
Information and Computation 208 (2010) 1398–1420

Contents lists available at ScienceDirect

Information and Computation

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i c

Complete sets of cooperations

Clemens Kupkea,∗,1, Jan Ruttenb

a
Imperial College, London, United Kingdom

b
CWI & Vrije Universiteit, Amsterdam, The Netherlands

A R T I C L E I N F O A B S T R A C T

Article history:

Available online 15 May 2010

Keywords:

Coalgebra

Coinduction

Infinite data structures

Hidden algebra

Cooperations

Observational/simple/minimal coalgebra

The structure map turning a set into the carrier of a final coalgebra is not unique. This fact is

well known, but commonly elided. In this paper, we argue that any such concrete represen-

tation of a set as a final coalgebra is potentially interesting on its own. We discuss several

examples, inparticular,we consider different coalgebra structures that turn the set of infinite

streams into the carrier of a final coalgebra. After that we focus on coalgebra structures that

are made up using so-called cooperations. We say that a collection of cooperations is com-

plete for a given set X if it gives rise to a coalgebra structure that turns X into the carrier set

of a subcoalgebra of a final coalgebra. Any complete set of cooperations yields a coalgebraic

proof and definition principle. We exploit this fact and devise a general definition scheme

for constants and functions on a set X that is parametrical in the choice of the complete set

of cooperations for X.

© 2010 Published by Elsevier Inc.

1. Introduction

It is well known that coalgebras provide a framework for studying infinite data structures, such as streams and trees,

in a uniform way. The theory of coalgebras is formulated in category theoretic terms. Therefore coalgebras are usually

studied “up-to-isomorphism”, e.g., one talks about the final coalgebra of a functor because it is determined uniquely up-to-

isomorphism. When reasoning about a concrete type of coalgebras one then has a certain “canonical” representation of the

final coalgebra in mind. For the stream functor A × Id the final coalgebra is usually given by the set of infinite A-streams Aω

togetherwith the usual operations head and tail. There are, however, infinitelymanyways of turning Aω into the final stream

coalgebra – we will discuss some of them in the paper. The point we want to make is that each of these representations of

the final coalgebra is potentially interesting on its own as each of them yields a different proof and definition principle.

More generally, we consider not only the various representations of a given set X as a final coalgebra of some kind, but

also its representations as a subcoalgebra of a final coalgebra. We call such a representation of a set X observational for X .

Any subcoalgebra of a final coalgebra has two crucial properties: strong extensionality andwhat we call relative finality. The

first property is the basis for a proof principle for observational coalgebra structures and the second one is the key for the

coinductive definition of constants and functions for observational coalgebra structures.

In this paper, we first introduce the notion of an observational coalgebra and then motivate it with various examples.

After that, in Section 4, we provide a simpler, syntactic version of the notion of an observational coalgebra by using the

terminology from [5] of a cosignature and of a cooperation. We call a collection of cooperations complete for some set if it

turns this set into an observational coalgebra. After having defined these notions we turn to the discussion of the proof

principle and of the definition scheme.

In Section 5, we discuss the proof principle for a complete set of cooperations and demonstrate with an example that a

clever choice of cooperations for the set of streams can simplify proofs. After that, in Section 6wedevelop a definition scheme

∗ Corresponding author.

E-mail addresses: ckupke@doc.ic.ac.uk (C. Kupke), janr@cwi.nl (J. Rutten).
1 Supported by NWO under FOCUS/BRICKS Grant 642.000.502.

0890-5401/$ - see front matter © 2010 Published by Elsevier Inc.

doi:10.1016/j.ic.2009.10.009

http://dx.doi.org/
http://www.sciencedirect.com/science/journal/08905401
www.elsevier.com/locate/ic
http://dx.doi.org/10.1016/j.ic.2009.10.009

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1399

for constants and functions on a given set that is equipped with a complete set of cooperations. The main advantage of this

scheme lies in the fact that it works for various types of objects as we demonstrate at the end of Section 6. In particular, our

scheme can be applied to sets of objects that have no “nice”, purely coalgebraic representation, such as bi-infinite streams.

We conclude our paper in Section 7 by linking our research to related work, in particular, to the field of hidden algebra, and

by the discussion of future work.

The paper is an extended version of [12]. The main changes are the addition of more examples and a generalisation of

the definition scheme from so-called basic cosignatures to arbitrary ones.

1.1. Related work

There is a close connection between our work on the one hand and existing work in hidden algebra and observational

specification on the other hand. A strong link between coalgebra and hidden algebra has been established in a series of

articles by Cîrstea [4,5] in which it is shown that, under the assumption that any operation of a hidden algebra signature has

atmost one argument of hidden sort, hidden algebras can be seen as coalgebras. Our notion of a complete set of cooperations

is inspired by the notion of a cobasis in hidden algebra (see, e.g., [8,14,15]) and our definition scheme in Section 6 has some

similarity with the one in [3]. Throughout the paper we will tell the reader precisely which of our notions and results

generalise/relate to similar ones in hidden algebra.

At the same time, there are also many differences between our approach and that of hidden algebra, and we believe that

our results have importance on their own, for the following reasons.

1.2. Coalgebraic implications

Even if not completely new in hidden algebra, the concept of a complete set of cooperations is a novel contribution to the

theory of coalgebras. We link the technically rather involved notion of a cobasis to the basic and conceptually clear notion

of a so-called “observational coalgebra”.

1.3. Different perspective

Most of the work within hidden algebra and in observational specification focuses on proofs. While we also mention

in our paper the proof principle for complete sets of cooperations, we pay much more attention to the arising definition

scheme.

1.4. Different definition schemes

This definition scheme is to the best of our knowledge new in its generality: the afore mentioned scheme that has been

proposed in [3] does not allow for the simultaneous definition of functions. The pricewe have to pay for this gain in generality

is that we have to be more restrictive concerning the structure of the contexts that are allowed on the right hand side of a

defining equation. In particular, we do not make use of any kind of context induction (see, e.g., [11]). The latter is difficult to

use in our setting as a simultaneous definition of several functions can easily lead to unwanted circularities.

1.5. Different notions

Finally one should note that our notion of a complete set of cooperations is similar to the one of a cobasis but the two

notions do not coincide. Oneway of formulating the difference is by saying that cobases are defined syntacticallywith respect

to a certain specification (w.r.t. a certain “behavioural theory”). Complete sets of cooperations on the other hand are defined

semantically. We will return to this issue in the conclusions of our paper.

In summary, there are both close connections and differences between the theory of coalgebra and hidden algebra, and

we believe it is beneficial for both communities to learn from each others perspective.

2. Preliminaries

We assume that the reader is familiar with the basic notions from category theory and universal coalgebra. The purpose

of the following basic definitions is mainly to fix our notation.

Definition 1. We define the range of a function f : X → Y by putting range(f) := {y ∈ Y | ∃x ∈ X.f (x) = y}. Given a set

{ν1, . . . , νn} we write ν as an abbreviation of ν1, . . . , νn.

In this paper, we consider coalgebras for functors on the category Set of sets and functions. Coalgebras for such a functor

G : Set → Set consist of a set X together with a function γ : X → GX .

1400 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

Definition 2. Let G : Set → Set be a functor. A set X together with a function γ : X → GX is a G-coalgebra. A function

f : X1 → X2 is a G-coalgebra morphism from X1 = (X1, γ1 : X → GX) to X2 = (X2, γ2 : X → GX) if γ2 ◦ f = Gf ◦ γ1.

In case the final G-coalgebra exists we denote by ϕX1 the unique coalgebra morphism from (X1, γ1) into the final G-

coalgebra.

Intuitively speaking, G-coalgebras can be seen as state-based systems that generate possibly infinite behaviour. For

example, if GIR is the functor mapping a set X to the set IR × X , the behaviour of a state x ∈ X can be easily seen to be an

infinite IR-stream ϕ(x) ∈ IRω: For x ∈ X with γ (x) = 〈
r, x′〉 we obtain ϕ(x) by taking r to be the first element of ϕ(x)

followed by the IR-stream ϕ(x′) that corresponds to the behaviour of the successor x′ of x. For a detailed introduction to

coalgebra as a theory of state-based systems the reader is referred to [16]. Given a G-coalgebra (X, γ)we can prove that two

states x1, x2 ∈ X have the same behaviour by showing that they are bisimilar in the following sense.

Definition 3. A relation R ⊆ X1 × X2 is a G-bisimulation between (X1, γ1) and (X2, γ2) if there is a map μ : R → GR such

that the projection maps πi : R → Xi are G-coalgebra morphisms πi : (R, μ) → (Xi, γi) for i = 1, 2. For G-coalgebra states
x1 ∈ X1 and x2 ∈ X2 we say x1 and x2 are G-bisimilar (Notation: x1 ↔G x2) if there is a G-bisimulation R ⊆ X1 × X2 such

that (x1, x2) ∈ R.

In the above IR-stream example a relation R ⊆ X × X on a GIR-coalgebra (X, γ) is a GIR-bisimulation iff for any two states

x1, x2 we have (x1, x2) ∈ R implies r1 = r2 and (x′
1, x

′
2) ∈ R where γ (x1) = 〈

r1, x
′
1

〉
and γ (x2) = 〈

r2, x
′
2

〉
.

In our paper, we only consider set functors G for which a final G-coalgebra exists.

Definition 4. Let G : Set → Set be a functor. A G-coalgebra (�G, ωG) is called final if for all G-coalgebras X = (X, γ) there

exists a unique coalgebra morphism ϕX : X → �G .

As mentioned above, final coalgebras are unique up-to-isomorphism. The final G-coalgebra can be seen as a system that

contains for any possible behaviour of a G-coalgebra exactly one state. In the IR-stream example, the final GIR-coalgebra has

the set IRω as set of states and the functionω : IRω → IR× IRω is given byω(r0r1r2r3 . . .) = 〈r0, r1r2r3 . . .〉. Given any other

GIR-coalgebra (X, γ) it is easy to see that the function ϕ : X → IRω that maps a state x to its behaviour ϕ(x) as described

above is the unique coalgebra morphism into the final GIR-coalgebra.

We refer the reader to [16] for a description of the final coalgebras of large families of functors, including all those that

will occur in the present paper.

3. Observational coalgebra structures

In this sectionwe introduce the notion of an observational coalgebra structure. Despite the fact that this is a rather simple

notion we hope to demonstrate throughout the remainder of the paper its usefulness.

Definition 5. Let X be a set and let G : Set → Set be a functor for which the final G-coalgebra (�G, ωG) exists. We call

γ : X → GX observational for X if the unique morphism ϕ : X → �G into the final G-coalgebra is injective. In this case the

coalgebra (X, γ) will be called observational.

Remark 6. The concept of an observational coalgebra is nothing essentially new. Observational coalgebras are merely

(isomorphic to) subcoalgebras of some final coalgebra and, under the condition that the final coalgebra for the functor

G : Set → Set exists, observational G-coalgebras are exactly the simple G-coalgebras from [16] or theminimal G-coalgebras

from [10]. The novelty of our work lies in the fact, that we focus on the various observational coalgebra structures that turn a

given set into an observational coalgebra.

In order to motivate this definition we provide a number of examples.

Example 7

(1) Let (X, ω) be the final G-coalgebra for a functor G : Set → Set. Then ω is observational for X .

(2) Consider the set IN of natural numbers and let P : IN → 1 + IN be the predecessor map, i.e., P(n + 1) := n and

P(0) := ∗ ∈ 1. Then P is observational for IN: P turns IN into a coalgebra for the functor 1+ Id and this functor has as

final coalgebra the set ĪN := IN ∪ {∞} together with the “extended” predecessor map P̄, where P̄(n) := P(n) for all
n ∈ IN and P̄(∞) := ∞. The obvious embedding of IN into ĪN is the injective coalgebra morphism from (IN, P) into

the final 1 + Id-coalgebra (ĪN, P̄).
(3) Let p > 0 be a natural number and let

Pp : IN −→ 1 + {0, . . . , p − 1} × IN

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1401

be the map defined by

Pp(n) := ∗ if n = 0

Pp(n) := (n mod p,
⌊ n
p

⌋
) if n > 0,

where �−� denotes the “floor function” or “entier function” that maps a rational number q to the greatest integer

below q, i.e., �q� := max{z ∈ Z | z ≤ q}. Then Pp is observational for IN for all p > 0. The carrier of the final coalgebra

of G = 1 + {0, . . . , p − 1} × Id is the set p∞ = p∗ ∪ pω where p = {0, . . . , p − 1}. The final map ϕ : IN → p∞
maps a natural number n to its p-adic representation starting with the least significant digit. Therefore ϕ is obviously

injective.

(4) Let A be a set and AZ be the set of bi-infinite streams over A. Then the map 〈h, l, r〉 : AZ → A × AZ × AZ is obser-

vational for AZ. Here 〈h, l, r〉 is the function that maps a given bi-infinite stream τ = . . . a−3a−2a−1a0a1a2a3 . . .
to its head h(τ) = a0, its left neighbour l(τ) = . . . a−4a−3a−2a−1a0a1a2 . . . and its right neighbour r(τ) =
. . . a−2a−1a0a1a2a3a4

(5) Consider the functor G(X) = IR × X . The final coalgebra of G consists of the set IRω of real-valued streams together

with the familiar coalgebra map < h, t >: IRω → IR × IRω of head and tail:

h(σ) = σ(0), t(σ) = (σ (1), σ (2), σ (3), . . .)

Obviously < h, t > is observational for IRω .

(6) We can also supply IRω with an alternative coalgebra structure as follows. For σ ∈ IRω we define

σ = (σ (1) − σ(0), σ (2) − σ(1), σ (3) − σ(2), . . .)

(cf., [13,17]). We claim that the coalgebra map

< h,
 >: IRω → IR × IRω σ �→ < σ(0),
σ >

is observational for IRω . The unique morphism

ϕ : (IRω, < h,
 >) → (IRω, < h, t >)

is given by

ϕ(σ) = ((
(0)σ)(0), (
(1)σ)(0), (
(2)σ)(0), . . .)

where
(0) σ = σ and
(n+1) σ =
(
(n) σ). One can easily verify that ϕ is injective.

(7) Here is yet another coalgebra structure on IRω . For σ ∈ IRω , we define

dσ

dX
= (σ (1), 2 · σ(2), 3 · σ(3), . . .)

The coalgebra map < h, d/dX >: IRω → IR × IRω is observational for IRω as the unique morphism

ϕ : (IRω, < h, d/dX >) → (IRω, < h, t >)

which is given by

ϕ(σ) = (σ (0), σ (1), 2! · σ(2), 3! · σ(3), . . .)

is injective.

(8) Let F = G� for a finite cosignature� (cf., Definition 16 below) and let (A, α) be the initial F-algebra. Then α−1 : A →
FA is observational for A. The claim is a consequence of a more general result in [2]. Note that this example generalizes

(2) above.

Twoproperties of observational coalgebraswill play a central rôle in our paper: given anobservational coalgebra structure

γ : X → GX for some set X , we have that the G-coalgebra (X, γ) is strongly extensional (Proposition 10) and relatively

final (Proposition 12). The first property gives rise to a proof principle for elements of observational coalgebras, the second

property is the basis of the definition scheme which we develop in Section 6.

1402 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

Remark 8. Propositions 10 and 12 below are in fact easy consequences of the fact that an observational coalgebra structure

γ represents a subcoalgebra of a final coalgebra. We provided the easy proofs in order to keep our paper as self-contained

as possible.

Definition 9. Let G : Set → Set be a functor and let X = (X, γ) be a G-coalgebra. We say X is strongly extensional iff for

all x1, x2 ∈ X we have x1 ↔ x2 iff x1 = x2.

Proposition 10. Let G : Set → Set be a functor with final coalgebra and let X = (X, γ) be a G-coalgebra. If γ is observational

for X then X is strongly extensional.

Proof. Let X = (X, γ) be observational and consider a G-bisimulation R ⊆ X × X with projections π1 and π2. Furthermore

letϕ be theuniquemorphism fromX into thefinal coalgebra. Byfinality,wehaveϕ◦π1 = ϕ◦π2. BecauseX is observational,

ϕ is injective, whence π1 = π2. As a consequence, any two G-bisimilar elements of X are equal. For the converse, note that

the identity relation is a G-bisimulation. �

Definition 11. Let G : Set → Set be a functor with final coalgebra. A G-coalgebra X = (X, γ) is called relatively final if for

all G-coalgebras Y = (Y, δ) such that range(ϕY) ⊆ range(ϕX) there is a unique G-coalgebra morphism ι : Y → X with

X
ϕX

�� �G

Y

ι

���
�
� ϕY

����������

Proposition 12. Let G : Set → Set be a functor with final coalgebra and let X = (X, γ) be a G-coalgebra. If γ is observational

for X, then X is relatively final.

Proof. LetXbeanobservationalG-coalgebra, letY = (Y, δ)beaG-coalgebra and letϕX andϕY be the coalgebramorphisms

fromX andY into the finalG-coalgebra. Furthermorewe assume that range(ϕY) ⊆ range(ϕX). Wewant to show that there

is a unique G-coalgebra morphism ι from Y to X. In order to show the existence of ι we define a function ι : Y → X by

putting for all y ∈ Y

ι(y) := x if ϕY(y) = ϕX(x).

This function is well defined because of the injectivity of ϕX and the fact that the range of ϕY is contained in the range of

ϕY. Clearly we have ϕY = ϕX ◦ ιwhich implies that ι is a coalgebramorphism because ϕX is injective (cf., [16, Lemma 2.4]).

Uniqueness of ι follows also from the injectivity of ϕX: any ι′ : Y → X has the property that ϕX ◦ ι′ = ϕY = ϕX ◦ ι and
thus ι = ι′. �

4. Complete sets of cooperations

The notion of an observational coalgebra is in general too abstract to work with. In this section we define the more

concrete notion of a complete set of cooperations. We first introduce the notion of a cosignature and of a cooperation and

then state when a given set of cooperations is complete.

4.1. Cosignatures

The notion of a cosignature that we are using is essentially the one from [5] with the difference that we consider only

one “hidden sort” that corresponds to the set of coalgebra states.

Definition13. LetS := {Sj}j∈J bea family of sets (“observable sorts”). A basicS-arityα is an element of the setS∗×(S∪{H}),
i.e., any basic S-arity α is either of the form (S1 . . . Sn, S) or of the form (S1 . . . Sn, H), where H should be thought of as the

“hidden sort”. The set Arity(S) of S-arities is defined as

Arity(S) = {α1 + · · · + αm | m ∈ IN, αi is a basic S-arity}. 2
An S-sorted cosignature consists of a set � of “cooperation” symbols and a function a : � → Arity(S) that assigns to each

σ ∈ � its arity a(σ) = α1 + · · · + αm. We call � basic if it contains only cooperation symbols σ of basic arity.

2 Here α1 + · · · + αm denotes the word α1 . . . αm - the +’s have no formal meaning and are only there in order to make the structure of a given S-arity more

clear.

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1403

Definition 14. Let S be a family of sorts, let � be an S-sorted cosignature and let X be a set. For each arity α1 + · · · + αk ∈
Arity(S) we inductively define a corresponding set Xα by putting

X(S1···Sk,S) := SS1×···×Sk X(S1...Sk,H) := XS1×···×Sk Xα1+α2
:= Xα1

+ Xα2

A cooperation of arity a(σ) ∈ Arity(S) is a function f : X → Xa(σ).

Notation 15. Given an S-arity α1 + · · · + αm we will skip the canonical injection maps if no confusion is possible and

simply write y ∈ Yαi
instead of y ∈ κi[Yαi

] where κi : Yαi
→ Yα1

+ · · · + Yαm
denotes the canonical inclusion map.

Definition 16. Let S be a family of sorts and let � be an S-sorted cosignature. A �-coalgebra (X, 〈fσ : σ ∈ �〉) consists of
a set X and a collection of functions {fσ : X → Xa(σ)}σ∈� . In other words, a �-coalgebra is a coalgebra for the functor

G� : Set → Set

X �→ ∏
σ∈�

Xa(σ)

X
h−→ Y �→ 〈hσ : σ ∈ �〉

where hσ : Xa(σ) → Ya(σ) is defined in the obvious way. We call g : Y1 → Y2 a �-coalgebra morphism from (Y1, 〈o1σ : σ ∈
�〉) to (Y2, 〈o2σ : σ ∈ �〉) if g is a G�-coalgebra morphism.

Readers that are familiar with hidden algebra will recognise that a basic cosignature in our sense corresponds to the one

of a hidden signature (cf., e.g., [15]) in which an operation can have at most one argument of hidden sort. The notion of a

cosignature we are using slightly generalises the notion of a signature in hidden algebra by allowing a cooperation to have

values of different sorts depending on its argument. In particular, the value of a cooperation can be sometimes of hidden sort

and sometimes of observable sort. An important example for this phenomenon is the predecessor function P : IN → 1+ IN

from Example 7(2).

For basic cosignatures �, the connection between �-coalgebras and hidden algebras for the “corresponding” hidden

signature has been made precise in [4] where an isomorphism between the category of �-coalgebras and the category of

corresponding hidden algebras is established.

4.2. Complete sets of cooperations

If we instantiate Definition 5 of an observational coalgebra to the case of the more concrete �-coalgebras we obtain our

notion of a complete set of cooperations.

Definition 17. Let X be a set, let S be a set of sorts and� an S-sorted cosignature. A set of cooperations {fσ : X → Xa(σ)}σ∈�

is called complete for X if the final map ϕ : X → �G�
from the corresponding �-coalgebra (X, 〈fσ : σ ∈ �〉) into the final

�-coalgebra (�G�
, ω�) is injective:

X

〈fσ :σ∈�〉
��

∃!ϕ ������������ �G�

ω�

��
G�X

G�ϕ
����������� G��G�

Examples of complete sets of cooperations can be found in Example 7 (2)–(7) above.

Example 18

(1) In Example 7(2) the set S of sorts consists only of the one-element set 1. The cooperation P has arity (ε, 1) + (ε, H),
where ε denotes the empty word, and {P} is a complete set of cooperations for IN.

(2) Example 7(3) does not immediately give rise to a complete set of cooperations.We first have to split the given function

Pp : IN → 1+ {0, . . . , p− 1} × IN into two functions P1p : IN → 1+ {0, . . . , p− 1} and P2p : IN → 1+ IN by letting

P1p (0) = P2p (0) = ∗ ∈ 1 and by putting for all n > 0, P1p (n) := n mod p and P2p (n) := ⌊ n
p

⌋
. It is now easy to see that

{P1p , P2p } is a complete set of cooperations for INwith a(P1p) = (ε, 1)+(ε, {0, . . . , p−1}) and a(P2p) = (ε, 1)+(ε, H).

(3) In Example 7(4) the set S consists of the set A and the cooperations h : AZ → A, l : AZ → AZ and r : AZ → AZ with

arities (ε, A), (ε, H) and (ε, H), respectively, form a complete set of cooperations for AZ.

1404 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

Remark 19. Equivalently, we could have defined complete sets of cooperations in the following way:

{fσ }σ∈� is complete for X if (X, {fσ }σ∈�) is strongly extensional. (1)

That the completeness condition in (1) is implied by the one in Definition 17 is an immediate consequence of Proposition 10.

The converse direction can be proven using the observation that for any functor of the form G� for some cosignature � the

relation↔G�
is transitive.

4.3. Example: completeness of {head, even, odd}
As mentioned before, the notion of a cobasis from hidden algebra is closely related to our notion of a complete set of

cooperations. In [15] it has been shown that there is a behavioural specification of infinite streams over some set A such that

the set {head, even, odd} constitutes a cobasis. We now give a coalgebraic proof of the fact that

{head : Aω → A, even : Aω → Aω, odd : Aω → Aω}
is a complete set of cooperations for the set of A-streams, where for any infinite A-stream α = a0a1a2a3a4a5 . . . ∈ Aω we

have

head(α) := a0 even(α) := a0a2a4 . . . odd(α) := a1a3a5

Definition 20. Let A2∗ := {t | t : 2∗ → A} be the set of infinite binary A-labelled trees. For a tree t ∈ A2∗
and a word

w ∈ 2∗ we denote by tw the tree given by tw(v) := t(vw) for all v ∈ 2∗.

In other words we code A-labelled infinite binary trees as functions t : 2∗ → A. Here nodes of a tree are identified with

elements of 2∗ in the usual way: the empty word ε corresponds to the root of the tree and if some w ∈ 2∗ corresponds to

a node in the tree, then 0w and 1w correspond to the left and the right successor of this node, respectively. For any w ∈ 2∗
and any A-labelled tree t : 2∗ → A, the tree tw : 2∗ → A represents the tree that is obtained from t by takingw as the new

root.

In the following, we will work with the binary coding of natural numbers.

Remark 21. We follow the convention that themost significant digit of the binary coding of a natural number is the leftmost

digit, e.g., the natural number 13 is encoded as the sequence 1101.

Definition 22. We denote by bin : IN → 2∗ the function that maps a natural number to its representation in binary coding.

Furthermore we denote by nat : 2∗ → IN the function that maps a binary code to the corresponding natural number. By

convention we put nat(ε) := 0.

The following is a well-known fact from universal coalgebra (see, e.g., [18]).

Fact 23. Define h : A2∗ → A by h(t) := t(ε), l : A2∗ → A2∗
by l(t) := t0 and r : A2∗ → A2∗

by r(t) := t1. The set A2∗

together with the map 〈h, l, r〉 : A2∗ → A × A2∗ × A2∗
form a final coalgebra for the functor A × Id × Id.

We now prove that {head, even, odd} is a complete set of cooperations.

Proposition 24. Let j : Aω → A2∗
be the function that maps a stream τ to the binary tree j(τ) with

j(τ)(w) := τnat(w) for all w ∈ 2∗.

Then j is the unique coalgebra morphism from (Aω, 〈head, even, odd〉) into the final coalgebra (A2∗
, 〈h, l, r〉).

Proof. We have to prove that the following diagram commutes:

Aω

〈head,even,odd〉
��

j ��
A2∗

〈h,l,r〉
��

A × Aω × Aω
id×j×j

��
A × A2∗ × A2∗

Let τ ∈ Aω be a stream. Then head(τ) = τ0 = τnat(ε) = j(τ)(ε) = h(j(τ)). Furthermore for w ∈ 2∗ we get

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1405

l(j(τ))(w) = j(τ)0(w) = j(τ)(w0)

= τnat(w0) = τ2∗nat(w) = even(τ)nat(w) = j(even(τ))(w)

and

r(j(τ))(w) = j(τ)1(w) = j(τ)(w1)

= τnat(w1) = τ2∗nat(w)+1 = odd(τ)nat(w) = j(odd(τ))(w).

Hence l(j(τ)) = j(even(τ)) and r(j(τ)) = j(odd(τ))which finishes the proof that the above diagram commutes. Therefore

j is the unique coalgebra morphism into the final coalgebra (A2∗
, 〈h, l, r〉). �

Corollary 25. The set {head, even, odd} is a complete set of cooperations for Aω .

Proof. This follows immediately from Proposition 24 and the fact that j : Aω → A2∗
is obviously injective. �

Remark 26. Note that the function j from Proposition 24 is not surjective: Only those trees t ∈ A2∗
lie in the range of j for

whichwe have h(t′) = h(l(t′)) for all subtrees t′ of t. This observationwill be important for the {head, even, odd}-definition
scheme in Section 6.

5. The proof principle

We now turn to the discussion of G�-bisimulations and of the resulting �-proof principle. It follows from Proposition 10

that an observational �-coalgebra (H, 〈fσ : σ ∈ �〉) is strongly extensional w.r.t. G�-bisimilarity, i.e., τ1 ↔G�
τ2 implies

τ1 = τ2 for all τ1, τ2 ∈ X . Let us first spell out the definition of a �-bisimulation.

Fact 27. Let (H, 〈fσ : σ ∈ �〉) be a �-coalgebra. A relation R ⊆ H × H is a �-bisimulation if for all (τ1, τ2) ∈ R and

fσ : H → Hα1
+ · · · + Hαn

with basic arities α1, . . . , αn we have

(1) fσ (τ1) ∈ Hαi
iff fσ (τ2) ∈ Hαi

for 1 ≤ i ≤ n,

(2) if fσ (τ1), fσ (τ2) ∈ Hαi
and αi = (S1 . . . Sm, S) with S ∈ S we have

fσ (τ1)(s1, . . . , sm) = fσ (τ2)(s1, . . . , sm) for all si ∈ Si, 1 ≤ i ≤ m,

(3) if fσ (τ1), fσ (τ2) ∈ Hαi
and αi = (S1 . . . Sm, H) we have

(fσ (τ1)(s1, . . . , sm), fσ (τ2)(s1, . . . , sm)) ∈ R for all si ∈ Si, 1 ≤ i ≤ m.

As observational coalgebras are strongly extensional we obtain the following �-coinduction proof principle for a set H

that is equipped with a complete set of cooperations.

Proposition 28. Let � be a cosignature and suppose O = {fσ : σ ∈ �} is a complete set of cooperations for a set H. For all

τ1, τ2 ∈ H and all �-bisimulations R ⊆ H × H we have (τ1, τ2) ∈ R implies τ1 = τ2.

Proof. The claim follows from Proposition 10. �

The following proposition describes a special, slightly simpler case of the �-coinduction proof principle.

Proposition 29. Let � be a cosignature, let O = {fσ : σ ∈ �} be a complete set of cooperations for a set H and let τ1, τ2 ∈ H.

Suppose for all cooperations fσ : H → Hα1
+ · · · + Hαn

the following holds:

(1) fσ (τ1) ∈ Hαi
iff fσ (τ2) ∈ Hαi

for 1 ≤ i ≤ n

(2) if fσ (τ1), fσ (τ2) ∈ Hαi
and αi = (S1 . . . Sm, T) we have

fσ (τ1)(s1, . . . , sm) = fσ (τ2)(s1, . . . , sm) for all si ∈ Si, 1 ≤ i ≤ m.

Then we can conclude that τ1 = τ2.

Proof. Given the assumptions of the proposition it is straightforward to see that the relation
H ∪ {(τ1, τ2)} is a �-

bisimulation, where
H ⊆ H × H denotes the identity relation (the H-“diagonal”). Therefore the claim follows using

Proposition 28. �

1406 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

Remark 30. Asmentioned in Section 4.1 basic cosignatures can be seen as a hidden algebra signature. From this perspective

the �-coinduction proof principle is similar to the coinduction principle used in hidden algebra (see [15]).

We now turn to an example that should demonstrate that a good choice of a complete set of cooperations for a given set

H can lead to relatively simple proofs by �-coinduction. Further applications of �-coinduction can be found in Section 6

(cf., Proposition 52 and Example 64 below).

5.1. The proof principle: an example

Consider the set IRω of streams of real numbers togetherwith the complete set of cooperations {h,
} from Example 7(6).

We will recall a bit of so-called stream calculus; see [17] for all details. Let X = (0, 1, 0, 0, 0, . . .). The convolution product

σ × τ of two streams σ and τ in IRω is given, for all n ≥ 0, by

(σ × τ)(n) = ∑
0≤k≤n

σ(k) · τ(n − k)

The multiplicative inverse of τ is denoted by 1/τ (which exists whenever τ(0) �= 0). As usual, σ/τ denotes σ × (1/τ). We

define the following so-called falling powers of X , for all n ≥ 0, by

Xn = Xn/(1 − X)n+1

As usual, we include the set of reals IR into the set of streams IRω by the notational convention

r = (r, 0, 0, 0, . . .)

Note that
X0 =
(1/(1 − X)) = 0 and

Xn+1 = Xn

For σ ∈ IRω we define

rσn =
(

(n) σ

)
(0)

Now let

sum(σ) = rσ0 × X0 + rσ1 × X1 + rσ2 × X2 + · · ·

Theorem 31. For all σ ∈ IRω ,

σ = sum(σ)

Proof. We show that

R = { (σ, sum(σ)) | σ ∈ IRω }
is an {h,
}-bisimulation. Clearly,

h(σ) = σ(0) = h(sum(σ))

Furthermore we have

 sum(σ)

=

(
rσ0 × X0 + rσ1 × X1 + rσ2 × X2 + · · ·

)

= rσ0 ×
 X0 + rσ1 ×
 X1 + rσ2 ×
 X2 + · · ·
= rσ1 × X0 + rσ2 × X1 + rσ3 × X2 + · · ·
= sum(
σ)

where for the latter equality we use

rσn+1 = r
σ
n

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1407

As a consequence, we have

(
σ,
 sum(σ)) = (
σ, sum(
σ)) ∈ R

This proves that R is an {h,
}-bisimulation. �

The theorem above is already present in [17, Theorem 11.1]. The reader is invited to compare the proof there with the

present one. (Giving away the clue, the present one is quite a bit simpler.)

6. The definition scheme

In this section, we develop a scheme for corecursively defining constants and functions using a given complete set of

cooperations. This scheme is closely related to similar ones in thehidden algebra community, in particular to the one in [3]. As

we have already pointed out in Section 1 we believe that the novelty of our scheme lies in the use of coalgebraic techniques

and in the fact that our scheme allows for the simultaneous definition of several functions. For an example of the latter

phenomenon the reader is referred to Example 62.

6.1. The general idea

In order to provide the reader with a good feeling for the ideas that underlie the following quite technical section, we

start the discussion of the definition scheme by looking at some examples.

Example 32. Consider the set of bitstreams 2ω , i.e., of streams over the two-element set {0, 1}. In Section 4.3 we saw that

the set {head, even, odd} is a complete set of cooperations for 2ω . Using our definition scheme we will be able to define

functions of type (2ω)n → 2ω for n ∈ IN (for n = 0 we obtain a constant).

As a concrete example, we treat the so-called Thue–Morse sequence (cf., [1]) TM = t0t1t2 . . . with tn = s2(n) mod 2,

where s2(n)denotes the sumof thedigits of the binary representation ofn. In our scheme for the complete set of cooperations

{head, even, odd} we define TM by specifying the constant TM and an auxiliary function inv : 2ω → 2ω that computes

the inverse of a given bitstream, i.e., 0 is replaced by 1 and 1 is replaced by 0. The specification consists of the following

equations:

Fhead(inv(x)) = 1 − Fhead(x) Fhead(TM) = 0

Feven(inv(x)) = inv(Feven(x)) Feven(TM) = TM

Fodd(inv(x)) = inv(Fodd(x)) Fodd(TM) = inv(TM)

More abstractly speaking, for any function or constant in
 = {TM, inv}we specify how it behaves under application of the

cooperations head, even and odd. We will come back to the example later and show that the equations above indeed define

the Thue–Morse sequence and the inverse function.

The previous example concerned cooperations for a basic cosignature, i.e., the cooperations are all of basic arity either

of the form (S1 · · · Sl, H) or (S1 · · · Sl, S) for l ∈ IN, S1, . . . , Sl, S ∈ S . When dealing with arbitrary sets of cooperations the

definition scheme can involve some case distinctions as the following simple example demonstrates.

Example 33. Consider the set of extended natural numbers ĪN together with the cooperation P̄ : ĪN → 1 + ĪN where

ĪN = IN ∪ {∞}. In Example 2 we remarked that (ĪN, P̄) is a final 1 + Id-coalgebra and thus {P̄} is a complete set of

cooperations for ĪN. Suppose now that wewant to definemultiplicationmult : ĪN2 → ĪN and addition add : ĪN2 → ĪN using

our scheme. Similar to what we did in the previous example we have to specify the behaviour under taking the predecessor

for each function symbol in
 = {mult, add}. The equations involve case distinctions as to whether the variables "behave"

like 0 or like a natural number greater than 0. This will be encoded by so-called behaviour patterns. In the example we

assign to a variable x of sort H a behaviour pattern �(x) : {P̄} → IN with either �(x)(P̄) = 1 (which should be read as

“P̄(x) is contained in the first component of the coproduct") or �(x)(P̄) = 2 (to be read as “P̄(x) is contained in the second

component of the coproduct”). The following equations specify addition and multiplication:

FP̄(add(x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

add(FP̄(x), y) if �(x)(P̄) = 2, �(y)(P̄) = 1 (“x �= 0”)

add(x, FP̄(y)) if �(x)(P̄) = 1, �(y)(P̄) = 2 (“y �= 0”)

add(FP̄(x), y) if �(x)(P̄) = �(y)(P̄) = 2 (“x, y �= 0”)

∗ if �(x)(P̄) = �(y)(P̄) = 1 (“x, y = 0”)

1408 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

FP̄(mult(x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∗ if �(x)(P̄) = 2, �(y)(P̄) = 1

(“x �= 0, y = 0”)

∗ if �(x)(P̄) = 1, �(y)(P̄) = 2

(“y �= 0, x = 0”)

add(FP̄(x),mult(FP̄(y), x)) if �(x)(P̄) = �(y)(P̄) = 2

(“x, y �= 0”)

∗ if �(x)(P̄) = �(y)(P̄) = 1

(“x, y = 0”)

Example 34. For another example consider the set A∞ of all finite or infinite lists over some set A. A complete set of

cooperations is provided by the set {head : A∞ → 1 + A, tail : A∞ → 1 + A∞} where head(σ) and tail(σ) for a non-

empty list σ are defined as usual and head(ε) = tail(ε) = ∗ ∈ 1, where ε denotes the empty list. Wewill be able to specify

a function zip : (A∞)2 → A∞ as follows:

Fhead(zip(x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fhead(x) if head(x) = 2, head(y) = 2

Fhead(x) if head(x) = 2, head(y) = 1

Fhead(y) if head(x) = 1, head(y) = 2

∗ if head(x) = head(y) = 1

Ftail(zip(x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ftail(x) if tail(x) = 2, tail(y) = 1

Ftail(y) if tail(x) = 1, tail(y) = 2

zip(y, Ftail(x)) if tail(x) = 2, tail(y) = 2

∗ if tail(x) = 1, tail(y) = 1

Note that in this example we wrote head(x) = 1 instead of saying that the behaviour pattern �(x) of x has the property

that �(x)(head) = 1. Although the latter formulation would be a more exact account of what we are doing in the general

formulation of the definition scheme below, we opted for the first notation as we feel that it makes the example more

readable.

We will come back to the examples in order to motivate the definitions in this section. We are now turning to the

description of the general definition scheme. Our definition scheme forH-constants andH-functions generalises the scheme

that has been presented in [18] for the case that H is the set of infinite binary A-labelled trees. The scheme extends the one

presented in [12] by allowing sets of cooperations for arbitrary cosignature, whereas the scheme presented in [12] worked

for basic cosignatures only.

In the remainder of this section we assume that we are given

• a collection S of sets (“observable sorts”) and a hidden sort H,
• a set H, a finite cosignature � and a complete set of cooperations O = {fσ : H → Ha(σ)}σ∈� for H which constitute a

�-coalgebra X = (H, 〈fσ : σ ∈ �〉),
• a set
 of function symbols for the functions that we want to define; we write
i ⊆
 for the set of function symbols

in
 with i ∈ IN arguments.

In order to be able to formulate what a well-formed definition of H-constants and functions is, we have to introduce some

syntax.

6.1.1. The terms

Wefirst define the set SE of state equation terms, the set E of equation terms and the set Eres of restricted equation terms.

These terms are sorted, i.e., we write t : S to indicate that t is a term of sort S ∈ S ∪ {H}. In our scheme, we are allowed to

freely use “help functions” of observable sort.

Definition 35. For a set S of sorts we define the set of help functions by putting HelpS := {h | h is a function of type

S1 × · · · × Sj → T for some j ∈ IN and some S1, . . . , Sj, T ∈ S}.
The terms will be generated over a set of variables that not only have a sort S ∈ S ∪ {H} associated with them but in

addition a function � that encodes the behaviour of a variable under the cooperations in �.

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1409

Definition 36. Let S be a set of sorts and let � be an S-sorted cosignature. Furthermore let
 be a set of constants and

function symbols and let X = (XS)S∈S∪{H} be a sorted sets of variables together with a function � : XH → (� → IN) such
that

(i) for all σ ∈ � with a(σ) = α1 + · · · + αm we have �(x)(σ) ∈ {1, . . . ,m} and
(ii) for all �-indexed families of natural numbers {iσ }σ∈� such that iσ ∈ {1, . . . , k} if a(σ) = α1 + · · · + αk the set

{x ∈ XH | �(x)(σ) = iσ for all σ ∈ �} is infinite for all i ∈ I.

We call a function ν : � → IN a behaviour pattern. We define the set E of equation terms as follows:

E � s ::= x : S, x ∈ XS, S ∈ S ∪ {H} | s : S, s ∈ S, S ∈ S | τ : H, τ ∈ H

| Fσ (x) : S1 × · · · × Sn → T, σ ∈ �,

a(σ) = α1 + · · · + αm, �(x)(σ) = i, αi = (S1 . . . Sn, T), x ∈ XH

| Fσ (τ) : S1 × · · · × Sn → T, τ ∈ H with fσ (τ) : S1 × · · · × Sn → T

| Fσ (t) : (S1,1 × · · · × S1,n1 → T1) + · · · + (Sk,1 × · · · × Sk,nk → Tk),

σ ∈ �, a(σ) = (S1,1 . . . S1,n1 , T1) + · · · + (Sk,1 . . . Sk,nk , Tk), t : H

| h : S1 × · · · × Sl → S ∈ HelpS | g : (H)n → H, g ∈
n, n ∈ IN

| t(t1, . . . , tl) : S, t : S1 × · · · × Sl → S, ti : Si for 1 ≤ i ≤ l

and by letting

• the set Eres ⊆ E of restricted equation terms to consist exactly of those terms in E in which for every σ ∈ � the symbol

Fσ is applied to variables only, and
• the set SE ⊆ E of state equation terms to consist exactly of those terms in E that do not contain any occurence of a g ∈
,

h ∈ HelpS or of some τ with τ ∈ H.

Wewrite t(x1 : S1, . . . , xn : Sn) in order to indicate that t is a termwith variables contained in {x1 : S1, . . . , xn : Sn}. Finally
we put

T � t ::= τ , τ ∈ H | g(t1, . . . , tn), g ∈
n, n ∈ IN.

Note that the set E of equation terms can be seen as the set of terms for an algebraic signature consisting of the function

symbols Fσ for σ ∈ �, the function symbols g ∈
 and the constants s for s ∈ S, S ∈ S , and τ for τ ∈ H. The reason why

our definition looks rather involved is that we have to ensure that all terms are correctly sorted and that the assignment of

sorts respects the behaviour pattern of the variables that occur in a term.

All equations will be written using sorted terms in E . Right-hand sides of behavioural differential equations will be

restricted to terms in Eres and state equations SE will be used to describe H as a subcoalgebra of a final coalgebra (this

explains why no symbols g ∈
 occur in a term in SE). Finally the terms in T will be used as the carrier of a term coalgebra

– the unique map from the term coalgebra into the final coalgebra will yield the intended interpretation of the terms in T .

Note that T can in fact also be seen as a subset of Eres. The sort of some term t in T , however, would always be H. Therefore

we decided to write terms in T without any sorting information.

Example 37. The “behaviour pattern” of a variable x ∈ XH will allow us to define functions by case distinction, similar

to what we did in Examples 33 and 34. The definition of add in Example 33 will be written down in four separate equa-

tions – one equation for any possible behaviour pattern of the variables x and y. For writing down the equation treating

the first case (x �= 0, y = 0) we take two variables x and y such that �(x)(P̄) = 2 and �(y)(P̄) = 1 and we write the

equation

FP̄(add(x, y)) = add(FP̄(x), y).

Similarly we treat the remaining three cases for defining add.

From now onwe assume that we are working with a given set of S-sorted variables together with a function � satisfying

conditions (i) and (ii) from the previous definition. We also define what the behaviour pattern of a state of some �-

coalgebra is.

Definition 38. Let Y = (Y, 〈oσ : σ ∈ �〉) be a �-coalgebra. The behaviour pattern �Y(y) : � → IN of a state y is

defined by

1410 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

�Y(y)(σ) = i if oσ (y) ∈ Yαi
,

for every σ ∈ �, a(σ) = α1 + · · · + αn. In case there is no danger of ambiguity we simply write �(y) instead of �Y(y).

We will now specify how equation terms are interpreted over �-coalgebras. First we have to introduce the notion of an

admissible valuation.

Definition 39. Let Y = (Y, 〈oσ : σ ∈ �〉) be a �-coalgebra and let V be a set of sorted variables from X . A variable

assignment on V is a function β that assigns to each variable x ∈ V of sort T ∈ S ∪ {H} an element s ∈ S if T = S ∈ S
or a state y ∈ Y if T = H. A variable assignment β is called admissible if for all variables x ∈ V of sort H and all σ ∈ �,

�(x)(σ) = i implies that oσ (β(x)) ∈ Yαi
, where a(σ) = α1 + · · · + αn.

In other words, a variable assignment β is admissible if for all variables x of sortHwe have that x and β(x) have the same

behaviour pattern.

Example 40. Consider again Example 33 and let x be a variable of sort ĪN such that �(x)(P̄) = 1. Then for any 1 + Id

coalgebra (Y, oP̄ : Y → 1 + Y) and any variable assignment β on {x} we have β is admissible iff oP̄(β(x)) = ∗ ∈ 1, i.e., iff

β(x) ∈ Y “behaves like” the zero element 0 ∈ ĪN.

We introduce admissible variable assignments in order to be able to properly define the interpretation of a given term.

For admissible valuations the interpretation of a term is defined as usually. The interpretation of a term with respect to a

non-admissible variable assignment will be a certain default value ⊥ (which should be read as “undefined”).

Definition 41. Let Y = (Y, 〈oσ : σ ∈ �〉) be a �-coalgebra and suppose that for every g ∈
m there is an operation

gY : Ym → Y . For every term t(x1, . . . , xn) ∈ E and every admissible variable assignment α on {x1, . . . , xn} we define by

induction on t its interpretation (t[α])Y as follows:

(x[α])Y := α(x) (s[α])Y := s ∈ S (τ [α])Y := τ ∈ H

(h[α])Y := h (g[α])Y := gY

(Fσ (t)[α])Y := oσ

(
(t[α])Y

)
(t(t1, . . . , tn)[α])Y := (t[α])Y

(
(t1[α])Y, . . . , (tn[α])Y

)
.

Ifα is a variable assignment that is not admissibleweput (t[α])Y :=⊥.Where necessary,we explicitlymention the interpre-

tations of the function symbols in
 and write (t[α])(Y,{gY}g∈
) for (t[α])Y. Similarly we define the interpretation (t[α])Y

of a term t(x1, . . . , xn) ∈ SE on an arbitrary �-coalgebra. An equation is a pair of terms e1(x1, . . . , xn), e2(x1, . . . , xn) ∈ E .
We say (e1, e2) is satisfied in Y by an assignment α if (e1[α])Y = (e2[α])Y. We write Y, α |� (e1, e2) if (e1, e2) is satisfied
by α. Furthermore we write x �→ t for the variable assignment that maps the variable x to the term t.

Definition 42. A state equation is a pair e = (e1, e2) of terms e1(x : H), e2(x : H) ∈ SE . Given a�-coalgebraY = (Y, 〈oσ :
σ ∈ �〉) we say that e is satisfied at a state y if Y, (x �→ y) |� (e1, e2), i.e., if (e1[x �→ y])Y = (e2[x �→ y])Y. We write

y |� e if e is satisfied at y and we write Y |� e if y |� e for all y ∈ Y .

Example 43. Let (e1(x), e2(x)) be a state equation. It is a consequence of our definition that a coalgebra state y trivially

satisfies (e1(x), e2(x)) if y has a behaviour pattern different from the behaviour pattern of x. Consider the coalgebra (ĪN, P̄)
from Example 33 and the state equation (FP̄(x), x) with some variable x of sort ĪN such that �(x)(P̄) = 2. Then clearly

0 |� (FP̄(x), x) because (FP̄(x)[x �→ 0])(ĪN,P̄) = (x[x �→ 0])(ĪN,P̄) =⊥, but n �|� (FP̄(x), x) for all n ∈ IN such that

n > 0.

We will use the fact that �-coalgebra morphisms preserve state equations: if f is a coalgebra morphism and e is some

state equation satisfied at a state x then e is also satisfied at f (x). This is the content of the following two lemmas.

Lemma 44. Let Y = (Y, 〈oσ : σ ∈ �〉) and Y
′ = (Y ′, 〈o′

σ : σ ∈ �〉) be �-coalgebras and let f : Y → Y
′ be a �-coalgebra

morphism. Let y ∈ Y and let σ ∈ � with a(σ) = α1 + · · · + αn. The following holds:

(i) oσ (y) ∈ Yαi
iff o′

σ (f (y)) ∈ Y ′
αi

for all i ∈ {1, . . . , n},
(ii) if oσ (y) ∈ Yαi

with αi = (S1 · · · Sn, S) and S �= H then for all (s1, . . . , sn) ∈ S1 × · · · × Sn we have

oσ (y)(s1, . . . , sn) = o′
σ (f (y))(s1, . . . , sn), and

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1411

(iii) if oσ (y) ∈ Yαi
with αi = (S1 · · · Sn, H) then for all (s1, . . . , sn) ∈ S1 × · · · × Sn we have

f (oσ (y)(s1, . . . , sn)) = o′
σ (f (y))(s1, . . . , sn).

Proof. The claim can be easily proven by spelling out the definitions of a �-coalgebra morphism. �

As a consequence we get that behaviour patterns and state equations are “preserved” under coalgebra morphisms.

Lemma 45. Let Y1 = (Y1, 〈o1σ : σ ∈ �〉) and Y2 be �-coalgebras, let f : Y1 → Y2 be a �-coalgebra morphism and let

e = (e1, e2) be a state equation. Then for all y ∈ Y1 we have

�Y1
(y)(σ) = �Y2

(f (y))(σ) for all σ ∈ � (2)

y |� e ⇒ f (y) |� e. (3)

Proof. The first item of Lemma 44 shows that (2) holds. In order to prove (3) note that (2) implies that (e1[x �→ y])Y1 =⊥
iff (e2[x �→ f (y)])Y2 =⊥. If (x �→ y) is an admissible valuation one can use items (ii) and (iii) of Lemma 44 in order to

show by a straightforward induction on the term structure that for all terms t(x : H) ∈ SE the following holds

f
(
(t[x �→ y])Y1

)
=

(
t[x �→ f (y)]Y2

)
if t : H

(t[x �→ y])Y1 = (t[x �→ f (y)])Y2 if t is of observable sort.

This clearly implies the claim. �

In order to be able to use the fact that H together with the set of cooperations {fσ : σ ∈ �} is (isomorphic to) a

subcoalgebra (U, γU) of the final �-coalgebra, we have to concretely describe (U, γU) using state equations and behav-

iour patterns: if we characterise (U, γU) by a set of state equations E and a set of behaviour patterns B, we know that

(U, γU) and consequently also (H, 〈fσ : σ ∈ �〉) is relatively final amongst all �-coalgebras that validate the state equa-

tions in E.

Definition 46. Let F = (��, 〈ωσ : σ ∈ �〉) be the final �-coalgebra and let P ⊆ �� be a subset of �� . We denote by

�P = (�P, 〈ω�P
σ : σ ∈ �〉) the largest subcoalgebra of F that is contained in P.

The well definedness of�P follows from the fact that for any P ⊆ �� the largest subcoalgebra of F contained in P exists

(cf., e.g., [9, Theorem 4.7]).

Definition 47. Let � be a cosignature and let O = {fσ | σ ∈ �} be a complete set of �-cooperations for H. We say that a

set of state equations E together with a set of behaviour patterns B completely specifies (H, 〈fσ : σ ∈ �〉) if
�PE,B ∼= (H, 〈fσ : σ ∈ �〉)

where PE,B := {y ∈ �� | ∀e ∈ E. y |� e and �F(y) ∈ B}. In this case we call (O, E, B) a complete (�-)specification of H.

We call (O, E, B) finite if O, E and B are finite.

Example 48. A complete specification of the set A∞ together with the complete set of cooperations {head, tail} as de-

scribed in Example 34 looks as follows: O = {head, tail}, E = ∅ and B = {ν1, ν2} where ν1(head) = ν1(tail) = 1 and

ν2(head) = ν2(tail) = 2. In this case the set B of behaviour patterns expresses that either both the head(σ) = ∗ and

tail(σ) = ∗ (if σ is the empty list ε) or head(σ) ∈ A and tail(σ) ∈ A∞.

Lemma 49. Let (O, E, B) be a complete �-specification of H and let Y = (Y, 〈oσ : σ ∈ �〉) be a �-coalgebra. If Y |� e for

all e ∈ E and �Y(y) ∈ B for all y ∈ Y, then there exists a unique �-coalgebra morphism ιY : Y → H.

Proof. Let ϕ : Y → �� be the unique �-coalgebra morphism into the final �-coalgebra F. It follows from Lemma 45

that Y |� e for all e ∈ E and �Y(y) ∈ B for all y ∈ Y implies range(ϕ) ⊆ PE . As range(ϕ) is a subcoalgebra of � we get

range(ϕ) ⊆ �PE . The existence of ι follows now from Proposition 12. �

6.1.2. The differential equations

We now have introduced the necessary terminology in order to be able to state the main definition of this section. This

definition involves the notion of an equation being provable in a restricted version of conditional equational logic. We do

1412 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

not want to spell out this notion, instead, the reader is referred to the brief overview in [19, Section 7.3] and references

therein.

Definition 50. Let (O, E, B)be a complete, finite specification ofH. Awell-behaved systemof behavioural differential equations

for (O, E, B) and
 is a set Spec which contains for every g ∈
n, for any family of behaviour patterns ν := {νj : � →
IN}j∈{1,...,n} with νj ∈ B for all j ∈ {1, . . . , n} and for any σ ∈ � an equation egσ (ν) of the form

(Fσ (g(x1 : H, . . . , xn : H))) (y1 : S1, . . . , yl : Sl) = tgσ (ν)(x1 : H, . . . , xn : H, y1 : S1, . . . , yl : Sl) : T,
together with a natural number

γ (g(ν))(σ) := k ∈ {1, . . . ,m},
where x := {xj : H}j∈{1,...,n} consists of pairwise distinct variables such that �(xj) = νj for j ∈ {1, . . . , n}, tgσ (ν) : T is a

term in Eres, σ has arity a(σ) = α1 + · · · + αm and αk = (S1 . . . Sl, T). The resulting behaviour pattern γ (g(ν)) : � → IN

has to be an element of B.
Furthermore we require that for all (e1(x : H), e2(x : H)) ∈ E and all terms g(x1, . . . , xn) with g ∈
 such that

γ (g(ν)) = �(x) with νi := �(xi) for all i ∈ {1, . . . , n} the following conditional equation is provable in conditional

equational logic:

(e1[x := g(x1, . . . , xn)] = e2[x := g(x1, . . . , xn)]) ⇐ E(x1, . . . , xn) ∪ Equν, (4)

where

E(x1, . . . , xn) := {(e1[x := xi], e2[x := xi]) | 1 ≤ i ≤ n, (e1(x : H), e2(x : H)) ∈ E, �(x) = �(xi)},
and where Equν := {egσ (ν) ∈ Spec | g ∈
, σ ∈ �}.

Now that we know what a well-behaved system of equations is, we also want to see what a solution of these equations

looks like.

Definition 51. A solution of awell-behaved system of behavioural differential equations Spec is a family of functions {ĝ}g∈

that contains for all g ∈
 a function ĝ : Hn → H such that for all equations

(Fσ (g(x1 : H, . . . , xn : H))) (y1 : S1, . . . , yl : Sl) = tgσ (ν)(x1 : H, . . . , xn : H, y1 : S1, . . . , yl : Sl) : T,
in Spec, for all τ1, . . . , τn ∈ H with �(τj) = νj for j ∈ {1, . . . , n} and for all s1 ∈ S1, . . . , sl ∈ Sl we have

fσ (ĝ(τ1, . . . , τn)) = κk

(
λ(s1 : S1). . . . λ.(sl : Sl).(tgσ (ν)[yj := sj][xi �→ τ i])X

)
,

where k = γ (g(ν1, . . . , νn))(σ) and κk : Hαk
→ Hα1

+ · · · + Hαm
is the canonical injection map into the k-th component

with a(σ) = α1 + · · · + αm.

Before we demonstrate that such a solution exists for any well-formed system of behavioural differential equations we

demonstrate that a solution has to be necessarily unique.

Proposition 52. If {ĝ}g∈
 and {g′}g∈
 are solutions of the well-behaved system of behavioural differential equations Spec, then

for all g ∈
 we have ĝ = g′.

Proof. Inorder toprove theproposition,wedefinea relationR ⊆ H×H that containsall pairs (ĝ(τ1, . . . , τn), g
′(τ1, . . . , τn))

for all g ∈
 and all τi ∈ X . The claim follows then by showing that R is a bisimulation.

We define the relation R ⊆ H × H by putting

R := {(t̂, t′) ∈ H × H | ∃t ∈ T .t̂ = (t)X,{ĝ}g∈
, t′ = (t)X,{g′}g∈
}
The reader is invited to convince herself of the fact that for all g ∈
 and all τ1, . . . , τn ∈ H we have (ĝ(τ1, . . . , τn),
g′(τ1, . . . , τn)) ∈ R. Therefore for proving the claim of the proposition it suffices to demonstrate that R is a �-bisimulation.

In order to prove that R is a �-bisimulation we show by induction on t that for all (t̂, t′) ∈ R the following holds true:

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1413

(i) for all σ ∈ � we have fσ (t̂) ∈ Hβj
iff fσ (t′) ∈ Hβj

where a(σ) = β1 + · · · + βl ,

(ii) for all σ ∈ � we have fσ (t̂) = fσ (t′) if fσ (t̂) is a constant or function of observable sort, and

(iii) for all σ ∈ � and for all s1 ∈ S1, . . . , sl ∈ Sl we have

(fσ (t̂)(s1, . . . , sl), fσ (t′)(s1, . . . , sl)) ∈ Rn+1

if fσ (t̂) : S1 × · · · × Sl → H.

The base case of the induction, t = τ for some τ ∈ H, is trivial. For the induction step consider t = g(t1, . . . , tn) ∈ T and let

σ ∈ �. Using the induction hypothesis it is easy to see that the behaviour patterns of t̂i := (ti)
X,{ĝ}g∈
 and t′i := (ti)

X,{g′}g∈

coincide, i.e., �(t̂i) = �(t′i) for all i ∈ {1, . . . , n}. If we put νi := �(t̂i) for i ∈ {1, . . . , n} and use the assumption that

{ĝ}g∈
 and {g′}g∈
 are solutions of Spec we obtain

fσ (t̂) = fσ (ĝ(t̂1, . . . , t̂n)) = κk(λs1. . . . λsl.t
g
σ (ν)[xi := t̂i][yj := sj])X,{ĝ}g∈

fσ (t′) = fσ (g′(t′1, . . . , t′n)) = κk(λs1. . . . λsl.t
g
σ (ν)[xi := t′i][yj := sj])X,{g′}g∈

where k = γ (g(ν)) as specified in Spec. As σ was arbitrary this implies that t̂ and t′ have the same behaviour type. For

showing (ii) and (iii) we have to distinguish cases.

Case. fσ (t̂) is a function of “observable” type S1 ×· · ·× Sl → S for l ≥ 0, S1, . . . , Sl, S ∈ S . Then the corresponding term on

the right hand side tgσ (ν) is of observable sort S ∈ S . By definition tgσ (ν) is a term in Eres. Therefore tgσ (ν) cannot contain
any cooperation symbol g ∈
, because tgσ (ν) is of observable sort and the operation symbols Fσ – the only operations

that can transform a term of sort H into a term of observable sort – are exclusively applied to variables because tgσ (ν) is

a term in Eres. Furthermore any variable xi ∈ XH occurs in tgσ (ν) in a subterm of the form Fσ ′(xi) : (S̃1, . . . , S̃m, S) with

S ∈ S and by the induction hypothesis we have fσ ′(t̂i) = fσ (t′i). Putting these facts together it is straightforward to prove

that

(tgσ (ν)[xi := t̂i][yj := sj])X,{ĝ}g∈
 = (tgσ (ν)[xi := t′i][yj := sj])X,{g′}g∈
,

for all s1 ∈ S1, . . . , sl ∈ Sl .

Case. fσ (t̂) is a function of sort S1 × · · · × Sl → H for l ≥ 0, S1, . . . , Sl ∈ S . Then for s1 ∈ S1, . . . , sl ∈ Sl we define a term

r ∈ T by putting r := tgσ (ν)[xi := ti][yj := sj]. Spelling out the definition we obtain

fσ (t̂)(s1, . . . , sl) = (r)X,{ĝ}g∈
 and fσ (t′)(s1, . . . , sl) = (r)X,{g′}g∈

which implies (fσ (t̂)(s1, . . . , sl), fσ (t′)(s1, . . . , sl)) ∈ R as required. �

6.1.3. The solution

Throughout this section we fix a finite cosignature�, a complete, finite�-specification (O, E, B) ofH and a well-formed

system Spec of behavioural differential equations for (O, E, B).
For all σ ∈ � with a(σ) = α1 + · · · + αm ∈ Arity(S) we define a function Fσ : T → Tα1

+ · · · + Tαm
. The Fσ ’s are

defined by induction on the structure of the terms in T .

Definition 53. The term coalgebra T = (T , 〈Fσ : σ ∈ �〉) is defined inductively by putting for all σ ∈ �:

Fσ (τ) := κk(fσ (τ)) with �X(τ)(σ) = k

where fσ (τ)(s1, . . . , sn) :=
⎧⎨
⎩

fσ (τ)(s1, . . . , sn) if fσ (τ)(s1, . . . , sn) ∈ H

fσ (τ)(s1, . . . , sn) otherwise

Fσ (g(t1, . . . , tn)) := κk(λ�s.(tgσ [yj := sj][xi �→ ti])T)

with k = γ (g(ν1, . . . , νn)),

νi := �T(ti) for i ∈ {1, . . . , n}
Remark 54. In order to see that the definition ofT is correct, one has to observe that in the inductive clause of the definition

the behaviour pattern �T(ti) is defined because Fσ (ti) is defined for all σ ∈ � by the inductive hypothesis.

1414 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

Lemma 55. Let (O, E, B) be a complete specification of H and let Spec be a well-formed system of behavioural differential

equations for (O, E, B). Furthermore let T = (T , 〈Fσ : σ ∈ �〉) be the term �-coalgebra defined above. For all t ∈ T and all

e ∈ E we get that �T(t) ∈ B and t |� e.

Proof. Let t be an element of T . The fact that�T(t) ∈ B can be easily proven exploiting the fact that for all t = g(t1, . . . , tn),
g ∈
, we have �(g(t1, . . . , tn)) = γ (g(ν1, . . . , νn)) with νi = �(ti) for i ∈ {1, . . . , n}. Let now (e1, e2) ∈ E. We have to

show that

(e1[x �→ t])T = (e2[x �→ t])T. (5)

If x �→ t is not an admissible valuation the claim is trivially true, because both sides of the equation are equal to⊥. Therefore

we can assume x �→ t to be admissible. We prove that (5) holds by induction on the structure of t.

Case. t = τ for some τ ∈ X. In order to show that (5) holds it suffices to prove that the function (_) : H → T that maps

an element τ ∈ H to the corresponding constant τ ∈ T is a �-coalgebra morphism from 〈H, 〈fσ : σ ∈ �〉〉 to T. This a

matter of routine checking. By Lemma 45 and the fact that τ |� (e1, e2) it now follows that also τ |� (e1, e2).
Case. t = g(t1, . . . , tn) for some g ∈
. Let νi := �(ti) and let xi ∈ XH be a variable with behaviour pattern �(xi) = νi
for all i ∈ {1, . . . , n}. Furthermore let α be the variable assignment that maps for all 1 ≤ i ≤ n the variable xi to the

term ti. Then by I.H. we have (e1[α])T = (e2[α])T, i.e., T, α |� (e1, e2), for all e = (e1, e2) ∈ E(x1, . . . , xn). Moreover

for all σ ∈ � with a(σ) = α1 + · · · + αm and αγ (g(ν1,...,νn)) = (S1 . . . Sl, T) and for all (s1, . . . , sl) ∈ S1 × · · · × Sl by

definition we have (Fσ (g(x1, . . . , xn))(y1, . . . , yl)[yj := sj][α])T = (tgσ (ν)[yj := sj][α])T and thus T, α |� (e1, e2) for

all equations e
g′
σ ′(ν) = (e1, e2) in Spec. By (4) it follows that for an arbitrary e = (e1, e2) ∈ E we have T, α |� (e1[x :=

g(x1, . . . , xn)], e1[x := g(x1, . . . , xn)]), i.e.,

(e1[x := g(x1, . . . , xn)][α])T = (e2[x := g(x1, . . . , xn)][α])T,

which is equivalent to (e1[x �→ t])T = (e2[x �→ t])T. The latter shows that t |� e as required. �

The following is an immediate corollary.

Corollary 56. There exists a unique �-coalgebra morphism

ι : (T , 〈Fσ : σ ∈ �〉) → (H, 〈fσ : σ ∈ �〉).
Proof. The claim follows from the fact that (H, 〈fσ : σ ∈ �〉) is relatively final amongst all �-coalgebras that satisfy the

equations in E (Lemma 49) and from the fact that the term coalgebra satisfies the equations in E (Lemma 55). �

The final map ι can be used in order to obtain the solution of the given system Equ of behavioural differential equations.

Definition 57. Let (O, E, B) be a complete, finite specification of H, let Spec be a well-formed system of behavioural differ-

ential equations for (O, E, B) and let ι be the unique �-coalgebra morphism that exists by Corollary 56. For every g ∈
 we

define a function ĝ : Hn → H by putting ĝ(τ1, . . . , τn) := ι(g(τ 1, . . . , τ n)).

The above definition yields the unique solution of a given well-formed system of behavioural differential equations.

Proposition 58. Let (O, E, B) be a complete, finite specification of H and let Spec be a well-formed system of behavioural

differential equations for (O, E, B) and a given set of function symbols
. The family {ĝ}g∈
 from Definition 57 is the unique

solution of Spec.

Proof. The fact that {ĝ}g∈
 is a solution of Spec can be checked using coinduction. That the solution of awell-formed system

of behavioural differential equations is unique has been proven in Proposition 52. �

6.2. Definition scheme: short examples

We now give a short list of examples that are instances of our definition scheme. An example that has been worked

out in more detail can be found in Section 6.3 below. The first three examples are much simpler than the formulation of

the general scheme might suggest because the behaviour patterns do not play a role in case we are dealing with basic

cosignatures.

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1415

(1) Consider the set of bi-infinite streams Z
Z of integers together with the set of cooperations {h : Z

Z → Z, l : Z
Z →

Z
Z, r : Z

Z → Z
Z} (cf., Example 7(4)). The equations (Fl(Fr(x)), x) and (Fr(Fl(x)), x) canbe seen to completely specify

(ZZ, 〈h, l, r〉). The following is a well-formed system of differential equations for
 = {σ } ∪ {+(_, z) | z ∈ Z}:

Fh(σ) = 0 Fh(+(x, z)) = Fh(x) + z

Fl(σ) = +(σ, 1) Fl(+(x, z)) = +(Fl(x), z)

Fr(σ) = +(σ, −1) Fr(+(x, z)) = +(Fr(x), z)

where z ∈ Z. Then the functions +(_, z) : Z
Z → Z

Z for all z ∈ Z that add to a given bi-infinite stream the integer z

and the constant

σ = (. . . , −3, −2, −1, 0, 1, 2, 3, . . .),

form the unique solution.

(2) Here is an example of an {h,
}-differential equation (cf., Example 7(6)):

σ = σ , σ (0) = 1

It has a unique solution:

σ = (20, 21, 22, . . .).

A closed expression for this solution can be computed using the following identity, which can be viewed as the

fundamental theorem of the difference calculus: for all τ ∈ IRω ,

τ = 1

1 − X
× (τ0 + X ×
τ)

Using this and the differential equation above, one obtains

σ = 1

1 − 2X
= (20, 21, 22, . . .)

(3) The following is an example of an {h, d/dX}-differential equation (cf., Example 7(7)):

dσ

dX
= σ , σ (0) = 1

Again, it has a unique solution, which is now given by

σ(n) = 1

n!
(It is not obvious how to find a closed expression for σ .)

(4) Coming back to Example 33 it is straightforward to prove that the given equations specify addition andmultiplication

on ĪN. In order to fit the example into the general scheme one has to replace the two given case distinctions by 4

equations each as described in Example 37 above. Strictly speaking, it is moreover necessary to explicitly specify the

behaviour patterns γ (add(x, y)) and γ (mult(x, y)) for all possible choices of behaviour patterns of x and y. Consider

for example two variables x ad y with �(x)(P̄) = �(y)(P̄) = 2. Then we have FP̄(add(x, y)) = add(P̄(x), y) and

FP̄(mult(x, y)) = add(FP̄(x),mult(FP̄(x), y)). Both times on the right side of the equation is a term of sort H = ĪN

and therefore we put γ (add(x, y))(P̄) = γ (mult(x, y))(P̄) = 2 indicating that application of FP̄ yields in both cases

a result in the second component of the coproduct 1 + ĪN.

(5) Also Example 34 fits easily into our scheme. Note that in this example we make use of the fact that we can specify a

set B of allowed behaviour patterns (cf., Example 48). Again one has to add to the specification the behaviour patterns

γ (zip(x, y)) for all choices of x and y. Because of the restriction specified byBwe only have to consider variables x that

either have behaviour pattern ν1 with ν1(head) = ν1(tail) = 1 or ν2 with ν2(head) = ν2(tail) = 2. Let x1, y1 and

x2, y2 be variables with behaviour pattern ν1 and ν2, respectively. Then a function γ consistent with the specification

in Example 34 would be

1416 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

γ (zip(xi, yj)) := ν2 for i �= 1 or j �= 1

γ (zip(x1, y1)) := ν1

and thus γ (zip(xi, yj)) ∈ B for all i, j ∈ {1, 2}.
6.3. Definition scheme for {head, even, odd}

We now want to look at one instance of our definition scheme in somewhat more detail. We consider the set H =
Aω of infinite A-streams for a given non-empty set A. For our scheme we first need a complete specification (O, E) of

Aω . In Section 4.3, we saw that the cooperations {head, even, odd} are complete with respect to Aω . Thus we put O =
{head, even, odd}, i.e., our cosignature consists of one constant head with a(head) = (ε, A), and two operation symbols

even and odd with a(even) = a(odd) = (ε, H). 3 Again we would like to remind the reader that due to the fact that we

are dealing with a basic cosignature here that does not involve the coproduct there will be no need to specify behaviour

patterns of states and variables.

For a complete specification of Aω , however, we also need some equations that characterise the subcoalgebra of the final

A× Id× Id-coalgebra that is isomorphic to (Aω, 〈head, even, odd〉): intuitively speaking this subcoalgebra consists of those

binary A-labelled trees that do not change the label on paths that go to the left only – corresponding to the fact that the

first element of a stream σ and the first element of even(σ) are equal. This property can be expressed by the following state

equation:

Fhead(Feven(x)) = Fhead(x) with some variable x ∈ XH,

i.e., we put E := {(Fhead(Feven(x)), Fhead(x))}.
Recall the representation of the final A × Id × Id-coalgebra (A2∗

, 〈h, l, r〉) from Fact 23 and let j : Aω → A2∗
be the

(injective) coalgebra morphism from (Aω, 〈head, even, odd〉) into the final coalgebra.

Lemma 59. Using the terminology of Definition 47 we have PE = {t ∈ A2∗ | h(t) = h(l(t))} ⊆ A2∗
and j[Aω] = �PE, i.e.,

Aω ∼= �PE. Therefore (O, E) is a complete specification of Aω .

Proof. The first claim about PE can be seen to be true by spelling out the definition of PE . In order to show that j[Aω] = �PE
we first prove �PE ⊆ j[Aω]. Let t ∈ �PE . Then it is easy to see that

for all w ∈ 2∗ we have tw ∈ PE, i.e., h(l(tw)) = h(tw). (6)

We define a stream τ ∈ Aω by putting τn := h(tbin(n)) for all n ∈ ω. Our claim is that j(τ) = t. We prove j(τ)(w) = t(w)
for all w ∈ 2∗ by induction on w.

Base case. w = ε. Then j(τ)(ε) = τ0 = h(t) = t(ε).
Case. w = 0v. Then

j(τ)(0w) = j(τ)(w)
I.H.= t(w) = h(tw)

(6)= h(l(tw)) = h(t0w) = t(0w)

Case. w = 1v. Then

j(τ)(1w) = τnat(1w)
Def.= h(tbin(nat(1w))) = h(t1w) = t(1w)

This concludes the proof of �PE ⊆ j[Aω]. For the converse direction note that obviously j[Aω] ⊆ PE . Because j is a homo-

morphism and hence j[Aω] is a subcoalgebra of (A2∗
, 〈h, l, r〉) we get j[Aω] ⊆ �PE as required. �

Now we are ready to concretely describe the stream definition scheme. Given a set of functions symbols
, each g ∈

with an arity a(g) ∈ IN, the syntax for the definition scheme is defined as above - but now for the special case that H = Aω ,

� = {head, even, odd} and S = {A}. Then a well-formed system of behavioural differential equations for (O, E) and
 is a

set Equ of equations which contains for every g ∈
n three equations

3 Note that we simply write head, even and odd instead of fhead, feven and fodd.

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1417

Fhead(g(x1, . . . , xn)) := cg(Fhead(x1), . . . , Fhead(xn))

for some function c : An → A

Feven(g(x1, . . . , xn)) := tgeven(x1, . . . , xn)

Fodd(g(x1, . . . , xn)) := t
g
odd(x1, . . . , xn)

where tgeven and t
f
odd are terms in Eres with variables contained in {x1, . . . , xn}. Furthermore we require that we can prove

for all g ∈
 the following conditional equation

Fhead(Feven(g(�x))) = Fhead(g(�x)) ⇐ Equ ∪ {Fhead(Feven(xi)) = Fhead(xi) | xi ∈ X}.
By Corollary 56 there exists a unique coalgebra morphism

ι : (T , 〈Fhead, Feven, Fodd〉) → (Aω, 〈head, even, odd〉),
i.e., ι makes the following diagram commute:

T

〈Fhead,Feven,Fodd〉
��

ι ������������ Aω

〈head,even,odd〉
��

A × T × T
id×ι×ι

�������� A × Aω × Aω

Furthermore the function ι can be used in order to compute the unique solution for the given set Equ of behavioural

differential equations:

Proposition 60. Let Equ be a well-formed system of behavioural differential equations for a given set
 of function symbols and

let ι : T → Aω be the coalgebramap that interprets terms t ∈ T as A-streams. Furthermore we define for every a(g)-ary function

symbol g ∈
 a function ĝ : (Aω)a(g) → Aω by putting ĝ(τ1, . . . , τa(g)) := ι(g(τ1, . . . , τa(g))). Then the family {ĝ}g∈
 is the

(unique) solution of Equ.

Proof. This is just a special case of Proposition 58 above. �

As an example recall the definition of the Thue–Morse sequence from Example 32.

Example 61. Let A = 2 and
 = {inv, TM}. We define Equ to consist of the following set of equations

Fhead(inv(x)) := 1 − Fhead(x) Fhead(TM) := 0

Feven(inv(x)) := inv(Feven(x)) Feven(TM) := TM

Fodd(inv(x)) := inv(Fodd(x)) Fodd(TM) := inv(TM)

In order to see that this system of equations is well formed one can easily check that the following conditional equations are

theorems of conditional equational logic

Fhead(Feven(TM)) = Fhead(TM) ⇐ Feven(TM) = TM

Fhead(Feven(inv(x))) = Fhead(inv(x)) ⇐ {Fhead(Feven(x)) = Fhead(x)}
∪ Equ

The unique solution of this system of equations consists of the function inv : 2ω → 2ω that inverts a given bitstream and

of the constant TM : 1 → 2ω which is the so-called Thue–Morse sequence.

We close this section with some more examples for defining streams and stream functions using {head, even, odd}.
Example 62. This example demonstrates that we can define Stern’s diatomic series (see, e.g., [6], pp. 230–232, where this

sequence is called fusc) using {head, even, odd} as a complete set of cooperations. Let A = 2 and
 = {Stern, tern, add}

1418 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

and consider the following system of equations:

Fhead(Stern) := 0 Fhead(tern) := 1

Feven(Stern) := Stern Feven(tern) := add(Stern, tern)

Fodd(Stern) := add(Stern, tern) Fodd(tern) := tern

Fhead(add(x, y)) := Fhead(x) + Fhead(y)

Feven(add(x, y)) := add(Feven(x), Feven(y))

Fodd(add(x, y)) := add(Fodd(x), Fodd(y))

Then Stern equal to Stern’s diatomic series, tern equal to the tail of Stern and add equal to the function adding two streams

will be the solution of this system of equation.

Example 63. More definitions for A = IR using {head, even, odd}:
Fhead(zip(x, y)) := Fhead(x) Fhead(σ (X2)) := Fhead(σ)

Feven(zip(x, y)) := x Feven(σ (X2)) := σ

Fodd(zip(x, y)) := y Fodd(σ (X2)) := 0

Fhead(σ (−X)) := Fhead(σ) Fhead(X × σ) := 0

Feven(σ (−X)) := Feven(σ) Feven(X × σ) := X × Fodd(σ)

Fodd(σ (−X)) := −Fodd(σ) Fodd(X × σ) := Feven(σ)

Furthermore it easy to define componentwise addition (+),multiplication (×) and subtraction (−). Note thatwewriteσ(X2),
σ(−X) and X × σ in order to stay consistent with the commonly used notation from stream calculus. In these cases σ is

the variable and we define functions g1, g2 and g3 with g1(σ) = σ(X2), g2(σ) = σ(−X) and g3(σ) = X × σ .

The last example also provides us with a further illustration of {head, even, odd}-coinduction.
Example 64. Given the definitions in Example 63 we want to prove that

1

2
(σ + σ(−X)) = even(σ)(X2). (7)

By Proposition 29 and the fact that {head, even, odd} is a complete set of cooperations it suffices to show that head(σ) =
head(τ), even(σ) = even(τ) and odd(σ) = odd(τ) in order to prove that σ = τ for streams σ, τ . We compute

head

(
1

2
(σ + σ(−X))

)
= 1

2
(head(σ) + head(σ (−X)))

= 1

2
(head(σ) + head(σ)) = head(σ)

= head(even(σ)(X2))

even

(
1

2
(σ + σ(−X))

)
= 1

2
(even(σ) + even(σ (−X)))

= 1

2
(even(σ) + even(σ)) = even(σ)

= even(even(σ)(X2))

odd

(
1

2
(σ + σ(−X))

)
= 1

2
(odd(σ) + odd(σ (−X))) = 1

2
(odd(σ) − odd(σ))

= 0 = odd(even(σ)(X2))

Therefore we can conclude by {head, even, odd}-coinduction that (7) holds.We also can use {head, even, odd}-coinduction
in order to prove the following:

zip(σ, τ) = σ(X2) + X × τ(X2). (8)

C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420 1419

Again we show that both sides behave the same if we apply head, even and odd.

head(σ (X2) + X × τ(X2)) = head(σ) = head(σ (X2)) + 0 = head(zip(σ, τ))

even(σ (X2) + X × τ(X2)) = even(σ (X2)) + even(X × τ(X2))

= σ + X × odd(τ (X2))
X × 0 = 0= σ = even(zip(σ, τ))

odd(σ (X2) + X × τ(X2)) = odd(σ (X2) + odd(X × τ(X2))

= 0 + even(τ (X2)) = τ = odd(zip(σ, τ))

7. Related and future work

7.1. Connection with Hidden algebra

An important source of inspiration for this paper was the work on hidden algebra (cf., e.g., [15]) and its close connection

to coalgebra which has been described in the papers by Cîrstea (cf., [4,5]). A hidden specification consists of a many-sorted

algebraic signature�, involving observable and hidden sorts, together with a set of equations that specify certain constraints

on the given operations. The notion of a cobasis from hidden algebra defines when a given set of operations is “complete”. If

we think of the operations as ways for obtaining information about elements of hidden sort, completeness means that we

can either distinguish two given elements of some hidden sort using the operations of the cobasis, or these elements should

be considered to be equal.

Example65 (Sketch). Apossiblehidden specification for streamsover a setA contains theoperations {head, cons, even, odd,
tail, zip} together with the equations that are to be expected (cf., e.g., [14]). The sorts in this example are Stream and

A where Stream is the hidden sort. Possible cobases would be: the set of all operations, the set {head, tail} and the set

{head, even, odd}. But for example {head, even} would not be a cobasis.

It follows from the results in [4] that the �-coalgebras for a basic cosignature � can be seen as hidden algebras. Cobases

are closely related to complete sets of cooperations, but these two notions do not coincide: a cobasis is defined for a given

specification and hence for all hidden algebras (or�-coalgebras) that are amodel for this specification. In the above example

the set of A-streams can be seen as one model of the specification. Thus any cobasis for the specification will give rise to

a complete set of cooperations on the set Aω . Complete sets of cooperations are defined relative to one given set only. The

difference between cobases and complete set of cooperations is demonstrated by the following example.

Example66 (Sketchcontinued). Inhiddenalgebra, streamsoverAcanbealso specifiedusing theoperationshead, tail andcons

only. Obviously the set {head, even, odd} is a complete set of cooperations for Aω but not a cobasis for the {head, tail, cons}-
specification of streams. The reason for the latter fact is that it is not difficult to see that not every hidden {head, tail, cons}-
algebra can be extended to a {head, tail, cons, even, odd}-algebra.

Summarising one could say that our definition of a complete set of cooperations ismore basic then the notion of a cobasis.

Nevertheless it gives rise to interesting coinductive definition and proof principles as we hope to have demonstrated.

7.2. Future work

We believe that the value of our definition scheme lies in the fact that it is parametric in the type of objects under

consideration and in the (complete) given set of cooperations. The generality of our approach, however, has the drawback

that for concrete cases, approaches which have been designed explicitly for these cases put less restrictions on the format of

a “correct” definition.We are thinking, for example, of the recentwork on defining streams and stream functions in [7]where

techniques from (infinite) term rewriting are employed. At the moment we are working on making our definition scheme

more liberal, mainly by using a refined induction argument for defining the term coalgebra (cf., Definition 53). Furthermore

we want to formally explore possible differences between different sets of cooperations on a given set of objects. One

question is, for example, whether one complete set of cooperations allows to define more or different functions on streams

than another one.

Acknowledgments

Theauthors thankAlexandraSilva forvaluable suggestionsanddiscussions. Furthermorewearegrateful to theanonymous

referees for providing a number of very helpful comments.

1420 C. Kupke, J. Rutten / Information and Computation 208 (2010) 1398–1420

References

[1] J.-P. Allouche, J.O. Shallit, The ubiquitous Prouhet–Thue–Morse sequence, in: C. Ding, T. Helleseth, H. Niederreiter (Eds.), Sequences and Their Applications:
Proceedings of SETA’98, Springer, 1999, pp. 1–16.

[2] M. Barr, Terminal coalgebras in well-founded set-theory, Theoretical Computer Science 114 (1993) 299–315.
[3] M. Bidoit, R. Hennicker, Observer complete definitions are behaviourally coherent, in: OBJ/CafeOBJ/Maude at Formal Methods ’99, THETA, 1999, pp. 83–94.

[4] C. Cîrstea, Coalgebra semantics for hidden algebra: parameterised objects and inheritance. in: F. Parisi-Presicce (Ed.), Recent Trends in Algebraic Develop-
ments, Lecture Notes in Computer Science, vol. 1376, 1998.

[5] C. Cîrstea, A coalgebraic equational approach to specifying observational structures, Theoretical Computer Science 280 (1–2) (2002) 35–68.

[6] E.W. Dijkstra, Selected Writings on Computing: A Personal Perspective, Springer, 1982.
[7] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, J.W. Klop, Productivity of Stream Definitions, in: Proceedings of FCT 2007, LNCS, vol. 4639, Springer, 2007,

pp. 274–287.
[8] J.A. Goguen, K. Lin, G. Rosu, Conditional circular coinductive rewriting with case analysis, in: M. Wirsing, D. Pattinson, R. Hennicker (Eds.), WADT, LNCS, vol.

2755, Springer, 2002, pp. 216–232.
[9] H.P. Gumm, Elements of the general theory of coalgebras, in: LUATCS Lecture Notes, Rand Africans University, Johannesburg, South Africa, 1999.

[10] H.P. Gumm, On Minimal Coalgebras, Applied Categorical Structures 16 (2008) 313–332.

[11] R. Hennicker, Context induction: a proof principle for behavioural abstractions and algebraic implementations, Formal Aspects of Computing 3 (4) (1991)
326–345.

[12] C. Kupke, J.M. Rutten, Observational coalgebras and complete sets of co-operations, in: Proceedings of CMCS’08, ENTCS, vol. 203, 2008, pp. 153–174.
[13] D. Pavlović, M. Escardó, Calculus in coinductive form, in: Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer

Society Press, 1998, pp. 408–417.
[14] Grigore Roşu, Joseph Goguen, Circular Coinduction, Short paper at the International Joint Conference on Automated Reasoning (IJCAR’01), 2001.

[15] G. Rosu, Hidden Logic, Ph.D. Thesis, University of California at San Diego, 2000.

[16] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science 249 (2000) 3–80.
[17] J.J.M.M. Rutten, A coinductive calculus of streams, Mathematical Structures in Computer Science 15 (2005) 93–147.

[18] A. Silva, J.J.M.M. Rutten, Behavioural differential equations and coinduction for binary trees, in: Proceedings of WoLLIC, 2007, pp. 322–336.
[19] Terese, Term Rewriting Systems, Cambridge University Press, 2003.

	Complete sets of cooperations
	Introduction
	Related work
	Coalgebraic implications
	Different perspective
	Different definition schemes
	Different notions

	Preliminaries
	Observational coalgebra structures
	Complete sets of cooperations
	Cosignatures
	Complete sets of cooperations
	Example: completeness of {head,even, odd}

	The proof principle
	The proof principle: an example

	The definition scheme
	The general idea
	Definition scheme: short examples
	Definition scheme for {head,even,odd}

	Related and future work
	Connection with Hidden algebra
	Future work

	References

