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This paper is concerned with a system of two queues, attended by a single 
server who alternately serves one customer of each queue (if not empty). The 
server experiences switching times in his transition from one queue to the 
other. It is shown that the joint stationary queue-length distribution, at the 
instants at which the server becomes available to a queue, can be determined 
via transformation to a Riemann boundary value problem. The latter problem 
can be completely solved for general service- and switching-time distributions. 
The stationary distributions of the waiting times at both queues, and of the 
cycle times of the server, are also derived. The results obtained, and in partic
ular the extensive numerical data for moments of waiting times and cycle times, 
yield insight into the behavior of more general cyclic-service models. Such 
models are frequently used to analyse polling systems. 

1. INTRODUCTION 

Some 15 years ago the analysis of polling systems, employed to multiplex the 
service requests of several users in computer-terminal communication systems, 
gave rise to a new class of queueing models: a single server serves a number of 
queues in some cyclic fashion. Presently, these cyclic-service queueing models 
are finding a new application in local area networks with a ring or bus topol
ogy, employing a medium access control protocol based on token passing. 
Various service disciplines at the queues of the cyclic-service models have been 
considered, ranging from exhaustive service (when the server visits a queue, he 
serves its customers until the queue has become empty) to I-limited service 
(when the server visits a queue, he serves only one customer, if present). For 
an extensive discussion of the many results that have recently been obtained 
for cyclic-service systems, we refer to the book [ 16] and survey paper [ 17] of 
TAKAGI. Generally speaking, the analysis of cyclic-service systems with 
exhaustive service is complex but tractable; I-limited service, on the other 
hand, gives rise to very intricate mathematical problems, which only have been 
solved for models with not more than two queues. 

The model with two queues, I-limited service and no switching times has 
first been tackled in an important study of EISENBERG [8]. In the sequel this 
model with two queues, one server and I-limited service discipline will be 
referred to as the alternating-service model. Eisenberg transformed the problem 
of detennining the joint queue-length distribution at the two queues into the 
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problem of solving a singular Fredholm integral equation. Almost simultane
ously, FAYOLLE and lASNOGORODSKI in a highly original paper [9] solved 
another queueing problem with a two-dimensional state space, via transforma
tion of the functional equation for the (bivariate) generating function of the 
joint queue-length distribution into a Riemann-Hilbert boundary value prob
lem. Of course, the latter type of problem also belongs to the realm of singular 
integral equations. These two studies strongly stimulated the interest of J.W. 
Cohen in the analysis of queueing and random walk problems with a two
dimensional state space. He started an extensive research program which has 
led to a powerful method of transforming functional equations, encountered in 
such 'two-dimensional problems', into boundary value problems of the 
Riemann or Riemann-Hilbert type. One of the first fruits of this method has 
been a detailed analysis [6] of the alternating-service model without switching 
times. The resulting boundary value problem appeared to be a Dirichlet prob
lem, a special case of a Riemann-Hilbert problem. In [l] the analysis was 
extended to the case with switching times of the server between queues, but the 
restriction was made that both queues had identical characteristics. This time, 
the resulting boundary value problem was a Riemann-Hilbert problem. 

The goal of the present paper is to give an exact analysis of the alternating
service model with .,witching times, with arbitrary service-time distributions 
and switching-time distributions. As in the just mentioned studies, the arrival 
processes at both queues are independent Poisson processes. 

The organization of the paper is as follows. In Section 2 the model is 
described in detail. Section 3 contains the main analysis. The joint stationary 
queue-length distribution, at the instants at which the server becomes available 
to a queue, is determined via transformation into a Riemann boundary value 
problem. Once the joint queue-length distribution is known, one can easily 
derive expressions for various important performance measures, like waiting 
times of customers and cycle times of the server (the time between two succes
sive arrivals of the server at a particular queue). Waiting times are studied in 
Section 4, with particular attention to the mean waiting times; cycle times are 
studied in Section 5, with particular attention to second moments of the cycle 
times (first moments of cycle times are trivially determined). Section 6 is 
devoted to a numerical evaluation of some important performance measures of 
the alternating-service model. It is shown that the boundary value problem 
formulation leads to formulas which can be numerically evaluated in a 
straightforward manner. The numerical results in this section may also provide 
additional insight into the behavior of the alternating-service model and, more 
generally, of cyclic-service models. E.g., it is shown that, while first moments 
of cycle times do not depend on the number of the queue at which the cycle 
starts, second moments of cycle times generally differ only slightly. This sup
ports an approximation assumption in [2,3], to the effect that the second 
moments are equal. 



Two queues with alternating seNice and switching times 263 

2. MODEL DESCRIPTION 
A single server S serves two queues Qi. Qi (with infinite buffer capacities) in 
cyclic order. The arrival process of customers at Q; is a Poisson process with 
rate A;, i = 1,2. The service times at Q; are independent, identically distributed 
stochastic variables with distribution B;(.), with first moment /3;, second 
moment pF> and LST (Laplace-Stieltjes Transform) /3;( · ). The various arrival 
and service processes are independent. 

The utilization at Q;, p;, is defined as 

P; : = A;/3;, i= 1,2. 

The total utilization of the server, p, is defined as 

p :=PI + P2· 

(2.1) 

(2.2) 

The server serves one customer, if any, from Q 1, and after a switching time he 
inspects Qi. He serves one customer, if any, from Qi, and switches back to 
Q 1; etc. The successive switching times from Q; to Q u +I) mod i are indepen
dent, identically distributed stochastic variables, also independent of the ser
vice times, with distribution S;( · ). Their first moment, second moment and 
LST are respectively denoted bys;, sF> and a;(.). 

Let C; denote the time between two successive arrivals of S at Q;, the cycle 
time for Q;. Clearly each cycle consists of two switches and at most one service 
at each of the two queues. The first and second moments of the total switching 
time during one cycle are respectively denoted by 

S := SJ + S2, 

s<i> : = s\i> + 2s1si + s~i>. 
(2.3) 

(2.4) 

It is well known, and easily seen (cf. WATSON [19]) that the mean cycle time 
EC; is independent of i, and is given by 

EC= _s_. 
1-p 

Ergodicity conditions 

(2.5) 

In the model without switching times, p< 1 is easily seen to be a necessary and 
sufficient condition for ergodicity. KUEHN [14) has shown that, in the model 
with switching times, 

(2.6) 

is a necessary condition for ergodicity (indeed, the mean number of arrivals at 
Q; during a cycle, A;s/(1-p), should be less than one). SZPANKOWSKI and 
REGO [15) have recently proved that this condition is also sufficient. In the 
sequel we assume that the system is ergodic, hence necessarily (2.6) holds. 
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3. FORMULATION AND SOLUTION OF THE BOUNDARY VALUE PROBLEM 
Let qp>, i::: 1,2, denote the number of customers at Q; at those instants at 
which S arrives at Q 1 ; similarly for q}2l. Let 

qU) q(/) I I I I 2 F/z 1,zi) := E[z1' z2' ], z1 ~l, z2 ~l,j=l,. (3.l) 

Our goal in this section is to determine F1(z1>z2) and F2(z1,z2). This goal will 
be accomplished by formulating and solving a so-called Riemann boundary 
value problem (cf. GAK.Hov [12]). Once F;(z 1>Z2) is determined, the LST of 
the waiting-time distribution at Q; and of the distribution of the cycle time C; 
can be obtained. In Sections 4 and 5 we will demonstrate this, deriving mean 
waiting times and second moments of cycle times as by-products. 

The vector of queue lengths at Q 1 and Q2 at successive arrival epochs of 
server S at a queue forms a vector Markov chain. A study of its transition 
probabilities yields the following recurrence relations for the generating func
tions F 1(z 1,zi) and F2(z1.zi): for lz1 I ~l, iz2 I ~l, 
F2(z1.zi) = {[F1(z1>z1) - F1(0,z2)] z1 1 f31(x) + F1(0,z2)} a1(x), (3.2) 

F 1(z1,z2) = {[F2(z1,z2) - F2(z1,0)] z2 1 /32(x) + F2(z1,0)} a2(x), (3.3) 

with for lz 1 l~l, lz2l~l: 

(3.4) 

Substitution of (3.2) into (3.3) yields: 

K(zi,z1)F1(z1,ti) = F1(0,z2){/32(x) <11(x) <Y2(x) (z1 - /3i(x))} + (3.5) 

F2(z1,0){z1 a1(x) (z2 - f32(x))}, lz1 I ~1, lz2 I ~l, 
while analogously, 

K(zi,z1)F2(z1,ti) = F2(zi,0){,81(x) a1(x) <Y2(x) (z2 - f32(x))} + (3.6) 

F1(0,z2){z2 a1(x) (z1 - f31(x))}, iz1 I ~l, iz2i ~l; 

here K(z 1,z 2) is the kernel of the functional equation, defined as 

K(z1,z2) := z1z2 - f31(x) /32(x) <Y1(x) a2(x). (3.7) 

Relation (3.5) is the starting point for our analysis. The main idea is similar 
to the one in [6,7] for the model without switching times and in [I] for the 
model with switching times and with identical characteristics of both queues 
('the symmetric model'): the determination of F 1(z"z 2) from (3.5) will be 
reduced to the solution of a boundary value problem (BVP) of mathematical 
physics. In the model without switching times, this BVP was a Dirichlet prob
lem, a special case of a Riemann-Hilbert problem; in the symmetric model 
with switching times, this BVP was a Riemann-Hilbert problem; and in the 
present more general model, reduction to a Riemann problem can be accom
plished. In fact, in the latter two cases both a Riemann-Hilbert and a 
Riemann problem formulation are possible; the Riemann formulation seems to 
be somewhat more natural here. The analysis consists of four steps. 
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Step I: the set-up 
According to its definition as a generating function, F 1 (z i.z 2) should be regu
lar for lz1 I < 1, continuous for lz1 I .e;;;; 1, for every fixed z 2 with lz 2 I :is;;;l; 
and similarly with z 1 and z 2 interchanged. Hence every zero (z1>z 2) of the 
kernel K(z 1,z2) in (3.5) should be a zero of the right-hand side of (3.5). This 
condition must lead to the yet unknown functions F 1(O,z 2 ) and F 2 (z i. 0) in 
the right-hand side of (3.5), and hence to F 1(z 1,z 2). 

Step 2: analysis of the kernel 
It is not possible to determine, explicitly, exactly one zero z 1 in I z 1 I .e;;;; 1 for 
each z 2 in lz 2 I :is;;; 1. Various sets of zero-pairs of the kernel K(z1>z 2) can be 
determined; our choice will lead to a Riemann BVP. K(z 1,z2) is a so-called 
Poisson kernel ( cf. Ch. II.4 of [7]). It has the same structure as the Poisson ker
nel defined in (2.4) on p. 274 of [7], where the alternating-service model without 
switching times is studied. Therefore we can proceed as in (7] (cf. also [l]). 
First introduce 

{J(x) := /31(x) /32(x) a1(x) a2(x), 

X := X1 +X2, 

r 1 := X1/X, r1 := X2/'A. 

Without loss of generality, it will henceforth be assumed that 

Finally introducing 

w 1 := 2r 1zi. w2 := 2r2z2, 

we can rewrite 4r1r 2K(z 1,z2) as 

w1 Wz - 4r1r2/3(X(l-(w1 +w2)/2)). 

The symmetry of this expression suggests to look for pairs of zeros of the ker
nel that are each other's complex conjugates: (wi.w2)=(w,w). These pairs of 
zeros tum out to supply all the information we need. The following should 
hold for w: 

Write 

w = ei<1>2...;;;;:; V/3(X(l- Rew)), O:is;;;q,.e;;;;2'1T. 

Defining 8($) to be the unique zero of 
----

/) - 2y;;-;;cos(<t>)V{J(X(l-l>)), o.e;;;;q,.e;;;;2'1T, Rel):is;;;l, (3.8) 

it is seen that, when q, once traverses the trajectory [0,2'1T], 

w = w(q,) = l)(q,)(l +i tan(<P)) 

once encircles a simple, smooth contour F that is contained in the unit circle. 
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Fis an egg-shaped contour. Using the notation L + (L -) for the interior (exte
rior) of a contour L, we have 0 EF+. Every w E F satisfies the relation 

Jwl 2 = 4r1r 2,8(A.(1- Rew)); hence (z1,z2) = (wl2r1,wl2r2) forms a pair of 
zeros of the kernel K(z 1,z2) for every w EF. 

Step 3: formulation of a Riemann boundary value problem 
The choice of zero-pairs (zi,z2) = (w/2r1,w/2r2) of the kernel leads, in a 
natural way, to the formulation of a Riemann BVP. In the formulation and 
solution of the BVP a few technical difficulties will arise; these are mainly 
related to the position of the point 2r2 with respect to the contour F. Depend
ing on the choice of parameters, this point can be inside, on or outside the 
contour. For the sake of clarity, we restrict ourselves here to the case 
2r2 EF+; see Remark 3.1 for a short discussion of the case 2r2 EF (which 
occurs, e.g., for r 2 =1/2) and the (relatively rare) case 2r2 EF-. 

Basically, the Riemann BVP amounts to finding two functions, one regular 
inside a certain smooth contour and the other one regular outside that contour, 
such that a certain linear relation exists between these functions on the con
tour; see [7] for a short exposition, and see GAKHov [12] for a detailed discus
sion. The first part of Step 3 concerns that linear relation between two func
tions on a contour. The right-hand side of (3.5) should be zero for all those 

w EF, for which (w!2ri,wl2r2) forms a pair of zeros of K(z I>z 2) inside the 
product of unit circles. Now jw/2r1 j ,;;;;;l always holds for w EF, but the possi

bility that I w !2r1 I > 1 cannot be excluded. Fortunately, in the latter case ana
lytic continuation can be used (cf. below (3.21)) to show that, for all w EF, the 
right-hand side of (3.5) should be zero. So for all w EF, the following linear 

relation should exist between F1(0,w!2r1 ) and F 2(w/2r 1,0): 

F1 (0, w !2r2) [,82(A.(l - Re w )) a1 (A.(l - Re w)) a2(A.(l - Re w )) X 

{ 2w -#1(A.(l-Rew))}] + 
'1 

w w 
F2(w/2ri.O) [-2-a2(A.(l- Rew)) {-2 -,82(/..(1- Rew))}] = 0. 

'1 '2 

Hence 

with 

(3.9) 

(3.10) 

G(w) := -,82(A.(l-Re w)) a1(A.(l-Re w)) - 1
2- X (3.11) 

w/ '1 

wl2r1 -,81(A.(l-Re w)) 

w!2r1 -,82(A.(l- Rew)) 

In the standard formulation of the Riemann BVP, the involved smooth con
tour is the unit circle. A conformal mapping of p+ onto the interior c+ of 
the unit circle C will lead us to a standard Riemann BVP. The second part of 
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Step 3 concerns this conformal mapping: 

z = f (w): p+ ~ c+' 
and its inverse, the conformal mapping 

w = fo(z): c+ ~ p+, 

One can write (cf. GAIER [11], Section 2.1; see also Section I.4.4 of [7]): 
2.,,. . 

267 

(3.12) 

(3.13) 

1 6(8(w)) "" + 
fo(z) = z exp[-j log{ } ~ dw] Jz I <l, (3.14) 

2'TT' 0 cos(8(w)) e1w_z ' 

with the angular deformation 8( ·) being uniquely determined as the continu
ous solution of the Theodorsen integral equation 

i 2"' 6 8 
8(q,) = <I> - -;;;;; [log{ co~(b~~3)} cotan{ ~ (w-<t>)}dw, O,;;;;;<f>,;;;;;27T; (3.15) 

8( <P) is a strictly increasing and continuous function of </>, and 
8(q,)=2'TT'-8(2'TT'-q,). According to the corresponding-boundaries theorem ([7], 
p. 66), fo(z) is continuous in C + UC. Application of the conformal mapping 
fo( ·)transforms (3.10) into: 

F2<Jo(z)l2r1,0) = G(jo(z)) F1(0,Jo(1/z)/2r2), z EC. (3.16) 

Introducing the functions 

(3.17) 

F 1(z) := F 1(0,f0(11z)l2r 2), zECuc-, (3.18) 

H(z) := G(jo(z)) = -,82(A.(l-Refo(z))) a1(A.(l-Refo(z)))X (3.19) 

fo(z)l2r1 -.Bi(A.(1-Re /o(z))) 
--- -"----------'-----' z EC, 
fo(z)l2r1 fo(llz)l2r2 -,82(A.(l - Re fo(z))) 

(3.16) can be rewritten as: 
A A 

F2(z) = H(z) F 1(z), z EC. (3.20) 

There are some technical requirements for a Riemann BVP formulation: H (z) 
should satisfy a so-called Holder condition on C (this can be easily verified, 
and will not be further discussed); and 0< jH(z)j <oo for z EC. The third 
part of Step 3 concerns a proof that H (z )=f-0 for z EC (the proof that 
I H (z) I < oo is left to the reader). We prove the equivalent statement that 
G(w)=f-0 for w EF. The two points of Fon the real axis are the only candi
date zeros of G(w), w EF. It is soon clear that we can concentrate on 
w=6(0)EF, and that it remains to show that 6(0)/2r 1 - ,81(A.(l-c5(0))) =t- 0. 
The assumption that 2r2 EF+ implies that S(0)/2r2 > /32(A.(l -S(O))). The 
definition of S(O), see (3.8), implies that 

S(O) = 2 v;:;; V /3(A.(l -6(0))) < 2 y;;;;...) /31 (A.(1-8(0))) ...) /32(A.(l -6(0))). 
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Hence 

8(0)/2r1 ;;i. P1(>.(I-8(0))) and 8(0)/2r2 ;;i. P2C>..(I-8(0))) 

are not simultaneously possible. In view of the above, 

8(0)/2r1 < P1 (>.(I -8(0))). (3.21) 

W~ are almost ready to formulate our Riemann BVP. It remFns to show 
that F 1 (z) is regular for z E c-, continuous for z EC Uc- , and F 2 (z) is regu
lar for z EC+, continuous for z EC+ UC. We show, equivalently, that 
F2(wl2ri,O) and F 1(0,w/2r2) are regular in p+ and continuous in p+ UF. 
Since by assumption 2r1 ;;;;i.1, while Fis contained in the unit circle, it immedi
ately follows that F2(w/2r1,0) is regular in p+, and continuous in p+ UF. It 
is somewhat more difficult to show that F 1(0,w/2r2) is also regular in p+ and 
continuous in p+ UF. First note that S(O)=maxlwl, wEF+ UP. Subse
quently note that F 1(0,c5(0)/2r2) is finite, because F 2(8(0)/2r 1,0)/G(8(0)) is 
finite. These observations, combined with the fact that the coefficients in the 
series expansion of F 1(0,w/2r2) are non-negative, lead to the stated regularity 
and continuity properties of F 1(0,w12r2) ( cf. [7], p. 277, for a similar reason
ing). 

We have now arrived at a standard, homogeneous, Riemann BVP on the unit 
circle: 

A A 

Determine two functions F1(z) and F2(z), such that 
(3.20) holds, with H(.) satisfying a Holder condition on C and 
q< IH(z)I <oo, z EC; 
f1 (z) is regular for z E c-, continuous for z EC Uc-; 
f2(z) is regular for z EC+, continuous for z EC+ UC; 
F1(z) -7 A for lz l-700, with A a constant. 

Step 4: solution of the Riemann boundary value problem 
A crucial role in the solution of the Riemann BVP is played by the index, x, of 
the function H (.) on C. This index is by definition: 

X := indzec H(z) = -2
1 J d{arg H(z)} (3.22) 
'1T zEC 

= indweF G(w) = -2
1 J d{arg G(w)}. 
'1T wEF 

LEMMA 3.1. x=O for 2r2 EF+. 

PROOF. From (3.11), 

X = -indweF ;.
1 

+ inrlweF [w/2r1 -,81(A.(l-Re w))] (3.23) 

-in<lweF [w/2r2 -P2(A(l-Re w))]= 
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-1 + indwEF [w/2r1 -.Bi (A(l - Rew))] 

The fact that 2r2EF+ implies that wl2r2 > ,82(A(l-Rew)) for w=o(O)EF. 
It now readily follows that 

indwEF [w/2r2-,82(A(l-Re w))] = l. (3.24) 

Similarly, from (3.21) 

indwEF[w/2r1-/31(A(l-Rew))] = 0. (3.25) 

The lemma follows from (3.23), (3.24) and (3.25). D 

The homogeneous Riemann BVP formulated at the end of Step 3, with index 
0, has the following solution (cf. [7], Section I.2.3): 

F 1 (z) = A exp[-1-. J log H (t) dt], z E c-, (3.26) 
27Tl tEC t -z 

~ I j IogH(t) 
F2(z) =A exp[-2 . dt], 

7Tl /EC t -z 
(3.27) 

with A = F 1(0,0) yet to be determined. 
Formulas (3.26) and (3.27) lead, in combination with (3.17), (3.18) and the 
definition (3.12) of the conformal mapping f (. ), to our main result: 

THEOREM 3.1. 

F1(0,w/2r2)=Aexp[-2
1 . J IogH(t) dt] wEF+, (3.28) 
'lll tEC t -1/j (w) ' 

F 2(w12ri.O) =A exp[-2
1 . J lo~ f<(t? dt], w EF+. (3.29) 
7Tl tEC t W 

It remains to determine the constant A = F 1(0,0). Substitution of w = 2r2 in 
(3.28) yields a linear relation between F 1(0,1) and F 1(0,0). F 1(0,1) can be 
determined in various ways. E.g., substituting z 2 = 1 in (3.5) and subsequently 
letting z 1 ~1 gives one linear relation between F 1(0, 1) and F 2(1,0); applying a 
similar procedure to (3.6) gives a second linear relation between those quanti
ties. Solution of the two equations yields: 

.\1s 
F 1(0,1) = 1---, (3.30) 

1-p 
"A2s 

F2(l,O) = 1---· 
1-p 

(3.31) 

The following observation also immediately leads to (3.30) (and similarly 
(3.31)): l-F1(0,l) is the probability that server S finds Q1 not empty upon 
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his arrival. Therefore it equals the fraction of times that S serves a customer in 
Q1 during his visit. By a balance argument, this fraction also equals the mean 
number of arrivals at Q 1 during a cycle of the server. According to (2.5), the 
mean cycle time of the server equals s I ( l - p ); hence the mean number of 
arrivals at Q1 during a cycle of the server equals .\1s/(l -p). 

The above implies that the constant A is given by: 

_ _ -~ __ 1_ f log H(t) 
A -F1(0,0)-(l 1_ )exp[ 2 . -ll/(2 ) dt]. 

p 7TI t EC t r2 
(3.32) 

REMARK 3.1. Earlier, the restnctive assumption 2r2 EF+ has been made. 
However, the cases 2r2 EF and 2r2 EF- can also occur. E.g., if r1=r2 =112, 
then 2r2 =1 = o(O)EF; examples in which 2r2 EF- can also be constructed, 
although one has to be careful not to violate the ergodicity condition (cf. [7], 
pp. 360-361). We shortly consider Steps 3 and 4 above for these two cases. 

(i) 2r2 EF. 
The Riemann BVP formulation and the proof that the index x = 0 proceed as 
before. The special case r 1 =r2 =1/2 requires some subtlety. Now 8(0)= l; 
both the numerator and denominator of the right-hand side of (3.11) become 
zero, but the zeros cancel and again G(o(O))i=O. Furthermore, (3.23) reduces to 
x= -1+112+ 1/2=0. For all cases in which 2r 2 EF, the solution of the 
Riemann BVP proceeds as before, and Theorem 3.1 still holds. A minor 
difficulty is that F 1(0,1) cannot be obtained from (3.28) by substitution of 
w = 2r2• But application of the so-called Plemelj-Sokhotski formula ( cf. [7], 
Formula (I. l.6.4)) to (3.28) leads to an expression for F 1(0,w12r 2 ), w E F. In 
the resulting expression, the substitution w = 2r2 can be made. 

(ii) 2r2 EF-. 
The formulation of the Riemann BVP proceeds as before. This time 
verification of the regularity of F 1(0,w12r 2) in p+ is trivial. Again the index 
x=O, but verification is less straightforward. It is based on the observation 
that, for 2r2 EF- and w=o(O)EF, the coefficients of the functions 
wl2r1-.B1(.\(l-Rew)) and w/2r2 -,82(.\(l-Rew)) in (3.9) are both non
negative, so that these functions have opposite signs. Theorem 3.1 still holds, 
but a major difficulty now is that F 1(0,1) cannot be obtained by substitution 
of w = 2r2 in (3.28). One might obtain an analytic continuation of F 1(0,w12r2) 

in F-, but this is numerically impractical. A numerically feasible approach is 
to obtain numerical values for, say, F 1(0,1) by using a Taylor series expansion 
of F 1 (O,z) around z = 0. Chapter IV. I of [7] contains an example of this pro
cedure, for the alternating-service model without switching times. 

Expressions for the generating functions F 1(z 1,z 2) and F 2(z 1,z 2) follow from 
(3.5), (3.6) and Theorem 3.1. In the next two sections we use the results 
obtained about queue-length generating functions to derive information about 
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the distributions of waiting times and cycle times, and in particular about their 
moments. 

4. WAITING TIMES 

In this section we shall derive an expression for Ewi, the mean waiting time at 
Qi. Ewi will be expressed in some given model parameters and in the func
tion d I dz F 1 (O,z ), evaluated at z = 1. The latter function is obtained from 
(3.28) after differentiation with respect to w and substitution of w =2ri. Ew1 

cannot be obtained from (3.29) in a similar way; the fact that 2r 1 EF- poses 
a problem. To reach the point 2r 1 out of p+ we might take our refuge to 
analytic continuation, but this would lead to numerical difficulties. We might 
also use a Taylor series expansion of F 2(w!2r 1 ,0) around w =O; such an 
approach would also be useful in case 2r2 EF-, as discussed at the end of the 
previous section. 

Anyway, once we have calculated Ewi, Ew1 can be obtained from a linear 
relation between Ew1 and Ewi. One can derive such a relation from (3.1) and 
(3.2) by repeated differentiation, using (4.2) below. WATSON [19] has done 
this, more generally, for a single-server, multi-queue system with cyclic service. 
He has thus derived a linear relation between the mean waiting times at the 
various queues. For two queues, his result reduces to: 

A1S AiS 
P1[1--1-]Ew1 + Pi[l--1-]Ewi (4.1) 

-p -p 

A1/3\2> +A.2/3~2> s<2> s [ 2 2 2] 
= P 2(1-p) + P2; + 2(1-p) P +p1 +p2. 

See [4,5] for a generalization, with a probabilistic proof, of Watson's result to 
the case of a single-server, multi-queue system with cyclic service and a mix
ture of various types of service disciplines at the queues. 

Ew2 is obtained in the following way. By a standard MIG/I-type argument 
(cf. WATSON [19], TAKAGI [16]) we can write: 

E{e->..,(l-z)w,} = F2{l,z) - F2(l,O). (4.2) 
z(I - F2(1,0)) 

Indeed, the customers present in Q 2 at the start of a non-empty service period 
at that queue, excluding the customer about to be served, are just the custo
mers who had arrived during the waiting time of that customer. Note that 
(4.2) completely determines the waiting-time distribution at Qi; a similar rela
tion holds for the transform of the waiting-time distribution at Q1. From (4.2) 
and (3.31), 

(4.3) 

The derivative occurring in (4.3) follows from (3.6) after a tedious but straight
forward calculation. Denote by p and pi> the first and second moments of 
the sum of a service time at Q1> a switching time from Q1 to Q1, a service 
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time at Q2 and a switching time from Qi to Q 1. Then 

d A2s [A2(/31+s)(l-A2/32) 
{d;°F2(1,z)}z=1=(1-1-p) l-A2/3 (4.4) 

+A~,eq> +A~f3<2l l 
- l-A2/3 + (l -A2/32 ) (1-A2/lf 

It remains to determine the derivative occurring in the right-hand side of (4.4). 
From (3.28), 

d d 
{dzF1(0,z)}z==\ = 2r2{dwF,(O,wl2r2)}w= 2r, (4.5) 

- f 1>(2r2) 1 log H (t) 
= 2r2 F1(0,l) (j(2r2))2 2'1Tiric (t-l/j(2r2))2 dt. 

Ew2 follows from (4.3), (4.4), (4.5) and (3.30). As indicated above, Ew1 subse
quently follows from ( 4.1 ). 

5. CYCLE TIMES 

In Section 2 the cycle time EC; for Q; has been defined as the time between 
two consecutive arrivals of S at Q;. Both from a theoretical and a practical 
point of view, cycle times are important quantities in cyclic-service systems. 
Mean cycle times are easily calculated (cf. (2.5)), but in cyclic-service systems 
with I-limited service hardly any other exact cycle-time results are known. 
Only for the special case of two completely symmetric queues, an exact for
mula for the LST of the cycle-time distribution has been obtained [1]. In the 
present section we extend this result to the asymmetric case. We are thus able 
to compare ECt and EC~, and also to determine 

ECb,i : = E[C; IA;], (5.1) 

with A; the indicator function of the event 'the cycle contains a service at Q;'. 
This quantity plays an important role in several mean waiting-time approxima
tions [2,3, 10, 14]. Generally speaking, exact cycle-time formulas for the two
queue case give more insight into the accuracy of general approximations for 
cycle-time distributions, as were proposed by HAsHIDA and OHARA [13] and 
KUEHN [14]. 

We now derive an exact expression for the LST of the distribution of C1; 
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the analogous result for Ci is obtained by interchanging all indices. Starting
point of the analysis is the relation 

E[e -we,] = F1 (0,0) E(e -"'c, I q~1> =O, q~1 > =O] + (5.2) 

[F1(0,l)-F1(0,0)] E[e-lo>C' lq~1>=o, q~1>>0] + 

[F1(l,O)-F1(0,0)] E[e-we' lq~1>>0, q~1>=0] + 

[l-F1(0,l)-F1(l,O)+F1(0,0)] E[e-we' lq~1>>o, q~1 >>0] 

= F1(0,0) 02(w){o1(w+X2)+{a1(w)-a1(w+X2)},82(w)] + 

[F1(0,l)-F1(0,0)] ,82(w)o1(w)a2(w) + 

lF1(l,O)-F1(0,0)] 02(w)X 

[,81 (w+X2)o1 (w+ A2)+ {/J1 (w)a1 (w)-,81 (w+ A2)a1 (w+ A2)},82(w)] + 

[1- F1(0,1)- F 1 (1,0)+ F1 (0,0)] ,81 (w)o1 (w),8i(w)a2(w). 

F 1(0,1) is given by (3.30). Hence E[e -.,c,] can be expressed in F 1 (0,0) and 
F 1(1,0). Substitution of z 1 =1,z 2 =0 into (3.5) leads to a linear relation 
between those two terms: 

(5.3) 

Differentiation of the expressions in (5.2) w.r.t. w, and substitution of F 1(1,0) 
into F 1 (0,0) using (5.3), leads to cycle-time moments. A simple calculation 
yields the mean cycle time given in (2.5); a lengthy calculation yields 

2 S h1S 
ECt = s<1> + .~ "'AJJfl> l-p + 2,81(,82 +s) I-p + (5.4) 

1=! 

h2S A2s ,8'1 (A2) 11'1 (A2) 
2,82s - 2f12s2(I- I-p) + 2,82(1- 1_P)[,81(;\2) + ai(X2)] -

p;(X2) 
2,82F1 (0,0)01 (A2) P1 (A2) . 

Note that if the switching time from Q1 to Q2 is a constant (si), then ECt 
only depends on the individual mean switching times via the term involving 
F 1(0,0)o1(X2) - apart from that term, only sand s<2> occur. We'll return to 
this point in the next section. 

We now turn to the cycle-time distribution of C1 under the condition, A 1, that 
the cycle contains a service at Q1• Similarly as (5.2), 

E[ -"'c, IA ] = F 1(1,0)-F1(0,0) 0 (w)X (5.5) 
e 1 1 - F 1 (0, 1) 2 

[,81 (w+X2)a1(w+A2)+ {,81(w)a1 (w)-,81 (w+X2)01(w+X2)}.82(w)] + 
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1-F1(0,l)-F1(l,O)+F1(0,0) a ( ) ( )a ( ) ( ) 
1-'I W 0'1 W P2 W 02 W • 

I - F 1(0, 1) 

A simple calculation leads to 

ECb, I = E[C1 IA il 
.l_=.e.. A1S 

= /11 + s + /32[1- ). {l- -1- - Fi (O,O)a1 (A.2)}]. 
f\tS -p 

(5.6) 

A similar expression, with all indices interchanged, holds for ECb, 2 . Note that 
the term between curly brackets represents the difference between the probabil
ity that S finds Q2 empty and the probability that S finds first Q 1 and then 
Q2 empty. Also observe that A.1s/(l-p) is the probability that S does serve at 
Q 1• Hence the term between square brackets represents the conditional proba
bility that S does serve at Q2, under the condition A 1• 

6. NUMERICAL ANALYSIS 

The present section is devoted to a numerical evaluation of some important 
performance measures of the alternating-service model. Our reasons for 
including this section are twofold: 
(i) We want to show that the BVP formulation leads to formulas which can 

be numerically evaluated in a straightforward manner; 
(ii) We want to contribute to the insight into the behavior of the altemating

service model and, more generally, of cyclic-service models; in particular, 
the numerical results to be presented may be helpful for devising and test
ing approximations. 

For the sake of (i), we now discuss the numerical evaluation of F;(O,O) and 
Ew;; other performance measures are easily evaluated from these quantities. 
The numerical analysis basically consists of five steps. For details we refer to 
Ch. IV. l of [7], in which numerical calculations of this kind have been exten
sively discussed. 

Step I: Solving Theodorsen's integral equation (cJ. (3.15)) 
Determine O(cp), iteratively, from (cf. [11]): 

Oo(cf>) = cp, O:;:;;;cp:;:;;;2'1T, (6.1) 

1 2.,,. o(On(w)) I 
On+1(cf>) = cp - 2'/T [log{ cos(On(w))} cotan{2(w-cp)}dw, Q:;:;;;cp:;:;;;27T, 

where o(On(w)) is determined from (cf. (3.8)): 

o(On(w)) = 2 y;:;;; cos(8n(w)) V {J(A(I -o(On(w)))), (6.2) 

using the Newton-Raphson root-finding procedure. In our calculations, the 
iteration has been continued until the differences between successive iterations 
of 0(-) (in the supremum norm) were in absolute value less than 10- 6 • This 
required between 6 and 14 iterations. 
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REMARK 6.1. Due to various symmetry properties we can restrict ourselves in 
the computations, here and in the sequel, to 4>E[0,?T]. As various integrands 
that will have to be computed change more rapidly for 4> close to O than for 
other values of cp, a finer subdivision has been chosen for the interval [0,?T/5] 

(20 points) than for the interval [?T/5,?T] (40 points). All involved integrals 
have been evaluated using the repeated trapezoidal rule. 

Step 2: Determination of the conformal mapping f 0 (ei<P), Oo;;;;;cp,;;;;2'7T 
Applying the Plemelj-Sokhotski formula (cf. [7], Formula (I.1.6.4)) to (3.14) 

yields: 

fo(ei<P) = ei<P exp[log{ o(8(4>)) } (6.3) 
cos(8(4>)) 

21T 
_1_1 o(8(w)) _!_ 

+ 27Ti o log{ cos(8(w))} cotan{ 2 (w-cp)}dw] 

= ei1J(<1>l o(O(p)) 
cos(8(4>)) 

= o(8(cp))[l +i tan(8(4>))], Oo;;;;;cpo;;;;;2'7T; 

this result could also have been derived from the formula below (3.8). 

Step 3: Determination off (2r2) and f 1l(2r2) 
Using (3.14), f(2r2) is obtained as the solution, on [0,1], of fo(z) = 2r2 • 

Again we have used the Newton-Raphson root-finding procedure. f 1l(2r2) 

can be obtained in two ways: 
(i) by numerical differentiation of fo(·); note that 

+Ol(2r ) - l · (6 4) 
J 2 - .fi}l (2r2) , . 

(ii) by a numerical evaluation of the expression: 

I) _ 2r2 _l_ 2"' o(O(w)) 2eiw 
/o (2r 2) - f(2r 2) + 2r 2 27T [log{ cos(8(w))} (ei"'-j(2r2))2 

dw, (6.5) 

and substitution of the result in (6.4). 
For a discussion of (ii) see [7], p. 351. We have used both (i) and (ii), but due 

to the fact that we have chosen a relatively fine subdivision we have found no 

significant differences. 

Step 4: Calculation of H (ei<P), Oo;;;;;cpo;;;;;2'1T . 
H(ei<P) is obtained from (3.19) by noting that Re fo(e'<I>) = o(8(cp)): 

2r 1 

H(ei<P) = -/32(>--(1-0(8(4>)))) o1(A(l-0(8(cp)))) fo(ei<P) X 

fo(ei<P)J2r1 - /31(>--(1-0(8(4>)))) , Oo;;;;;cp,;;;;27T. 

f 0(e-i<P)J2r 2 - /32 (>--(l-o(8(4>)))) 

(6.6) 
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Step 5: Determination of Ew; and fi(0,01 i = 1,2 

Once we have calculated { ~ F 1(O,z)}z= 1 from ( 4.5), we can obtain Ew2 ( cf. 

(4.3), (4.4) and (4.5)), and subsequently Ew1 from (4.1). F1(0,0) is easily cal
culated from (3.32); F 2(0,0) is obtained from (cf. (3.29)): 

1 2.r 
F 2(0,0) = F 1(0,0) exp{-2 /log H(e;"') dw]. (6.7) 

'1T 0 

With the subdivision we have chosen, each row in the tables below takes about 
15 sec. of CPU time on a Cyber 170 model 750, with very small memory 
requirements. Using fewer 0(.) iterations and a less fine subdivision of the 
interval [0,'IT] leads to a considerable reduction of CPU time, without 
sacrificing too much accuracy. The computer program was written in Pascal. 

Numerical results are presented in Tables I and II. The performance measures 
under consideration are the mean waiting times Ew;, the second moments of 
cycle times ECt, the conditional first moments of cycle times ECb,i ( cf. (5.1) 
and (5.6)) and the empty-system probabilities at server-arrival epochs, F;(O,O). 
Table I studies the influence of the switching times on these performance 
measures. Table la shows that the choice of switching-time distributions has 
hardly any effect on ECb,i and F;(O,O), and only has a considerable effect on 
Ew; and ECt when mean service times are relatively small. Exactly the same 
statement can be made concerning the choice of s 1 and s 2 , for given total 
mean switching time s=s 1 +s2• In Table lb results for /31 =/32 =0.8 are 
printed, exhibiting almost-insensitivity for the choice of s 1 and s 2 • In the 
(non-printed) case with {J1 ={J2 =0.2 and all other parameter values as in Table 
lb, the largest difference (with respect to Ew; and ECr) due to changes ins; is 
in the order of 25%. For deterministic switching-time distributions, Ew;, ECt 
and ECb,i appear to be completely independent of s 1 and s 2, given their sum 
s. The structure of (5.4) and (5.6) shows that the same must hold for 
F 1(0,0) a1(A2) = Pr{S finds first Q1 and then Q2 empty}. The robustness of 
the model for switching times is also being expressed by the pseudo
conservation law for mean waiting times mentioned in Section 4 ( cf. ( 4.1) for 
the alternating-service model). In the pseudo-conservation law, the expression 
for a weighted sum of mean waiting times is seen to depend on the switching
time distributions only through the mean s and the second moment s<2> of the 
total switching time - and the influence of the factor involving s<2> is usually 
small. 

Table II presents mean waiting times and cycle-time moments for three 
different combinations of service-time distributions, viz.: 
Case A: both service-time distributions are negative exponential; 
Case B: both service-time distributions are hyperexponential distributions 

with squared coefficient of variation 4 (H 2(4)) and balanced means 
(18]; 

Case C: B1(.) is a H 2(4) distribution with balanced means, and B 2(.) is deter
ministic. 
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Out of a wide range of distributions and parameter values, we have tried to 
make a representative choice. The observations from Table I allow us to res
trict ourselves to constant switching times, with s 1 =s2• In all cases con
sidered, s =0.2. We discuss all tabulated performance measures in turn. 

(i) Ew; 
In [3] and [2], a mean waiting-time approximation has been proposed for a 
cyclic-service model without and with switching times, respectively. It is first 
argued that 

Ere; 
Ew; = ----

1-A.;ECb,i 
(6.8) 

with Ere; the mean residual cycle time for Q;. In fact, this is not an exact 
result. In the alternating-service model it appears to be quite close in most 
cases, but there are a few exceptions. Taking Ere; = EC[ 12EC; (acting as if 
the cycle-time process is a renewal process), formula (6.8) would imply that 
Ew; changes linearly with EC[ for fixed first moments of service times and 
switching times. The table entries for these two quantities suggest that this is 
indeed more or less the case. 

In [2] and [3] two approximation assumptions are introduced to estimate the 
unknown Ere; and ECb,i• viz.: 

Assumption 1: ECb,i = ECb,i := (,8;+s)!(I-p+p;) 
(this approximation is due to KUEHN [14]). 

Assumption 2: Ere; is the same for all i. 
Subsequently the pseudo-conservation law (cf. (4.1) for the alterr.ating-service 
model) is used to estimate the one unknown Ere1• Below we investigate the 
accuracy of these assumptions for the alternating-service model. 

(ii) ECt 
Again taking Ere;= ECr /2EC;, Assumption 2 above would imply that all EC[ 
are the same. Indeed, in all considered cases, ECT and EC1 differ less than 7% 
(and usually much less). FUHRMANN and WANG [10] suggest another mean 
waiting-time approximation along similar lines as [2], but they assume that 

ECy I EC~ ::::::; ECb, 2/ ECb, 1; (6.9) 

·our numerical results show that this assumption is not accurate for the 
alternating-service model. Still, Fuhrmann and Wang improve upon [2) in case 
of heavy traffic. It is not yet fully clear whether (6.9) becomes more accurate 
when the number of queues is larger, or whether (6.9) counteracts an inaccu
racy in (6.8) or in the approximation for ECb,i· 
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TABLE I 
Mean waiting times and cycle-time moments for the alternating-service model; 
influence of the switching times 

s 1(.) S2(.) EW1 EW2 ECt EC1 ECb.I ECb,2 F1(0,0) F2(0,0) 

det det 0.236 0.192 0.082 0.082 0.425 0.461 0.796 0.829 
det exp 0.265 0.221 0.093 0.095 0.427 0.462 0.797 0.827 
exp det 0.268 0.216 0.094 0.092 0.426 0.465 0.796 0.830 
exp exp 0.297 0.244 0.104 0.105 0.427 0.466 0.797 0.829 

det det 16.566 2.158 2.100 2.007 1.317 1.745 0.286 0.300 
det exp 16.671 2.172 2.110 2.020 1.318 1.746 0.287 0.299 
exp det 16.674 2.169 2.113 2.017 1.317 1.746 0.286 0.300 
exp exp 16.779 2.183 2.124 2.031 1.318 1.747 0.287 0.300 

TABLE Ia. The influence of the switching-time distributions. B;(.) negative ex
ponential, i = 1,2; in the first four rows {31 = /32 = 0.2, in the last 

four /31 =/32=0.8. A=l, r1 =0.7, s1 =s2 =0.1. 

S1(.) S2(.) SI s2 EW1 EW2 ECt EC1 EC1,,1 ECh.2 F1(0,0) F 2(0,0) 

det det 0.05 0.15 16.566 2.158 2.100 2.007 1.317 l.745 0.282 0.310 
det det 0.1 0.1 16.566 2.158 2.100 2.007 1.317 1.745 0.286 0.300 
det det 0.15 0.05 16.566 2.158 2.100 2.007 1.317 1.745 0.290 0.289 

det exp 0.05 0.15 16.802 2.189 2.124 2.037 1.319 1.747 0.283 0.309 
det exp 0.1 0.1 16.671 2.172 2.110 2.020 1.318 l.746 0.287 0.299 
det exp 0.15 0.05 16.592 2.161 2.102 2.010 l.317 1.745 0.290 0.289 

exp det 0.05 0.15 16.593 2.161 2.103 2.010 1.317 1.745 0.282 0.310 
exp det 0.1 0.1 16.674 2.169 2.113 2.017 1.317 1.746 0.286 0.300 
exp det 0.15 0.05 16.808 2.183 2.130 2.031 1.318 l.748 0.290 0.290 

exp exp 0.05 0.15 16.829 2.192 2.127 2.040 1.319 l.747 0.283 0.310 
exp exp 0.1 0.1 16.779 2.183 2.124 2.031 1.318 1.747 0.287 0.300 
exp exp 0.15 0.05 16.834 2.187 2.133 2.034 1.318 1.748 0.291 0.290 

TABLE Ib. The influence of s 1 and s 2 for given s =s 1 +s2. B;(.) negative ex
ponential, i = 1,2; [31 ={Ji =0.8. A= I, r 1 =0.7. 

(iii) ECb; and ECb; 
In all c;nsidered c'ases, the approximation ECb, 1 ~ ECb, 1 (s~e Assumption I 
above) is extremely accurate. The approximation ECb, 2 ~ ECb, 2 is much less 
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accurate: the flow-balancing argument on which the approximation is based, 
should not be applied to the situation of a rarely occurring cycle C2 \Vith a -

sometimes large - service time at Q 2• The approximation becomes useless in 

the cases marked with an asterisk, because ECb, 2 exceeds the obvious upper 
bound /31 + /32 + s; in those cases we have printed the latter number. 

Finally we observe that EC6,; is hardly dependent on the choice of the 
service-time distributions. 

(iv) F;(O,O) 
F;(O,O), too, appears to be hardly dependent on the choice of the service-time 
distributions. 

TABLE II 
Mean waiting times and cycle-time moments for the alternating-service model 

r, fJ1 fJ2 EW1 EW2 £Cl EC~ ECh.I ECh 1 ECh.2 ECu F 1(0,0) F1(0,0) 

0.7 0.2 0.2 0.236 0.192 0.082 0.082 0.425 0.426 0.461 0.465 0.796 0.829 

0.7 0.2 0.5 0.387 0.330 0.139 0.142 0.478 0.471 0.789 0.814 0.772 0.81 I 

0.7 0.2 0.8 0.726 0.599 0.248 0.256 0.554 0.526 1.114 l.163 0.743 0.786 

0.7 0.5 0.2 0.738 0.440 0.237 0.231 0.743 0.745 0.629 0.615 0.734 0.759 

0.7 0.5 0.5 1.152 0.671 0.369 0.362 0.824 0.824 0.999 1.077 0.690 0.720 

0.7 0.5 0.8 2.131 1.098 0.618 0.612 0.932 0.921 l.361 1.500* 0.630 0.663 

0.7 0.8 0.2 2.680 0.977 0.707 0.686 1.062 1.064 0.943 0.909 0.606 0.623 

0.7 0.8 0.5 5.088 1.406 1.141 1.096 1.175 1.176 l.351 1.500* 0.494 0.513 

0.7 0.8 0.8 16.566 2.158 2.100 2.007 1.317 1.316 1.745 1.800* 0.286 0.300 

0.9 0.2 0.2 0.256 0.170 0.081 0.081 0.408 0.408 0.477 0.488 0.767 0.831 

0.9 0.2 0.5 0.308 0.208 0.099 0.099 0.422 0.421 0.803 0.854 0.758 0.825 

0.9 0.2 0.8 0.400 0.269 0.127 0.129 0.438 0.435 1.121 1.200* 0.749 0.816 

0.9 0.5 0.2 1.084 0.416 0.292 0.288 0.714 0.714 0.703 0.727 0.653 0.706 

0.9 0.5 0.5 1.279 0.473 0.341 0.336 0.737 0.737 1.050 1.200• 0.633 0.687 

0.9 0.5 0.8 1.586 0.557 0.413 0.406 0.762 0.761 1.384 1.500* 0.610 0.664 

0.9 0.8 0.2 9.564 0.871 1.197 1.182 1.020 1.020 l.122 1.200· 0.304 0.328 

0.9 0.8 0.5 16.161 0.959 1.460 1.420 1.053 1.053 1.459 1.500* 0.215 0.233 

0.9 0.8 0.8 43.679 1.077 1.841 1.767 1.087 1.087 1.786 1.800* 0.099 0.108 

Case A: B;(-) negative exponential, i = 1,2; ;.\= 1, s 1 =s2 =0.1 (constant switch

ing times). 
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TABLE II (CONT'D) 

r1 /J1 Pi EW1 EW1 ECr ECj ECh. I ECh.1 ECh.1 ECh.1 F1(0,0) F2(0,0) 

0.7 0.2 0.2 0.330 0.267 O.ll4 0.113 0.426 0.426 0.463 0.465 0.796 0.830 

0.7 0.2 0.5 0.684 0.547 0.230 0.230 0.481 0.471 0.789 0.814 0.773 0.8ll 
0.7 0.2 0.8 l.546 1.122 0.469 0.470 0.559 0.526 1.112 l.!63 0.744 0.785 

0.7 0.5 0.2 l.389 0.832 0.435 0.425 0.744 0.745 0.642 0.615 0.735 0.762 

0.7 0.5 0.5 2.325 1.273 0.689 0.667 0.828 0.824 1.006 1.077 0.692 0.722 

0.7 0.5 0.8 4.660 2.118 l.192 l.!54 0.937 0.921 l.363 1.500* 0.632 0.663 
0.7 0.8 0.2 5.706 2.073 1.450 1.418 1.063 1.064 0.964 0.909 0.608 0.627 
0.7 0.8 0.5 11.124 2.855 2.275 2.188 1.177 1.176 1.361 1.500* 0.496 0.516 
0.7 0.8 0.8 37.323 4.258 4.130 3.932 1.319 1.316 1.748 1.800* 0.287 0.301 

0.9 0.2 0.2 0.355 0.235 0.112 0.111 0.408 0.408 0.478 0.488 0.767 0.831 
0.9 0.2 0.5 0.470 0.309 0.148 0.147 0.422 0.421 0.799 0.854 0.758 0.824 
0.9 0.2 0.8 0.689 0.441 0.212 0.211 0.438 0.435 1.115 1.200* 0.749 0.815 
0.9 0.5 0.2 2.084 0.795 0.558 0.548 0.714 0.714 0.712 0.727 0.653 0.707 
0.9 0.5 0.5 2.509 0.902 0.659 0.637 0.737 0.737 1.050 1.200• 0.633 0.687 
0.9 0.5 0.8 3.206 1.069 0.813 0.776 0.762 0.761 l.379 1.500* 0.610 0.664 
0.9 0.8 0.2 20.659 1.861 2.564 2.521 1.020 1.020 1.127 1.200* 0.304 0.329 
0.9 0.8 0.5 35.133 2.021 3.108 2.988 1.053 1.053 1.460 1.500* 0.215 0.233 
0.9 0.8 0.8 95.841 2.248 3.908 3.687 1.087 1.087 1.786 1.800* 0.099 0.107 

Case B: B;O hyperexponential ( H 2) with squared coefficient of variation 4 and 
balanced means; A.= l, s 1 =s 2 =O.l (constant switching times). 

'1 f31 fh. EW1 EW1 £Cl £Cl ECh.I ECh.I EC0.1 ECh.1 F 1(0,0) F2(0,0) 

0.7 0.2 0.2 0.293 0.235 0.102 0.100 0.425 0.426 0.464 0.465 0.796 0.830 
0.7 0.2 0.5 0.400 0.333 0.145 0.143 0.475 0.471 0.794 0.814 0.771 0.813 
0.7 0.2 0.8 0.605 0.507 0.220 0.219 0.547 0.526 1.121 1.163 0.741 0.789 
0.7 0.5 0.2 1.334 0.795 0.418 Q.405 0.743 0.745 0.645 0.615 0.734 0.762 
0.7 0.5 0.5 1.862 1.021 0.568 0.540 0.823 0.824 1.015 1.077 0.689 0.725 
0.7 0.5 0.8 2.909 1.391 0.815 0.772 0.929 0.921 1.376 1.500* 0.628 0.667 
0.7 0.8 0.2 5.602 2.030 1.425 1.388 1.063 1.064 0.966 0.909 0.607 0.628 
0.7 0.8 0.5 9.975 2.566 2.067 1.970 1.175 1.176 1.366 1.500* 0.494 0.518 
0.7 0.8 0.8 29.029 3.410 3.361 3.157 1.317 l.316 1.752 1.800* 0.286 0.303 

0.9 0.2 0.2 0.342 0.226 0.108 0.107 0.408 0.408 0.482 0.488 0.767 0.832 
0.9 0.2 0.5 0.382 0.252 0.122 0.121 0.422 0.421 0.812 0.854 0.758 0.826 
0.9 0.2 0.8 0.444 0.293 0.143 0.141 0.437 0.435 1.135 1.200· 0.748 0.818 
0.9 0.5 0.2 2.061 0.785 0.552 0.541 0.714 0.714 0.718 0.727 0.653 0.708 
0.9 0.5 0.5 2.346 0.842 0.619 0.596 0.737 0.737 1.069 1.200• 0.633 0.689 
0.9 0.5 0.8 2.728 0.915 0.703 0.666 0.762 0.761 1.407 uoo• 0.610 0.667 
0.9 0.8 0.2 20.557 1.851 2.552 2.508 1.020 1.020 1.129 1.200• 0.304 0.329 
0.9 0.8 0.5 34.081 1.961 3.021 2.901 1.053 1.053 1.465 1.500* 0.215 0.234 
0.9 0.8 0.8 88.887 2.091 3.652 3.431 1.087 1.087 1.789 1.800* 0.099 0.108 

Case C: B 1 () hyperexponential (H 1) with squared coefficient of variation 4 and 
balanced means; B 2 (') deterministic; A.= l, s 1 = s 2 = 0.1 (constant 
switching times). 
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