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ON THE NUMBER OF POLYNOMIALS 
AND INTEGRAL ELEMENTS OF GIVEN 

DISCRIMINANT 

J. H. EVERTSE* (Amsterdam) and K. GYORY* (Debrecen) 

§ 1. Introduction 

Let K be a field of characteristic 0, let R be a subring of K which has K as its 
quotient field, let G be a finite, normal extension of Kand let R' be an integral exten­
sion ring of R in G. We shall suppose that either R is finitely generated over Z (we 
shall refer to this as the absolute case) or R is finitely generated over a field k of 
characteristic 0 which is algebraically closed in K (this will be called the relative 
ca!e). Let n~2 be an integer. By tfi(n, R, R') we shall denote the set of all polyno­
mials f(X)ER[X] of degree n which are monic and all of whose zeros are simple 
and belong to R'. By tfi(R, R') we denote the set U .P(n, R, R'). Let f3 be a fixed, 

n~2 

non-zero element of R. We shall study the sets of polynomials f (X)E t/J(R, R') 
satisfying 

(I) D(f) = /3 
or more generally 

(2) D(f)Ef3R*. 1 

Here D(f) denotes the discriminant off, i.e. if f(X)=(X-a1) ••• (X-an), then 

D(j) = JI (a;-r1.)2. 
l~i<j;§n 

We call two polynomials f(X), g(X)ER[X] R-equivalent if g(X)=f(X+a) for 
some aER and weakly R-equivalent if g(X)=ud•sf f(X/u+a) for some uER* and 
aE R. The corresponding equivalence classes will be called R-equivalence classes and 
weak R-equivalence classes, respectively. If two polynomialsf, g are R-equivalent then 
D(f)=D(g) whereas iff, g are weakly R-equivalent then D(f)=eD(g) with some 
eER*. 

In the absolute case Gyory [6], [1] proved that if R is integrally closed in K then 
the polynomials .f(X)E <P(R, R') which satisfy (1) belong to at most finitely many 
R-equivalence classes and the polynomialsf(X)EiP(R, R') satisfying (2) belong to at 
most finitely many weak R-equivalence classes. Further, in [8] he showed that these 
equivalence classes can be determined effectively provided that R, K, G, R' and fJ 
are given explicitly in a certain well-defined sense (cf. [8], § 2.1). As consequences, in 
[8] ( cf. also [9]) he obtained effective finiteness theorems for integral elements with 

*The research was done at the University of Leiden in the academic year 1983/1984. 
1 " If Risa ring, then R* denotes its group of units and R+ its additive group. 
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given discriminant (or which is the same, for irreducible polynomials with given 
discriminant) and for power bases over R. In (8], he also established effective results 
in the relative case by giving an effective bound for the Degree (cf. [8], § 2.1) of an 
appropriat~ representative of an arbitrary equivalence class. However, these asser­
tions do not lead to finiteness results. For other historical remarks on (1), (2) and for 
further references, we refer to [4] and [9]. 

If R is integrally closed in Kthen R'nK=R. In the present paper our results 
will be established in the more general case when R+ 2 is a subgroup of finite index 
in (R'nK)+. We shall derive both in the absolute and in the relative case explicit 
upper bounds for the number of R-equivalence classes of polynomials /E tP(R, R') 
satisfying (1) and for the number of weak R-equivalence classes of polynomials 
fE<P(R, R') satisfying (2). However, in the relative case we have to restrict ourselves 
to non-special polynomials (cf. §§ 3, 5). In both cases, we have attempted to give 
bounds which depend minimally on K, R, G, R' and /3. For example, if in particular 
K is an algebraic number field with degreed and R is its ring of integers then our 
bounds depend only on d, [G: K] and the number of distinct prime ideal divisors 
of /3. 

Our results concerning polynomials will be formulated in § 3. In § 4 we shall 
deduce similar quantitative finiteness results on integral elements over R with given 
discriminant and shall point out that our :finiteness assertions do not remain valid 
if the factor group (R'nK)+jR+ is infinite. As a consequence, we shall give there 
among other things a generalisation of a result obtained on power bases in [3], which 
states that for every algebraic number field K of degree d the maximal number of 
pairwise weakly Z-inequivalent algebraic integers a.EK for which {1, a., .. ., rt-1} 

is an integral basis of K is bounded above by a constant depending on d only. Here 
a., /3EK are called weakly Z-equivalent if /3=±a.+a with some aEZ. 

Our theorems will be proved in §§ 5 to 9. The proofs are based on some recent 
quantitative finiteness results on unit equations, due to Evertse [2] and Evertse and 
Gyory [3]. 

§ 2. Preliminaries and notations 

Let R0 be either Z (the absolute case) or a field k of characteristic 0 (the relative 
case) and let K0 denote the quotient field of R0 • (Thus K0=Q if R 0=Z and K0=k 
if Ro=k). Let K be a finitely generated extension field of K 0 • In case R0=k we sup­
pose that k is algebraically closed in K. The field K has a finite transcendence basis 
over K0 .,{z1 , ..... zq}say, ~here q~O. Put K 1=K0 (z1 , •• ., zq) and R1=R0 [z1'. .. ., zq]. 
Then K IS a finite extension of K1. Put d= [K: K1]. We have the following diagram: 

K 
u 

R1 = Ro[Z1, ... , Zq] C K1 = K0(zi. .. ., Zq) 

u u 
R0 c K0 

. We note that R1 is a unique factorisation domain with unit group Rt= {l, - 1} 
1f Ro=Z and Rri'=k* if Ro=k. Let I denote a maximal set of pairwise non-asso-
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ciated irreducible elements of R1 • To every rr:El there corresponds a valuation3 v,. 
on K1 which is defined by v,.(rr:)= 1 and v,.(a/b)= 0 for any a, bER1 not divisible 
by n. Note that for every aEKi there are at most finitely many rr:El with v,.(a) ;eO. 
Every valuation v,. with nEJ can be extended in at most d pairwise inequivalent ways 
to K. By replacing these extensions by equivalent valuations if necessary we obtain 
a set of valuations mK on K with the following properties: 

(3) every VEmK has value group Z; 

(4) if a.EK* then V(ix)=O for all but finitely many VEmK; 

(5) if rxER1 then V(i:x)~O for all VEmK; 

(6) if rxERri then V(ix)=O for all VEmK. 

In the sequel we shall use the following notations. If T is a subset of mK, then we 
denote by rJr the ring {aEK: V(ix)~O for all VEmK".T}. Note that rJt= 
={a.EK: V(a)=O for all VEmK".T}. 

If L/K is a finite extension, of degree p say, then one can construct in a similar 
way as above a set of valuations mL on L with value group Z. Ifwe choose the same 
transcendence basis {z1 , •.. , zq} for L, these valuations are, up to equivalence, just 
the extensions of the valuations in mK to L. If VEmx, WEmL and if W is equivalent 
to an extension of V to L then we say that W lies above V. For every VE m K there are 
at mostp valuations WEmL lying above V. 

1he elements of the abelian group generated by mK will be called divisors. 1hus 
every divisor 1) can be expressed as 

where the V(l)) are integers of which at most finitely many are non-zero. If rxEK* 
then the divisor (a) is defined by (i:x)= ~ V(a)V. If K is an algebraic number field 

then there exists an isomorphism <I:x oVih~ additive group of divisors of K onto the 
multiplicative group of fractional ideals in K which is defined by <£,:x@= {rxEK: 
V(a.)!i:V(l)) for all VEmK}· <i:x maps mx onto the set of prime ideals in K. 

Let L/K be a finite extension of degree pin a fixed, finite, normal extension G 
of K. Let u 1, ••• , u P denote the distinct K-isomorphisms of L in G and if aE L put 
a1(cc)=aCi>. If x=(x1 , •.• ,xp)ELP then 

D(x) = [det(x)il)1.=1, ... ,p]2 
J:=l, ... ,p 

denotes the discriminant of x with respect to L/ K. It is known that D (x) ¥ 0 if and 
only if x1, .•. , xP are linearly independent over K. If x= (1, ix, ... , aP- 1) for some 
a.EL then we put DL;K(a.)=D(x). 1hen we have 

(7) DL/K(a) = JI (ix<i>-ix<1>)2. 
l;lii<j;!;p 

1 By a valuation we shall always mean an additive, non-trivial, discrete valuation. By an ab­
solute value we shall mean a non-trivial multiplicative valuation. 
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p 

Finally, if x=(x1 , ... ,xp), y=(y1 , ••• ,yp)EU are vectors such that y;= Z 'iJXJ 
j=l 

for certain e;1EK, then 

(8) D(y) = [det(eu)i.=1, ... ,p]2D(x). 
J=l, ... ,p 

Let R' be a subring of L having Las its quotient field. We define the discriminant 
divisor ::nx(R') of R' over K by 

V{::nx(R')) = max {O, xrri!l. V{D(x))} for all VEmx. 

By (4) this is indeed a divisor. If K is an algebraic number field and if R' is the ring 
of integers of L then the ideal G:x(::nx(R')) is just the discriminant of Lover K. 

Let R be a subring of Kand suppose that R' is an integral extension ring of R in l 
and that R' is a free R-module with basis w=(co1 , ... , rop) say. Let T be a subset oJ 
mx such that Rc@r. Ifw' is an arbitrary vector in R'P then, by (8), 

(9) D(w')ED(w)R. 

Hence 

(10) V(::nx(R')) = V(D(w)) for all VEmx"-.T. 

§ 3. On polynomials with given discriminant 

Let K, R0 , K0 , {z1 , •• ., zq}, R1 , K1 , d, mx have the same meaning as in § 2. 
Thus R0 is either Z (the absolute case) or a field k of characteristic 0 which is alge· 
braically closed in K (the relative case). Let G/K be a finite, normal extension of degret 
g. Let K'0=K0(=Q) if R0=Z and let .K0 be the algebraic closure of K0 (=k) in 6 
in the relative case. Let R be a subring of K which is finitely generated over R0 anc 
which has K as its quotient field. Further, let R' be an integral extension ring of R ir 
G such that 

(11) 

We note that if R is integrally closed in K then J= 1. Further, in the relative case 
(11) implies that J= I, i.e. R' n K = R. Indeed, if (in the relative case) R' n K r= 1 
and aE(R'nK)"-._R then the elements in ak are contained in distinct cosets o: 
(R'nK)+jR+. Hence J= =. 

Let [3 be a fixed, non-zero element of Rand let T, T' be the smallest subsets o 
mx such that Rc(J)T, R[p-1]c(!)T'· Then, by (4), T, T' have finite cardinalities, t, t 
respectively, say. 

Before stating our results we have to introduce the notion of special polynomials 
In the absolute case, every polynomial /(X)ER[X] is called non-special. In the rela 
tive case, a polynomial f(X) is called special in R[X] if f(X)ER[X] and if 

(12) f(X) = µ'h((X+a)" 0/µ)(X+a) 0, 

wherer,n0 ,oareintegerswith r>O, n0 >0, oE{O, l}, rn0+o§;3 and £5=0 if n0=1 
where aER, where µEK* is integral over Rand where h(X)Ek[X] is a monic poly 

Acta Mathematica Hungarica 51, 1988 



oN THE NUMBER OF POLYNOMIALS AND INTEGRAL ELEMENTS OF GIVEN DISCRIMINANT 345 

nomial of degree r with non-zero discriminant4 which has its zeros in K.0 and h(0)-¥0 
if n0> 1. The polynomial /ER[X] is called non-special if it is not of the type (12). 
We notice that all polynomials which are weakly R-equivalent to a special polyno­
mial in R[X] must be special in R[X] themselves. 

As in§ 1, <P(n, R, R')(n~2) denotes the set of all monic polynomials of degree 
n with coefficients in R and with only simple zeros belonging to R'. Further, we put 
<P(R, R')= U lf>(n, R, R'). By N1 (R, R', /3), N1 (n, R, R', /3) we shall denote the 

n;;,;2 

number of R-equivalence classes of non-special polynomials /E <P(R, R') and 
fE <P(n, R, R') respectively, which satisfy 

(1) D(f) = /J, 
whereas by N2 (R, R', /3), N2 (n, R, R', /3) we shall denote the number of weak 
R-equivalence classes of non-special polynomials /E <P (R, R') and /E cl>(n, R, R') 
respectively, which satisfy 

(2) D(f)E/3R*. 

THEOREM 1. Let n be an integer with n~2. Both in the absolute and in the rela­
tive case we have 

(4 7g(3d+2t'))n-2 
N 2(n,R,R',f3) ::§ {n(n-l)}[R'o:KoJ(d+r} . (n-2)! f. 

Let iii be the set of special polynomials in lf>(n, R, R') satisfying (1) and let 
'If;, be the set of special polynomials in <P(n, R, R') satisfying (2) (n~3). We shall 
prove in § 5 that in the relative case "fll2 contains infinitely many weak R-equivalence 
classes, provided that R' -=>Ko and that "fll2 contains a special polynomial with r~2. 
We shall also show that iii contains infinitely many R-equivalence classes in case k 
is algebraically closed and "If;_ contains a special polynomial with r~2. 

We shall now present some consequences of Theorem 1. 

COROLLARY I. Both in the absolute and in the relative case we have 

N 1 (R, R', p) ::§ .f exp {8 · 7g<34+21'>}, 

N 2(R, R', /3) ::§ .f exp {8[K0 : K0](d+ t) · 79<3d+2t')}. 

PROOF. For A=4. 7gC3d+2t'} and for pEZ, p~ 1, we have, since 
{(kt2)(k+ l)}P::§2(p+ 1)2P+k-2 for k~O, 

i {(k+2)(k + l)}P Ak J1 ::§ 2(p + J)2P-2j1 i {(p+ ~)A}k = 
k=O k! k=O k. 

= 2(p+ l)2P-2.fePA ::§ J1e2PA. 

Hence our assertion follows from Theorem 1. 

'For a linear polynomial h(X), we put D(h)=l. 
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COROLLARY 2. Let yE R. Then both in the absolute and in the relative case 
(i) for every n ~ 2 the number of non-special polynomials fE iP (n, R, R') which 

satisfy (1) and f(O)=y is at most 

(4. 7g(3d+2t'))n-2 

n2(n- I) (n-2)! ' 

(ii) the number of non-special polynomials fE <P(R, R') which satisfy (1) and 
f(O)=y is at most 

exp {8 · 7gC34+2t'l}. 

PROOF. The ring R=R'llK is finitely generated over R0 (cf. [11], [12]). In the 
relative case (11) implies R= R. Further, both in the absolute and the relative case 
Rc(!Jr, R[p-1]c(!JT'· Since <P(n, R, R')c <I>(n, R, R') and <P(R, R')c <I>(R, R'), 
it suffices to prove our assertion with R instead of R. The first part of Corollary 2 
follows now immediately from Theorem I, on noting that all polynomials in a fixed 
R-equivalence class are of the type f(X)=fo(X+a), where aER and fo is a fixed 
representative of this class, and that there are at most n values of a for which fo(a)=y. 
The second part of CoroIIary 2 follows at once from the first part, on noting that 
for A=4. 7g(ad+2t'l, 

oo Ak 
Z (k+2)2(k+l)-1 = (A 3+8A2+14A+4)eA :§ e2A. 

k=O k. 

Corollary 1 already shows that a polynomial /E <P(R, R') which is non-spe­
cial and which satisfies (2) must have bounded degree. More explicitly we have 

THEOREM 2. Both in the absolute and the relative case, every non-special polyno­
mial fE <I>(R, R') which satisfies (2) has degree at most 

2+4. 7g(3d+2t'). 

In the absolute case, the finiteness assertions of Theorems 1, 2 and their corolla­
ries above were earlier proved by Gyory [6] (cf. also Gyory [7]) under the restriction 
that R is integrally closed in K. Effective versions of these results were later obtained 
by Gyory [8]. Further, he established in [8] certain effective analogues also in the rela­
tive case. 

We shaII now specialise our results above to the case of algebraic number fields. 
Let K be an algebraic number field of degree d with ring of integers (!JK and let G/K 
be a normal extension of degree g. Let {!)0 be the ring of integers of G. Let /JE (9K '-.., {O} 
and let S= {p1 , •• ., Pr} be a (possibly empty) set of prime ideals in K. Let t' denote 
the number of prime ideals which belong to Sor divide (/3). 5 We call two polynomials 
f(X), g(X)Er9KfX] weakly S-equivalent ifthere are a, b, cE(!JK such that (b), (c) are 
solely composed of prime ideals from S (b, c are units if t= O) and such that 

g(X) = ( ~ rgf 1( cXb+ a). 

5 <a) denotes the ideal in (9K generated by IX. 
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COROLLARY 3. Let n be an integer with n~2. Then the polynomials f(X)E 
E tP (n, (!)K, C!l0) with the property 

(13) (D(f)) = (P) p~1 ... p1f' 

for certain rational integers k1 , .•• , kt belong to at most 

(4· 7g(3d+2t'J)n-2 

{n(n-1)}4+r (n-2)! 

weak S-equivalence classes. 

For an effective finiteness result concerning the polynomials fE ~ (n, (!JK, (!)0 ) 
which satisfy (13), see Gyory [5]. 

PROOF OF COROLLARY 3. Let G:K be the isomorphism of the group of divisors of 
K onto the group of fractional ideals in K (cf. § 2) and let T=<!:j(1 (S). Now Corol­
lary 3 follows at once from Theorem 1 on noting that every polynomial f (X)E 
EtP(n, (!)K, C!lG) which satisfies (13) also satisfies D(f)EP(f)t and that two polynomials 
f(X), g(X)E tP(n, C!JK, (90) are weakly S-equivalent if and only if they are weakly 
19r-equivalent. 

§ 4. On integral elements with given discriminant 

Let K, Ro, K0 , {z1 , •.• , zq}, R1 , K1 , d, mK have the same meaning as in § 2. 
Let L/K be a finite extension of degree m~2 and let G denote the normal closure 
of Lover K. Put [G: KJ=g. In the relative case (when Ro=k) we assume something 
stronger than in § 2, namely that k is algebraically closed in G. Let at> ... , am denote 
the distinct K-isomorphisrns of Lin G. If rt.EL then we put aCil=a;(rt.), i=l, ... , m. 
Let R be a subring of K which is finitely generated over R0 and let R' c L be an inte­
gral extension ring of R with quotient field L such that 

(11) 

If ocER', then by (7) the discriminant DL/K(oc) of ix is equal to JI (ixCiLixCJ))2• 
l;;§;i<j;;!id 

Hence if L=K(a) then DL/K(ix) is equal to the discriminant of the minimal polyno­
mial of a over K. For that reason we call two elements ix1 , ix2ER' R-equivalent if 
ix2=0:1+a for some aER and weakly R-equivalent if a2 =urt.1+a for some aER, 
uER*. As usual, the corresp:mding equivalence classes will be called R-equivalence 
classes and weak R-equivalence classes, respectively. If ix1 , rt.2ER' are R-equivalent 
then DL/K(rt.1)=DL/K(oc2) while if a1 , rx2ER' areweaklyR-equivalentthen DL1K(a1)= 
=eDL/K(a2) with some eER*. 

Let T be the smallest subset of mK such that RcC!lr. Let '.DK(R') be the discrim­
inant divisor of R' over Kand let p be a fixed element of K*. Let T" be the smallest 
subset of mK such that Rc<!Jr" and V(P)= V('.DK(R')) for all VEmK"-T". The sets 
T, T" have finite cardinalities t, t" respectively, say. Let M 1(R, R', {3) denote the 
number of R-equivalence classes of ixER' satisfying 

(14) 
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and let M2(R, R', fJ) denote the number of weak R-equivalence classes of rxER.' 
satisfying 

(15) 

THEOREM 3. Both in the absolute and the relative case we have 

M1CR. R', fJ) ~ m(m-1){4· 79<34+2t">r- 2 • ..I, 

M2(R, R', p) ~ {m(m(-1)}4H(4. 7g(3d+ 2t")r- 2 • ..I. 

We note that g~m!. Notice that we have also a finiteness result (without exclu­
sion of "special" integral elements) in the relative case. It is not clear whether such 
a finiteness result holds if k is not algebraically closed in G. Finally, we remark that 
if ..I== and ifthere is an rt.ER' satisfying (14) (resp. (15)) then M 1 (R, R',fJ) 
(resp. M2(R, R', P)) is infinite. Indeed, in this case the (weak) (R'nK)-equivalence 
class of a in question splits into infinitely many (weak) R-equivalence classes. 

Let NLtK denote the norm with respect to L/K. Then every (R' nK)-equivalence 
class of elements of R' contains at most m elements a for which NL/K(a) assumes some 
fixed value. Thus, applying Theorem 3 to M 1 (R' nK, R', p) we have 

COROLLARY 4. Let yEK. Then the number of rt.ER' with DLJK(a)=fJ and 
NLJK(a)=y is at most 

m2(m-1)(4. 7g(Sd+2t"))m-2. 

The above argument shows that Corollary 4 is true without assuming ..I<=. 
Let rxE R'. We call {1, a, ... , am-1} a power basis if {l, a, ... , am-1} is a basis 

of R' as a free R-module. If this is the case and if rx'ER' is weakly R-equivalent to ix 
then {1, ix', •.. , a'm-1 } is also an R-basis of R'. From Theorem 3 it follows 

COROLLARY 5. Those aER' for which {l, cc, ... , ixm-1 } is an R-basis of R' 
belong to at most 

{m(m- l)}d+1(4· 7g(sd+2nr-2 • .F 

weak R-equivalence classes. 

In [3] (cf. Theorem 11) we derived the bound (4. 7gC3d+2t>r- 2 in case R0=Z 
and R is integrally closed in K. If R0= k and R is integrally closed in K then it is also 
possible to get rid of the factor {m(m-1)}4+1 but we shall not work this out here. 

In the absolute case, Gyory [6] (cf. also Gyory [7]) proved earlier the finiteness 
assertions of Theorem 3 and its corollaries above under the assumption that R is 
integrally closed in K. Later he obtained [8], [9] effective versions of these results. 
In [8], certain effective analogues have been established also in the relative case. 

PROOF OF COROLLARY 5. Suppose that R' has an R-basis of the form 
{l, rt.0 , ..• , a:-1}. This is clearly no restriction. In view of (9), {1, a, .. ., cxm-1} is 
an R-basis of R' only if 

(16) DL1K(a)EDL/K(a0)R*. 

By (10), V('.nK(R'))= V(DLJK(a0)) for all VEmx ""'-.T. Now Corollary 5 follows im­
mediately from (16) and Theorem 3 with P=DLJK(a0). 
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Let K, L be algebraic number fields with rings of integers (J)K, fh respectively, 
where KcL, [K: Q]=d and [L: K] =m. Let G denote the normal closure of Lover 
Kand put g=[G: K]. Let '!)L/K denote the discriminant of Lover K. For every 
a.E(!}L with DL/K(IX)r!:-0 the ideal (DL/K(1X))1Ji11.: is the square of an integral ideal, 
.3(1X) say, which is called the index of ex with respect to L/K. Let a be a fixed ideal in 
(!}Kand let S= {p1 , ... , :P1} be a finite (possibly empty) set of prime ideals in (J)K· We 
shall now deal with the set of tXE(J)L satisfying 

(17) 3(1X) = a:p~1 ••• :p~· for certain k 1 , ••• , k1EZ. 

We call cx1 , a2E(!}L weakly S-equivalent if there are a, b, cE(!}K with (b), (c) solely 
composed of prime ideals from S, such that 

If IX satisfies (17) then all elements of (J)L which are S-equivalent to oc also satisfy (17). 
Lett" denote the number of prime ideals which divide a or belong to S. Then we have 

COROLLARY 6. The numbers cxE@L which satisfy (17) belong to at most 

{m(m-1W+i(4. 7g(3d+2t">r-2 

weak S-equivalence classes. 

An effective finiteness result concerning the elements aElVL satisfying (17) can be 
found in Gyory [5]. 

PROOF OF COROLLARY 6. Let T=(f;i1 (S) (cf. § 2 and the proof of Corollary 3 
in § 3). Suppose that (17) is solvable. Let a0 be a solution of (17) and put DL/K(a.0)= p. 
Then every solution aE(J)L of (17) satisfies DLtKCa)E/3(!)} and two eleme~ts txi. ~E(J)L 
are S-equivalent if and only if they are (!)requivalent. Now Corollary 6 follows easily 
from Theorem 3. 

§ 5. On special polynomials 

Let k be a field of characteristic 0, let K be a field which is finitely generated over k 
and let G/K be a finite, normal extension. As in§ 2, we suppose that k is algebraically 
closed in K. The algebraic closure of k in G is denoted by K0 • Let R be a subring of K 
which has K as its quotient field (and which is now not necessarily finitely generated 
over k). We extend the concept of special polynomials defined in § 3 by calling 
a polynomial f (X) special in R[X] if /(X)E R[X] and if 

(12) f(X) = µ'h((X+a)n°/µ)(X+a) 8, 

wherer,n0 ,()areintegerswith r>O, n0>0, bE{O, 1}, rn0+<5~3 and b=O if no=l, 
where aER, where µEK* is integral over Rand where h(X) is a manic polynomial 
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of degree r with coefficients ink and zeros in K0 such that D(h) ;C-0 and h(O):r'O if 
n0 > 1. Iff satisfies (12) then degf=rn0+8~3 and 

(18) D(f) = ( - Iyno<no-1)/2n~• µ'(rno-1+2li) h(O)"o-1+2.l D(h)"• ,C. 0 

(with the convention that h(O)no-1+26 =1 if n0=l and h(O)=O). 

LEMMA 1. Let n~3 be an integer and let f(X)ER[X] be a polynomial of degree 
n with zeros cc1 , ••• , ccnEG. Then the following statements are equivalent: 

(i) f is special in R [X]; 
(ii) there are aER, .A.EG* and c1 , ••. , c.EK0 such that cci=ci.?.-a (i= 1, ... , n); 

(iii) there are integers _i, jE {1, ... , n} with i ,c. j such that for all kE {l, ... , n} 
we have (cc;- r1.k)/(cc;-cci)EK0 • 

PROOF. (i)=>(ii). Suppose that/satisfies (12). Let 8 1 , ... , 8, be the zeros of h(X) 
in K0 and suppose that 8 1 ,r.O. Thenf can be written as 

r 

f(X) = II {(X+a)"0 -8;µ}(X+a)0• 
i=l 

Choose .?.EG* such that )."•= 8 1µ. Then there are c1 , ••. , c.EK0 such that 

n 

f(X) = II (X +a-c;.?.). 
i=l 

This clearly proves (ii). 
(ii)=>(iii). If cc;=c;A-a for i=l, ... , n, where aER, .?.EG* and c1 , ... , c.EK0 , 

then we have for all triples (i, j, k) with 1 ;§ i, j, k;§ n and i ,c. j that 

(iii)=>(ii). Put .A.=cc;-cci. Then we have for k, IE{l, ... , n} 

hence 

(19) 

for some ck1EK0 • Put a=-(cc1 + ... +cc.)/n and ck=(ck1+ ... +ckn)/n. 1hen ckEK0 

and aER, in view of the facts that f(X)ER[X] and n-1EkcR. Therefore, by (19), 
on taking the sum over all /, we have 

This proves (ii). 
n 

(ii)=>(i). Let g(X)= f(X -a)= [[ (X-c1).). Then g(X)ER[X]. Let A be the set 
i=l 

of rational integers m such that ;.m=c( for some cEK0 and (EK. It is easy to show 
that A is an ideal in Z. Since at least one coefficient of g is non-zero, A contains non-
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zero integers. Let n0 be a positive integer which generates A. Let r, o be integers with 
n=rn0+o and 0;:§ 5<n0 • 1hen g(X) can be written as 

(20) g(X) = X"+d1 xn-no.:tno+ ... +d,Xa 1ro, 
where d1, ..• , d,EK0 • Note that D(g)=D(f)~O. whence oE {O, 1}. Choose cEKo 
such that A."0 =cµ where µEK. Then µis integral over R. Put h;=d,c1(i=1, ... , r), 
h(X)==X'+h1 x•-1 + ... +h,. Since d) .. 1n°=h1µ1 for i=l, .. ., r and g(X)ER[X] 
we have h(X)Ek[X]. By (20) we obtain 

(21) g(X) = µ'h(X" 0/µ)Xa (r > 0, n0 > 0, 5E{O, l}, rn0 +o = n). 

The zeros of h obviously belong to K0 • It is also clear, by our choice of r, o, that o=O 
if n0= 1 and h(O)~O if n0> 1. Now (i) follows immediately from (21) and /(X)= 
=g(X+a). 

Let R be a finitely generated subring of Kover k which has K as its quotient field, 
and let R' be an integral extension ring of R in G such that R' n K = R. In the lemma 
below we shall state some results about the sets of polynomials 

~ = {f(X)E<P(n, R, R'):f is special in R[X] with r ~ 2 and D(f) = p}, 

'f; = {f(X)E<P(n, R, R'):f is special in R[X] with r ~ 2 and D(f)EPR*}, 

where p is an element of R'-.. {O} and n~ 3 is an integer. 

LEMMA 2. (i) Suppose that K0cR'. lf'f; is non-empty then it contains infinitely 
many weak R-equivalence classes of polynomials. 

(ii) Suppose that k is algebraically closed. If "Yi. is non-empty then it contains infi­
nitely many R-equivalence classes of polynomials. 

PROOF. If K0 cR' (which is also the case if k is algebraically closed) then for 
every polynomial f(X)E lf>(n, R, R') satisfying (12) we have µER. Indeed, there 
exists a cEKti such that cµ is the product of certain zeros of f. Therefore cµE R' 
and hence µER'nK=R. Let n0 , r, 5 be integers with n=rn0+o, r>O, no>O, 
~E{O, l}, ~=0 if n0=1. Let µER'-..{0}. Put hm(X)=(X-l)(X-2)(X-6m)X 
X(X-8m) ••• (X-2rm) if r~3 and hm(X)=(X- l)(X-m) if r=2 (m= l, 2,. .. ). 
Let 

We shall show that the polynomials in ff are pairwise R-inequivalent. Let f 11 (X)= 
=µ'hp(Xnojµ)X6, fq(X)=µ'hq(X"o/µ)X 6 be polynomials in ff which are weakly 
R-equivalent. Then there are aER and uER* such that 

(22) (( X +a )"o ) (X +a )a µ'hq(Xnojµ)X6 = µ•unhP -u- /µ -u- = 

= (µu"o)' h ( (X +a)no) (X +a)a. 
p µu"O 

First suppose that no> 1. Then the left-hand side of (22) can b~ writ~en as X"+ 
+y1Xn-no + .. ., whereas the right-hand side of (22) can be written m the form 
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(X+a)n+a1(X+a)n-•o+ ... =Xn+naxn-1 + ... with some ')11 , fJ 1EK. Hence a=O. 
Therefore, by (22) we have 

µ' hq(X"o/µ)X 0 = (µu" 0)' hp(X"0/µu" 0)X0 

which implies that hq(X)=u"0rhp(X/u"0 ). Thus the zeros of hq(X) are just equal to 
the zeros of hp(X) multiplied by u"0• But then u"0 = I, p=q. Hence fp(X)=fq(X). 

Nowsupposethat n0=1. Then fJ=O and r=n~3. Hence, by(22), 

µ" hq(X/µ) = (µu)" hP (~:a). 
This in turn implies that 

(23) h (X) = u'h (X +.!:..). 
q P u µu 

Let cx1 , ... , ex, be the zeros of hp(X). By (23) there is an r:t.EK such that ucxi+a 
(i=l, ... ,r) arejustthezerosof hq(X). Butsince r~3, it follows that u=l,cx=O. 
Hence p=q. 

Suppose that -t; is non-empty and let f (X)= µ'h((X + a)"0/µ)X 0 (rn0 +o=n and 
µ,a, hare as in (12)) be an element of'f';. Note that µER"'-{O}. By (18), µr(rno-l+2o)E 
E/3R*. By (18) we have also !J?=!J?(n0 , r, 8, µ)~~·But 9'contains infinitely many 
polynomials which are pairwise weakly R-inequivalent. This proves (i). 

Supposethat'iiisnon-emptyandlet f(X)=µ'h((X+a)" 0/p)X0 E'i'; (r, n0 , o,µ,h 
have the same meaning as in the proof of (i) ). Then (18) implies that 

Put 

[ ]
1/(r(rn0 +26-1)) 

a= cx(H) = H(0)"0 _ 1~20 D(H)"• , H* (X) = a' H(X/a) 

for every monic polynomial H(X)Ek[X] of degree r with D(H);r.O and H(O)rf.0, 
Since k is algebraically closed, H*(X) is also a monic polynomial of degree r with 
coefficients ink. Further, H*(0)• 0-i+ 20D(H*)"•=c. Hence the set 

9'* = {µ'h~(X"0/µ)X0 : m = 1, 2, ... } 

is contained in 'ii. But it is easy to check that all these polynomials are pairwise 
R-inequivalent. This proves (ii). 

REMARK. The question whether the set "K_ contains infinitely many R-equivalence 
classes of polynomials in case k is not algebraically closed seems to be far more diffi­
c~lt to answer. ~o:eover,.if (1) (resp. (2)) can only be satisfied by special poly?omials 
with r= 1 then rt rs possible that there are only finitely many (weak) R-eqmvalence 
classes of special polynomials satisfying (1) (resp. (2) ). 
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§ 6. On units and unit equations 

Let K, R0 , K0 , {z1 , .• ., zq}, R1 , K1 , d, mg have the same meaning as in § 2. 
Let Tbe a finite subset of mg of cardinality t~O. In this section we shall state some 
properties of the group @:;.= {a:EK: V(a:)=O for all VEmK"T}. 

LEMMA 3. (i) If R0= Z then (!):;. ~ WX ZP, where W is the finite group of roots 
of unity in Kand O~p~d+t-1. 

(ii) If R0=k and k is algebraically closed in K then (!)i/k*::!.Z1' where 0§ 
0§.p~d+ t-1. 

PROOF. First of all we shall prove (ii). There exists a set of pairwise inequivalent 
absolute values {I . lu}vEMx on K with the following properties (cf. [2], § 3.): 

(24) If rxEK* then la:l 0 = 1 for all but finitely many vEMK and JI la:l 0 = 1. 
vEMx 

(25) 

where the valuations in the set {-log I. j0 : vEPK} are, up to equivalence, equal to 
the valuations in mK and where the valuations in the set {-log I . I.,: vElx} are, up to 
equivalence, equal to the extensions of the valuation Vco on K1=k(z1 , •.. , zq). Here 
P_ is defined by Voo(F/G)=b-a for all polynomials F, GER1"{0} of total degrees 
a, b respectively. 

(26) {o:EK: la:l 0 = 1 for all vEMg} = k*. 

Let ScMK be the set containing the vElx and the vEPx for which -log I. I,, 
is equivalent to a valuation in T. Let S= {v1 , v2 , ••• , v,}. Since Ix has cardinality :§.d, 
we have s:§.d+ t. Let 9 be the homomorphism from(!):;. to R• defined by 

9(a:) =(log la:lv1 , ••• ,log la:lvJ 
s 

The elements a: of(!):;. satisfy la:l 0 = l for_ vEMK"S and . Z log la:lv1=0 (cf. (24)). 
i=l 

Hence ker 9=k* and the image of 9 is a discrete group of rank :§.s-1. Thus 
(!)f/k*::!.Zl' for some integer p with 0:§.p§d+ t-1. 

We now prove (i). Let k 0 denote the algebraic closure of Q in K. Put d1 = 
[ko: Q], d2= [K: k0 (z1 , ••• , zq)]. Then d1 d2= d. Let m}l> be the set of valuations i~ 
mx whose restriction to k0 is non-trivial and let mJ!'>=mK"m~p. Let T;=Tnm~> 
(i= I, 2) and let t1 denote the cardinality of T; (i = 1, 2). There exists a one-to-one 
correspondence between the valuations in m}P and the prime ideals in k0 (cf. § 2). 
Let :Pi. ... , p11 be the prime ideals corresponding to the valuations in T1. Then 

l9j:nk6= {aEkti: <a:)=p~1 ••• p;11 for certain k1 , ••• , k11EZ}. By Lang [10], Ch. 5, (!)j!n 
nk6::!.WXZ'+11, where W i~ the group of roots of unity in k0 and r is the rank of 
the group of units in the ring of integers of k0 • The valuations in m~> lie above the 
valuations on k0 (z1 , ••• , zq) which correspond to irreducible polynomials of degree 
~1 in ko[z1 , ••• , zq]. Hence there exists a set of absolute values {I. l0}vEMx satis­
fying the properties (24) to (26) with ko, m~> instead of k, mx, respectively. Hence by 
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(ii), iv;;m;nkt~V2 where p2 is an integer with 0:§p2:§d2+ t2-1. This is true since 
lDt/lVtnktciv;2Jkt. But this shows that 

say, where 0:§p:§d1+t1-l+d2+tc l:§d+t-1. 

Let A, µEK*. We shall now deal with the equation 

(27) AX+ µy = 1 in x, yE m;. 

LEMMA 4. (i) In the absolute case (27) has at most 4 · 73a+ 21 solutions. 
(ii) In the relative case (27) has at most 2 · 72d+ 21 solutions with J.x~ k, µy~ k. 

PROOF. (i) is exactly Theorem 1 of [3). In the proof of (ii) we shall use the set of 
absolute values {I · lv}vEMK with properties (24) to (26). Let ScMK be the set of 
vEMK for which either vEIK or vEPK and -log I. Iv is equivalent to a valuation in 
T. Letsdenotethecardinalityof S. Note that letlv=l for all etEl!7t and vEMK'-..,.S. 
By Theorem 2 of [2], (27) has at most 2. 12s solutions with h/ µy~k. Since s:I!d+ t, 
this proves (ii). 

§ 7. Preliminaries to the proofs of Theorem 1, 2, 3 

Let K, R0, K0 , {z1 , ... , zq}, d, mK have the same meaning as in § 2. Let G/K 
be a finite, normal extension of degree g. Let K.0=K0=Q if R0=Z and letK0 bethe 
algebraic closure of K0 in G if R0= k. Let R be a subring of K which has K as its quo­
tient field and which is finitely generated over R0 • Let R1 , ... , Rn (n~ 2) be integral 
extensions of R in G and let R = R1 n R2 n ... n Rn n K. In this section we shall deal 
with the set <f5 of tuples ot= (cx1 , ... , an) with the following properties: 

n 
et;ER; for i = 1, ... , n; f(ot; X) := JT (X - eti)EK[X]; et; ~ etj for 1 ::§ i < j ::§ n. 

i=l 

We shall call the tuples ot'=(eti, ... ,a;,), ct"=(et~, ... , et;)E<f5 R-equivalent if af= 
=ct;+a for some aER (i=l, ... , n) and weakly R-equivalent if etr=uet;+a for 
some aE R, uE R*. The corresponding equivalente classes will be called R-equiva­
lence classes and weak R-equivalence classes, respectively. In the absolute case, every 
ctE<f5 will be called non-special. In the relative case, otE<f5 will be called special if 
f(ct; X) is special in K[X] (in the general sense defined in § 5) and non-special 
otherwise. If in the relative case ot= (cti. ... , et.) is non-special with n~ 3, then by 
Lemma 1 we may suppose that 

(28) ot:1-eti d:K-o f { } q: or some iE 3, ... , n . 
Oi'.1 -et2 

Lemmas 5 and 6 below will be used in the proofs of Theorems 1 and 3. 

Acta Mathematica Hungarica 51, 1988 



ON THE NUMBER OF POLYNOMIALS AND INTEGRAL ELEMENTS OF GIVEN DISCRIMINANT 355 

LEMMA 5. Let U?E l and let n?E2 be an integer. Let <i1 c<c be a set ofnon-spe­
cial tuples ct=(ix1 , ••• ,an) suchthatforalltriplesofintegers(i,j,k)with }:§i,j,k:§n, 
i~k, the set 

has cardinality at most U. Then the set of tuples 

has cardinality at most un-2 if R0 = Z and at most max (1, 2"- 2 - l)un- 2 if R0=k. 

PROOF. Lemma 5 is obvious if n=2, so we shall assume that n?E3. We notice 
that ai-ixi=(ix1-ix)-(a1-ixi), whence the tuple [(ixi-ai)/(a1 -l>'.2)]1~;.i~n is 
completely determined by the numbers (a1 -ak)/(a1 -a2) (k= 3, ... , n). 1 his proves 
Lemma 5 in the case R0 = Z. 

Now suppose that R0 = k. Let Y' be a non-empty subset of {3, ... , n} and let l 
denote the smallest element of Y'. Let <6'1 (Y') denote the set oftuples (a1 , ... , a.)E<6'1 
such that (ix1 -l>:;)/(a1 -a2HK0 if and only if iEY'. By (28), <6'1 is the union of all 
sets <671 (Y'), with Y' being a non-empty subset of {3, ... , n }. For all et= (a1 , ... , an)E 
E<s'1 (Y') we thus have that (a1-ai)/(a1-a2HK0 for iE.9' and (a1-a)/(ai-r:t.1){K0 

for iE {3, ... , n}"'-.9'. Since (ix1-ai)/(a1-a2)=[(a1-ai)/(a1-ct1)][(l>'.1-l>:z)/(cti-ct2)], 
each tuple ((ai-ai)/(a1-a2))1 ~i.i:li• is completely determined by the numbers 
(a1-a;)/(a1-rx2) (iEY'), (a1 -l>'.i)/(rx1-a1) (iE{3, ... , n}"-.._Y'). 1his shows that the 
set oftuples 

has cardinality at most un- 2• But since {3, ... , n} has only 2•- 2 - l non-empty 
subsets, this proves Lemma 5 also in the relative case. 

Let /3EK* and let Yii (l:§i,j~n) be elements of G. We shall consider thesets 

for l:§i<j~n, II (rxi-1X)2=/J}, 
l~i<j~n 

and 

<ea ={ci = (rxi, ... , an)E<c: rx;-l>'.j = Yii for 
CX1-IX2 

Let T be the smallest subset of mK such that 
ofT. 

I:§ i <j ~ n, II (ai-rx,)2E/3R*}. 
l~i<j~n 

Rc@T, and let t denote the cardinality 

LEMMA 6. If ..f:=[R+: R+]< oo then both in the absolute and the relative case 
(i) <6'2 is contained in at most n(n-1)..f R-equivalence classes and (ii) ~3 is contained 
in at most {n(n- l)}[Ko:KoJCd+tJ • ..f weak R-equivalence classes. 
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PROOF. We shall call two tuples a'=(a~, ... ,a~), a"=(a;, ... , (l.;)E~ .R-et 
alent if rx7=rxl+a for some aER (i=l, ... , n) and weakly (R, R)-equivale1 
rx7=ucx;+a for some uER* and aER (i=l, ... , n). Thecorrespondingequival 
classes will becalled .R.-equivalence classes and weak (R, R)-equivalence cla 
respectively. It is easy to check that every .R.-eq2ivalei;ice class is co~tained ~ at i. 

J R-equivalence classes, and every weak (T, R)-eqmvalence class is contamed 1 

most J weak R-equivalence classes. Therefore it suffices to show the following: 

(29) <12 is contained in at most n(n-1) ..R-equivalence classes, 

(30) <13 is contained in at most {n(n- l)}Ut'o:KoJCd+t) weak (R, R)-equivalence cla 

For every a=(rx1, ... ,rxn)E~3 , put t/l(a)=a1-tx2, S(a)=(a1+ ... +rx11)/n. 1 
l/t(a)EG*, S(a)EK. Further, put /30 :=/3/( II y~). Let cx'=(a~, ... , a~)i 

l~i<j~n 

tx"=(a;, ... , o:Z)E''i3 • Then 

(31) 

Hence 

1/t (a') ex; - aj 
t/J(a") = rx7 -aj 

for 1 ;§ i < j ~ n. 

l/l(a') ocl-S(a') 
(32) --.. - = ,, ( ") for i = 1, ... , n. 

t/J(a'') ai - S a 

By (32), rxl-{l/t(a.')/(l/J(a.")}cx7 does not depend on i. Since R=R1 Q ... nR,,nK: 
we infer that t/t(a')/t/l(a")ER* ifand only if a', a" are weakly (R, R)-equivalent. 
a:=uo:;+a forsome uER*, aER with u=tfl(a.')/1/t(a"). Thuswehavethefollo~ 
equivalences 

(33) i/J(a')=i/!(a")*a' and a" are .R.-equivalent; 

(34) if!(a')/if!(a")ER**a' and a" are weakly (R, R)-equivalent. 

(29) is an immediate consequence of (33), on noting that for every aE'dr2 

have l/f (a)11<"-1l= /30 , whence l/J( a) can assume at most n (n-1) values. 
In the proof of (30) we shall need some further notations. In the absolute c 

we put K=K, K 1=K1 , R=R. In the relative case, choose CEG such that K 
=Ko(C)=k(C) and put K=K(C), K1=K1 (0, R=R[C]. Then R.nK=R. Let LI 
={1} if Ro=Z and L10=K~ if Ro=k. Both in the absolute and in the relat 
case, let I'= {uEG*: un<n-1>ER.*} and let T be the set of valuations in mx lying ab< 
the ~luations in T. Jhen R*cI'c@1_::= {EJEK: V(EJ)=O for all VEmx".T}. 1 
p=[~o: KoJ. Then [K: K]=p. Hence T has cardinality at most pt. Together w 
[K:KJ~d and Lemma 3, this shows that I'/.t1 0 is the direct product ofat most d-t 
multiplicative cyclic groups, at most one of which is finite. Using also that Ll1 

cR.*cI' and (I'/A 0)n<n-1>cR.*/L10 cI'/.t10 , we obtain 

(35) [I': R*] = [I'/L10 : R*/.t1 0] ~ [I'/L1 0 : (I'/.t1 0)nCn-l)] ;§ {n(n- l))d+P1• 

. . We notice that KJ_K is a n~mal extension of degree p. Let a 1 , ... , q P denote t 
d1stmct K~utomorphisms of K, where u1 is the identity. For every EJEG, Tr(e) 
=Tra1x".T(EJ) denotes the trace of e over K. and for every E>EG*, 8 denotes t 
coset of e in the factor group G* / R*. 
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We define the mapping l): ct3-G*/R*X {1, ... , n}P by 

l)(ci) = (l/t(a.), i1, .. ., ip), 

where a=(a1 , ••• , a,,)Ect3 and where ii is the smallest integer kiE {I, ... , n} such that 
oiTr(a1))=Tr(ak) for j= 1, ... ,p. (It is easily seen that such integers kj exist). If 
'tEct3 then l/t(t)n(n-1l=fJ0 . Further, the number of cosets (jEG*/R* with gn(n-1l=fJ0 

is at most [I': R*]. Together with (35) and the fact that i1 =1 for every TEct3 , this 
shows that the range of{) has cardinality at most 

(36) 

We shall now show that for a', a"Ect3 with {)(1X')=IJ(ix") we have t/!(ix')/ 
t/!(a.")ER*. Together with (34) and (36) this proves (30). Let a'=(a~, ... ,a~), et."= 
=(a~, ... , a;)Ect3 with l)(ci')=I)(ei"). Put u=tf!(a')/t/!(a"). Then uER*. Moreover, 
by (32) 

(37) 
Tr(cx~)- gS(a.')/p 

u = Tr(cx;)- gS(a")/p for k = 1, ... , n. 

Let aE{a1 , .•. ,up} and let k denote the smallest integer in {l, .. ., n} such that 
u(Tr (ix~))=Tr(a~), a(Tr(a~))=Tr(a~). Then (37) implies that a(u)=u. From this 
it follows that uER*nK=R*. 

§ 8. Proofs of Theorems 1 and 2 

Let K, R0 , K0 , {z1 , .•• , zq}, d, m1( be the same as in§ 2. Let G/K be a normal 
extension of finite degree g. Let R be a subring of K which is finitely generated over 
R0 and which has K as its quotient :field and let R' be an integral extension ring of 
Rin G such that J=[(R'nK)+: R+]< °"· Let ,BER"-._{O} and let T, T' be the smal­
lest subsets of mK such that Remy, R[p-1]c(!)y,, respectively. Lett, t' denote the 
cardinalities of T, T', respectively. Let T' be the set of valuations in ma lying above 
the valuations in T'. Let K 0 = K0 = Q if R0 = Z and let K0 denote the algebraic closure 
ofk in G if R0=k. We shall use frequently that 6 

(38) [G: K 0 (z1 , •• ., zq)] ~ gd, #(T') ~ gt. 

Weshallnowapplytheresultsof§7with R1= ... =Rn=R', where n?:2. Definethe 
sets 

9&'4 ={a= (a1, •• ., an)E~: f(a.; X)E'1>(n, R, R'), f(a.; X) is non-special in K[X], 

D(/(ix; X)) =ft}, 
<c5 = {ci = (a1 , ••. , a11)Ect: f(a.; X)E'1>(n, R, R'),f(a; X) is non-special in K[X], 

D(/(a; X))E,BR*}, 

6 For any finite set H, * (H) will denote the number of elements of H. 
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where <i has the same meaning as in §7, but with R1 = ... =Rn=R'. We note that if 
a:', a:" are (weakly) R-equivalent tuples in <i5 then f(a:'; X), f(a."; X) are (weakly) 
R-equivalent polynomials in lf>(n, R, R'). Let N1 denote the number of R-equivalence 
classes oftuples in <i4 , while N2 denotes the number of weak R-equivalence classes of 
tuples in <i5 • Let N1 (n, R, R', p), N2(n, R, R', P) be the same as in lheorem 1. lhen 

(39) N1(n, R, R', ft):§ (n~~)!, N2(n, R, R', p) :§ (n~~)!. 
For n=2 this is obvious. If n~3, then (39) follows immediately from the fact that 
for every polynomial f (X)E lf>(n, R, R') there are at least (n-2) ! pairwise weakly 
R-inequalenta:E<iwithf(X)=f(a:;X). Indeed, let ix1 , .•. , 1Xn bethezerosof/inR'. 
Let IT!t be two distinct permutations of (3, ... , n) and let a:'= (ix1 , a2 , 1Xa(S)> ... , ix .. cni), 
a:"=(a1 , ix2 , CL«3» ... , IX<(n)). Then the tuples ((ix1 -CLa(ii)/(i:x1-ix2));=s ....•• , 
((a1-CL,t;l)/(a1-a2));=s ...... are distinct which easily implies that a:', a." are not 
weakly R-equivalent. 

In view of (39), Theorem I is an immediate consequence of the following propo· 
sition. 

PROPOSITION 1. we have 

N1:§n(n-1)(4. 7uC3d+ 21'l)•-2. $ and N2:§ (n(n- l))[K0:KoJ(d+t)( 4. 7uCsd+2t'l)•-2 • .I. 

PROOF. Since R' is an integral extension of R, all tuples a= (i:x1 , ..• , CL.)E<i5 have 
the property that IX;-ixiE@7',= {aEG: V(a)=O for all VEma"-.T} for all i,jE 
E {I, ... , n} with i:;t.j. Together with (38), Lemma 4 and the relations 

this shows that for each triple (i,j, k) with 10§ i,j, kO§n and i :;t.k, the set 

has cardinality mostA if R0=Z and at most A/2 if R0 =k, whereA=4.7uC34+21·>. 
But this in turn implies, together with Lemma 5, that both in the absolute and the 
relative case the set 

{(~-~1 } -- : (a1, ... , ix11)E<i5 
Cl:1 -CL2 l;;ii,j;;;n 

has cardinality at most A•- 2• Now Proposition 1 follows immediately from Lemma 6. 

PROOF OF THEOREM 2. Let f(X)E if:>(R, R') be anon-special polynomialin R[X] 
which satisfies (2). Suppose that/has degree n~3 and zeros i:x1 , ••• ,a.ER'. We 
shall use that 

(40) 
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First of all suppose that R0 = Z. Note that 

and that the numbers (rx1 -a;)/(rx1 -rx2) (i=3, .. ., n) are pairwise distinct. Hence by 
Lemma 4, (38) and (40) we have 

n-2 :§ 4. 7g(3d+2r'). 

Now suppose that R0=k. Further, we assume that (rx1-a3)/(rx1-rx2HK0 

(where K 0 is the algebraic closure ofk in G), which is by Lemma 1 no restriction. Let 
!"/ be the subset of {3, .. ., n} consisting of those i for which (ai-a;)/(a1-rx2}{K0 • 

By (38), (40), (41) zmd Lemma 4 we have 

# (.97) :§ 2. 7g(3d+21'). 

If iE {3, .. ., n }"-B: then ( rx1 - a;)/( a1 - a3)E£ K0 . Hence by ( 40), the identities 

(38) and Lemma 4, we have also 

# ({3, ... , n}"-9') :§ 2 · 7gC3H 2r'>. 

Together with (42) this shows that also in the relative case 

n-2 :§ 4. 7u(3d+2r'>. 

§ 9. Proof of of Theorem 3 

Suppose that K, R0 , K0 , {z1 , •.. , zq}, R1 , K1 , d, mK have the same meaning as 
in§ 2. Let L be a finite extension of K of degree m~2 and let G denote the normal 
closure of Lover K. Put g=[G: K]. In the relative case we assume that k is alge­
braically closed in G. Let R be a subring of K which is finitely generated over R0 and 
which has K as its quotient field. Let R' c L be an integral extension of R having L 
as its quotient field and suppose that ~=[(R'nK)+: R+]-< 00 • Let <T1 , .•. ,<Tm be 
the K-isomorphisms of Lin G. For aEL, put rx<il=<T;(a) (i= 1, .. ., m). Let !\(R') 
be the discriminant divisor of R' over K. Let T be the smallest subset of mK such that 
Rc(!)r and let t denote the cardinality of T. Let /JEK* and let T" be the smallest 
subset of mK such that Tc T" and V(/3)= V('.!lK(R')) for all VEmK "-T". Lett" be 
the cardinality of T". Further, let T" be the set of valuations in mG lying above the 
valuations in T". We shall use frequently that 

(43) [G: K1l :§ gd, #(1") :§ gt". 

If rxEL, a will denote the tuple (a(l), ... , a<nl). We shall use the same notations as in 
§7,howeverwith n=m, R;=<Ti(R') for i=l, .. .,m and R=R'nK. We shall deal 
with the sets oftuples 

<€6 = {a: aER', DL/K(a) = /3}, <(57 = {ex: aER', DLJK(a)Ef3R*}. 
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We assert that if'6'7 is non-empty then V(/J)"@;V('!'>K(R')) for every VEmK'\_T. 
Indeed let aER' such that ctE'6'7 • Since DLJK(a) is integral over R, hence V(J3)== 
=V(D~1K(a))"@;0 for all VEmK"'T. Together with (7) and the definition of '!'>K(R') 
this proves our assertion. 

LEMMA 7. Let rJ.1 , a2ER' such that C1.1, ct2 E'6'7 • Then for i-:T-j with l::'§i, f§.m 

a<O -a<n -
~·i ~ ') Em;,, = {aE G*: V( a) = 0 for all VE ma "'T"}. 

IY.2' -rJ.l 
PROOF. Let V be a fixed valuation in m0 "-.,_ T" and let a1 , a2E R' such that 

ot1 , cx2E~7 • Then DL/K(a1)-;r.O, hence {I, a, ... , cxm- 1} is a K-basis of L. We infer 
m 

that there are ~1 , ••• , ~mEK such that a2= Z ~ia{-1• For iE {I, ... , m}, let Y;== 
j=l 

=(1, a1 , ••• , ai-1, o:2 , cxi+1, ... , ix;n-1). Then we have by (8) that 

0 ) 

l 0 I 

But by the definition of T" we have W(DLJK(a1))= W(/3)= W('!'>K(R')) for all 
WEmK"'T" and by the definition of '!'>K(R') we have W(D(y;))"@;W(!lK(R')) for 
all WEmK"'T". Together with (44) this shows that V(~;)"@;O for i= 1, ... , m. But 
then we have, since V(a{i))"@;O for i= I, .. ., m, 

( 
a(i) a<il ) l m (cx<il)k-l (cx<il)k-1) ( m k-2 ) v 2 . - 2 . = v .z ~k 1 . - 1· = v Z Z ~k(afil)k- 2 - 1 (afilY ~ o. af•l -a{1l k=2 af'l -a{1l k=2 l=o 

We can show in asimilar way, by interchanging at> a2 , that V((afiJ _ af1l)/(a~il _ a~il)) ~ 
?=0. Hence V((a{i>-afj))/(cx~il _ a~il))= 0. This proves Lemma 7. 

We shall now prove Theorem 3. We remark that two numbers a1 , a2ER' are 
(weakly) R-equivalent if and only if the tuples cx1 , cx2 are (weakly) R-equivalent. Hence 
in view of Lemma 6 it suffices to prove the following proposition: 

{( 
IX(i) _ IX(j) ) } 

PROPOSITION 2. The set of tuples "f"" = a<IJ _ aC2J l;?ii,j-;;;n: cxE'6'7 has cardinal-
ity at most 

c4 . 7g(3d+2t')r-2. 

PROOF. For convenience we put B= 4. 7g<3a+ 21"J. Let tlo be a fixed element of 
~1· We put A;/=:=r:t.rlil-:-a~i) for l~i,j:o§m with i¥-j. Further, for every aER' we 
put Xii(a)=(aC•l-a<1l)/.Aii for l:o§i,j~m with i,cj. Then for every tlE'??7 we 
have by Lemma 7 that Xii(oc)E@r·· By Lemma 4, (43) and the relations 

A. · X. (a) ). 'k X "k (a) -!L._'1-+-1-·-J- - I (" . kE{l } . k) A;k X;k(a) ).ik X;k(a) - i,J, ' ... , m ' i ~ ' 
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we have that for each triple (i, j, k) with 1 ~ i, j, k~ m, i.,,.,= k, the set 

{~-~ ~-~ } 
IX(i) _oc(k): otE~1. aCil _IX(k) ~k if R0 = k 

has cardinality at most B if Ro= Z and at most ~ B if R0 = k. In the absolute case, 

Proposition 2 is an immediate consequence of Lemma 5. In the relative case we infer 
that "f'" contains at most max (1, 2m- 2 - l)(B/2r-2 tuples for which a is non-special 
(i.e. f(oc; X) is non-special in K[Xl). We shall now estimate the number of tuples 
in "f'" for which a is special. 

Let a.E~7 such that a is special or, which is the same, the minimal polynomial 
f (X) of a is special in K[X]. Then m"Si 3. Further, there are integers r, n0 , (J with 
r>O, n0>0, <>E{O, l}, rn0 +8=m and 6=0 if n0=1, and there are aEK, µEK* 
andamonicpolynomial h(X)Ek[X] ofdegreerwith D(h).,,.cO such that 

f(X) = µ' h((X +a)n•/µ)(X +a)0• 

But since fis irreducible we have that {J=O and his irreducible. Furthermore, h has 
its zeros in G and k is algebraically closed in G. Hence r= 1. Therefore there exists 
a µ'EK* such that 

f(X) = (X +ar-µ'. 

Let e be a fixed, primitive m-th root of unity and let e be a fixed m-th root of µ'. 
Then a<il=ek18-a for i=l, ... , m, where (k1 , .•. ,km) is a permutation of 
(1, ... , m). Hence the tuple 

( a<i) _au>) ( ek, _ r/1) 
!'J.(l) -a<2> 1 :;;;i, };;iim = ek· - ek• 1;;;; i, j,;;m 

belongs to a set of cardinality at most m!. But this shows that the number oftuples in 
1'" for which a is special is, in view of m~g, at most 

m ! ~ 2. 7sm(m-2) :§ (B/2r-2. 

Therefore, the total number oftuples in "f'" is also in the relative case at most Bm- 2• 

REMARK. We notice that a weaker version of Theorem 3 can be deduced also 
from Theorem 1. 
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