... , t + 2 there exists a valuation 
I Iv E S = { 1-1, I - lp11 • •• ,I - Ip,} such that 

lax; Iv ::; A-l/S(t+l). 

We write v ES. We distinguish two cases. 

Case 1. a::; A- 1 / 4 . 

(5.15) 

(This condition is equivalent to a < c314 . Essentially this is the case 
treated by Gyory [34], cf. §3 above. In this case the solution (xo,Yo) 
is not used so that the conclusion of the theorem can be reached when 
there are only t + 2 solutions.) 

We have [a]s = 1 and {x;}s = 1. Hence 

II lax; Iv= II lalv = o:::; A-1/4. 
vES vES 

Since S hast+ 1 elements, there is some v in S such that (5.15) holds. 

Case 2. o: > A- 1 / 4 . (This part contains the new argument.) We have 
(3 2'.: a> A- 114, b 2'.: a> A 314 and, by (5.12), 

a(x; - xo) = f3(Yo - Yi) for i = 1, ... , t + 2. 

Since xo, x;, Yo, y; E Us, we obtain for any prime p r/-. T that 

la(x; - xo)IP::; min(lo:lp, l/Jlp)· 

Hence, by (5.1) and [a]s = [/3]s = 1, 

II io:(x; - xo)lv = IJ io:(x; - xo)l; 1 

vES p~T 

2'.: IT (min(lo:lp, l/31p))-1 

p'tT 

= (IT min(lo:lp, l/31p) )-1
. 

p 
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By the coprimality condition on a, b, c we have min(!alp, lblp) = 
l!cm(a,b)jp = lablp· Hence 

. (I I lr.tl )- min(lalp,lblp) = labl 
mm a P• "'P - I I . c p c p 

By the Product Formula we obtain 

Therefore 

fljo:(x; -xo)lv ~ ab/c > A3f4A3f4A-1 = Al/2. 
vES 

On the other hand, by 0:::; a:::; 1 and (5.13), 

vES vES 

vES 

:::; 2(fI max(l, lxolv)) (IT max(l, lxilv)) 
vES vES 

= 2h(xo)h(x;):::; 2(h(xi))2. 

It follows that 

( ) 1/2 
h(xi) ~ !A1;2 > A1/5. 

We infer from (5.2) and (5.3) that 

IT min(l, lxdv) =(IT max(l, lxdv) )-l 
vES vES 

Since 0 :::; o: :::; 1 and [o:]s = 1, there is some v in S such that 

This proves (5.15) in the second case. 
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Since ISI = t + 1, there are i, j in {l, ... , t + 2} with i < j such 
that, for the same valuation v E S, 

Hence, by (5.12), 

1 
l,8Yjlv = ll - axjlv ~ 2' 

l,B(yi -y;)lv = ia(x; - Xi)lv S 2A-l/(S(t+l))_ 

We obtain 

I Yi. _ i\ S 4A-1/(s(t+l)). 

Y1 v 
(5.16) 

We apply Lemma la) if v is the absolute value and Lemma lb) other­
wise. Note that y;f y; = ±p~1 ••• p~' with ikhl S Clogmax(h(yi), h(Yi )) . 
Hence 

Corollary 4 implies that 

(5.18) 

Combining (5.16), (5.17) and (5.18) we obtain 

This implies, by transferring secondary factors, 

As in the proof of Corollary 4 we have (log P)t+ 5 S tCt P 113 . Hence 
log A:::; tCt p 4 / 3 as claimed in (5.14). Ill 

It is clear from the proofs that, in Corollaries 4 and 5, p 4 / 3 and P 2 

can be replaced by pl+E and P 3 by p2+e for any positive e, provided 
that the constants C are allowed to depend on e. 
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§6. Applications to sums of products of given primes 

Let T = {p1 , .•• , Pt} be a set of prime numbers not e~ceedi_n~ P 
(?: 2). Let S be the set of rational integers of which eac:i prime d1v1sor 
belongs to T. We consider representations x1 + ... +xn with x1, · .. , Xn E 
S, so-called S-representations. We call two representations x1 + .... + 
Xn and y1 + ... + Yn distinct if (x 1 , ••• , xn) is not a permutation of 
(y1 , ••• , Yn)· The representations X1 + .. . +xn1 and Y1 + .. . +Yn 2 are called 
relatively prime if gcd( x 1 ,. . ., Xnp y1,. .. , Yn 2 ) = 1. They are called 
disjoint if Xi-:/: Yi for i = 1, ... , ni and j = 1, ... , nz, and totally disjoint 
if there are no equal subsums, that means there are no non-empty proper 
subsets {ii, ... ,ik} of {1,. . .,ni} and {i1,. .. ,je} of {l, .. .,n2} such 
that Xi 1 + ... + Xik = Yii + ... + Yit. If n 1 = nz = 2, then there is no 
difference between the notions distinct, disjoint and totally disjoint. 

In this paragraph we give some applications of Corollaries 1.3 and 
2-5. By C we shall denote absolute constants, by C(T, n) numbers 
depending only on T and n, and so on. 

Theorem 6. Let n, n 1 and nz be positive integers. 

a) There is a number C(T, n) such that every integer m has at most 
C(T, n) representations as sums of n pairwise relatively prime ele­
ment.s from S. 

b) There are only finitely many integers which admit a repre.sentation 
x1 + ... + Xn 1 of pairwi.se relatively prime element.s of S and a 
representation Y1 + ... + Yn 2 of pairwi.se relatively prime elements 
of S such that the representations are disjoint. 

c) There are only finitely many integer.s which admit an S-repre.sent­
ation x1 + ... + Xn 1 and an S-representation y1 + ... + Yn 2 such that 
the representations are relatively prime and totally di.sjoint. 

Proof. c) Suppose m admits the two described representations. Then 
X1 + · · · + Xn1 - Y1 - ... - Yn2 = 0. We may assume m f. 0. We apply 
Corollary 1.3. Conditions (5.6) and (5.7) are satisfied (with .6. = 1, 
8 = 0). If (5.5) is not fulfilled, then X1 + ... + Xn 1 - Y1 - ... - Yn 2 has 
a vanishing subsum. The complementary subsum vanishes too. Since 
m f= 0, one of both subsums involves both x's and y's. This leads to a 
contradiction with the supposition that the representations are totally 
disjoint. Thus (5.5) holds. By Corollary 1.3 we find that there exists a 
finite set of (n1 + n2)-tuples depending only on T, n 1 and n 2 to which 
(x1, · . · , Xn 1 , Y1,. · · , Yn 2 ) belongs. Thus m = x1 + ... + x ni satisfies 
m < C(T, n1, n2)· 
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b) Suppose m admits the two described representations. We may 
assume that m f= 0 and that we do not have x; = -x; = 1 for some i, j 
in {1, ... , n1} or Yi= -y; = 1 for some i, j in {l, ... , n2}· Observe that 
x1 + ... + Xn1 - YI - ... - Yn2 can be split into a number of vanishing 
subsums so that none of these subsums has a vanishing subsum. The 
number of possible splittings is C(nI + n2)· By the conditions of b) 
each subsum has at least three terms, hence involves at least two x's or 
two y's. By applying Corollary 1.3 to each of the possible splittings we 
obtain that there are only finitely many possibilities for the terms in each 
subsum, since these terms have no common prime factor. It follows that 
there is a finite set of (nI + n2)-tuples depending only on T, nI and n 2 

to which ( XI, ... , Xn1 , YI, ... , Yn 2 ) belongs. Thus !ml = lxI + ... + Xn1 I < 
C(T, n1, n2)· 

a) It suffices to prove that there are at most C(T, n) distinct 
representations. If m = 0 then we apply the argument to the S­
representations XI + ... + Xn of m which we applied to XI + ... + Xn1 -

YI - ... - Yn 2 in the proof of b ). It follows that there is a finite set of 
n-tuples depending only on T and n to which ( x1 , ... , xn) belongs. 

Now assume m f= 0. If m admits two representations of the de­
scribed form, then, after permutation, they can be written as x1 + .. . +xn 
and YI + ... + Yni + Xn1 +l + ... + Xn with Xi f= Y; for i = 1, ... , n1 and 
j = 1, ... , nI. According to b) there are only CI (T, n) integers mI which 
admit two disjoint representations XI + .. . +xn1 and YI+ .. . +yn1 of pair­
wise relatively prime elements of S for some nI :::; n. Moreover, it follows 
from the proof of b) that there is a finite set of 2nI -tuples depending only 
on T and nI to which ( x1, ... , Xn 1 , YI, ... , Yn1 ) belongs, that is, each m1 
admits at most C2(T, nI) pairwise disjoint S-representations of pairwise 
relatively prime integers. Similarly m - m1 admits at most C2(T, n-nI) 
pairwise disjoint S-representations of pairwise relatively prime integers 
Xn1+I + ... + Xn. Hence there are at most CI(T, n)C2(T, n1) possibili­
ties for the distinct part (x1, ... , Xn1 ) and C2(T, n - ni) possibilities for 
the remaining common part (xn1 +I, ... , Xn)· Thus the total number of 
representations as sums of n pairwise relatively prime elements from S 
is bounded by C(T, n) := C1(T, n) E~i=l C2(T, nI)C2(T, n - nI)· • 

It is not hard to see that the restrictions in b) and c) cannot be 
omitted. Let T = { 2, 3, 5}. In b) we require disjointness, since there are 
infinitely many integers with representations 5k + 22 + 1 = 5k + 3 + 2. 
We require pairwise coprimality in view of the representations 2k+l + 
3 + 2 and 2k + 2k + 5. In c) we require total disjointness to exclude 
representations 2k+2 + 2k + 2 + 1 and 2k . 3 + 2k+I + 3. We require 
that the representations are relatively prime, since otherwise we may 
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have 2k+2 + 2k and 2k . 3 + 2k+i as representations. The restriction in 
a) is necessary, since 1 has infinitely many representations of the form 
3. 2k-2k+1 -2k+1. However, Tijdeman and Wang [90] have proved that 
there is a number C1 (T, n) such that every integer has at most C1 (T, n) 
representations as sums of n positivi;! elements from S. 

In a letter to one of us, P. Erdos drew our attention to the following 
conjecture of D. Newman ( cf. [16] p. 80). The number of representations 
m = 2"'3.B +2'Y +36 in non-negative integers a, /3, /, 8 is bounded. Erdos 
wondered whether this could be solved by Corollary 1.3. We show that 
he is right, and that there are only finitely many integers which have 
more than two disjoint representations. Any pair of coprime integers 
greater than 1 could be taken in place of the bases 2 and 3. 

Theorem 7. a) There is a constant C such that every integer has at 
most C representations of the form 2"'3P + 2-r + 36 with a, /3, 'Y and 8 
non-negative integers. 

b) There are only finitely many integers which admit more than 
two pairwise disjoint representations of the form 2°'3P + 2-r + 36 with a, 
/3, 'Y and ,8 non-negative integers. 

Proof. Put T = {2, 3}. By N-representation we shall mean a representa­
tion of the form 2"'3,B + 21' + 36 • By Theorem 6c) there are only finitely 
many integers m which admit two totally disjoint N-representations. Let 
Mo be the maximum of such numbers m. 

We now assume that m > Mo has two distinct N-representations, 
m = 2"'3P + 2-r + 36 = 2E3C: + 211 + 38 . Hence these representations 
are not totally disjoint. Since the representations are distinct, 2"'3,B + 
2-r + 36 - 2e3C: - 2'1 - 38 has exactly two vanishing subsums (which are 
complementary). 

Suppose first that each vanishing subsum has three terms. By using 
the symmetry, also with respect to the bases 2 and 3, we may assume 
without loss of generality that we have one of the following cases: 

(i) 2"'3,8 + 2-r - 2'3' = 0, 36 - 211 - 38 = o. 
(ii) 2a3.B + 21' - 211 = 0, 36 - 2'3<: - 39 = o. 
(iii) 2a3.B + 21' - 38 = 0, 36 - 2'3' - 211 = 0. 

(iv) 2-r + 36 - 2'3' = 0, 2a3.8 - 211 - 38 = 0. 

We treat the cases separately and apply Corollary 1.3 to both subsums. 
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Case (i). It follows that there are only finitely many possibilities for 8, TJ 
and 8. The numbers 2°3.B, 2'Y and 2e3( belong to a finite set apart from 
a common factor 2k (k E Z, k;:::: 0). 

Case (ii). The numbers 2°3.B, 2', 21J belong to a finite set apart from a 
common factor 2k. The numbers 38 , 2e3(, 38 belong to a finite set apart 
from a common factor 3£. 

Cases (iii) and (iv). There are only :finitely many possibilities for the 
exponents. 

We conclude that m is both of the form 2k(2k1 3"1 + 2k2 ) + 3L+£2 and of 
the form 2k+k3 + 3£(2k4 3la + 3£4 ) where k1, ... , k4,e1, ... ,£4 belong to a 
certain finite set. 

Suppose next that one vanishing subsum has two elements and the 
other four. This implies that the representations are not disjoint and 
hence we are not in situation b ). Without loss of generality we may 
assume that we have one of the following cases: 

(v) 

(vi) 

2o3,8 - 2E3( = 0, 

27 - 21) = 0, 

27 + 36 - 271 - 38 = o. 
2°3,8 + 3° - 2e3( - 38 = 0. 

Case (v). By applying Corollary 1.3 to the second sum we obtain that 
('y,8,17,8) belongs to a finite set of quadruples. 

Case (vi). By applying Corollary 1.3 to the second sum we find that 
(2°3,8, 36, 2e3(, 38 ) belongs to a finite set of quadruples apart from a 
common factor 3". 

To prove a) we observe that each N-representation of m is either 
of the form a2k + b3e or of the form 2k3t + a + b where in each case 
(a, b) belongs to a finite set. Put M 1 = max(a + b) where (a, b) runs 
over this finite set. The number of representations of m of the form 
a2k + b3e is bounded by Corollary 2. For representations of the form 
2k3l +a+ b we remark that it follows from Corollary 1.3 that the distance 
between numbers of the form 2k3t exceeds 2M1 when 2k3l > M 2 • Hence 
if m > M 1 + M 2 and m = 2k3e + a + b, then k and e are uniquely 
determined by m. It follows that form> M0 +M1 +M2 the number of N­
representations of the second type is also bounded. We conclude that the 
total number of N-representations of any number m > Mo + M 1 + M2 is 
bounded. It is obvious that the number of N-representations of numbers 
m ~Mo+ Mi+ M2 can be bounded. This proves a). 

To prove b) we recall that if m > Mo admits two disjoint N­
representations then each representation is of the form a. 2k +b. 3l where 
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(a, b) belongs to some finite set and either a = 2k1 3li + 2k2 , b = 3t2 (the 
first type) or a= 2ks, b = 2k4 3ts + 3£4 (the second type). We define T1 
as the set consisting of 2, 3 and all the prime divisors of a and b where 
(a, b) runs over the finite set. Denote by S1 the set of rational integers 
of which each prime divisor belongs to Ti. Let M3 be so large that if m 
has two totally disjoint, relatively prime Si-representations x1 + x2 and 
y1 + y2 , then m < M3 • This number M3 exists by Theorem 6c). 

Suppose m > max(M0 ,M3 ) admits three pairwise disjoint N­
representations. Then there are two disjoint representations of the same 
type. Since m > M3 , these representations as sum of two elements 
of S1 , are not totally disjoint. It follows that the corresponding N­
representations are not totally disjoint. If the representations are of the 
first type, 

and 

say, then 

and 

since the N-representations are disjoint. It follows that k and e are 
bounded, hence m < M4. If the representations are of the second 
type, then we obtain similarly m < M 5 • Thus no m greater than 
max(Mo, M3, M4, Ms) admits more than two disjoint N-representations. 

1111 

There exist infinitely many integers with two disjoint N -represent­
~tions in view of 2a. 31 + 2a + 3H2 = 23 3b + 2a+2 + 3b for any positive 
integers a, b. There are infinitely many integers m which admit four 
distinct N-representations, namely, for a;:::: 2, b;:::: 2, 

(t' + 3b) = 2a-l30 + 2a-l + 3b 

= 2a-23l + 2a-2 + 3b 

= 213b-l + 2a + 3b-1 

= 233b-2 + 2a + 3b-2. 
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Tijdeman and Wang [90] have proved that apart from the numbers of 
the form 2a + 3b there are only finitely many positive integers m which 
admit at least four N-representations. 

It follows from Corollary 2 that the number of representations of 
a non-zero integer m as difference of two elements of S is bounded (in 
terms oft). This was the clue to the solution of an old problem of Erdos 
and Turan. 

Let a1 < a2 < ... < ak and b1 < b2 < ... < bt be positive integers. 
Assume that the prime factors of 

are given by p1 , •.• ,Pt· Erdos and Turan (cf. [15] p. 36) conjectured 
that if e = k and k tends to infinity then t _, oo. They had settled the 
special case bj =a; for j = 1, ... , kin their first joint paper [18]. Gyory, 
Stewart and Tijdeman [4 7] observed that a stronger assertion follows 
from Corollary 2. Since, for any non-zero c, the number of solutions of 
x - y = c in integers x, y composed of given primes P1, ... , Pt is at most 
6 x 72t+3, the number of positive integers a such that both a + b1 and 
a + b2 are composed of P1, ... , Pt is at most 6 x 72 t+3 . It follows that 
£ 2 2 already implies t 2 t log k - 2, hence t -; oo as k _, oo. An 
elementary solution of the problem of Erdos and Turan was presented 
in [88]. Erdos also posed the problem of investigating the number of 
distinct prime factors of f1(a; + bj) if the product extends over a given 
set of pairs ( i, j). Results in this direction can be found in Gyory, Stewart 
and Tijdeman [48]. 

There are several related results involving P := maxi=l, ... ,t p;. 
We henceforth assume that P is fixed and that a1 + bi, ... , a1 + bt, 
a2 + b1, ... , ak + bt. have no prime factor in common. In (47] we showed 
that if k 2 2, f 2 2, then ak + bi is bounded. This follows by applying 
Corollary 1.3 to (a1 + b1) + (a2 + b2) - (a1 + b2)-(a2 + b1) = 0. By ap­
plying Corollary 5 to x - y = be - b1 , we obtain the following refinement 
of [47, Theorem 2]: 

If k 2 t + 3 and£ 2 2, then ak +bi ~ exp(tCtp3) where C is some 
effectively computable absolute constant. Surveys on these and related 
results are given by Stewart [87] and Stewart and Tijdeman [88]. 

§7. Applications to finitely generated groups 

In a letter to one of us A. Rhemtulla and S. Sidki asked to show that 
not every rational integer r is of the form r 1 +r2 + .. . +rn•, n' ::; n, where 
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each ri belongs to G, where G is a fixed multiplicative group generated by 

algebraic integers a 1, ..• , at. They needed this result for their study of 

ellipticity problems in group theory. An application of Theorem 1 yielded 

a positive answer. In fact, if n is a positive integer and a1, ... , at are 

non-zero algebraic numbers (not necessarily integers), then there exists 

a positive integer m which is not representable as the sum of at most n 

power products a~1 ••• a~' (b1 , .•• , bt E Z). This assertion follows from 

the following theorem by letting G be the group generated by 0:1, •.. , at 

and H the group generated by a prime number p of which no power 

belongs to G. We namely infer from the theorem that only finitely many 

powers of p can be represented as the sum of at most n power products 

of a1, ... ,at. 

Theorem 8. Let n 1 and n 2 be positive integers. Let G, H be finitely 

generated multiplicative subgroups of C* with G n H = { 1}. There are 

only finitely many complex numbers a which can be written both as 

a = €1 + ... + tn1 with Ei, ... '€n1 E G (7.1) 

and as 

a= T/1 + ... + Tfn 2 with T/1, .•. , Tfn 2 E H. (7.2) 

Proof We use induction on n = ni + n2. We denote by N ( n) the 

number of complex numbers a which can be written both in the form 

(7.1) and in the form (7.2) with ni + n2 s; n. Further we denote by 

No(n) the number of complex numbers which are of the forms (7.1) and 

(7.2) with n1 + n2 S n such that no subsum of €1 + ... + En 1 equals any 

subsum of 7/1 + ... + 7/n 2 • Obviously N(2) = 1. Suppose N(n - 1) < oo. 

If a is of the forms (7.1) and (7.2) with n 1 + n2 = n, then 

E1 + · · · + €n1 - 7/1 · · • - T/n2 = 0, 

€1,. ·., En 1 E G, T/i, • •• , T/n 2 EH. (7.3) 

If no subsum of the left-hand side vanishes, then we obtain, by apply­

ing Theorem 11 to Go = Gn1 x Hn 2 , that there are only finitely many 

possibilities for ( e1 : ..• : En 1 : T]1 : ••• : TJn 2 ). If ( €~, ••. , E~ , TJL . . ., 1]~ ) 

and ( II II 11 II ) t l . d" l 2 

€1 '· • · 'En 1 , TJ1 , • • • , T/n 2 are wo so ut1ons correspon mg to the same 

projective point, then E~/E~ = rtUrt~' E G n H = {l}. Thus there are 

only finitely many solutions of (7.3) without vanishing subsums, whence 

No( n) < oo. If some subsum vanishes, then a can be written as j3 + I 
where both (3 and"( are of the forms (7.1) and (7.2), but in both cases 

n1 + n2 S:: n - 1. The number of numbers a representable in this way 

is at most ~N(n -:-1))2. Thus N(n) s; N0 (n) + (N(n - 1))2 < 00. This 

proves the mduct1on hypothesis. Ill 
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§8. Applications to recurrence sequence of complex numbers 

By a recurrence sequence we mean an infinite sequence of complex 
numbers U = { um}~=O satisfying a relationship of the type 

form= 0,1,2, ... (8.1) 

where c1 , ••• , Ck are complex numbers. The sequence U satisfies sev­
eral recurrence relations of type (8.1); among these there is a unique 
recurrence relation for which k is minimal. Supposing that (8.1) is the 
recurrence with minimal k satisfied by U, we put 

(8.2) 

Fis called the companion polynomial of U. Obviously F(O) -:f. 0. Let 

where e1, ... , er are positive integers and w1, ... , Wr non-zero distinct 
complex numbers. Then there are polynomials Ji, ... , fr E C[X], of 
degrees at most ei - 1, ... , er - 1 respectively, such that 

Um= f1(m)w;" + ... + fr(m)w';' form= 0, 1,2, .... (8.3) 

We call k the order and r the rank of U. We say that U is non-degenerate 

if w;/wj is not a root of unity for 1 :::; i < j :::; r, and degenerate otherwise. 
If U is degenerate, then there exists a positive integer v such that each 
sequence {ue+mv}~=o (0:::; € < v) is either non-degenerate and of rank 
less than r or identically zero. 

The following theorem can be derived from the Main Theorem on 
S-Unit Equations. 

Theorem 9. Let R be a subring of C which is finitely generated over 

Zand let U = {um}~=O be a non-degenerate recurrence sequence in C 
of rank at least 2. Then there are only finitely many pairs of integers 

( m, n) for which a (m,n E R \ { 0} exists such that 

m > n ;::=: 0. (8.4) 

This is a slight generalisation of Theorem 3 of Evertse [20] which gives 
the result when R is a finitely generated multiplicative subgroup of the 
field of algebraic numbers. 
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Before discussing the proof, we state some consequences of Theorem 

9. 

Corollary 9.1 (Skolem, Mahler, Lech [53]). Let U = {um}:=o be a 
recurrence aequence in C for which the aet M = { m : Um = O} ia 
infinite. Then M ia ultimately periodic (i. e. there are poaitive integer a 
mo and v auch that m EM impliea m + v EM for all m?: mo). 

Pro-0f. It is easy to check that M is finite if U has rank 1. Suppose 
U has rank at least 2 and M is infinite. Then U is degenerate by 
Theorem 9. Hence there exists an integer v such that each sequence 
{ul+mv}~=O is either non-degenerate, whence has only finitely many 
zeros, or is identically zero. • 

The following statement was made by Glass, Loxton and van der 
Poorten [27]. 

Corollary 9.2. Let U = {um}:=o be a non-periodic non-degenerate 
recurrence aequence in C. Then there are only finitely many paira of 
integera m, n with m > n?: 0 and Um= Un. 

Proof. If U has rank 1, then Um = Un implies 

fi(m)w;:n = fi(n)w~. 

If Ji is constant, then w1 is a root of unity and U is periodic, which 
contradicts our assumption. If f1 is non-constant, then, by m > n, 
lfi(m)I > lfi(n)I form sufficiently large. Hence Jw11<1. Put f 1(X) = 
aoXt + aixt-t + ... +at with ao =/:- 0. Then 

for some c > 0. This implies that n is bounded. Since Um =/:- 0 for 
m large, we have Un =/:- 0, hence lfi(n)wil is bounded from below by 
a positive constant. We have fi(m)wf' -+ 0 as m -+ oo. Thus m is 
bounded. 

If U has rank at least 2, then Corollary 9.2 follows at once from 
Theorem 9. • 

The next result was proved by Polya [64] in 1921 in the case that 
all the Um are rational. 
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Corollary 9.3. Let G be a finitely generated multiplicative sub­
group of C* and let U = {um}~=O be a recurrence 8equence such 
that Um E GU {O} for m = 0, 1, 2,.... Then the formal power series 

E:=o UmXm is equal to 

t /3;Xi-1 

I: 1-axt' 
j=l J 

where f 2: 1 is an integer and a1, ... , ae, /31, ... , f3t are complex numbers 
with a1, ... ,at =f:. 0. 

Proof. We first prove Corollary 9.3 in the case when Uhas rank 1, that is 
Um= J(m)am where a EC* and f E C[X]. Suppose that Um E GU {O} 
form = 0, 1, 2, .... Let G' be the multiplicative group generated by G 
and a. Then f(m) E G' U {O} form= 0, 1, 2, .... We shall prove that f 
is constant. 

There exist complex numbers c1 , .•• , Ck such that 

J(X + k) = cif(X + k - 1) + ... + ckf(X) identically in X. 

We suppose that k is minimal, hence Ck =f:. 0. Choose mo such that 
f ( mo) =f: 0 for m > mo. By assumption, we have for m > mo that 
(f(m + k), f(m + k - 1), ... , f(m)) is a solution of the equation 

CoXk + C1Xk-l + ... + CkXo = 0 

in xo, ... ,xk E G' (where co= -1). (8.5) 

For each proper non-empty subset J of {O, ... , k }, there are only 
finitely many m with E;eJ c;f(m + k - j) = 0, since the polynomial 
E;eJ cjf(X + k- j) does not vanish identically in X. Hence there is an 
m1 such that form~ m 1 , (f(m+k), ... , f(m)) is a solution of (8.5) with 
E;eJCjXk-j "I 0 for each proper non-empty subset J of {0,1,. . .,k}. 
We obtain from Theorem l' that J(m + k)/ f(m) assumes only finitely 
many values form= 0, 1, 2,. ... Since f(m + k)/ f(m) --t 1 as m --too, 
this implies that f is constant. Hence Um = f3am for m = 0, 1, 2, ... and 
therefore 

00 /3 
~umXm= x· 
L,; 1-a 
m=O 

Now suppose that U has order at least 2. By Theorem 9, U is 
degenerate. Hence there is a v such that the sequences Ue = { Uf+mv}~=O 
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(0 :::; R. < v) are either non-degenerate or identically zero. But the non­
degenerate sequences among the Ue must have order l. Now Corollary 
9.3 follows by applying the result for recurrence sequences of rank 1. II 

Recently, Bezivin [6] proved the following result by applying Theo­
rem 11• 

Let G be a finitely generated multiplicative subgroup of C* and 
let F(X) = .L:=o umXm E C [[X]] be a formal power series with the 
following properties: 

(a) there are polynomials fo, ... ,fk E C[X] such that 

k 

Lf;(m)um+i = 0 form= 0, 1,2,. .. (8.6) 
i=O 

and 

(b) there are sequences { Cj(m)} ==o (1 ::S j:::; R.), with entries in Gu {O} 
such that 

e 
Um='L::cj(m) form=0,1,2, .... 

i=l 
(8.7) 

Then F(X) is the Taylor expansion around the origin of a rational 
function with only simple zeros. 

Using Bezivin's result, P6lya's result can be extended to a recurrence 
sequence {um}~=O satisfying a relationship of type (8.6). A relation of 
type (8.6) is satisfied if F(X) is the Taylor expansion of an algebraic 
function around the origin. 

We now turn to the proof of Theorem 9, which resembles the proof 
of Theorem 3 of [20]. We shall only work out in detail the new ideas. 
The lemma below is used to reduce Theorem 9 to the case that R is 
contained in the field of algebraic numbers A. 

Lemma 2. Let R C C be a ring which is finitely generated over Z 
and let V be a finite subset of R such that V does not contain 0 or 
a root of unity. Then there exists a ring homomorphism </> : R --+ A 
("specialisation") such that </> is invariant on Rn Q and, for each a in 
V, </>(a) f= 0 and </>(a) is not a root of unity. 

Proof. Let K be the quotient field of R. Then K is finitely generated 
over Q, whence K = Q(x; y) where x = (x 1 , ... , Xt) is a tuple of numbers 
which are algebraically independent over Q and y is integral over the ring 
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Z[x] = Z[x1 , ... , Xt]· Thus y is a zero of a polynomial F(x; Y) which is 
irreducible in Z[x, Y) and has leading coefficient 1. Thus R can be written 
as 

R = z [fi(x; y) ft(x; y)] 
p(x) '· · ·' p(x) 

where Ji, ... , ft E Z[x; Y) and p E Z. Hence R is contained in the ring 

- {f(x;y) } R = pn(x) : f E Z[x;Y],n E Z,n?: 0 . 

Each pair x, fi with :i = (x1, ... ,xt) E zt with p(x) :/: 0 and F(x,Y) 
not identically zero in Y and iJ a zero of F(x, Y), defines a ring homo­
morphism </> : R ~ A with 

<P (f(x,y)) = f(x,fi). 
pn(x) pn(x) 

The image of </> is contained in the algebraic number field Q(Y) of which 
the degree is bounded by [K: Q(x)). Hence there is an integer m > 0, 
independent of x and fj, such that every root of unity pin </>(R) satisfies 
pm= 1. 

Let G1, ... , Gv denote the minimal polynomials in Z(x; Y] of the 
elements of V. Choose x E zt such that p(x) # 0, F(x; Y) is not 
identically zero and G;(x; a) # 0 for each i in {1, ... , v} and a E {O} U 
{p: pm = 1}. (Note that no G;(X, a) is identically zero). Let fi be a 
zero of F(x; Y). It is now obvious that </>, defined by x and fj, satisfies 
the assertion of Lemma 2. • 

Proof of Theorem 9. Let U = {um}:=o be a non-degenerate recurrence 
sequence of rank r ?: 2. Then there are non-zero polynomials f; E C[X] 
and w; E C* for i = 1, ... , r such that 

r 

Um= Lf;(m)wi for m = 0, 1, 2, ... 
i=l 

and w;/w; is not a root of unity for 1 ~ i < j ~ r. Let R CC be a ring 
which is finitely generated over Z, and let J( be the smallest subfield of 
C which contains R, w1, ... , Wr and the coefficients of Ji, ... , fr· 

We first show that it suffices to show Theorem 9 in the algebraic 
case, i.e. when K £;; A. So suppose that Theorem 9 holds in the algebraic 
case and that ]{ / Q is transcendental. Let R be the ring generated by R, 
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the coefficients of Ji, ... , fr and W1, •.. , Wr, w11 , ..• , w;:-1 • By Lemma 
2 there is a specialisation </> : R -+ A such that </> maps non-zero coef-
ficients of the f; on non-zero numbers, and all quotients wi/ w j ( i =f:. j) 
on numbers different from 0 and roots of unity. Then </> maps U on the 
sequence f) := {um}:=o := {</>(um)}::::::o where 

r 

um= Lh(m)wi form= 0, 1,2, .. ., 
i=l 

f; E A[X] and w; = <f>(w;) E A*. Obviously f) is a non-degenerate 
recurrence sequence of rank r ~ 2. Let ( m, n) be a pair of integers with 

m > n ~ 0, 

(m,n E R\{O}, (m,n = 1 if Un = 0. (8.8) 

Then, on putting R = </>(R), Cm,n = c/>((m,n), we obtain 

Cm,n ER. (8.9) 

R is finitely generated over Z, but Cm,n may be 0. However, from Theo­
rem 9 in the algebraic case it follows that there is an no such that Un =f:. 0 
for n ~no, whence (8.9) is satisfied by at most finitely many pairs m, n 
with m > n 2 no. We infer that (8.8) is satisfied by only finitely many 
pairs m, n with m > n 2 n0 . To prove that (8.8) holds for only finitely 
many pairs with n < n0 , take a specialisation</>' having the same prop­
erties as </> and the additional property that </>' ( un) # 0 for each n < no 
with Un # 0, and repeat the arguments given above. 

We shall now prove Theorem 9 in the algebraic case. Henceforth, 
the field K is an algebraic number field and S a finite set of places on K 
containing the infinite places, such that all non-zero coefficients of the 
polynomials f; and all w; ( i = 1, ... , r) are S-units, and such that all 
elements of Rare S-integers. 

We shall need two other lemmas. 

Lemma 3. Let p E A(X) be a rational function with no poles outside 
the disc { z E C : lzl S A} and let a E A*. If there are infinitely many 
pairs of integers m, n with 

m > n 2 A, 

then p is constant and a is a root of unity. 
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Proof ( cf. [77) pp. 84-85). We assume that 

(X) _ Xk + ak-1X·k-i + ... + a1X + ao 
P - x1. + bt-1X£-1 + ... + biX + bo 

which is no restriction. Let p( z) be the rational function obtained from 
p(z) by replacing all coefficients of p by their complex conjugates. If 
k ff we put F(X) = p(X)p(X)(aa)X and if k = f and a is a root of 
unity of order q say, we define F(X) to be a non-constant function from 
{p(X)q + p(X)q, i(p(X)q - p(X)q) }. In both cases p(m)am = p(n)an 
implies F(m) = F(n), and there is an xo such that F(x) is monotone for 
x 2: x 0 • We conclude that p(m)o:m = p(n)o:n for at most finitely many 
pairs of integers m, n with m > n. 

We now consider the remaining case: k = f and a is not a root 
of unity. We suppose lo:I :S 1 which is no restriction. By c1 , c2 , •.• we 
denote (effectively computable) numbers depending only on o: and p. 
We have jp(m) - lj :S cifm form 2:: mo. Hence, form> n 2:: m0 with 
p(m)am = p(n)an, 

On the other hand, by Baker's theorem [3] (which is the analogue of 
Lemma la) for algebraic numbers) we have, noting that a is not a root 
of unity, 

Hence 
(8.10) 

By assumption, a is not a root of unity. Hence there is a valuation I· Iv 
on the smallest number field I< containing a and the coefficients of p 
with lo:lv := C5 > 1. Therefore 

cm-n = lalm-n = I p(n) I < c mes 
6 v ( ) - 7 pm v 

which implies m - n :S c9 logm. Together with (8.10) this shows that 

Hence m is bounded. II 

The next lemma was already stated in van der Poorten and Schlick­
ewei (67]. 
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Lemma 4. Let T be a finite set of places on K, containing S. Then for 
every e with O < e < 1 there is an mo depending only on e and T such 
that for all m 2:: mo, 

(8.11) 

Proof. We shall prove Lemma 4 by induction on r. For r = 1, Lemma 4 
is obvious. Suppose that (8.11) holds for all non-degenerate recurrence 
sequences of rank less than r where r 2:: 2 (induction hypothesis). We 
have the identity 

r 

Um - 2.:f;(m)wi = 0 form= 0, 1,2, .... (8.12) 
i=l 

By the induction hypothesis, there is an m 1 such that no proper, non­
empty subsum of this sum vanishes for m 2:: m1. Let 0 < e < 1. Let H m. 
be the projective height of the projective point (um: -fi(m)w} : ... : 
-fr(m)w~). It is easy to show that there is an m2 = m2(e,T) > m1 

such that 

for all m 2:: m 2. Moreover, there is an m 3 = m 3(e, T) > m2 such that 
for all m :2:: m3, 

r 

IT ITlf;(m)wilv s; H:j5 , 

vET i=l 

since all w; are S-units. If m > m3 does not satisfy (8.11) then 

II (lumlv ITIJ;(m)wilv) s; H~+i~:Js s; n;,,-E/2. 
vET i=l 

Recall that Um and the f;(m)wi are all T-integers. Together with the 
Main Theorem on S-Unit Equations this implies that there are only 
finitely many projective points Pm = (um : f1(m)w} : ... : fr(m)w;:') 
such that (8.11) is not satisfied. For each projective point g_, there are 
only finitely many m with Pm = g_. For if there were infinitely many 
such m, then there would be infinitely many pairs ( m, n) with m > n 
and 

whence 

fi(m)wf' h(m)w2 
fi(n)w} = h(n)wi' 
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fi(m) (W1)m = fi(n) (w1)n 
h(m) w2 h(n) w2 

The latter is impossible by Lemma 3. This completes the proof of Lemma 
4. • 

Suppose that there are infinitely many pairs m, n with m > n 2'.: 0 
for which a (m,n E R \ {O} exists such that (m,nUm = Un, i.e. 

r r 

L (m,nfi(m)wi - L f;(n)wf = 0. 
i=l 

Then there are pairs of subsets ( Ij, Jj) of { 1,. .. , r}, for j = 1, ... , t', 
such that LJ~=i Ii = LJ~=i Ji = {1, ... , r }, the sets Ii and the sets Ji are 
pairwise disjoint, at least one of Ij, Jj is non-empty, there is an infinite 
set V of pairs ( m, n) for which 

m > n ~ 0, ~ (m,nfi(m)wi + L (-fi(n)wi) = 0 (8.13) 
iEI; iEJ; 

and no proper, non-empty subsum of this sum is 0. 

We shall show that the cardinality of each Ij is at most 1. Suppose Ij 
contains two subscripts, which, for convenience, are taken equal to 1 and 
2. Let Pm,n be the projective point with entries (m,nf;(m)wi (i E Ij) 
and -f;(n)wi (i E Jj)- Then the entries of Pm,n are all S-integers. 
Moreover there are infinitely many different points among the Pm,n with 
(m,n) E V, for the sequence of m with (m,n) E Vis unbounded, and 
by Lemma 3 there are only finitely many pairs (m1, m2) with m1 < m2, 
(m1,n1) E V, (m2,n2) E V and 

whence 

Let Hm,n denote the height of Pm,n· It is easy to check that for m 
sufficiently large, 

H > c4m/s m,n _ (8.14) 

where 
C =IT max(lw1 Iv, lw2lv)· 

vES 
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By enlarging S if necessary, we may assume that DvES Jun Iv < 
c;<i+K/lOr) for all n ;?:: 0 where "' = log c I log C1 and C1 -
fivESmax(lw1lv 1 ••• ,lwr!v)· By Lemma 4 we have form sufficiently 
large, that 

II lumlv ~ c;n(l-1</IOr). 

vES 

Hence 

II l(m,nlv = II I :n I $ c;m+n)i</lOr $cm/Sr. 
vES vES m v 

This shows that form sufficiently large, in view of (8.14) 

II (II l(m,nfi(m)wilv IT l!i(n)wft) $ cm/S < H;,/,2,.. 
vES iE!; iEJ; 

By Theorem 1, we obtain that there are only finitely many projective 
points Pm,n and this yields a contradiction. Therefore no set I1 or Jj 
can have cardinality larger than 1. 

We infer that there is a permutation a of ( 1, ... , n) such that for all 
(m,n) in V 

(8.15) 

If u is the identity, then there are infinitely many pairs (m, n) with 

fi(m) (W1)m fi(n) (w1)n 
h(m) w2 = h(n) wz 

which is impossible in view of Lemma 3. If a is not the identity, we derive 
a contradiction as follows ( cf. [20] pp. 242-243). Let i E {1, ... , n} such 
that i # a( i), and put 

Then, by (8.15), 

(8.16) 

Let µ be the order of O'". Then Bµ =Bo, qµ = qo. By starting with 80" 
and applying (8.16) µ times, we find 
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All exponents are divisible by m - n. Choose a valuation I· Iv with 
l9o I., ?: c > 1. Then the v-adic valuation of the left-hand side of (8.17) 
is bounded from below by cm"- 1 (m-n), while the v-adic valuation of 
the right-hand side is bounded from above by mc1m"- 2(m-n) for some 
constant c1. This shows that m is bounded. Thus the proof of Theorem 
9 is complete. • 

Lewis and Turk (55] studied the solubility of equation Um = aun 

in integers m > n where U = {um}~=O is a non-degenerate recurrence 
sequence and a some complex number. They gave various upper bounds 
which should be treated with care, since not all results are well stated. 
The methods are however correct and some of them are quite interesting, 
but they do not involve S-unit equations. 

§9. Applications to recurrence sequences of algebraic numbers 

We shall use the notation of §8 and consider recurrence sequences of 
algebraic numbers U = {um}~=o· We assume that U is non-degenerate. 
It then follows that the coefficients Ci of the minimal recurrence relation 
(8.2), the roots Wi of the companion polynomial and the coefficients 
of the polynomials fi are all algebraic ( cf. [77] Ch. R). Let K be an 
algebraic number field which contains all these algebraic numbers. By 
an argument similar to that employed in the proof of Lemma 4 in §8, van 
der Poorten and Schlickewei [67] proved that for every positive e there 
exists a positive number C1 depending only on U and e such that 

(9.1) 

form= 1, 2, .... This inequality should be compared with the opposite 
inequality 

for some effectively computable number C2 depending only on U and e, 
which follows directly from (8.3). Inequality (9.1) says that cancellation 
of terms in the sum on the right-hand side of (8.3) can occur only to a 
very limited extent (in the algebraic case). 

For a EK* we define PK( a) (Pi( a), respectively) to be the max­
imum of the norms of prime ideals ~ such that for valuations v corre­
sponding to ~ one has lal., :f: 1 (lalv < 1 respectively) if such prime 
ideals p exist and PK(a) = 1 (Pi(a) = 1, respectively) otherwise. Fur­
ther we put PK(O) = Pt(O) = 0. We assume that U is non-degenerate 
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and of rank at least 2. Van der Poorten [66] noticed tha.t Theorem 1 
implies that PK( um) -+ oo as m--+ oo. Evertse [20] generalised this by 
proving 

(9.2) 

Theorem 9 implies the following stronger result. 

Corollary 9.4. 

Proof. It follows from Corollary 9.1 tha.t Um Un-:/= 0 form> n ~no. Put 
(m,n = unfum for these values of m and n. Suppose there a.re infinitely 
ma.ny pairs (m,n) with m > n ~no such tha.t Pk(um/un) is bounded 
from a.hove by M. Let S be the union of all infinite places on K a.nd 
all finite places corresponding to prime ideals on K with norms a.t most 
M. Then the cardinality of Sis finite. Further, (m,n is a.n S-integer for 
infinitely many pairs m, n with m > n ~ n0 • The S-integers form a 
finitely generated subring of C. Thus Theorem 9 implies that there are 
only finitely many pairs m, n with m > n ~ no such that (m,n is an 
S-integer, a contradiction. • 

Since the proof of Theorem 1 is ineffective, it is impossible to derive 
lower bounds for PK( um) or Pk(um/un) from the proof of Theorem 1. 

If k = r = 2, then (8.3) becomes 

_ m+a m 
Um - aw1 tJWz (m=0,1, ... ) (9.3) 

and it is possible to apply Theorems 2-5. We assume 

w1 / wz not a root of unity. 
(9.4) 

Let S be the smallest set of places on K containing all infinite places 
such that a, /3, w1 and Wz a.re all S-units. Theorem 2 implies that for any 
non-zero complex number A the equation Um = A has at most 3 x 7d+Za 

solutions where dis the degree of Kand s the cardinality of S. Theorem 
3 implies that for given roots w1 and w2 there are only finitely many 
equivalence classes of recurrence sequences such that Um= A has more 
than two solutions m. H ttm E Z form= O, 1, ... , then results of Kubota 
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[49] and Beukers [4] imply that Um =A has at most four solutions m. 
Upper bounds for the number of subscripts m with Um = A in the case 
that (9.3) yields a sequence of rational numbers, or even just algebraic 
numbers, are contained in the papers of Kubota [49] and Beukers and 
Tijdeman [5]. 

Since the proofs of Theorems 4 and 5 a.re effective, it is possible to 
derive effective bounds for sequences (9.3). First we state some results 
in case Um E Z for all m. Stewart [85] proved by Baker's method that 
there exist effectively computable numbers Cs and m1 depending only 
on a and f3 such that 

Parnami and Shorey [62] used this result to prove that um =Un with 
m > n implies that m is bounded by an effectively computable constant 
and Shorey [76] even derived lower bounds for !um - uni· In the latter 
paper Shorey also proved that 

where di = [Q(w1) : Q] and C4 is an effectively computable number 
depending only on U. Stewart [86] and Shorey [75] also considered lower 
bounds for the greatest squarefree factor of Um. 

It is possible to generalise most of the above mentioned results to 
arbitrary algebraic recurrence sequences in K. Further Mignotte, Shorey 
and Tijdeman [58] have extended some results to the case r = 3. Their 
ma.in result is that there exist effectively computable numbers Cs and 
m2 such that 

It seems impossible to prove such a result by Baker's method for r larger 
than 3. For these and related results, see Shorey and Tijdeman [77] Ch. 
R, 2, 3, 4. 

§10. Applications to irreducible polynomials and arithmetic 
graphs 

Let K be an algebraic number field, and S a finite set of places on 
K containing S=. Let N be a positive integer. For any finite subset 
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A= {ai, ... ,am} of Os with m 2::: 3, we denote by QK(A,S,N) the 
graph whose vertex set is A and whose edges are the unordered pairs O:i, 

a. such that N s( Cti - a j) = Ilves lai - o: j l~K:Q] > N. If in particular 
s' = S00 , then we shall denote this graph simply by g K( A, N). Many dio­
phantine problems, for instance related to irreducibility of polynomials 
(see Theorem 12), decomposable form equations (see §11) or algebraic 
number theory (see §12), can be reduced to the study of connectedness 
properties of graphs g K( A, S, N). Such properties are stated in The­
orems 10 and 11 below and these theorems can be used to solve the 
diophantine problems mentioned. Before stating Theorem 10, ~e intro­
duce some terminology. If g is a graph, then, as usual, IQ I and g denote 
the order (the number of vertices) and the complement of g, respectively. 
The triangle hypergraph gT of g is that hypergraph whose vertices are 
the edges of g and whose edges are the triples of edges of g that form a 
triangle. 

Theorem 10 (Gyory [35], [42]). Let m ;:::: 3 be a rational integer, .A= 
{o:i, ... , am} a subset of Os and g1, ... , Yi the connected components 
of g = g(A, S, N) such that IQ1 I 2::: lg2I 2::: .•• 2::: IYtl· Then at least one 
of the following cases holds: 

- -T 
i) l = 1 and g or g is not connected; 

ii) l = 2, IQ2I = 1 and ?11 is not connected; 

iii) l = 2, 2 ~ IQ2I ~ 1~'11 and both Q1 and Q2 are complete; 

iv) there is an e E Us and for every pair i, j with 1 ~ i < j ~ m there 
is an a;; E 0 s such that 

and 

where c1, c2 are effectively computable numbers depending only on m, d 
and DK. 

Except for certain trivial situations, each of the cases i) to iv) can 
occur (cf. [35]). The graphs QK(eA+/3,S,N) have obviously the same 
structure for every e E Us and {3 E Os. It follows from Theorem 10 that 
apart from translation by elements of 0 s and multiplication by elements 
of Us, there are only finitely many m-tuples A= { o:i, •.. , am} for which 
QK(A, S, N) is not of the type i), ii) or iii) and all those .A can be at 
least in principle, effectively determined. ' 
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Theorem 10 is proved by repeatedly applying Theorem 4. We sketch 
some ideas behind the proof of Theorem 10: 

Suppose i), ii) and iii) do not hold. Then one can prove that 

- -T 
a) g and its triangle hyper graph g are connected; or 

b) g has two connected components of order ~ 2 of which at least one 
is not complete. 

We shall sketch the proof that iv) holds in case a)_ Let {a:i,aj,ak} be 
-T 

an edge of g . Then 

This implies that a; - aj, CY.j - a:k, <Xk - ai are S-units where S is a 
finite set of places which contains Sand depends only on N, Kand S. 
Moreover, 

a·-a· a:·-ak • J+ J =l. 
a:; - ak a; - ak 

By Theorem 4 this implies that there are only finitely many possible val­
ues for the quotient (a:;-a:j)/(aj-a:k), which can all be effectively deter-

mined. If {aj, a:k, at} is another edge of QT, then (a:j-ak)/(ak - a:t) be­
longs to a finite, effectively determinable set, and so (a; -Otj)/(ak - a:e) 
must belong to such a set. By continuing this argument, it follows that 

for any two connected pairs (a;, aj), (a:p, aq) in QT, (a:; -01-j)/(ap - a:q) 

belongs to a finite effectively determinable set. But QT is connected, 
hence for each quadruple (a;,aj,O:p,a:q) for which [a:;,a:;) and [a:p,a:q] 
are edges in Q, the quotient (a.; - a i) / ( ap - O::q) can assume only finitely 
many values which can be effectively determined. Fix p and q. Since Q 
is connected, each pair ( O:a, CY.b) can be connected by a path in Q. By 
summing over all terms (a:; - a3)/(a:p - aq) for the edges in this path 
we obtain that for each pair (a, b) the quotient (a:a - ab)/(ap - aq) can 
assume only finitely many values which can be determined effectively. 
Since Ns(a:p - aq):::; N, we have a:p - aq = <Xpqe where e E Us and apq 
belongs to a finite set which can be effectively determined. From these 
facts it follows easily that aa - O:b = O:ab€ for each pair (a:a,a:b), where 
e E Us, and each O:ab belongs to a finite set which can be effectively 
determined. This proves (iv). 

If the order of g = 9K(A, S, N) is large enough then 9 cannot 
have property iii). This fact plays a crucial role in some applications to 
irreducible polynomials (see below and [41]) and polynomials of given 
discriminant ( cf. §12 and [38]). Gyory [35], [42] proved the following 
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theorem but with a. weaker estimate for jgl than {10.1), since he used a 
weaker version of Theorem 2. 

Theorem 11. Let .A be a finite .m.bset of Os and let g = QK(.A, S, N). 
There emts an effectively computable. positive. number c3, de.pending only 
on d and DK, such that if 

(10.1) 

then g has at most two connected components, and one of them is of 
order at least IQI - 1. 

For certain more general (but ineffective) versions of Theorems 10 
and 11, see Gyory [40]. Theorems 10 and 11 are slightly modified versions 
of Theorems 1, 2 of [35]. 

Theorems 10 and 11 have applications to irreducible polynomials. 
Here we shall present a consequence of Theorem 11. I. Schur and later 
A. Brauer, R. Brauer and H. Hopf investigated the reducibility of poly­
nomials of the form g(/(X)) where f, g a.re monic polynomials in Z[X], 
g is irreducible over Q and the zeros off are distinct elements of Z. 
For a survey of results in this direction, see [29], [41]. Gyory [28], [29], 
[41] extended these investigations to the case that the zeros of f are 
in an arbitrary totally real algebraic number field K of degree d. Let 
.A. = { ai, ... , a,,.} E O'/( be the set of zeros of such a monic polynomial 
f E Z[X] and suppose that g E Z[X] is an irreducible monic polyno­
mial whose splitting field is a totally imaginary quadratic extension of 
a totally real number field. Consider the graph g = g K( A, N) with the 
choice N = 24lg(O)l 41 deg(g). Gyory [28] proved that if this graph g has 
a. connected component with k vertices, then the number of irreducible 
factors of g(/(X)) over Q is not greater than deg(f)/k. This estimate 
is in general best possible ( c£. [29]). Therefore, Theorem 11 implies the 
following 

Theorem 12. Let f,g E Z[X] with the properties specified above. There 
is an e.fjectit1e.l~ computable. number c4 , de.pending only on d, hK and 
DK, such that if 

deg{!) > 4 lg(O)l2/ deg(g) 

then g(/(X)} is irreducible ot1er Q • 

. 1:his theorem was proved by Gyory [41] with a slightly weaker but 
expliClt lower bound for deg(!) and in the more general case that the 
ground field is an arbitrary totally real number field (instead of Q). 
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§U. Applications to decomposable form equations 

Decomposable form equations form a very important class of poly­
nomial diophantine equations. Many problems in number theory can be 
reduced to such equations. The most important types of decomposable 
form equations are Thue equations, norm form equations, discriminant 
form equations and index form equations. There is an extensive litera­
ture of equations of these types, and this will be the theme of the next 
memoir [25] in these Proceedings. Here we shall restrict ourselves to the 
application of unit equations to decomposable form equations. As will 
be seen, finiteness problems for decomposable form equations are in fact 
equivalent to finiteness questions concerning unit equations. 

Let F(X1, X2) be a binary form with coefficients in OK and splitting 
field G over K. Let /3 E 0 K \ { 0}. By using their results on approxima­
tions of algebraic numbers, Thue [89] (in the case K = Q) and Siegel 
[78], [80] showed that if 

(a) F has at least three pairwise linearly independent linear factors in 
its factorisation over G 

then the equation 

(11.1) 

has only finitely many solutions. Equation (11.1) is called a Thue equa­
tion over K. Further, as was (implicitly) pointed out by Siegel [79], [80], 
any unit equation in two variables (over K) can be reduced to a :finite 
number of Thue equations (over I<) and conversely, any Thue equation 
over K leads to a finite number of unit equations in two variables (over 
an appropriate extension of K). Indeed, since UK is :finitely generated, 
every solution of 

in u,v E UK (11.2) 

(where ai, a2 E K*) can be written in the form u = u'xr, v - v'x2 
where n ~ 3 is a given positive integer, x1, x2 E UK, and u', v' E UK can 
assume only finitely many values. Hence (11.2) reduces to finitely many 
Thue equations 

We shall now show how the finiteness of the number of solutions of 
(11.1) follows from the fact that any equation of the form (11.2) has 
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only finitely many solutions. After multiplying (11.1) by an appropriate 
rational integer, (11.1) takes the form 

(11.3) 

wherethe.e;(X) (i = 1, ... , n) are linear forms in X1, X2 with coefficients 
in the ring of integers Oa of G. For every solution x of (11.3), each f;(x) 
divides /3' in Oa, and hence lies in a finite number of cosets of G* with 
respect to the unit group Ua. If now e.g. £1, R.2, f3 are pairwise linearly 
independent, then 

for appropriate Ai, A2 E G*. The numbers e 1 ( x) I f3 ( x) and l!.2 ( x) I f3 ( x) 
are contained in a finite number of cosets of G* with respect to Ua, 
hence (11.3) yields a finite number of unit equations 

in u,v E Ua. 

For every solution u, v of this equation, £1(x)/£3(x) = u, l!.2(x)/£s(x) = v 
determine l 1(x), l 2(x), f3(x) and hence x, up to a proportional factor 
which can be determined from (11.3). There is a similar relationship 
between Thue equations over Os, i.e. equations of the type 

(11.l') 

and S-unit equations in two variables (with not necessarily the same 
ground field and set of places S). Cf. Mahler [56] and Parry [63]. 

Thanks to Baker [l] and others, it turns out that the above argu­
ments can be made effective and Theorem 4 (as well as its other versions) 
can be applied to obtain effective results for Thue equations. Baker [l], 
[2] proved (implicitly) the first version of Theorem 4 (for ordinary units) 
and used it to make effective Thue's and Siegel's finiteness theorems 
mentioned above by giving explicit upper bounds for the heights of the 
solutions of (11.1). Coates [11], [12], in the case K = Q, and Gyory [37], 
[39], in the general ·case, extended these results to equation (11.l'). By 
using (a more explicit version of) Theorem 4, it was shown in [37], [39] 
that all solutions x 1 , x2 of (11.1 1) satisfy 

where c1 and c2 are positive numbers depending only on /3, F and K 
(which were given explicitly in [39]). 
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By means of (a generalisation of) Theorem 2, Evertse (19] and later 
Evertse and Gyory [22] derived explicit upper bounds for the numbers of 
solutions of (11.1) and (11.1') which are independent of the coefficients 
of F. In [22], the bound 

4n X 729(d+s+w(p)) 

has been obtained for the number of solutions of (11.l') where n = 
deg(F), g = [G: K] (hence 1 ~ g ~ n!) and w(/3) denotes the number 
of distinct prime ideal divisors of (/3). 

As a generalisation of (11.1) and (11.1'), consider the decomposable 
form equations 

(11.4) 

or, more generally, 

in x1, ... , Xm E Os (11.4') 

where F(X) = F(X1, ... , Xm) is a decomposable form in rn > 2 variables 
with coefficients in OK, i.e. a homogeneous polynomial which factorises 
into linear factors, £1(X), ... ,.en(X) say, over some finite extension G of 
K. 

In the case that F is a norm form and K = Q, Schmidt [72] and 
Schlickewei [71] gave :finiteness criteria for (11.4) and (11.4' ), repectively. 
Their proofs are based on Schmidt's Subspace Theorem and its p-adic 
generalisation (cf. §4) and are ineffective. For generalisations to norm 
form equations over arbitrary finitely generated domains over Z, see 
Laurent [52]. 

(11.4) and (11.4') can be reduced to unit equations in a similar way 
as in the case m = 2 described above. Any linear relation Ai1 .ei1 + ... + 
>.i,.ei, = 0 with Ai1 , ••• , Ai, E G* leads to :finitely many inhomogeneous 
unit equations in r - 1 variables. But in contrast to the case m = 2, 
where one linear relation with r = 3 was enough, in general several linear 
relations are needed to prove the finiteness of the number of solutions of 
(11.4) and (11.4'). Gyory (partly with Papp) extended the above method 
of reducing Thue equations to unit equations to all decomposable form 
equations in m (2:: 2) variables whose system of linear factors .Co = 
{£i, ... , ln} satisfies the following conditions: 

(b) rank .Co = m; 

( c) .Co can be divided into subsets .C1, ... , .Ch such that if l.C; I ~ 2 for 
some j, then for each i, i' with £;, li' E .C; there exists a sequence 
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n. - n. R.· = R.·1 in .C..1· with the property that for q = 1,. · ·, r-1 .t, - -t-11 ' • • • ' lr i 

there is a linear combination of f;q and eiq+i, with coefficients in G"', 
which also belongs to .C.. i; 

(d) There is a k with 1 :::; k :::; m such that Xk can be expressed as a 
linear combination of the forms from Lj for each j in {1,. · ·, h}. 
By using Theorem 10, Gyory [37], [39] showed that under assump­

tions (b ), ( c ), ( d), equation (11.4') has only finitely many solutions with 
Xk -:f O and he gave an effective bound for the heights of the solutions. 
The condition x k -:f 0 is necessary in general, but if h = 1 in ( c) then 
conditions ( d) and Xk -=/= 0 can be dropped. This is always the case for 
Thue equations. Then h = 1 and (b ), ( c) are equivalent to condition (a). 

Important special types of decomposable form equations are the 
discriminant form equation 

DM/K(a1X1 + ... + O!mXm) = /3 in Xi, ... , Xm E Os, 

and the norm form equation 

NM/K(aoxo+ ... +amxm)=/3 inxo, ... ,xm EOs, 

(11.5) 

(11.6) 

where ao = 1, M = K(a1,. .. ,am) is a finite extension of K, 
1,a1 ,. .. ,am are linearly independent over K, and DM/K and NM/K de­
note the discriminant and norm over K, respectively. As an application 
of his result on decomposable form equations with properties (b ),( c),( d), 
Gyory [39] gave explicit upper bounds for the heights of the solutions of 
(11.5) and (11.6), where in (11.6) he assumed that 

[K(ao, ... ,ai+1):K(ao, ... ,a;)]~3 fori=O, ... ,m-1. 

Gyory [36], [39] derived several results on index form equations and 
algebraic number theory from his result on (11.5). 

Recently, Evertse and Gyory [25] replaced conditions (b ),( c),( d) by 
the slightly weaker condition ( e) of Theorem 13. To state this theorem 
we need some further notation. Let .C* be a maximal set of pairwise 
linearly independent linear factors of £ 0 • For any subspace V of Km, let 
r(V,.C..*) denote the minimum of all positive integers r for which there 
are ei1, ... 'ci. in .C..* whose restrictions to v are linearly dependent, but 
pairwise linearly independent. If this minimum exists, then r(V, C*) ~ 3. 
Otherwise we put r(V, .C..*) = 2. Let C 2 .C.." be a finite set of pairwise 
linearly independent linear forms in Xi, ... ,Xm with coefficients in G. 
By applying Theorem 4 the following result can be proved. 

Theorem 13. (Evertse and Gyory [25]). Suppose that 
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( e) for every subspace V of Km of dimension 2: 2 on which none of the 
forms in C vanishes identically, we have r(V, £*) = 3. 

Then there exists an effectively computable number ca, depending only 
on K, S, F and /3, such that all solutions of the equation 

F(x) = F(x1, ... ,xm) = /3 in x E 08 
with R(x)-:/:- 0 for all/!, EC (11.7) 

satisfy m?JC h(xi) <ea. 
' 

Ifin particular C = C*, then equation (11.7) reduces to (11.4') and 
Theorem 13 provides an effective bound for the solutions of (11.4'). In 
[25], Theorem 13 is proved under a slightly weaker assumption which 
involves only a finite and effectively determinable collection of subspaces 
Vof Km. 

The next result can be deduced from Theorem 2. 

Theorem 14 (Evertse and Gyory [22]). With the above notation and 
under assumption (e), the number of solutions of (11.7) is at most 

n( 4 x 72g(d+s+w(/3))r-1. 

It is a remarkable fact that this bound is independent of the coefficients 
of F. As a consequence of Theorem 14, Evertse and Gyory [22] derived 
also explicit bounds for the numbers of solutions of (11.5) and (11.6), 
with similar conditions as for the effective results. 

An application of Corollary 1.2 led to the following general finiteness 
criterion for decomposable form equations. 

Theorem 15 (Evertse and Gyory [24]). The following two statements 
are equivalent: 

(f) For every subspace V of Km of dimension 2: 2 on which none of 
the forms in C vanishes identically, we have r(V, C*) 2: 3; 

(g) For every f3 E K* and every finite subset S of MK containing all 
infinite places, (11.7) has only finitely many solutions. 

Condition (f) is obviously weaker than (e). Theorem 15 implies, in 
an ineffective form, all the above-mentioned finiteness results for decom­
posable form equations ( cf. [24]). In [57) Mason gave an analogous result 
for decomposable form equations over function fields which he derived 
from his own effective analogue of Corollary 1.2 over function fields. 
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As was pointed out in [24], Corollary 1.2 is a consequence of im­
plication (f)==}(g) of Theorem 15. Indeed, let a1, ... , am E K* and 
consider the unit equation 

(11.8) 

with a;1 x;1 + ... + a;,x;,-:/= 0 for all non-empty subsets {ii, ... ,ir} 
of {l, ... ,m}. Put F(X) = X1 ... Xm(a1X1 + ··· + amXm), C* = 
{ X 1 , •.. , Xm, a 1X1 + ... +amXm} and let .C be the set oflinear forms of 
the type a;1 X;1 + ... + a;,X;, where {ii, ... , ir} is a non-empty subset of 
{l, ... ,m}. Since F(x) E Us for every solution x = (x1, ... ,xm) E Us 
of (11.8), we have F(x) = f3em+l where /3, e E Us and /3 can assume 
only finitely many values. This means that, with the notation x' = x/ e, 
(11.8) reduces to finitely many equations of the type 

F( x') = f3 in x' = ( xi , ... , x~) E Us 

with £(x') -:/= 0 for all £ E .C. (11.9) 

It was, however, shown in [24] that these .C* and .C satisfy assumption 
(f) of Theorem 15. Therefore, by Theorem 15, equation (11.9) has only 
finitely many solutions x'. This implies that (11.8) has indeed only 
finitely many solutions. In other words, Corollary 1.2 on unit equations is 
equivalent to the implication (f)==}(g) of Theorem 15. This contains as a 
special case the relationship observed by Siegel between Thue equations 
and unit equations in two variables. 

Finally, we note that Theorems 14, 15 were proved in [22], [24], 
respectively, in the more general form when the ground ring is an arbi­
trary finitely generated extension ring of Z. In the proofs the authors 
used Theorem l' and the general version of Theorem 2, respectively. 
Gyory's effective results on decomposable form equations in [37], [39] 
have been extended to this more general situation in [43], [44]. 

§12. Applications to algebraic number theory 

Several diophantine problems in algebraic number theory can be 
reduced to the study of the equations 

(12.1) 
and 

D(f) =Do in monic polynomials f E Z[X] (12.2) 
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where K is now an algebraic number field of degree d ;::: 2, D(f) and 
DK/Q(a) denote the discriminant off and a, respectively, and Do E 
Z\{O}. If a satisfies (12.1) then its minimal defining polynomial over Z 
satisfies (12.2). Equation (12.2) can have, however, other (not necessarily 
irreducible) solutions without zeros in K. Hence (12.2) is more general 
than (12.1). If a is a solution of (12.1) then so is a+ a for all a E Z. 
Elements a, a' of OK with a - a' E Z are called l-equivalent. Similarly, 
if f is a solution of (12.2), then so is J*(X) = f(X +a) for every a E Z. 
Polynomials f, f* of this kind are called Z- equivalent. By repeatedly 
applying an earlier version of Theorem 4, Gyory proved, in 1973, the 
following 

Theorem 16 (Gyory (30]). Every solution a of (12.1) i.9 Z-equivalent 
to a solution a' E OK for which 

H(a') < c1 

where c1 is an effectively computable number depending only on d, DK 
and Do. 

In other words, there are only finitely many pairwise Z- inequivalent 
elements in 0 K with discriminant Do, and a full set of representatives of 
such elements can be, at least in principle, effectively determined. This 
finiteness assertion was independently proved in a non-effective form by 
Birch and Merriman [7] in 1972. 

We shall now sketch how (12.1) can be reduced to a finite system 
of unit equations. Let G be the normal closure of K/Q with degree g 
(over Q) and let a< 1) =a, a<2), ••• , a(d) denote the conjugates of a with 
respect to K/Q. If d 2:: 3 then 

a(l) - a(i) a(i) - a<2) 
( ) + ( ) ( ) = 1 for i = 3, ... , d. a 1) - a<2 a 1 - a 2 

(12.3) 

Further, the numbers a< 1) - a< 2), a(l) - a(i), a(i) - a<2) divide Do in 
Oa, whence they belong to finitely many cosets of G* with respect to 
Ua. Thus (12.3) reduces indeed to finitely many unit equations in two 
variables and, by Theorem 4, a<l) - a(i), a<2) - a(i) and so a(i) - a(j) 

can be determined up to the common factor a(l) - a< 2) which is however 
determinable from (12.1), and Theorem 16 follows. 

In fact Theorem 16 is an immediate consequence of Theorem 10. 
Let A= { aP>, ... , a(d)} and N = IDo 19. By (12.1) we have 

INa;Q(a(i) - a<i>)j ::; N for 1::; i < j::; d, 
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hence the graph 9a(A,N) (cf. §10) has only isolated_vertic~s. Therefore 
case iv) of Theorem 10 applies and the differences oh) - a<3 ) can assume 
only finitely many effectively determinable values, up to a common fac­
tor while this common factor can be derived from (12.1). , 

If (12.1) is solvable then DKIDo. Denote by w the number of distinct 
prime factors of Do/ Dk. By means of Theorem 2 one can prove the 
following 

Theorem 17 (Evertse and Gyory [23]). Equation (12.1) has at most 
7g(d-1}(2w+3) pairwise I-inequivalent solutions. 

We note that d ::; g :::; d!. 
In view of a theorem of Minkowski d can be estimated from above 

explicitly in terms of DK. Further, (12.1) implies !DK! :::; !Do!. Hence 
the dependence of c1 on d and DK in Theorem 16 can be dropped ( cf. 
[30] ). For irreducible polynomials f E Z[X] this implies the following 

Theorem 18 (Gyory (30]). Every solution f of (12.2) is l-equivalent 
to a solution f* E Z[X] for which 

H(f*) s; C3 

where c2 , C3 are effectively computable numbers depending only on Do, 
and H(f*) denotes the maximum absolute value of the coefficients of f*. 

The 'reducible' case can be reduced to the 'irreducible' one by using 
the relation 

k 

D( F) = IT D(fi) IT (Res(fi, fj)) 2 

i=l i::;i<i9 

where f = n:=i /; in Z[X] and Res(fi, fj) denotes the resultant of fi 
and fi. We note that in Theorem 18 an upper bound for deg(!*) can 
also be derived by means of Theorem 11. 

Theorem 18 implies that up to Z-equivalence, there are only finitely 
many monic polynomials f E Z[X] with discriminant Do !- 0 and a full 
set of representatives of such polynomials can be effectively determined. 
For binary forms of given degree and given non-zero discriminant, a 
similar but ineffective finiteness theorem was independently proved by 
Birch and Merriman [7]. 

We present one consequence of Theorems 16 and 17 here. For other 
applications we refer to [32], [33], (36], (23]. As is known, there exist 
algebraic number fields K having power integral bases (i.e. integral bases 
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of the form {1, a, ... , ad-l} where d = [K: Q)), but this is not the case 

in general. For references to results concerning power integral bases, see 

(46]. It is known that a E OK generates a power integral basis if and 

only if DK/Q(a) = DK· If a is a generator then so are all a 1 E OK 

which are Z-equivalent to a. By applying Theorem 16 with Do =DK, 
we have 

Corollary 16.1 (Gyory [32]). If {l,o:, .. .,ad-l} i.s an integral basis of 

K, then there is an a' E OK which is l-equivalent to a such that 

where c4 is an effectively computable number depending only on d and 

DK. 

Thus, up to Z-equivalence, there are only finitely many elements in 

OK which generate a power integral basis and they can be effectively 

determined. In particular, one can decide at least in principle, whether 
K has a power integral basis or not. 

Corollary 17.1 (Evertse and Gyory [23]). Up to l-equivalence there 

are at most 73g(d-l) elements a E OK for which {1, a, ... , ad-l} is an 

integral basis for K. 

Since g ~ d!, this implies an upper bound depending only on d. 

For explicit expressions for c1 to c4 and for references, see Gyory 
[31], [33). The results presented above have various generalisations; for 
references see [45], [46], [23]. 

§13. Applications to transcendental number theory 

Let g(z) = I:~1 zk!. Let O'.i, ••• , O'.n be algebraic numbers with 
0 < Ja;I < 1 for i = 1, ... ,n. D. W. Masser conjectured that if aifa; 
is not a root of unity for 1 ~ i < j :::; n, then g( a1 ), ... , g( an) are 
algebraically independent. Nishioka [60] used Theorem 1 to prove the 

stronger assertion that under the above conditions all numbers g<t)(ai) 

(1 S i ~ n, R. ~ 0) are algebraically independent. 

Nishioka generalised the above result to more general gap series f. 
Let K be an algebraic number field. Let f ( z) = L~o akze• be a power 
series ~ith non-zero coefficients ak E K, positive convergence radius R 
and increasing non-negative exponents ek satisfying 

lim (ek + logMk + logAk)/ek+1 = 0 
k..-oo 



168 S-UNIT EQUATIONS 

where Ak = max(l,laOl, ... ,lakl) and Mk is a positive integer such that 
Mkao ~ ... , Mkak are algebraic integers. Cijsouw and Tijdeman [10] 
proved that J(a) is transcendental for any algebraic number a with 
0 < IQ: I < R. Bundschuh and Wylegala [8] proved the remarkable result 
that f( a 1 ), ... , f( an) are algebraically independent for any algebraic 
nu:cnbers a1 , ... , Otn with 0 < ia1 I < ... < lanl < R. There are several 
other papers on the algebraic independence of values of gap series, but 
nobody could handle the case of ai of equal absolute values until Nish­
ioka [61] applied Theorem 1. She proved the following general result. 

Theorem 19. Let a 1 , ... , an be algebraic numbers with 0 < lai I < 1 
for i = 1, ... , n. Then the following three properties are equivalent. 

(i) The numbers f(ll(a;) (1 ~ i ~ n, R 2:: 0) are algebraically dependent 
over the rationals. 

(ii) The numbers 1, f(a 1 ), .•. , f(an) are linearly dependent over the 
algebraic numbers. 

(iii) There is a non-empty subset {i1 1 ••• ,im} of {l, ... ,n}, a number 
--y, roots of unity (1, ... , (m and algebraic numbers d1, ... , dm, not 
all zero, such that 

m 

and :Ldjcr = o 
j=l 

for all sufficiently large k. 
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