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1. Equations in rational integers. Let F(X, Y) be an irreducible binary 
form of degree n ;;::: 3 with coefficients in Z (the ring of rational integers) and 
m a non-zero rational integer. In 1968, Baker [1] gave an explicit upper 
bound for all the solutions of the Thue equation 

(1) F(x, y) = m in x, yEZ 

which depends only on m, n and the height H (F) of F (i.e. the maximal 
absolute value of the coefficients of F). Here the irreducibility of F can be 
replaced by the weaker assumption that OJ (F) ;;::: 3 where ro (F) denotes the 
maximal number of pairwise non-proportional linear factors of F in its 
factorisation over C (see e.g. [10] or [20]). 

After Baker had proved the effective version of Thue's theorem on 
equation (1), Coates [3], [4] showed that the dependence on m can be 
replaced by dependence on the distinct prime divisors of m. He proved that if 
FeZ[X, Y] is an irreducible binary form of degree n ~ 3 and if p1 , ••• , Ps 
are distinct prime numbers, then all solutions of the Thue--Mahler equation 

(2) F ( ) v1 Vs 
x, Y = P1 .. ·Ps in 

with (x, y) = 1 and v1 ~ 0, ... , vs ;;::: 0, in absolute values are less than 
a bound depending only on n, H(F), s and maxp;. As a consequence, he 

i 

established an explicit lower bound for the greatest prime factor P(F(x, y)) 
of F(x, y) in terms of f!l' = max(Jxl, IYI). These estimates of Coates have been 
improved and generalised by others (for references see [2], [10], [21], [14], 
[20]). In 1977, Shorey,· van der Poorten, Tijdeman and Schinzel [19] proved 
that if FEZ[X, Y] is any binary form with ro(F) ~ 3 then for all pairs x, y 
with (x, y) = 1 and F (x, y) =f:. 0, 

* The research was partly done at the University of Leiden in the academic year 1983/1984. 
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(3) P(P(x, y)) > C1 loglog(:1t"+2) 

where C 1 is an effectively computable positive number depending only on F. 
Shorey and Tijdeman [20, Corollary 7.1] derived an effective upper 

bound for the solutions of the equation 

(4) P(x, y) = G(x, y) in x, yeZ with P(x, y) i= 0 

where F, G are binary forms with rational integral coefficients such that 
deg P >deg G and w(P) ~ 3. Since a binary form may be a constant, 
equation (4) is more general than equation (1). Further it follows from the 
arguments of their proof that if F, GeZ[X, Y] are relatively prime binary 
forms with (l)(F) ~ 3. then 

P( P(x, y) ) "' . l 
(P (x, y), G (x, y)) .....,. oo, euect1ve y, 

when f!f.....,. oo subject to (x, y) = 1. 
In this paper we shall give various further generalisations some of which 

in a quantitative form. For any rational number a, let P(a) denote the 
maximum of the greatest prime factors of the numerator and denominator of 
a (in its reduced form), but P(O) = P(l) = P( -1) = 1. 

THEOREM 1. Let P, GeZ[X, Y] be relatively prime binary forms. Let x 
and y be rational integers with (x, y) = 1 and G (x, y) i= 0. rf w (PG) ~ 3, then 

( P(x, y)) 
P G(x,y) >C2 loglog(¥+2). 

If w(P) ~ 3, then 

( F(x, y) ) 
P ( G ( )) > C 3 log log ( .'¥' + 2). F(x, y), x, y 

Here .51' = max(lxl, jyl) and C2 , C3 are effectively computable positive numbers 
depending only on the (constant and non-constant) irreducible factors of PG in 
Z[X, Y]. 

The second part of Theorem 1 has the following immediate consequence. 

COROLLARY 1. Let F, GE Z [X, Y] be relatively prime binary forms such 
that w(F) ~ 3. Let {p1 , ... , p1 ) be d set of prime numbers. Let 
x, y, z, k1 , ... , k1 be rational integers with 

zP (x, y) = G (x, y) p~1 ••• p~1 , 

(x, y) = 1, G(x, y) i= 0, (z, P1 .. ·Pr)= 1. 

Then max(lxl, lyl, lz/, /ki/, ... , /k,/) is bounded by an effectively computable 
number depending only on the primes p1 , •.. , p, and the (constant and non­
constant) irreducible factors of PG in Z [X, Y]. 
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This is an improvement of Theorem 7 .3 of Shorey and Tijdeman [20]. 

In the next corollaries the restrictions concerning F and G are further 
relaxed. 

COROLLARY 2. Let F, GE Z [X, Y] be relatively prime non-zero binarv 
j(1rms. Suppose that F is not a constant multiple of a power of a linear or a~ 
indefinite quadratic form. If x, y are rational integers such that 

F(x, y)IG(x, y), G(x, y) =P 0, (x, y) = 1 

then max (lxl, lyl) is bounded by an effectively computable number which 
depends onf.1· on the degrees and heiphts of' F and G. 

COROLLARY 3. Let F,GEZ[X, Y] be binaryjbrms which satisfy the 
conditions of Corollary 2 and also deg F >deg G. Then all pairs of rational 
integers x, y with 

F(x, y)IG(x, y), G(x, y) =P 0, 

are such that max(lxl, lyl) is bounded by an effectively computable number 
which depends only on the degrees and heights of F and G. 

Corollary 3 implies the result of Shorey and Tijdeman on equation (4). 

COROLLARY 4. Let F, GEZ[X, Y] be distinct non-zero binary forms. 
Suppose that F/G is not a constant multiple of a (positive or negative) power of 
a linear or an indefinite quadratic form. If x, y are rational integers such that 

(5) F(x, y) = G(x, y), (x, y) = 1, 

then max (lxl, lyl) · is bounded by an effectively computable number which 

depends only on the degrees and heights of F and G. 

Theorem 2 gives an upper bound for the magnitude of the solutions of 

(5) and Theorem 3 implies an upper bound for the number of solutions of (5) 

both of which depend only on the irreducible factors of FG in Z [X, Y]. In 

order to formulate these theorems we need some further notation. Let dll be 

an integral domain of characteristic 0 with quotient field K and let 

be binary forms. Then the resultant R (F, G) of F and G is defined as follows: 

R(F, G) = {:o 
bg 

if p = q = 1, 

if p = 0, q > 0, 

if p > 0, q = 0; 



where in the determinant the first q rows contain the coefficients of F and 
the other p rows the coefficients of G. The forms F and G have a non­
constant common factor in K [ X, Y] if and only if R ( F, G) = 0. 

Let F1' ... ,F,, G1 , ••. ,GsEZ[X, Y] be non-zero binary forms with 
coefficients having absolute values at most H ( ~ 2). Suppose that for 
i = 1, ... ,rand j = 1, ... , s the forms F;, Gj have no non-constant common 
divisor in Z[X, Y]. Let L denote the splitting field of F 1 •.• F,G1 .•. G5 and 
l, RL, hL the degree, regulator and class number of L, respectively. Let t be 
the number of distinct prime factors of 

0 R(F;, Gj) 
1 ~i~r 
l~J~s 

and let P denote the greatest of these prime factors (with the convention that 
P = 2 if t = 0). Finally, we define sets of binary forms .?, '/J by 

r 

§ = :F: F(X, Y) = n F;(X, Y)"i for certain U1, ... , U,EN}, 
i= 1 

s 

'{j = :c: G(X, Y) = n G;(X, Yti for certain V1, ... , VsE N). 
i= 1 

Here ;'\/ denotes the set of positive rational integers. 

THEOREM 2. Let n be the degree of F 1 ••• F,G 1 ••. G8 • Suppose 

w(F 1 ••• F,G 1 .•• Gs) ~ 3, 

~l x, y are rational integers with 

(5) F(x, y) = G(x, y), (x, y) = 1, 

for some FE .?, G E <§, then 

(6) max (Jxl, JyJ) < exp ~(r + s) n4 (( C4 (t + 1) log P)1+ 1 Pr5 log HJ 

where c .. and C 5 are effectively computable positive numbers such that C4 

depends only on I, R1 and hi> and C5 depends only on l. 



Equal value~ of binary forms at integral points 383 

Note that the bound in the theorem depends only of F1' .. . , F,, 
G 1 •.•• , Gs. If F and G have a common factor, then it can be divided out. 
Any common factor of F and G is a binary form which yields only finitely 
many new solutions of (5). In the special case r = 1, 

Gj(X, Y) = pj for j = 1, ... , s, 

where p1 , .•. , Ps are distinct prime numbers, Theorem 2 gives an upper 
bound for the solutions of the Thue-Mahler equation (2) for binary forms 
Fr::: Z[X, Y] with w(F) ~ 3. For this case Gyory (cf. [9], Corollary 1) has 
proved the same estimate, but with completely explicit values of C4 and C5 • 

We call elements a 1 , •.. , ak of a field K multiplicatively independent in K 

if a 1 a 2 ..• a" # 0 and if the only rational integers 11 , ... , lk for which a~1 •.• a~ 
= 1 are 11 = ... = lk = 0. The following consequence of Theorem 2 relates 
multiplicative independence of binary forms to multiplicative independence of 
the values of these forms. 

COROLLARY 5. Let Fi(X, Y), .. ., F,(X, Y)EZ[X, Y] be binary forms 
such that F 1 , .• ., F,, P/Q are multiplicatively independent in Q(X, Y) for all 
relatively prime binary forms P,Q in Z[X, Y] with w(PQ)E'.1,2]. Then 
there exists an effectively computable number C6 depending only on F1 , •• ., F, 
such that F 1 (x, y), .. ., F,(x, y) are multiplicatively independent in Q for all 
rational integers x, y with (x, y) = 1 and max (lxl, IYD > C6 . 

For binary forms FEZ [X, Y] with w(F) ~ 3, Evertse [6] and Evertse 

and Gyory [7] derived the upper bounds 2 x r 3<2s+ 3 ) and 4 x 71<2s+ 3\ 

respectively, for the number of solutions of (2). Here n = deg(F) and I is the 
degree of the splitting field of F. (Thus 1 ::::; 1::::; n!.) We shall generalise 
Evertse's result to the more general equation (5). 

THEOREM 3. Ler .F,'t/, F 1, .. ., F,, G1, .. ., G, and t be as above. Let n be 
rlu.> deyree of' F 1 ... F,G 1 •.• G,. Suppose (!)(F 1 ... F,G 1 ... GJ ~ 3. Then the 
number of pairs x, yEZ for which (5) holds for some FeF, GE~ is at most 
2 x r3(2r + 3)_ 

This bound can be compared with the estimate (6) obtained for the 
solutions themselves. Note that the upper bound in Theorem 3 is indepen­
dent of r, s, P, H and L. 

For results on exponential diophantine equations 

Axm+By"' = Cx"+Dy", 

see Shorey and Tijdeman [20, Chapters 2 and 7]. 

2. Equations in integers from an algebraic number field. We shall prove 
Theorems 1, 2, 3 in the more general situation when the coefficients of the 
binary forms and the unknowns of the equations assume their values in the 
ring of integers of any given algebraic number field K. We shall refer to the 
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general situation as the relative case, and to the case K = Q which was 
considered in Section 1 as the ahsolute case. 

In the sequel we shall use the following notation. If r:x is an algebraic 
number, then Iii will denote the size of r:x, i.e. the maximum of the absolute 
values of the conjugates of x. Iff(X 1 , ..• , X,) is a polynomial with algebraic 
coefficients then we denote by 171 the maximum of the sizes of the coefficients 
of .f The ring of integers of the algebraic number field K is denoted by (r,K 

and the group of units of (1K by UK. For x.yr=(IK we define 

:Ydx, y) = inf max(li::xl, lcYl).(1) 
""UK 

If Ct 1 ••••• xkr=K then the ideal (i.e. cTK-module) generated by r:x 1, ... , xk is 
denoted by ':x 1 , •.. , xk)K. In .1"dx, y) and /:x 1 , ... , :xk)K we suppress the 
subscript K if no confusion can arise. If a is an jdeal in K then we shall 
denote the norm of a over Q by N (a). If a =I= <O), 11 ), then we define P (a) 
as the maximum of the norms of the prime ideals occurring in the prime 
ideal decomposition of !'L while if n = O' or n = /1 \ then we put P( o) = 1. 
If a = < r:x) with some r:x EK, then we shall often write P (r:x) instead of P (<a)). 

Before stating our results in this section, we remark that Coates' result 
[3], [4] mentioned in Section 1 was partially extended by Kotov [16] to the 
relative case as follows. Let K be an algebraic number field, let FE ('K [X, Y] 
be an irreducible binary form of degree at least 5 and let n 1 , ••• , n., be non­
zero non-unit elements of l!K. Then all solutions of the equation 

7 F ) VJ "s ( ) (x, y = n 1 ... 7r8 Ill X, }' F (I K, V1, ... , V, E Z 

with N ( x, y \) ~ N 0 , i· 1 ~ 0, .... v, ~ 0 

(where N 0 ~ 1) satisfy max (M. [Yl) < C 7 where C 7 is an effectively compu­
table number depending only on K, F, n: 1 , .. ., n:s, N 0 • Kotov also proved 
that for x, YE (!K with N(<x, y)) ~ N 0 , 

(8) P(F(x, _rl) ~ C8 loglog(.1'"+2) with . r· = max(INK;Q(x)I. INK;Q(Yll). 

Later Gyory [8], [9] generalised Kotov's results to the case that 
FE l7dX, Y] is any binary form with w(F) ~ 3. Moreover, he proved that 
(8) can be replaced by 

(9) P(F (x, y)) ~ C9 log log(.:r(x, y) + 2). 

(1) For IX E K, let IX01, ••• , :<1d1 denote the conjugates of o: relative to K/ Q, where d = [ K: Q]. 
For x,yECi;. Jet Hi;(x,y) be the maximum of the absolute values of the coefficients of the 

d 

binary form 11 (yi0 X-xu1Y). Then there are computable positive numbers c;,;, cl(, depending 
i= 1. 

only on K, such that c1' HK (x, y) ~ ::rK (x, y)d ~ cl( HK (x, y). 
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Here C 8 and C9 are effectively computable positive constants depending only 
on K, F and No. Inequality (9) is an improvement of (8) since for x, ye ( K 

both 

.1"(x, y) ~ '.max(INKJQ(x)I, INKJQ(y)l)) 11fKQJ 

and (when UK is infinite) 

sup .f(x, y) = x. 
x,yEVK 

Further, (9) is a generalisation of (3) to the relative case. For related results. 
see SprindZlik [21], Gyory [9], [13], [14] and Shorey and Tijdeman [20]. 

Let F 1 , .•• , Fn G1, ... , Gs be non-zero binary forms in l' ,dX, Y] such 
that F;, G.i have no common non-constant divisors in K [X, Y] for I ~ i ~ r, 
l~j~s, that the form F 1 ••• F,G 1 .•. Gs has degree n and that 
co(F 1 .•. F,G 1 ..• Gs)~3. Let 

H = max(2, IFJ, ... ,IF, f, fG1!, ... , IGsf). 

Denote by L the·splitting field of F 1 .•. F" G 1 ... G, over K and let I, R1,, h1. be 
the degree, regulator and class number of L, respectively. Let :q11 ... ., Llu: be 
a (possibly empty) set of distinct prime ideals. Further, suppose that the 
number of distinct prime ideals which belong to the set \ q1, •.• , Llu: or divide 
the ideal TI ( R ( F;, G j)) is equal to t and let P be the maximum of the norms 

i,j 

of these prime ideals (with the convention that P = 2 if t = 0.) 
Finally, let N 0 ~ 2 and 

.F = :F(X, Y): F(X, Y) = rl F;(X, Y)k; for certain ki. ... , k,EN], 
i= 1 

s 

'!f = :a(X, Y): G(X, Y) = TI Gj(X, Y)1j for certain Ii, ... , l,E N~. 
j= 1 

THEOREM 4. Suppose that x, yE (l_K are not both ::ero and satisj}• 

( 10) 
( F ( X, Y) ) ( G ( X, Y)) "1 Vu 

( >dcgF = -( )degG ql · · · qu ' x,y x,y 
N((x,y))~No 

.fc>r some FE .F, GE '.l}, v1 , ... , vu E Z. Then 

( )r+l )ell 1 
(11) :l"dx, y) <exp '(r+s)n4 (C 10 (t+l)logP P log(NoH), 

where C 10 , C 11 • are effectively computable positive numbers such that C10 

depends on 1, RL, hL and C 11 depends only on L. 
In (10) we considered expressions with powers of 'x,y' in the denomi­

nator to provide a convenient generalisation of equation (5) in Theorem 2 in 
which the variables x, YE z satislled the condition (x, y) = 1. Note that 
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Theorem 2 follows at once from Theorem 4 by taking K = Q, u = 0, N 0 = 1. 
The condition N(('<, y)) ~ N 0 is necessary, since if x, YE (r'K satisfy (10) then 
so do ax, ay for each a E (i_K with a ¥ 0. We remark that from Theorem 4 we 
can deduce a new version of Gyory's theorem on (7) in [9] with another 
bound. 

From Theorem 4 we shall deduce the following generalisation of The-
orem 1. 

THEOREM 5. Let FE .'7, GE Cfi. Let x, y be elements of CK with 
G(x, y)-:/; 0 and N((:'<, y)) ~No. 

If w (FG) :;;::: 3 then 

(12) P (F(x, y)). > C12 log log(J"(x, y)+ 2). 
G(x, y) 

If w(F):;;::: 3 then 

(13) P > C 13loglog(.:nx, y)+2). ( <F(x,y)) ) 
<F(x, y), G(x, y)) 

Here C 12 and C 13 are effectively computable positive numbers depending only 
on K, F1 , .. ., F,, G1, •• ., Gs and N 0 . 

Theorem 1 follows at once from Theorem 5 with K = Q, N 0 = 1 and 
F 1' .. ., F, and G1 , .. ., G, being the (constant and non-constant) irreducible 
factors of F and G, respectively, in Z[X, Y]. If FE (1 K [X, Y] is a binary 
form with w(F):;;::: 3, then (13) yields (9). 

Evertse [5], [6] and later Evertse and Gyory [7] derived their upper 
bounds for the number of solutions of (2) mentioned in Section 1 also in the 
relative case. We shall now give a generalisation of Theorem 3 to the relative 
case. If x,yEK satisfy (10) for some FE.F, GE'IJ, Vi, ... , VuEZ then so do 
ClX. :xy for all 'X EK\ ~ 0 ~. Therefore it is natural to consider the set of points 
on the projective line P 1 (K) of which the homogeneous coordinates (x: y) 
satisfy ( 10) instead of considering the set of solutions of (10) itself. We shall 
say that a projective point satisfies (10) if its homogeneous coordinates (x:y) 
satisfy (10). In Theorem 6 we use the same notation as in Theorems 4, 5. 
Moreover, let d =di +2d2 be the degree of K, where d1 is the number of real 
and 2d2 the number of complex conjugates of K. 

TiiEOREM 6. The number of points on P 1 (K) which satisfy (10) for some 
FE .?, G E Cfi, v 1 , .•. , 011 E Z is at most 

7,.3(d+2(d 1 +dz+t)). 

Theorem 3 follows immediately from Theorem 6 on using that for each 
point on P1 ( Q) there are exactly two possible choices for the homogeneous 
coordinates (x: y) such that x, y E Z and (x, y) = 1. 

We shall prove Theorems 4 and 6 by reducing (10) to an appropriate 
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Thue-Mahler equation. To this Thue-Mahler equation we shall apply cer­

tain results of Gyory [11] and Evertse [6]. We note that Gyory derived his 

result by applying Baker's method concerning linear forms in logarithms of 

algebraic numbers, while Evertse proved his result by applying a method of 

Thue and Siegel. 

3. Proofs of Theorems 1, 2, 4 and S and their corollaries. In Lemma 1 we 

state some properties of resultants of binary forms which will be used 

throughout the paper. We define the degree of the binary form which is 

identically zero to be - 1. 

LEMMA 1. Let .1.# be an integral domain of characteristic 0. 

(i) Let F, GE 211 [X, Y] be binary forms of degrees p ;;:,:: 0, q ): 0, respect­

ively. Then for each binary form Q E ,qQ [X, Y] of degree p + q- 1 there exist 

hi nary forms AQ, BQ E .~ [ X, Y] such that 

(14) 

(ii) Let Fi. F 2 , GE&[X, lCJ be binary forms of degrees ): 0. Then 

(15) 
R(F1 F 2 , G) = R(F1 , G) R(F 2, G), 

R ( G, F 1 F 2) = R ( G, Fi) R ( G, F 2) . 

Proof. (i) We shall prove that (14) holds with Aa, Ba having degrees at 

most q-1, p-1, respectively. Consider the coefficients of AQ, BQ as p+q 

unknowns. By equating the coefficients of the polynomials on the left and 

right hand side of (14), we obtain a system of p+q linear equations in p+q 

unknowns: 

(16) six= b 

where sd is a (p+q) x(p+q)-matrix with entries in .-!;?, be .~p+q and x is a 

vector consisting of the p+q unknowns. It is easy to check that the 

determinant of .w is equal to R (F, G) whereas all entries of b are divisible by 

R(F, ·G). This shows that (16) has a solution x E .'?fP +q. 

(ii) Let F, GE .:!4! [X, Y] be binary forms of degree p ~ 1, q ~ 1, respect­

ively, and take some factorisations 

p q 

F(X, Y) = CT (rx;X-/3; Y), G(X, Y) = n (11iX-b1 Y) 
i= 1 j= 1 

m some finite extension K of the quotient field of .~. Then 

p q 

(17) R(F, G) = CT 0 (ex; Ji-[3; Yi). 
i= 1j=1 

A similar result for resultants of polynomials has been proved in van der 

Waerden [22, § 35]. Formula (17) can be obtained by a slight modification of 

6 - Acta Arithmetica XLVIIl.4 
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this proof. It is not difficult to derive (15) from (17) and the definition of the 
resultant. • 

We shall adopt the notations of Section 2. Further put 

E(X, Y) = Fi(X, Y) .. . Fr(X, Y)Gi(X, Y) . .. Gs(X, Y) 

and let !/={Pi. ... , Pr} denote the set of distinct prime ideals in K which 
belong to {ql> ... , q,.} or divide TI (R(Fi, Gi)). We recall that, by assump­

i,i 
tion, deg E = n. The following elementary lemma is essential in the proofs of 
our results. 

LEMMA 2. If (x, y) e (!)_i \ {O, O} satisfies (10) for some FE ff', Ge 'i§, 

v1 , ... , vu E Z, then there are non-negative rational integers u1 , .•. , Ur such that 

(18) 
(E(x, y)) u 1 u, 
-(x_,_y_y_ = P1 ···Pr· 

Proof. Let (x, y)e (!)_i: \ {(O, O)} and let Fe ff', Ge 'i§. Since, by assump­
tion, F and G have no common non-consta.nt factor in K [X, Y], we have 
R(F, G) =f. 0. Put p = degF, q =deg G. We recall that an ideal a divides an 
other ideal b if and only if b c a. The greatest common divisor of two ideals 
a and b (i.e. the smallest ideal containing both a and b) is denoted by a+ b. 
Let K' be the smallest extension such that (x, y >K' is a principal idea~ with 
generator {J say. Put x' = x/1J, y' = y/b. Then x', y' e (!)K, and (x', y')K' = 1. 
Finally, put 

(F(x, y))K (G(x, y))K 
C= + . 

(x, Y)i (x, Y)i 

By (14) there are binary forms A(X, Y), B(X, Y) in (!)K [X, Y] such that 

A(X, Y)F(X, Y)+B(X, Y)G(X, Y) = R(F, G)Xp+q- 1• 

Hence 

c(9K, = (F(x', y'), G(x', y'))K' 

:'.) (A(x', y')F(x', y')+B(x', y')G(x', y'))K' = (R(F, G)x'P+q-l>K'· 

Similarly we have 

c(9K. :'.) (R(F, G)y'p+q-i)K .. 

Therefore, c(9K, :'.) (R (F, G) )K'· But this implies that 

(19) c :'.) (R(F, G))K· 

From riow on we consider only ideals in K, so we omit the subscript K. 
Let (x,y)eCVi\{(0,0)} be a pair satisfying (10) for some FeF, Get;§, 
v1 , •.• , v,.eZ. Let p be a prime ideal not belonging to {q1 , •.• , q,,} which 
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' 
divides (E (x, y) )/ (x, y )n. Then :p divides at least one of the ideals 

(Fi(x, y))/(x, y)degFi (i = 1, ... , r), (Gi(x, y))/(x, y/ey,Gi U = 1, .. ., s). 

Therefore :p divides at least one of the ideals 

(F(x, y))/(x, y)degF, (G(x, y))/(x, y)degG. 

But by (10) this implies that :p divides c. Together with (19) this shows that :p 
divides (R(F, G)). By combining this with (15) we obtain, on noting that 
Fe~, Ge<§, that p divides the ideal TI (R(Fj, Gi)). Hence (E(x, y))/(x, y)n 

i,j 

is composed solely of prime ideals from Y'. • 
Let now {J, n1 , ••. , nq be non-zero elements of {!)K such that ni. ... , nq 

are not units. Let q' denote the number of distinct prime ideals of K dividing 
(n 1 ••• nq) and let P'=max(2, P(n1 ... n:q)). Further suppose that 
maxrn;J ~ PJJ (.o/> ~ 2). Let E0 (X, Y)E {!)K [X, Y] be a binary form of degree n 

j 

with splitting field L over K such that w (E0) ~ 3. In the proofs of Lemmas 3, 
4, 5 and the proof of Theorem 4, c1 , c2 , ••. , c5 , cl., c~, c3 will denote 
effectively computable positive numbers such that ci. c2 , •.. , c5 depend only 
on/, RL, hL and cJ., c~, c3 only on l. As before, N0 ~2. 

LEMMA 3. Let x, YE (DK satisfy 

E0 (x, y) = f3n~ 1 ••• n;q, N( (x, y)) ~ N 0 

for certain non-negative integers w 1 , .•• , wq. Then 

max([X], IYJ) <exp {n2 (q+ l)((ci(q' + 1) logP't'+ 1 PJ1 (log &')log(Niorrolrm> }. ' 

Proof. This is an immediate consequence of Theorem 2 of Gyory [11] 
(see also [12]). 

LEMMA 4. (i) Let a be an ideal in K. Then a[L:KJhL is a principal ideal. 

(ii) Let a be a non-zero element of K with IN K/Q(tX)I = m and let v be a 
positive integer. Then there exists a unit & in K such that la:e0 I ~ (mc~) 1/[K:QI. 

Proo f. (i) The ideal ( a(!)JhL is obviously principal in L. This implies 

that the ideal a[L:KJhL = N LJK (( a(?JL)hL) is principal in K. 
(ii) By Lemma 6 of [15], for each a:' EL with IN Lta(ix')I = m' =I= 0 and 

v' EN, there exists a unit 17 in L such that 

kx' 11"'1 :::;; (m')1/[L:!ZI c3 · 

Apply this result with a' =a, v' = v [L: K]. Put e = N LJK (17). Then, on taking 
C2 = C~, 

laevl = la[L:X] ev[L:IC)I 1/[L:K] = IN L/¥. (1X1'fv[L:.l'.J)j 1/[L:K] 

:;o; Jaliv[L:Kl} ~JN .L,IQ(1X)l 1/[L:QI c?L:KJ = (mci)l/[K:<ZI, • 
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. 
In the lemma below, b will denote a non-zero integral ideal. As before, 

N0 ~ 2 and P = P(p1, ... , p,) if t ~ 0, P = 2 if t = 0. 
LEMMA 5. Suppose that x, YE (!;K are not both equal to zero and that 

(20) <Eo(X, y)) - b "1 "t 

< - :Pt ···:Pt, x, y)" 
N( <x, y)) ~ N 0 

for certain non-negative rational integers u1, .•• , u1 • Then 

~(x, y) ~exp {n3 ((c4 (t+1) log Pf 1 Pt2 log(N olEo IN(b)) }. 

Proo f. Let vi> w; be rational integers such that 

0~ V; ~ [L:K]hL-1 and U; = [L:K]hLw;+V; (1 ~ i ~ t). 

By Lemma 4 (i), the ideals p~L:KlhL are principal. Moreover, 

N (p~L:K]hL) ~ pIL:Klhi. 

Hence, by Lemma 4 (ii) with v = 1, there exist n1, ... , n1 E {!)K such that 

< > [L:K]hL d 
TC; = P; an 

(21) for i = 1, ... , t. 

There exists a fJ0 e (9K such that <fJo) = bp~ 1 ... :p:1 (x, y)n and 

(22) 

Now 

INK/Q(/3o)I ~ N(b) N'Q pIL:KlhL(t+ ll. 

Hence, by Lemma 4 (ii), there exists a unit s in K such that for p = s" {30 , 

(23) 

Moreover, by (22), 

(24) 

Now Lemma 5 follows immediately from Lemma 3, (21), (23), (24), by taking 
P' = P, q' = q = t. • 

Proof of Theorem 4. Theorem 4 follows at once from Lemmas 2 and 
5 by observing that there exists a constant c~ with 

f£l S: (nH)c'.3(r+s) h H (2 'FI T fGl 'GI) 1.1.J I - W ere = max d r t I• .. · , I r r I• Iv 1 I• .. • , I v s I • • 

Proof of Theorem 2. Take K = Q, u = 0, N 0 = 1 in 1:heorem 4. • 

Proof of Corollary 5. Let Fi(X, Y), ... , F,(X, Y)eZ[X, Y] be binary 
forms such that F 1 , .. ., F,, P/Q are multiplicatively independent in Q(X, Y) 
for all relatively prime binary forms P, Q in Z[X, Y] with ro(PQ)e {1, 2}. 
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c6 and c7 will denote effectively computable positive numbers depending only 
on F 1 , •.. , F,. If x and y are rational integers with (x, y) = 1 and 
F 1 (x, y) ... F,(x, y) = 0 then max(lxl, IYll ~ c6 • Let x and y be rational 
integers such that max(lxl, lyl) > c6 , (x, y) = 1 and F 1 (x, y), ... , F,(x, y) are 
multiplicatively dependent in Q. Let 11 , .•• , I, be rational integers, not all 
zero, such that 

(25) 

Let 
r 

fl Fi(X, Yli = P(X, Y)/Q(X, Y), 
i=I 

where P, Q E Z [ X, Y] are relatively prime binary forms. Then (25) implies 
that 
(26) P(x, y) = Q(x, y), (x, y) = 1. 

Since F 1 , .•• , F, are multiplicatively independent, P =F Q. Moreover, P/Q can 
not be a constant =F 1 for otherwise (26) is impossible. Therefore w(PQ) ~ 3. 
Let G1 , ... , Gs be the (constant and non-constant) irreducible factors of PQ 
in Z[X, Y]. Then w(G 1 ... Gs);:::3 and G1 , •.• , Gs are irreducible factors 
of F 1 .•. F,. Together with (26) and Theorem 2 this shows that 
max(lxl, lyl) ~ c1 . This proves Corollary 5. • 

Proof of Theorem 5. In what follows, c8 , c9 , ••• , c18 will denote 
effectively computable positive numbers depending only on K, N 0 , 

F1 , ..• , F., G1 , .•• , Gs. We assume that xy :/= 0 which is no restriction in the 
proofs of (12) and (13). 

First suppose that F (x, y) = 0. Then F; (x; y) = 0 for some i with 
1 ~ i ~ r. Together with xy =F 0, this shows that Fi(X, Y) has at least two 
non-zero terms. Hence 

max (IN K/Q(x)I, IN K/Q(y)I) ~ea. 

By Lemma 4 (ii), there is a unit e in K such that I ex I ~ c9 . Now F; (ex, ey). · 
= 0 implies that I ey I~ c10 • This proves (12) and (13) in case F (x, y) = 0. 

Now suppose that F(x, y) ¥= 0. Put p = degF, q =deg G. In order to 
prove (12) it suffices to show that 

(27) p (<F(x, y!) /<G(x, Y~>) ~ c11 loglog(Er(x, y)+2). 
(x, y) (x, y) 

For if log log(.~"(x, y) + 2);,;;; c12 : = c\} N 0 then (12) holds for an appropriate 
value of c12 and otherwise (27) implies that 

p (F(x, y)) = p ((F(x, y))/<G(x, y))). 
G(x, y) (x, y)P (x, y)q 

and (12) follows from (27). 
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We shall now prove (27). Let 

Q = p (<F(x, y))/(G(x, y))) 
(x, y)P, (x, y)q 

and let .!1 = { q1 , ... , qu} be the set of all prime ideals with norm ~ Q. Then 

(F(x, y)) (G(x, y)) v 1 vu 

< >p = < >q -ql ... q,. 
x,y x,y 

(28) 

for certain rational integers v1 , ... , v,.. Note that the prime ideals dividing n (R(Fj, Gj)) have norms at most C13. For each prime number p there are 
i,j 

at most [K: Q] prime ideals in K dividing (p) and all of them have a norm 
which is a power of p. Since there are at most 2Q/log Q rational primes not 
exceeding Q (cf. [18]) we have u ~ c14 Q/log Q. Now Theorem 4 implies that 

loglog(f!((x, y)+2) < c15 Q. 

This proves (27). 
We shall now prove (13). Suppose that w(F) ~ 3. By (14) there exist 

binary forms A 1 , A 2 , B1 , B2 in (l)K [X, Y] such that 

Ai(X, Y)F(X, Y)+Bi(X, Y)G(X, Y) = R(F, G)Xp+q- 1, 

A2 (X, Y)F(X, Y)+B 2 (X, Y)G(X, Y) = R(F, G) p+q- 1• 

This shows that the ideal (F(x, y), G(x, y)) divides (R(F, G))(x, y)p+q- 1. 
In view of (15) this implies that 

(29) P( (F(x, y), G(x, y))) ~ c16· 

By applying (12) with s = 1 and G1 = 1, we obtain 

(30) P(F(x, y)) > c17 loglog(:?C(x, y)+2). 

If log log (.~l'(x, y)+ 2) ~ c16 c1l =: c18 , then (13) follows. If 

loglog(f!((x, y)+2) > c18 

then (29) and (30) give 

P = P(F(x, y)) > c17 loglog(.¥(x, y)+2). ( (F(x, y)) ) 
(F(x, y), G(x, y)) 

This completes the proof of ( 13). • 

Proof of Theorem 1. Take K = Q. N 0 = 1 in Theorem 5. Let 
F 1 , ... , F, and G1 , ... , Gs be the (constant and non-constant) irreducible 
factors of F and G, respectively. • 

Proof of Corollary 2. We have either (i) w(F) ~ 3 or (ii) F = c·Q" 
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where CE Q*, aEZ, a> 0 and Q is a definite quadratic form with coefficients 
in Z or (iii) F = c.U1 IJ2 where cE Q*, a, bE Z, a> 0, b > 0 and L1 , L2 are 
non-proportional linear forms with coefficients in Z. Put p = deg F, 
q =deg G. 

Let x, y be integers with (x, y) = 1. By applying (14) with Q = xp+q-i, 
we obtain that (F(x, y), G(x, y)) divides R(F, G)xp+q- 1• Similarly, 
(F(x, y), G(x, y)) divides R(F, G)yp+q- 1 . Hence 

(31) (F(x, y}, G(x, y))iR(F, G). 

Now suppose that x, y are integers with (x, y) = 1, G (x, y) # 0 and 
F(x, y)IG(x, y). Then (31) implies that 

F(x, y)IR(F, G). 

We claim that max(lxl, IYI) can be bounded by an effectively computable 
number depending only on the heights and degrees of F and G. In case (i) 
this follows from Corollary 1 applied with t = 0. In case (ii) it follows from 
the fact that IQ (x, y)j ~ ·c19 {max(Jxl, lyJ) }2 for some effectively computable 
positive number c19 depending only on the height of Q. Finally, in case (iii) 
we have 

JLi(x, y)I ~ jc- 1 R(F, G)j, IL2 (x, y)j ~ jc- 1 R(F, G)I. 

Since L1 and L2 are non-proportional, the claim is also justified in this 
case. • 

Proof of Corollary 3. We have p > q ~ 0 where p = degF, q 
=deg G. Let x, y be integers with G(x, y) # 0 and F(x, y)IG(x, y). Put d 
= (x, y), x 0 = x/d, Yo= y/d. Then dp-qF(x0 , y0)IG(x0 , y0 ). Hence, by Corol­
lary 2, max (Jx0 j, jy0 1) and therefore d are bounded by effectively computable 
numbers depending only on the degrees and heights of F and G. 111 

Proof of Corollary 4. Let D be the greatest common divisor of F 
and G in the ring Z [X, Y]. Put F 1 = F/D and G1 = G/D. Let x, y be 
rational integers with (x, y) = 1 and F (x, y) = G (x, y). If F (x, y) = 0, then 
max(jxj, jyj) does not exceed a computable number depending only on the 
degree and height of F. Suppose that F (x, y) # 0. Then 

Fi(x, y) = Gi(x, y). 

Hence Fi(x, y)yi(x, y) divides both {Fi(x, y)} 2 and {Gi(x, y)} 2 . In view of 
(31) this implies 

Since F JG is a constant multiple of a power of a linear or an indefinite 
quadratic form if and only _if F 1 G1 is, Corollary 4 follows at once from 
Corollary 2 with F 1 G1 and {R(F 1 , G1)} 2 replacing F and G, respectively. • 
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4. Proofs of Theorems 3 and 6. We shall use the notation of Section 2. 
Let // = ( p1 , .•. , :Pt} be a finite set of prime ideals in (!JK and let a be ·a fixed 
ideal in K. Let 

W(a, 9") = {ccEK: 3u1 , ... , JJiEZ such that <cc>= ap~1 ... p(}. 

Note that W(<l), 9") is just the group of S-units where Sis the set of 
valuations containing the archimedean valuations on K and the valuations 
corresponding to :Pi. ... , :Pr· 

LEMMA 6. Let f/ be a .finite set of prime ideals in mK of cardinality t and 
let a, b be .fixed non-zero ideals in K. Then the number of solutions of the 
equation 

(32) x+ y = 1 in (x, y)E W(a, 9") x W(b, ,9') 

is at most 3 x 7d+ 2<di +dz +r>. 

Proof. Suppose that (32) is solvable and let (A.,µ) be a fixed solution of 
(32). Let U = W( (1), .9"). Then (x, y) is a solution of (32) if and only if there 
are e, 1'/E U such that x = A.e, y = µyt and A.e+µ'f/ = 1. But by Theorem 1 

of·Evertse [6] there are at most 3x7d+ 2<di+d2 +t> pairs (e,rt)eU 2 with 
..i.e+ µrt= i. • 

Let F(X, Y)EK[X, Y]\{O} be a binary form. The content of F with 
respect to K, denoted by cK (F), is defined as the ideal in K generated by the 
coefficients of F. We shall need the following generalisation of Gauss' 
Lemma: if F(X, Y), G(X, Y) are binary forms in K [X, Y] then 

(33) cK(FG) = cK(F)· cdG). 

This follows for example from Lang [17, Proposition 2.1]. 
For any point (x:y)E P1 (K), the homogeneous coordinates x, y can be 

chosen so that x, YE (!JK· Hence Theorem 6 is an immediate consequence of 
Lemma 1 and Lemma 7 below. 

LEMMA 7. Let E0 (X, Y)e K [X, Y] be l;l binary form of degree n with 
ro(E0) ~ 3 and let (p 1 , ... , p1 ] he a set of prime ideals in K. Then the number 
of points (x:y)eP1 (K) satisfying 

<Eo (x, y)) u1 u1 

(E ) < >n = :Pt ···:Pt 
ck o x, Y 

(34) 

. n3(d+2(d1 +d 2 +t)) 
for some u1, •.• , UrE Z is at most 7 . 

Proo f. There exists a field M of degree at most n ( n - 1 )( n - 2) over K 
which contains the coefficients of three pairwise non-proportional linear 
forms dividing E0 in M[X, Y], A(X, Y), B(X, Y), C(X, Y) say. Let s1 , 2s2 

denote the. number of real and complex conjugates of M, respectively, 
and let Qi. ... , q,, be the prime ideals in (!JM lying above p 1 , .•. , :p1. Then 
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(35) S1 +s2 +u ~ n(n-l)(n-2)(d1 +d2+t), [M: Q] ~ n(n-l)(n-2)d. 

Let (x:y)EP1 (K) be a point satisfying (34) for certain u1 , ... , UrEZ. Since 
the l~ft-hand side of (34) is an integral idea~ the ui are non-negative. Since 
the lmear forms A, B and C are linearly dependent, there are non-zero 
elements ex, fJ E M such that 

ocA(X, Y)+fJB(X, Y)=C(X, Y). identically in X, Y. 

Put u = ocA(x, y)/C(x, y), v = fJB(x, y)/C(x, y). Then u+v = 1. Moreover, 
by (33), the integral ideals 

<A(x, y))M 

cM(A) <x, Y)M' 
<B(x, y))M 

cM(B) <x, Y)M' 

<C(x, y))M 

cM(C) <x, Y)M 

divide the left-hand side of (34) and are therefore composed of prime ideals 
from!/= {q1, .•• , qu}. lt follows easily that uEW(a, !/), vEW(b, !/)where 

a= <oc>M cM(A)/cM(C), b = <fl>M cM(B)/cM(C). 

Moreover the projective point (x:y) is completely determined by u, v. Now a 
combination of Lemma 6 and (35) with the facts mentioned above yields that 
the number of points (x:y)EP1 (K) which satisfy (34) for certain u1 , ••• , 14EZ 
is at most 

Proof of Theorem 3. Apply Theorem 6 and use that for each point 
on P 1 ( Q) there are exactly two possible choices for the homogeneous 
coordinates (x:y) such that x, yEZ and (x, y) = 1. • 
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