
ACPT

A Universal Axiom System for Process Specification

J .A. Bergstra
University of Amsterdam, Department of Computer Science

P. 0. Box 19268, 1 OOO GG Amsterdam
State University of Utrecht, Department of Philosophy

P.O. Box 8810, 3508 TA Utrecht

J.W. Klop
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam
Free University, Department of Mathematics and Computer Science

De Boelelaan 1081, 1081 HV Amsterdam

0. INTRODUCTION

Following R. Milner's development of his widely known Calculus of Commun­
icating Systems, there have been in the last decade several approaches to pro­
cess algebra, i.e. the algebraic treatment of communicating processes. In this
paper we give a short and informal presentation of some developments in pro­
cess algebra which started five years ago at the Centre for Mathematics and
Computer Science, and since two years in cooperation with the University of
Amsterdam and the State University of Utrecht1• Most of the present paper
can be found in the more complete survey [6], where the subjects of
specification and verification of processes are treated in so-called bisimulation
semantics. Here, we adopt a further restriction by concentrating on the
specification issue.

We start with a very simple axiom system for processes called Basic Process
Algebra, in which no communication facilities are present. This system is
interesting not only because it is a nucleus for all process axiom systems that
are devised and analyzed in the 'Algebra of Communicating Processes', but
also because it provides a link with the classical and successful theory of for­
mal languages, in particular where regular languages and context-free
languages are concerned. In Section 2 we explain this link.

Next, we introduce more and more operators, leading first to the axiom sys­
tem ACP (Algebra of Communicating Processes) where communication
between processes is possible, and finally to ACP1 (Algebra of Communicating
Processes with abstraction). Examples are given showing that the successive
extensions yield more and more specification power; and a culmination point

I. Research partially supported by ESPRIT project 432, Meteor.

3

is the Finite Specification Theorem for ACPr, stating that every finitely
branching, effectively presented process can be specified in ACPr by a finite
system of recursion equations. Of course, an algebraic system for processes is
only really interesting and useful if also sufficient facilities for process
verification are present. These require an extension with some infinitary proof
rules which will not be discussed here (for these, see the full version of this
paper [6]). We refer also to the same paper for a more extensive list of refer­
ences than the one below.

l. BASIC PROCESS ALGEBRA

The kernel of all axiom systems for processes that we will consider, is Basic
Process Algebra. Not only is for that reason an analysis of BPA and its models
worth-while, but also because it presents a new angle on some old questions in
the theory of formal languages, in particular about context-free languages and
deterministic push-down automata. First let us explain what is meant by
'processes'.

The processes that we will consider are capable of performing atomic steps
or actions a,b,c, ... , with the idealization that these actions are events
without positive duration in time; it takes only one moment to execute an
action. The actions are combined into composite processes by the operations
+ and ·,with the interpretation that (a +b)·c is the process that first chooses
between executing a or b and, second, performs the action c after which it is
finished. At this stage it does not matter how the choice is made. These opera­
tions, alternative composition and sequential composition (or just sum and pro­
duct), are the basic constructors of processes. Since time has a direction, multi­
plication is not commutative; but addition is, and in fact it is stipulated that
the options (summands) possible at some stage of the process form a set. For­
mally, we will require that processes x,y,z, ... satisfy the following axioms
(where the product sign is suppressed):

BPA
x+y=y+x

(x + y) + z = x + (y + z)
x+x=x

(x +y)z =xz +yz
(xy)z =x(yz)

TABLE 1

In the Introduction we used the term 'process algebra' in the generic sense
of denoting the area of algebraic approaches to concurrency, but we will also
adopt the following technical meaning for it: any model of these axioms will
be a process algebra. The simplest process algebra is the term model of BPA,
whose elements are BPA-expressions (built from the atoms a,b,c, ... by means
of the basic constructors) modulo the equality generated by the axioms. The
term model itself (let us call it 11") is not very exciting: it contains only finite

4

processes. In order to specify also infinite processes, we introduce recursion
variables X, Y,Z, Using these, one can specify the process aaaaaa · · ·
(performing infinitely many consecutive a-steps) by the recursion equation
X=aX; indeed, by 'unwinding' we have X=aX=aaX=aaaX= · · ·. In gen­
eral, we will admit simultaneous recursion, i.e. systems of recursion equations.
A non-trivial example is the following specification of the process behaviour of
a Stack with data 0, 1:

STACK
X=Oi.YX+llZX

Y=Oj+Oi. YY + li.ZY
Z= lj+Ot. YZ+ li.ZZ

TABLE 2

Here Oi and Oj are the actions 'push O' and 'pop O', respectively; likewise for
1. Now Stack is specified by the first recursion variable, X. Indeed, according
to the first equation the process X is capable of performing either the action
Oi, after which the process is transformed into YX, or Ii, after which the pro­
cess is transformed into ZX. In the first case we have, using the second equa­
tion, YX=(Oj+Oi. YY + li.ZY)X=Oj-X +Oi. YYX + li.ZYX. This means that
the process YX has three options; after performing the first one (Oj) it behaves
like the original X. Continuing in this manner we find a transition diagram or
process graph as in Figure I.

FIGURE 1. Stack

It is not hard to imagine how such a process graph (a rooted, directed, con­
nected, labeled graph) can be associated with a system of recursion equations;
we will not give a formal definition here. Actually, one can use such process
graphs and build various models (graph models) for BPA from them; this will
be discussed now.

5

2. GRAPH MODELS FOR BPA
Let G be the set of all at most countably branching process graphs g,h, ...
over the action alphabet A= { a,b,c, ... }. (I.e. a node in such a graph may
have at most countably many one-step successors.) On G we define operations
+ and · as follows: g·h is the result of appending (the root of) h at each termi­
nation node of g, and g + h is the result of identifying the roots of g and h. (To
be more precise, we first have to unwind g and h a little bit so as to make their
roots 'acyclic', otherwise the sum would not have the intended interpretation of
making an irreversible choice.) Letting a be the graph consisting of a single
arrow with label a, we now have a structure §=G(+,·,a,b,c, ...) which
corresponds to the signature of BPA. But it is not a model of BPA. For
instance the law x + x = x does not hold in §, since a+ a is not the same as a;
the former is a graph with two arrows and the latter has one arrow.

Here we need the fundamental notion of D. PARK (see [13]), called bisimu/a­
tion equivalence or bisimilarity. Two graphs g and h are bisirnilar if there is a
matching between their nodes (i.e. a binary relation with domain the set of
nodes of g, and codomain the set of nodes of h) such that (1) the roots are
matched; (2) if nodes s,t in g,h respectively are matched and an a-step is possi­
ble from s to some s' then in h an a-step is possible from t to some t' such that
s' and t' again are matched ; (3) likewise with the roles of g,h reversed. A
matching satisfying (1-3) is a bisimulation. An example is given in Figure 2,
where (part of) the matching is explicitly displayed; another example is given
in Figure 3 where the matching is between each pair of nodes on the same hor­
izontal level.

g:

FIGURE 2

6

g:

(a) FIGURE 3

We use the notation gtih to express that g and h are bisimilar. Now one
proves that ti is not only an equivalence on G, but even a congruence on §.

Thus the quotient G = § / ti is well-defined, and it is a model of BP A. (G has
constants a= a/ ti etc., and operations +, · defined by g + h = (g+ h) / ~ for
g=g/ti and h =h/ti; likewise for·. (For typographical reasons we will not
distinguish between the syntactic +,. and the semantic +,. in our notation.)

Even more, G is a very nice model of BPA: all systems of recursion equa­
tions in the syntax of BPA have a solution in G, and systems of guarded recur­
sion equations like in Table 1 have moreover a unique solution. 'Guarded'
means that in the right-hand sides of the recursion equations no recursion vari­
able can be accessed without passing an atomic action. (E.g. X =a+ X is not a
guarded equation; it has many solutions: a +b, a +c,)

Some submodels (all satisfying the axioms of BPA) of G are of interest: Gfb,
built from finitely branching process graphs; IR, built from finite (but possibly
cycle-containing) graphs; and IF, built from finite and acyclic graphs. Also Gfb
has the property of providing unique solutions for systems of guarded recur­
sion equations. Without the condition of guardedness, there need not be solu­
tions. E.g. the equation

X=Xa+a

cannot be solved in Gfb. In the model IR of regular processes one can always
find unique solutions for guarded recursion equations provided they are linear,
that is, the expressions (terms) in the equations may only be built by sum and
a restricted form of product called prefix multiplication a·s ('a' an atom, s a

7

general expression) which excludes products of recursion variables as in
Table 1. For a complete proof system for regular processes, see [11].

EXAMPLE

{X=aX +bY, Y=cX +dY}

is a linear system;

{X=aXX+bY, Y=cX +dYXY}

is not.

The model IR contains the finite-state processes; hence the notation 1R for 'reg­
ular' as in formal language theory. Finally, IF contains only finite processes and
is in fact isomorphic to the term model T.

Some systems of recursion equations should be taken as equivalent. Clearly,
X=aX and X=aaX specify the same process in G. Less clearly, the two sys­
tems

E 1 ={X=a+bYX, Y=c+dXY}

E2 ={X=a+bU, U=cX+dZX, Y=c+dZ, Z=aY+bUY}

are equivalent in this sense: E 1 specifies the process graph in Figure 3a above,
and £ 2 specifies the graph in Figure 3b. Moreover, as we already saw, these
two graphs are bisimilar. So E 1 and E 2 denote the same process in G. So the
question arises: ls equivalence of recursion equations over BPA, relative to the
graph model G, decidable? At the moment this question is wide open. There is
an interesting connection here with contextjree languages, as follows.

A guarded system of recursion equations over BPA corresponds in an obvi­
ous way (for details see [2]) to a context-free grammar (CFG) in Greibach
Normal Form, and vice versa. Hence each context-free language (CFL) can be
obtained as the set of finite traces of a process in G denoted by a system of
guarded recursion equations. (A finite trace is the word obtained by following
a path from the root to a termination node.) In fact, to generate a CFL it is
sufficient to look at certain restricted systems of recursion equations called
'normed'. A system is normed if in every state (of the corresponding process)
there is a possibility to terminate. E.g. X=aX is not normed, but X=b +aX
is. There is a simple syntactical check to determine whether a system is
normed or not. Clearly, the property 'normed' also pertains to process graphs.
In [2] it is proved that the equivalence problem stated above is solvable for
such normed systems. This is rather surprising in view of the well-known fact
that the equality problem for CFLs is unsolvable. The point is that the process
semantics in G of a CFG bears much more information than the trace set
semantics, which is an abstraction from the process semantics.

The link with deterministic context-free languages resides in the following
observation from [2]:

8

THEOREM 2.1. Let g,hEG be two normed and deterministic process graphs. Then
g~h if! g and h have the same sets of finite traces.

Here a graph is 'detenninistic' if two arrows leaving the same node always
have different label. The CFL (i.e. the set of finite traces) determined by a
normed and deterministic graph, corresponding to a system of guarded recur­
sion equations in BPA, is known as a simple CFL; the simple CFLs form a
proper subclass of the deterministic CFLs.

Summarizing, we can state that BPA and its graph model obtained via the
concept of bisimulation provide a new angle on some problems in the theory
of formal languages, concerned with context-free languages. Here we think
especially of deterministic context-free languages (DCFLs), obtained by deter­
ministic push-down automata, with the well-known open problem whether the
equality problem for DCFLs is solvable. Thus, even in the absence of the
many operators for parallellism, abstraction etc. which are still to be intro­
duced below, we have in BPA and its models an interesting theory with poten­
tial implications for the DCFL problem.

3. DEADLOCK

After the excursion to semantics in the preceding section we return to the
development of more syntax for processes. A vital element in the present set­
up of process algebra is the process o, signifying 'deadlock'. The process ab
performs its two steps and then terminates, succesfully; but the process aM
deadlocks after the a- and b-action: it wants to do a proper (i.e. non-o) action
but it cannot. So 8 is the acknowledgement of stagnation. With this in mind,
the axioms to which o is subject, may be clear:

DEADLOCK
o+x=x
o·x=o

TABLE 3

The axiom system of BPA (Table 1) together with the present axioms for o is
called BPAo. We are now in a position to motivate the absence in BPA of the
'other' distributive law: z(x +y)=zx +zy. For, suppose it would be added.
Then ab=a(b+o)=ab+ao. This means that a process with deadlock possibil­
ity is equal to one without, conflicting with our intention to model also
deadlock behaviour of processes.

The essential role of the new process o will only be fully appreciated after
the introduction of communication, below.

9

4. THE MERGE OPERATOR

If x,y are processes, their 'parallel composition' x llv is the process that first
chooses whether to do a step in x or in y, and proceeds as the parallel compo­
sition of the remainders of x,y. In other words, the steps of x,y are interleaved
or merged. Using an auxiliary operator lL (with the interpretation that x lly is
like x lly but with the commitment of choosing the initial step from x) the
operation II can be succinctly defined by the axioms:

FREE MERGE

xllv =xlly +yllx
axlly=a(xllv)

aiLy=ay
(x +y)llz =x ILz + yllz

TABLE 4

The system of nine axioms consisting of BPA and the four axioms for merge
will be called PA. Moreover, if the axioms for 8 are added, the result will be
PA,,. The operators II and lL will also be called merge and leji-merge respec­
tively.

The merge operator corresponds to what in the theory of formal languages is
called shuffle. The shuffle of the words ab and cd is the set of words
{ abed, aebd, eabd, aedb, cadb, edab }. Merging the processes ab and ed yields
the process

ab l\cd = ab !Led+ edllab =a (bllcd) +e (dllab)

=a (b !Led +edllb) +c(dllab +ab ILd)

=a (bed +e(dllb)) + c(dab +a(b lid))

=a(bed+c(db +bd))+e(dab+a(bd +db)),

a process having as trace set the shuffle above.
An example of a process recursively defined in PA, is X=a(bllX). It turns

out that this process can already be defined in BPA, by the system of recursion
equations

{X=aYX, Y=b+aYY}.

To see that both ways of defining X yield the same process, one may 'unwind'
according to the given equations:

X=a(b llX)=a(blLX + XILb)=a(bX +a(bllX)ILb)

=a (bX +a ((b llX)llb))

=a(bX +a ...),

while on the other hand

10

X=aYX=a(b +aYY)X=a(bX +aYYX)=a(bX +a .. .).

So at least up to level 2 the processes are equal. By further unwinding they can
be proved equal up to each finite level.

Yet there are processes definable in PA but not in BPA. An example (from
[4]) of such a process is given by the recursion equation

X=OHOillX)+ lHl illX)
describing the process behaviour of a Bag (or multiset), in which arbitrarily
many instances of the data 0, 1 can be inserted (the actions oi, ii respectively)
or retrieved (Oj, lj), with the restriction that no more O's and l's can taken
from the Bag than were put in first. The difference with a Stack or a Queue is
that all order between incoming and outgoing O's and l's is lost. The process
graph corresponding to the process Bag is as in Figure 4.

We conclude this section on PA by mentioning the following fact (see [4]),
which is useful for establishing non-definability results:

THEOREM 4.1. Every process which is recursively defined in PA and has an
infinite trace, has an eventually periodic trace.

L1
li

0.1 Oi OJ.

1.1

li

FIGURE 4. Bag

11

5. COMMUNICATION

So far, the parallel composition or merge (II) did not involve communication in
the process x lly: one could say that x and y are 'freely' merged or interleaved.
However, some actions in one process may need an action in another process
for an actual execution, like the act of shaking hands requires simultaneous
acts of two persons. In fact, 'handshaking' is the paradigm for the type of
communication which we will introduce now. If A ={a,b,c, ... ,8} is the
action alphabet, let us adopt a binary communication function I :A X A ~A
satisfying the axioms in Table 5.

COMMUNICATION FUNCTION

ajb=bja
(ajb)Jc =aj(bjc)
8Ja=8

TABLE 5

Here a,b vary over A, including 8. We can now specify merge with communica­
tion ; we use the same notation II as for the 'free' merge in Section 4 since in
fact 'free' merge is an instance of merge with communication by choosing the
communication function trivial, i.e. ajb =8 for all a,b EA. There are now two
auxiliary operators, allowing a finite axiomatisation: left-merge (ll) as before
and I (communication merge or simply 'bar'), which is an extension of the com­
munication function in Table 5 to all processes, not only the atoms. The
axioms for II and its auxiliary operators are given in Table 6.

MERGE WITH COMMUNICATION

xlly =xlly +ylLx + x[y
ax lLy =a(xl[y)
a!Ly=ay
(x + y) !Lz = x ILz + y ILz
axjb=(ajb)x
ajbx=(ajb)x
axjby =(ajb)(xl[y)
(x +y)jz =xjz +yjz
xj(y+z)=x[y +xjz

TABLE 6

We also need the so-called encapsulation operators aH (for every HCA) for
removing unsuccessful attempts at communication:

12

ENCAPSULATION
aH(a)=a if a f!:.H
aH(a)=8 if a EH
aH(X + y)=aH(x)+ aH(V)
aH(xy) = aH(x)·aH(}')

TABLE 7

These axioms express that a H 'kills' all atoms mentioned in H, by replacing
them with o. The axioms for BPA, DEADLOCK together with the present
ones in Tables 5-7 constitute the axiom system ACP (Algebra of Communicat­
ing Processes). Typically, a system of communicating processes x i. ... , Xn is
now represented in ACP by the expression aH(x 1 11 • • · llxn). Prefixing the
encapsulation operator says that the system x 1, ••• , Xn is to be perceived as a
separate unit with respect to the communication actions mentioned in H; no
communications between actions in H with an environment are expected or
intended.

A useful theorem to break down such expressions is the Expansion Theorem
(first formulated by Milner, for the case of CCS; see [12]) which holds under
the assumption of the handshaking axiom x[ylz =8. This axiom says that all
communications are binary. (In fact we have to require associativity of 'II' first
- see Table 8.)

THEOREM 5.1 (EXPANSION THEOREM).

xiii··· llxk=~x;lL,\l+~(xdx1)lLXV
i i=/=j

Here Xik denotes the merge of x 1, ••• , xk except x;, and Xi1/ denotes the same
merge except x;,x1 (k~3). For instance, fork= 3:

x l[yllz =x lL(y llz) + y ll(x llx) + z ll(x llY)+(yiz)llx +(zlx)lly + (x[y)llz.

In order to prove the Expansion Theorem, one first proves by simultaneous
induction on term complexity that for all closed ACP-terms (i.e. ACP-terms
without free variables) the following axioms of standard concurrency hold:

13

AXIOMS OF STANDARD CONCURRENCY

(xlly)llz =x ll(y llz)
(x[y)[Lz =x\(yllz)
x[Y=y\x
xl~·=yllx
x\(y\z)=(xl>')\z
x ll(y llz) =(x l[y)llz

TABLE 8

As in Section 2 one can construct graph models G,G.fb,IR,IF for ACP; i~ these
models the axioms in Table 8 are valid. We will discuss the construction of
these models in Section 7. (It is however also possible to construct 'non­
standard' models of ACP in which these axioms do not hold. We will not be
interested in such pathological models.)

The defining power of ACP is strictly greater than that of PA. The follow­
ing is an example (from [4]) of a process U, recursively defined in ACP, but
not definable in PA: let the alphabet be { a,b,c,d, 8} and let the communication
function be given by c\c =a, d\d = b, and all other communications equal to 8.
Let H = { c,d}. Now we recursively define the process U as in Table 9:

U=aH(dcYllZ)
X=cXc+d
Y=dXY
Z=dXcZ

TABLE 9

Then, we claim, U=ba(ba 2)2(ba 3)2(ba 4)2 · · · . Indeed, using the axioms in
ACP and putting

Un =3H(dcn YllZ)

for n ;;..1, a straightforward computation shows that

U,, =ba"ba" +I U,, + 1.

By Theorem 4.1, U is not definable in PA, since the one infinite trace of U is
not eventually periodic.

We will often adopt a special format for the communication function, called
read-write communication. Let a finite set D of data d and a set { 1, ... ,p} of
ports be given. Then the alphabet consists of read actions ri(d) and write
actions wi(d), for i = l, p and d ED. The interpretation is: read datum d at
port i, write datum d at port i respectively. Furthermore, the alphabet con­
tains actions ci(d) for i = 1, p and dED, with interpretation: communicate

14

d at i. These actions will be called transactions. The only non-trivial commun­
ications (i.e. not resulting in 8) are: wi(d)I ri(d) = ci(d). Instead of wi(d) we
will also use the notation si(d) (send d along i). Note that read-write communi­
cation satisfies the handshaking axiom: all communications are binary.

EXAMPLE 5 .1.
Using the present read-write communication format we can write the recursion
equation for a Bag B 12 (cf. Section 4) which reads data dED at port I and
writes them at port 2 as follows:

B12 = ~rl(d)(w2(d)\IB12).
JED

6. ABSTRACTION

A fundamental issue in the design and specification of hierarchical (or modu­
larized) systems of communicating processes is abstraction. Without having an
abstraction mechanism enabling us to abstract from the inner workings of
modules to be composed to larger systems, specification of all but very small
systems would be virtually impossible. We will now extend the axiom system
ACP, obtained thus far, with such an abstraction mechanism.

Consider two Bags B 12, B 23 (cf. Example 5.1) with action alphabets
{rl(d),s2(d)idED} and {r2(d),s3(d)ldED}, respectively. That is, B12 is a
bag-like channel reading data d at port 1, sending them to port 2; B23 reads
data at 2 and sends them to 3. (That the channels are bags means that, unlike
the case of a queue, the order of incoming data is lost in the transmission.)
Suppose the bags are connected at port 2; so we adopt communications
s2(d)lr2(d)=c2(d) where c2(d) is the transaction of d at 2.

1 I 2 3

FIGURE 5. Transparent Bag 1B 13

The composite system IB 13 =3H(B 12 llB23) where H={s2(d),r2(d)JdED},
should, intuitively, be again a Bag between ports 1,3. However, from some
(rather involved) calculations we learn that

IB 13 = ~ r l(d)·(c2(d)·s 3(d))l\IB13).
JED

So IEB 13 is a 'transparent' Bag: the passage of d through 2 is visible as the tran­
saction event c2(d). (Note that this terminology conflicts with the usual one in
the area of computer networks, where a network is called transparent if the
internal structure is not visible.)

How can we abstract from such internal events, if we are only interested in
the external behaviour at 1,3? The first step to obtain such an abstraction is to
remove the distinctive identity of the actions to be abstracted, that is, to
rename them all into one designated action which we call, after Milner, -r: the

15

silent action. This renaming is realised by the abstraction operator Tf,

parameterized by a set of actions I <;;;;A and subject to the following axioms:

ABSTRACTION

TJ(T)=T
T1(a)=a if art:.!
T1(a)=T if at::!
TJ(X +y)=T1(X)+T1(y)
T1(xy) = T1(x)·T1(v)

TABLE 10

The second step is to attempt to devise axioms for the silent step T by means
of which T can be removed from expressions, as e.g. in the equation a Tb= ab.
However, it is not possible to remove all T 1 s in an expression if one is
interested in a faithful description of deadlock behaviour of processes (at least
in bisimulation semantics, the framework adopted in this paper). For, consider
the process (expression) a +To; this process can deadlock, namely if it chooses
to perform the silent action. Now, if one would propose naively the equations
TX = XT = x, then a+ TO = a+ o =a, and the latter process has no deadlock
possibility. It turns out that one of the proposed equations, XT = x, can be
safely adopted, but the other one is wrong. Fortunately, R. Milner has devised
some simple axioms which give a complete description of the properties of the
silent step (complete with respect to a certain semantical notion of process
equivalence called rTo-bisimulation, which does respect deadlock behaviour;
this notion is discussed below), as follows.

SILENT STEP
XT=X
TX =Tx +x
a(TX +y)=a(Tx + y)+ax

TABLE 11

To return to our ex.ample of the 'transparent' Bag IEB 13 , after abstraction of the
set of transactions I = { c 2(d)ld ED} the result is indeed an 'ordinary' Bag:

T1(813) = T1(~ r l(d)(c 2(d)·s 3(d)lllB13)) (*)
d.[)

= ~ r l(d)(T·s 3(d)llT1(IEB 13)) = 2: (r l(d)-T·s 3(d))lL T1(1EB 13)
d. D deD

= ~ (r l(d)·s 3(d))lL T1(B 13) = 2: r l(d)(s 3(d)lh(IIB 13))
dd) dcD

16

from which it follows that T1(IB13)=B 13 (**),the Bag defined by

B 13 = ~ r l(d)(s 3(d)llB 13).
dc=D

Here we were able to eliminate all silent actions, but this will not always be
the case. For instance, 'chaining' two Stacks instead of Bags as in Figure 5
yields a process with 'essential' 7'-steps. Likewise for a Bag followed by a
Stack. (Here 'essential' means: non-removable in bisimulation semantics.) In
fact, the computation above is not as straightforward as was suggested: to jus­
tify the equations marked with (*) and (**) we need additional proof princi­
ples. As to (**), this equation is justified by the Recursive Specification Princi­
ple (RSP) stating that a gu.arded system of recursion equations in which no
abstraction operator TJ appears, has a unique solution. We will not discuss the
justification of equation (*) here. The justification of a principle like RSP is
that it is valid in all 'sensible' models of our axioms; however note that for for­
mal computations one has to postulate such a principle explicitly.

Combining all the axioms presented above in Tables 1,3,4,5,6,7, 10.11 and a
few axioms specifying the interaction between T and communication merge j.
we have arrived at the system ACPn Algebra of Communicating Processes with
abstraction (see Table 12).

Actually, in spite of our restriction to specification of processes as stated in
the Introduction, the last computation concerned a very simple process
verification, showing that the combined system has the desired external
behaviour of a Bag. Abstraction, realized in ACPT by the abstraction operator
and the silent process T, clearly is of crucial importance for process
verification. But also for process specification abstraction is important. Let
f :N ~ { a,b} be a sequence of symbols a,b, and let PJ be the proces
f (O)f (1)f (2) .. ., that is, the unique solution of the infinite system of recur­
sion equations {Xn = j(n)·Xn+iln;;;o.O}. Now we have:

THEOREM 6.1. There is a computable function f such that process PJ is not
definable by a finite system of recursion equations in ACPT without abstraction
operator.

On the other hand, according to the Finite Specification Theorem 8.1, every
process PJ with computable f is definable by a finite system of recursion equa­
tions in full ACPT.

17

x +y =y+x
x +(}' +z)=(x +y)+z
x+x=x
(x +y)z =xz +yz
(xy)z =x(vz)
x +o=x
ox =o

alb =bia
(aib)lc =ai(bic)
ola =o

xl~· =xlly +yllx +xlv
allx =ax
axtv =a(xllv)
(x +y)llz =xllz +yllz
axlb =(aib)x
albx =(aib)x
axl~Y =(aih)(xlly)
(x +y)iz =xiz +yiz
xl(v +z)=x[y +x\z

3H(a)=a if art:.H
3H(a)=o if a EH
3u(x +y)=3H(x)+3H(v)
a u(xy) =a u(x)·a u(Y)

7. GRAPH MODELS FOR ACPT

Al xr=x TI
A2 rx+x=rx T2
A3 a(rx +y)=a(TX +y)+ax T3
A4
AS
A6
A7

Cl
C2
C3

CMl
CM2
CM3
CM4
CMS
CM6
CM7
CM8
CM9

DI
D2
03
04

rllx =rx
rxlly =r(xlly)
rlx =8
xir=o
rxl}' =x[Y
x!TY =x~·

3H('T)='T
'TJ (T)=r
T 1(a)=a if ael
T 1(a)=r if a El
T1(x +y)=T1(x)+r1(v)
T 1 (xy) = r(x)·r1 (v)

TABLE 12

TMI
TM2
TCl
TC2
TC3
TC4

DT
TII
TI2
TB
TI4
TIS

We will now construct graph models for ACPn in analogy with the construc­
tion of these models for BPA in Section 2. Again we start with a domain of at
most countably branching process graphs G, the only difference being that
arrows may now also bear label r and o. (By abuse of language we use the
same notation G.) Next, we define on G in addition to +, · OP,erations II, IL
',,Ti, aH corresponding to the syntactic operations II, lL, 1, 'T[, a H. We will only
discuss the definition of the first operation II. Let ab and cd be two process
graphs as in Figure 6, and suppose there are communications aid= J and
b \c = k, all other communications being trivial (i.e. resulting in o). Then abllcd
is the process graph indicated in Figure 6, a cartesian product with diagonal
edges for the successful communications.

18

a b

h: gllh:
a

c c

d d

0
b

FIGURE 6

We now have a structure §=G(+,-,ll,ll_,j,1),aH,T,~,a,b,c, ...), which is not
yet a model of ACP.,. but becomes so after dividing out the congruence n8-
bisimilarity (notation: e,.,.8), a generalization of the 'ordinary' bisimilarity e
of Section 2. Here we say that ge,.,.8h if there is a relation between the nodes
of g and the nodes of h such that (I) the roots are related; (2) a non-root node
is only related to non-root nodes; (3) if nodes s,t in g,h respectively are related
and there is in g an a-step from s to some s', then there is in g a path
TTT • • · 'T'arT · · · r (i.e. zero or more r-steps followed by an a-step followed by
zero or more 7'-steps) from t to some t' such that s' and t' are again related;
(4) as (3) with the roles of g,h interchanged. (See for an example of such a
n8-bisimulation Figure 7.) Again, this equivalence is a congruence on § and
putting G=§/'t:!,.,.8 we have a model for ACP.,., in which all systems of
guarded recursion equations have a solution, and even a unique solution if
abstraction operators are absent from the system.

As before in Section 2, G has submodels R,IF (regular and finite processes,
respectively). Remarkably, as observed in [l], there is no model Gfb based on
all finitely branching graphs now. (For ACP such a model does exist.) The rea­
son is that there is no structure §Jb, since Gfb is not closed under the opera­
tions II, ll, j, r 1• The auxiliary operator I is the culprit here.

19

FIGURE 7. Example of rTo-bisimulation: nodes of the same colour are
related

8. THE FINITE SPECIFICATION THEOREM

ACPr is a powerful specification mechanism; in a sense it is a universal
specification mechanism: every finitely branching, computable process in the
graph model G can be finitely specified in ACPr. (We use the word
'specification' for 'system of recursion equations'.) We have to be more precise
about the notion of 'computable process'. First, an intuitive explanation: sup­
pose a finitely branching process graph g EG is 'actually' given; the labels may
include T, and there may be even infinite T-traces. That g is 'actually' given
means that the process graph g must be 'computable': g can be described by
some coding of the nodes in natural numbers and recursive functions giving
in-degree, out-degree, edge-labels, etc. This notion of a computable process
graph is rather obvious, and we will not give details of the definition here.

Now even if the computable graph g is an infinite process graph, it can trivi­
ally be specified by an infinite computable specification, as follows. First
rename all T-edges in g to t-edges, for a 'fresh' atom t. Call the resulting pro­
cess graph: g1• Next assign to each node s of g1 a recursion variable Xs and
write down the recursion equation for Xs according to the outgoing edges of
node s. Let X," be the variable corresponding to the root s0 of g1 • As g is com­
putable, g1 is computable and the resulting 'direct' specification

E = {Xs = T,(X)isENODES(g1)}

is evidently also computable (i.e.: the nodes can be numbered as Sn (n ;;:.O), and
after coding the sequence en of codes of equations En :X,, = Ts, (X) is a

20

co_mputab~e ~equence). Now the infinite specification which uniquely deter­
mines g, is simply: { Y = T{q(X:,0)} UE. In fact all specifications below will
have the form {X = r1(Xo), Xn = Tn(X)ln:;;:.O} where the guarded expressions
Tn(X) (= T11(X; 1 , ••• ,X;J) contain no abstraction operators TJ. They may
contain all other process operators. We will say that such specifications have
restricted abstraction.

However, we want more than a computable infinite specification with res­
tricted abstraction: to describe process graph g we would like to find a finite
specification with restricted abstraction for g. Indeed this is possible:

THEOREM 8. l (FINITE SPECIFICATION THEOREM). Let the finite(y branching and
computable process graph g determine g in the graph model G of ACP,. Then
there is a finite specification with restricted abstraction E in ACP, such that
[E] =g. Here[£] is the solution of E in G.

The proof in [1] is by constructing a Turing machine in ACP,; the 'tape' is
obtained by glueing together two Stacks as defined in Table 2. There does not
seem to be an essential difficulty in removing the condition 'finitely branching'
in the theorem, in favour of 'at most countably branching'.

9. CONCLUDING REMARKS

Even though the Finite Specification Theorem declares the set of operators of
ACP, to be sufficient for all specifications, in practice one will need more
operators to make specifications not only theoretically but also practically pos­
sible. Therefore some additional operators have been defined and studied in
the present branch of process algebra, notably an operator by means of which
different priorities can be given to different atomic actions. and a state opera­
tor taking into account information from a suitable state space. Using priori­
ties imposed on atomic actions enables us to model interrupts in a system of
communicating processes; the state operator has turned out to be indispens­
able in the construction of process algebra semantics for some object-oriented
programming languages. For these developments we refer to [6]. Lately, some
thorough studies have been made about extending ACP, with some new con­
stants: t: for the empty process and 11 for an alternative to the silent step T

([16,3]). The typical equation here is T = 'I'/ + L

A substantial amount of effort has been invested in extending ACP1 to a
suitable framework also for process verification, which was barely discussed in
the present paper. Process verifications have been realized now for several
non-trivial protocols ([14,9]), and recently also for some systolic algorithms
([10, 15]) for tasks like palindrome recognition, matrix-vector multiplication.
Some positive experience was also obtained using process algebra for the
specification and verification of a simple production control system for a
configuration of workcells.

Finally we mention that bisimulation semantics, as adopted in the present
paper, is by no means the only process semantics. It is possible to identify

21

many processes which are different in bisimulation semantics while still retain­
ing an adequate description of relevant aspects such as deadlock behaviour,
leading for instance to readiness semantics or failure semantics, embodying
different views on processes. For a study in this area we refer to [7]. For an
investigation of models of ACP1 based on Petri Nets, see [8].

REFERENCES
I. J.C.M. BAETEN, J.A. BERGSTRA, J.W. KLOP (1987). On the consistency of

Koomen's Fair Abstraction Rule. TCS 51 (112), 129-176.
2. J.C.M. BAETEN, J.A. BERGSTRA, J.W. KLOP (1987). Decidability of

bisimulation equivalence for processes generating context-free languages.
J.W. DE BAK.KER, A.J. NUMAN, P.C. TRELEAVEN (eds.). Proceedings of the
PARLE Conference, Eindhoven 1987, Vol. II, Springer LNCS 259, 94-113.

3. J.C.M. BAETEN, R.J. VAN GLABBEEK (1987). Abstraction and Empty Pro­
cess in Process Algebra, CWI Report CS-R8721, Centre for Mathematics
and Computer Science, Amsterdam.

4. J.A. BERGSTRA, J.W. KLOP (1984). The algebra of recursively defined
processes and the algebra of regular processes. J. PAREDAENS (ed.). Proc.
llth lCALP, Antwerpen 1984, Springer LNCS 172, 82-95.

5. J.A. BERGSTRA, J.W. KLoP (1986). Algebra of communicating processes.
J.W. DE BAK.KER, M. HAZEWINKEL, J.K. LENSTRA (eds.). CWI Monograph
I, Proceedings of the CWI Symposium Mathematics and Computer Science,
North-Holland, Amsterdam, 89-138.

6. J.A. BERGSTRA, J.W. KLoP (1986). Process algebra: specification and
verification in bisimulation semantics. M. HAZEWINKEL, J.K. LENSTRA,
L.G.L.T. MEERTENS (eds.). CW! Monograph 4, Proceedings of the CW!
Symposium Mathematics and Computer Science II, North-Holland, Amster­
dam, 61-94.

7. J.A. BERGSTRA, J.W. KLOP, E.-R. 0LDEROG (1987). Failures without
chaos: a new process semantics for fair abstraction. M. WIRSHING (ed.).
Proceedings IFIP Conference on Formal Description of Programming Con­
cepts, Gl. Avernaes 1986, North-Holland, Amsterdam, 77-103.

8. R.J. VAN GLABBEEK, F.W. VAANDRAGER (1987). Petri net models for
algebraic theories of concurrency. J.W. DE BAKKER, A.J. NUMAN, P.C.
TRELEAVEN (eds.). Proc. PARLE Conference, Eindhoven 1987, Vol. II,
Springer LNCS 259, 224-242.

9. C.P.J. KOYMANS, J.C. MULDER (1986). A Modular Approach to Protocol
Verification using Process Algebra, Logic Group Preprint Series Nr.6,
Dept. of Philosophy, State University of Utrecht.

10. L. KOSSEN, W.P.WEIJLAND (1987). Correctness Proofs for Systolic Algo­
rithms: Palindromes and Sorting, Report FVI 87-04, Computer Science
Department, University of Amsterdam.

11. S. MAUW (1987). A Constructive Version of the Approximation Induction
Principle, Report FVI 87-09, Computer Science Department, University of

22

Amsterdam.
12. R. MILNER (1980). A Calculus of Communicating Systems, Springer LNCS

92.
13. D. PARK (1981). Concurrency and automata on infinite sequences. Proc.

Sth GJ Conference, Springer LNCS 104.
14. F.W. VAANDRAGER (l 986). Verification of Two Communication Protocols

~Y' Means l?{ Process Algebra, CWI Report CS-R8608, Centre for
Mathematics and Computer Science, Amsterdam.

15. W.P.WEIJLAND (l 987). A Systolic Algorithm for Matrix-Vector Multiplica­
tion, Report FYI 87-08, Computer Science Department, University of
Amsterdam.

16. J.L.M. VRANCKEN (1986). The Algebra of Communicating Processes with
Empty Process, Report FVI 86-01, Computer Science Department, Univer­
sity of Amsterdam.

23

