
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE MODEL. SIMUL. c© 2010 Society for Industrial and Applied Mathematics
Vol. 8, No. 5, pp. 1882–1901

SIMPLIFIED MODELLING OF A THERMAL BATH, WITH
APPLICATION TO A FLUID VORTEX SYSTEM∗

SVETLANA DUBINKINA† , JASON FRANK† , AND BEN LEIMKUHLER‡

Abstract. Based on the thermodynamic concept of a reservoir, we investigate a computational
model for interaction with unresolved degrees of freedom (a thermal bath). We assume that a finite
restricted system can be modelled by a generalized canonical ensemble, described by a density which
is a smooth function of the energy of the restricted system. A thermostat is constructed to contin-
uously perturb the resolved dynamics, while leaving the desired equilibrium distribution invariant.
We build on a thermostatting framework developed and tested in the setting of molecular dynam-
ics, using stochastic perturbations to control (and stabilize) the invariant measure. We also apply
these techniques in the setting of a simplified point vortex flow on a disc, in which a modified Gibbs
distribution (modelling a finite, rather than infinite, bath of weak vortices) provides a regularizing
formulation for restricted system dynamics. Numerical experiments, effectively replacing many vor-
tices by a few artificial degrees of freedom, are in excellent agreement with the two-scale simulations
of Bühler [Phys. Fluids, 14 (2002), pp. 2139–2149].
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1. Background. The canonical ensemble in statistical mechanics has shown suc-
cess in describing the statistical mean behavior of a system in thermal equilibrium
with a large reservoir. For example, a molecular gas that is in a closed container with
fixed volume and number of molecules, but is allowed to exchange kinetic energy with
its surroundings, will eventually evolve to the temperature of the laboratory. Math-
ematically, this phenomenon is captured by the statement that the phase flow of a
sufficiently complicated molecular system in contact with an infinite bath samples the
Gibbs canonical distribution with density ρβ(X) = Z−1 exp(−βH(X)), where H is
the Hamiltonian of the molecular gas in the container; β−1 is the statistical tempera-
ture, i.e., the average kinetic energy of the bath scaled by Boltzmann’s constant; and
Z is the normalization constant ensuring

∫
ρβ dX = 1. While the canonical ensemble

is certainly the most frequent choice for molecular applications, it is not the only one.
The thermodynamic perspective has the potential for significant reduction of compli-
cated models by providing a rational means for replacing a large dimensional model
by one focused on a few important degrees of freedom. In this article we assume a
general smooth density ρ and study extended stochastic-dynamical methods which
preserve the associated phase space measure, considering an application (a vortex
fluid model) with properties very different from those of molecular systems.
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In molecular dynamics, a thermostat is a tool used to model a system in thermal
equilibrium; such thermostats may be either stochastic (e.g., Langevin dynamics) or
deterministic. In a Langevin dynamics simulation a stochastic perturbation is intro-
duced in the force field together with a dissipative term; these terms are maintained
in balance so as to preserve the canonical ensemble. With a dynamical (or determin-
istic) thermostat, by contrast, the system is augmented by a few degrees of freedom
that model the exchange with the reservoir. The goal of thermostatting is to force
the system to sample the canonical equilibrium distribution at a given temperature
by continually perturbing it. A benefit of the dynamical models is that it is possible
to conserve structure (e.g., Hamiltonian structure) in the augmented dynamics. A
motivation for using this approach is that if the perturbation is small, the dynamics
will still correspond to physical dynamics (in contact with a reservoir) on an interme-
diate time scale. Some examples of important deterministic thermostatting methods
are the Nosé method [19, 20], which preserves Hamiltonian structure at the expense
of a continuous rescaling of time, the Nosé–Hoover method [20, 9], which recovers the
linear time but loses canonical Hamiltonian structure, the Nosé–Poincaré method of
Bond, Leimkuhler, and Laird [1], which is canonically Hamiltonian, and a generaliza-
tion of the Nosé–Hoover approach for Hamiltonian systems with Poisson structure [3].
Deterministic thermostats have also been coupled with Langevin models in [13, 18],
for example. Despite these examples, the use of thermostats as model simplifications
is rarely encountered outside the molecular dynamics setting.

We are motivated in the current study by problems in inviscid fluid modelling
which are natural in a number of application areas, such as atmosphere and ocean
science, where the Reynolds numbers are so large as to be effectively infinite. These
flows are characterized by conservation of total energy, the cascade of vorticity to ever
finer scales, and sensitive dependence on initial conditions [24]. For the numerical
simulation of such flows, the lack of a viscous diffusion length scale presents the
challenge that, due to the vorticity cascade, any direct discretization of the equations
of motion must eventually become underresolved, as vorticity is transported to scales
below the grid resolution. It therefore becomes necessary to close the numerical model
by some means. Any finite numerical discretization implies a closure of some kind,
whether explicitly modelled or implied by the discretization [7].

The most common approach is the introduction of artificial viscosity, either
through modification of the fluid equations to include (hyper-)viscosity, or through
the use of stabilized discretizations, for which the viscous terms appear in a modified
equation analysis [10]. In either case the viscous length scale must be on the order
of the grid resolution to be effective. One disadvantage with a viscous closure model
is that it precludes an upscale cascade of energy, which can be an important source
of variability in geophysical flows. Alternatively, methods can be constructed that
preserve the discrete total energy exactly. However, this is achieved via a nonphysical
reinjection of the energy from subscale vorticity at the large scales [21].

A proper numerical closure should distinguish between resolved and unresolved
dynamics and account for the exchange between these. The full complexity of dynam-
ical interactions likely would require a more detailed treatment, such as one based on
the Mori–Zwanzig formalism [5], but this would be challenging to implement flexibly,
efficiently, and in generality. In this paper, as an intermediate approximation between
Hamiltonian truncation and full coupled system dynamics, we describe a method to
model the proper energetic exchange between resolved dynamics and thermal reser-
voir, under a Gibbsian partitioning assumption. We invoke a thermostat to model
the unresolved vorticity and its exchange in a simple two-scale point vortex model
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consisting of a small number of resolved strong vortices interacting with a very large
number of unresolved weak ones. We seek a simplified computational model for the
aggregate behavior of the unresolved point vortices. This situation is reminiscent
of statistical mechanics in the canonical ensemble, in which a system of particles is
in thermal equilibrium with a reservoir. This point of view has been exploited by
Bühler [2] in a numerical/statistical investigation of the work of Onsager [22], and
our goal here is to reproduce the results of [2] without explicitly accounting for the
individual motions of the reservoir of weak vortices. We compare and contrast treat-
ments based on both an infinite reservoir, as in classical thermodynamics, and a finite
reservoir as has been used in the experiments of [2]. To our knowledge, this is the
first systematic numerical study of the use of such an artificial thermostat reservoir,
although the concept has been previously suggested [8] without essential details such
as the thermostat dynamics and stochastic perturbations, and without considering
finite baths or associated generalized ensembles.

The paper is structured as follows: in section 2 we make use of a generalized
thermostat which can be used to force a Hamiltonian system to sample a general
class of equilibrium distributions. The point vortex model and its statistical mechanics
are reviewed in section 3. In section 4 we present the details of the thermostatted
numerical methods considered, including the models for finite and infinite reservoirs.
Finally, in section 5 the numerical schemes are verified by comparison with results
from the literature.

2. Generalized thermostats. Consider an open subset D ⊂ R
d and a deter-

ministic differential equation

(2.1) Ẋ = f(X), X(t) ∈ D, f : D → R
d.

A probability distribution ρ(X, t) ∈ D × R → R, ρ ≥ 0, on D is transported under
the vector field f according to the continuity equation

(2.2)
∂

∂t
ρ(X, t) +∇ · ρ(X, t)f(X) = 0.

This continuity equation implies that
∫
D ρ dX = 1 for all t > 0 if this holds at t = 0.

An equilibrium distribution is a stationary solution of (2.2). In this paper we will be
concerned primarily with systems of the form

(2.3) Ẋ = J(X)∇H(X), X(t) ∈ D, JT = −J, H : D → R.

The function H is a first integral of (2.3), typically the energy. If J is independent
of X , then this defines a (generalized) Hamiltonian system. Otherwise, one must also
show that J(X) satisfies the Jacobi identity, in which case the system is Poisson.
We make the weaker assumption that the vector field on the right side of (2.3) is
divergence-free, i.e., ∇ · f(X) ≡ 0, so that the transport equation (2.2) simplifies to
the Liouville equation

(2.4)
d

dt
ρ(X, t) =

∂

∂t
ρ(X, t) + f(X) · ∇ρ(X, t) = 0.

A distribution is said to be an equilibrium distribution if it is invariant under the flow
(2.2), i.e., ∂ρ

∂t ≡ 0, which in the case of (2.4) is equivalent to

f(X) · ∇ρ(X) ≡ 0.
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Note that any function ρ(X) = ρ(H(X)) that depends on X through a first integral
is an equilibrium distribution. If (2.1) has additional first integrals I2(X), . . . , Ip(X),
then any distribution ρ(H, I2, . . . , Ip) is also an equilibrium distribution. The en-
semble average of a function F (X) with respect to the equilibrium distribution ρ(X)
is

〈F 〉 :=
∫
D
F (X)ρ(X) dX.

Given their ample supply, the degree to which a given equilibrium distribution is
meaningful largely depends on whether the solution to the differential equation is
ergodic in that distribution such that the long time average of any function F (X(t))
of the solution

F := lim
T→∞

1

T

∫ T

0

F (X(t)) dt

converges to the ensemble average in the distribution, i.e., satisfies

F = 〈F 〉
for almost any solution trajectory. If this is the case, the equilibrium distribution
characterizes the long time behavior of solutions of the differential equation.

The microcanonical ensemble [11] applies to an isolated system at constant energy
and is the singular measure on the energy level set containing the initial condition

(2.5) ρμ ∝ δ(H(X)− E),

where H(X(0)) = E. This ensemble is appropriate for a numerical simulation with
an energy conserving discretization.

A system in contact with a large reservoir does not conserve energy, but rather
exchanges it with the reservoir. If it is in thermal equilibrium with a reservoir of
statistical temperature β−1, then the appropriate ensemble is the canonical ensemble
[11] with Gibbs measure

(2.6) ρ(X) = Z−1 exp(−βH(X)),

where Z =
∫
D exp(−βH(X)) dX . It is clear, however, that a single solution of the

system (2.3) will not be ergodic in the Gibbs measure, since with probability one it
will sample the constant energy surface containing the initial condition, whereas (2.6)
assigns nonzero probability to all energy surfaces. Instead, to model a system in ther-
mal equilibrium with a reservoir, one must devise a method whose dynamics samples
phase space with probability given by the canonical distribution (2.6). The develop-
ment of methods that do just this constitutes an active field of research. A number of
techniques have been developed for sampling in a given distribution, including Monte
Carlo schemes, which generate random configurations or trajectories according to the
chosen distribution; Langevin thermostats, in which the original system of ordinary
differential equations is augmented by stochastic forcing and generalized dissipation
terms; and deterministic thermostats, in which the reservoir itself is modelled us-
ing a small number of additional degrees of freedom. The latter approaches have
the advantage that they generate plausible dynamics and can be used to compute
correlations.

In the next two sections we describe generalized Langevin dynamics and general-
ized stochastic Bulgac–Kusnezov thermostats for sampling in a wide class of equilib-
rium distributions for Hamiltonian systems.
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2.1. Langevin thermostat. If one integrates (2.3) numerically using a sym-
plectic integrator, the Hamiltonian will be well conserved. As a result, the solution
will not sample phase space with the measure (2.6) above, but instead will stay near
the initial energy level set (approximately sampling ρμ at best). For some applications
it is desirable to construct a perturbed dynamical system that does sample ρ while
retaining something of the dynamical behavior of (2.3). In this way one can construct
a plausible (representative) behavior of the system as if it were exchanging energy
with the reservoir according to ρ.

One approach to sampling a given equilibrium distribution augments (2.3) with
carefully tuned noise and dissipation terms:

(2.7) Ẋ = f(X) + g(X) + Σ(X)ẇ(t),

where g(X) : D → R
d, Σ(X) ∈ R

d×d is a matrix-valued function, and w(t) is a vector
Wiener process; i.e., the wi(t), i = 1, . . . , d, are scalar Gaussian random variables
with mean zero and increments wi(t)−wi(s) ∼ N (0, t− s). Phase space densities are
transported by the flow of (2.7) according to the Fokker–Planck equation (see, e.g.,
[23])

(2.8)
∂

∂t
ρ(X, t) = −∇ · ρ(X, t)(f(X) + g(X)) +

1

2
∇ · ∇ · ρ(X, t)Σ(X)ΣT (X),

where g(X) is to be determined such that the desired equilibrium distribution is a
stationary solution of (2.8). If ρ depends onX only through its Hamiltonian, assuming
the general form ρ(X) = expF (H(X)), then the Hamiltonian dynamics drops out of
the Fokker–Planck equation, and one can solve for g(X):

(2.9) g(X) =
1

2
∇ · ΣΣT +

1

2
F ′(H)ΣΣT∇H(X).

For the case of additive noise, Σ = const., the Langevin dynamics is

(2.10) Ẋ = J∇H(X) +
1

2
F ′(H)ΣΣT∇H(X) + Σẇ.

If Σ is positive definite, then the flow map is ergodic with respect to ρ, and the
generalized Langevin dynamics (2.7) can be used to sample the canonical distribution
at inverse temperature β, taking F ′(H) = −β.

2.2. A generalized Bulgac–Kusnezov method. The following approach gen-
eralizes the Bulgac–Kusnezov method [3] and offers additional flexibility. The method
has been proposed for canonical sampling in the molecular dynamics setting in [12];
here we treat an arbitrary smooth ensemble and apply it to the fluid vortex model.
We introduce a new variable ζ ∈ R and functions s(X, ζ) : D × R → R

d and
h(X, ζ) : D × R → R and form the coupled system

Ẋ = J∇H(X) + s(X, ζ),(2.11)

ζ̇ = h(X, ζ).(2.12)

We ask that the following extended measure be invariant under the Liouville equation:

(2.13) ρ̃(X, ζ) ∝ exp(−βF (X)− αG(ζ))

for F and G appropriately defined functions. In the case of (2.6) we will take F ≡ H ,
but we consider this more general formulation for now. Note that in this measure,
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X and ζ are independent, and after integration over ζ, the measure is of the form
(2.6). The stationarity condition for the transport equation (2.2) is

∇ · ρ̃ (f + s) + ∂ζ(ρ̃h) = 0 with f = J∇H(X).

Some calculations give

0 = (f + s) · ∇ρ̃+ ρ̃∇ · (f + s) + h
∂

∂ζ
ρ̃+ ρ̃

∂

∂ζ
h

= −βρ̃∇F · (f + s) + ρ̃∇ · (f + s)− αρ̃h
∂

∂ζ
G+ ρ̃

∂

∂ζ
h

= ρ̃

(
−β∇F · (f + s) +∇ · s− αh

∂

∂ζ
G+

∂

∂ζ
h

)
,

where the divergence-freedom of the Hamiltonian vector field is used in the last in-
equality.

Next we make some simplifying assumptions. First we assume the thermostat
variable ζ to be normally distributed, taking G(ζ) = ζ2/2. We also assume that h
depends only on X ; i.e., h(X, ζ) = h(X). The stationarity condition consequently
reduces to

0 = −β∇F · (f + s) +∇ · s− αhζ.

We wish to use this relation to define h. Note that

(2.14) ζh(X) =
1

α
(∇ · s− β∇F · (f + s)) .

Since ζ may be zero, each term on the right should either vanish or have precisely a
factor ζ as on the left. Candidate equilibrium distributions for (2.3) typically have
functional dependence via the Hamiltonian. If we assume F (X) := F (H(X)), then
the skew-symmetry of J implies

∇F · f = F ′(H(X))∇H · J∇H ≡ 0.

If additionally we assume s(X, ζ) to be linear in ζ, i.e.,

s(X, ζ) = s1(X)ζ, s1(X) ∈ R
d,

then we find that

(2.15) h(X) =
1

α
(∇ · s1(X)− β∇F · s1(X))

is a solution of (2.14).
Specific choices of the functions F (X) and s1(X) will be treated in section 4.
In general, the thermostatted dynamics so defined will not be ergodic in the

invariant measure (2.13). To improve ergodicity, a Langevin term may be added to
(2.12); see also [13]. That is,

Ẋ = J∇H(X) + s1(X)ζ,(2.16)

ζ̇ = h(X)− ασ2

2
ζ + σẇ.(2.17)
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Since the noise enters through ζ, it influences X(t) only after integration, so its effect
on the dynamics is smoothed.

Remark. Proving ergodicity of (2.16)–(2.17) would require a Hörmander-type con-
trollability analysis [17, 13]; we do not provide this here but are currently considering
this challenge in separate work.

Remark. In the important special case F (X) := F (H(X)), if we choose s1 such
that ∇· s1 ≡ 0, then the system (2.16)–(2.17) can be cast in the form of a generalized
Langevin thermostat (2.10) with degenerate noise. Define the augmented system
(2.18)

X̃ =

(
X
ζ

)
, J̃(X̃) =

[
1

FH
J β

αs1(X)

− β
αs1(X)T 0

]
, H̃(X, ζ) = F (H(X)) +

α

2β
ζ2.

Then (2.16)–(2.17) with (2.15) takes the form

(2.19)
d

dt
X̃ = J̃∇H̃ − α

2
ΣΣT∇H̃(X̃) + Σẇ

with Σ = [ 0 σ ].

3. Statistical mechanics of point vortices. In this paper we will validate the
method (2.16)–(2.17) for the classical flow of singular point vortices on a disc. The
point vortex model has often been used as a simple prototype for geophysical flows,
despite its numerous shortcomings [16, 15]. Proof of the weak convergence of the
point vortex model as a numerical discretization is contained in the monograph [6],
which also describes modern point vortex methods making use of regularized kernels
and fast force evaluations and techniques for modelling 3D and viscous flows. Other
references on point vortex methods are [4, 14]. Our primary motivation for using the
simple model with singular point vortices is the work of [2], as it contains detailed
numerical experiments and thus provides an opportunity for direct comparison.

The motion of N singular point vortices with circulation strengths Γi ∈ R, i =
1, . . . , N , and positions xi(t) ∈ R

2 is given by the Hamiltonian system

(3.1) Γiẋi = K
∂H

∂xi
, i = 1, . . . , N,

where K = ( 0 1−1 0 ), and the Hamiltonian

H = − 1

4π

∑
i<j

ΓiΓj ln(|xi − xj |2)

represents the kinetic energy.
For a mixed system of both positive and negative circulations Γi, the motion of

point vortices is unbounded on the plane. A bounded flow can be ensured by imposing
periodicity, which alters the Green’s function in the Hamiltonian [25]. Alternatively,
flow on a disc of radius R can be modelled by defining a set of image vortices

Γ′
i = −Γi, x′

i = xi
R2

|xi|2 , i = 1, . . . , N,

which ensure that the velocity field induced by any point vortex and its image is
tangent to the wall at its intersection with the dipole axis. In the disc model, which we
adopt in this paper, the Hamiltonian has three terms due to the original pair potential,
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the self-interaction, and the interaction terms of each vortex with the images of the
others:

H = − 1

4π

∑
i<j

ΓiΓj ln(|xi − xj |2) + 1

4π

∑
i

Γ2
i ln(R

2 − |xi|2)

+
1

4π

∑
i<j

ΓiΓj ln(R
4 − 2R2xi · xj + |xi|2|xj |2).

(3.2)

To cast the system (3.1) in the form (2.3), we define X = (xT
1 , . . . , x

T
N )T , H =

H(X), and

J =

⎡
⎢⎣
Γ−1
1 K

. . .

Γ−1
N K

⎤
⎥⎦ .

Besides the kinetic energy, the point vortex flow on the disc conserves the total
angular momentum, defined as

(3.3) M =
1

2π

∑
i

Γi|xi|2.

In general there will be an exchange of momentum between the strong vortices and
the reservoir. However, on average we would expect the angular momentum of both
strong and weak vortex sets to be approximately constant. In fact, it would be
straightforward to model the exchange of angular momentum using the thermostat as
well. This would require knowledge of the variance of the angular momentum of the
reservoir. In this paper we assume that the momentum exchange with the reservoir
is negligible, and we can show that M is a conserved quantity of the thermostatted
dynamics. Experiments with Langevin dynamics indicate significant drift in angular
momentum. To correct this, one could construct a projection of the noise term Σ(X)
onto the angular momentum manifold. However, this makes the noise multiplicative,
and one must include the additional term ∇ ·ΣΣT of (2.9) in the Langevin dynamics
(2.10).

As noted by Onsager [22], the phase space of the point vortex flow consists of
the direct product of N copies of the domain. If the domain is bounded, so is the
phase space. The energy H is unbounded on the phase space, however: as xi → xj ,
the logarithm tends to −∞; if Γi and Γj are like-signed, H → +∞, and if they are
opposite-signed, H → −∞. In particular, if a point vortex collides with the wall,
H → −∞. If we define Ω(E) to be the measure of the set of configurations in phase
space for which H ∈ (E,E + dE), then we must have limE→±∞ Ω(E) = 0. In other
words, since the phase space is bounded, the measure of available phase space must
eventually decrease as a function of increasing energy. The situation is in contrast to
classical n-body problems encountered in chemistry and astronomy, where the positive
definite kinetic energy terms can accommodate any amount of energy and the measure
of available phase space is a monotone increasing function of energy.

Consequently, the microcanonical entropy S(E) = lnΩ(E) must attain a maxi-
mum for some E∗. The microcanonical inverse temperature is defined to be βμ =
d
dE lnS(E), and negative temperature states occur for E > E∗. For a homogeneous
system with Γi = Γ, the energy largely governs the dynamics, since collisions have
to occur roughly at constant energy. As pointed out in [2], the situation is more
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interesting in a heterogeneous system with vortices of greatly differing strength. On-
sager predicted that for such systems, extreme values of energy would increase the
likelihood of clustering of like-signed or opposite-signed vortices, with a preference
for the strongest ones, such that most of the energy would reside in a few degrees of
freedom. As a result, the small vortices would roam aimlessly about, not developing
into coherent structures but contributing to large entropy.

Bühler [2] discusses Onsager’s ideas in the context of the canonical ensemble ap-
plied to the strong vortices, which constitute a system in “thermal” equilibrium with
the reservoir of weak vortices. In the simplest case, canonical statistical mechanics
assumes a system with Hamiltonian H(X) = HA(XA) + HB(XB), where XA rep-
resents the state of the subsystem of interest and XB represents the state of the
reservoir. The dimension of XB is assumed large. The phase space measures are de-
noted ΩA(EA) = {XA | HA(XA) = EA} and ΩB(EB) = {XB | HB(XB) = EB} with
corresponding entropies SA = lnΩA, SB = lnΩB and total entropy S = SA + SB.
The probability of observing system A in state XA, given total energy E, is

prob(XA | H(X) = E) ∝ ΩB(E − EA)

= exp (SB(E − EA))

= exp

(
SB(E)− S′

B(E)EA +
1

2
S′′
B(E)E2

A + · · ·
)

∝ exp

(
−S′

B(E)EA +
1

2
S′′
B(E)E2

A + · · ·
)
,(3.4)

where β = S′
B(E) is the inverse temperature of the reservoir and a constant term

has been absorbed into the proportionality constant. Use of the Taylor series assumes
small changes in reservoir entropy over the range of subsystem energy EA. Truncating
(3.4) motivates the definition of the canonical ensemble for subsystem A,

ρ(XA) ∝ exp (−βHA(XA)) ,

which is equivalent to (2.6).
In [2] Onsager’s predictions are verified using numerical experiments with a sys-

tem of 100 point vortices, four having strength ±10π and the rest having strength
±2π. In each group, half the vortices had positive circulation and half negative.
Simulations were done for extreme positive, neutral, and extreme negative inverse
statistical temperatures βμ in the microcanonical sense. In each case the strong vor-
tices had the same (nearly steady state) initial configuration, so the differences in
energy were due only to the random placement of weak vortices. Simulations were
run on a long time interval, and statistics were recorded for the distance between like-
and opposite-signed strong vortices, distance from the wall, and energy partition in
the strong vortices.

The distinction is made between a theoretical infinite reservoir and the finite
reservoir composed of the 96 weak vortices. In the infinite reservoir case, the canonical
probability measure can be normalized only for a finite interval of inverse temperature
β ∈ (β−, β+). For reservoir temperatures outside this range, the subsystem dumps
or absorbs an infinite amount of energy and collisions occur internally or with the
boundary. This situation is due to the availability of an infinite amount of energy
in the reservoir and has implications for thermostatting in the canonical ensemble.
Contact with a finite reservoir will suppress this collapse, allowing thermostatting
at all temperatures [2]. This is because there is a finite amount of energy in the
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finite reservoir, and this effectively bounds the closeness of the approach of any two
vortices from below, making the probability of a close approach very small. Under the
assumption that the reservoir energy levels are approximately normally distributed
with variance σ2

B, a subsystem in contact with a finite reservoir has probability [2]

(3.5) ρ(XA) ∝ exp

(
EEA

σ2
B

− E2
A

2σ2
B

)
.

As EA becomes large in magnitude, the second term dominates and the probability
density decays relative to the canonical ensemble density at a rate proportional to
exp(−γE2

A).

4. A thermostatted integrator for point vortices. Our goal is to apply the
generalized Bulgac–Kusnezov thermostat from section 2.2 to the point vortex flow of
section 3. In this section we fill in the details of the method. First, in section 4.1 we
specify two equilibrium distributions corresponding to the cases where the reservoir
of unresolved weak vortices is finite or infinite. In section 4.2 we define a thermostat
function s1 such that the generalized Bulgac–Kusnezov thermostat is a Langevin
thermostat. We describe in section 4.3 the numerical method used to integrate the
model adaptively in time and in section 4.4 the means of computing the temperature.

4.1. Infinite and finite reservoir ensembles. As discussed in [2] the behavior
of a thermostatted point vortex system can vary considerably depending on whether
the reservoir is finite or infinite. In the case of an infinite reservoir, as the temperature
of the reservoir is pushed toward zero, the subsystem may draw an arbitrarily large
amount of energy from the reservoir, leading to collisions between individual vortices
or with the wall. For a finite reservoir, there is a limited amount of energy available
such that a collision may occur only if a collision with opposite energy occurs at the
same time, and this is improbable. Specifically, in the case of a finite reservoir with
normally distributed reservoir energy, the equilibrium distribution takes the form

ρ̃(X) = exp
(−βH(X)− γH(X)2

)
.

For the generalized thermostat (2.11)–(2.12) we can model both finite and infinite
reservoirs. For a finite reservoir we take
(4.1)

F (X) := H(X) +
γ

β
H(X)2, h(X) =

1

α
(∇ · s1(X)− (β + 2γH(X))∇H · s1(X)) ,

where by comparison with (3.5), we choose γ = −β/(2E). For an infinite reservoir,
γ ≡ 0 in the expressions above.

4.2. Choice of s1. We make the following choice for the function s1 in (2.15):

(4.2) s1(X) = −

⎛
⎜⎝

Kx1

|x1|
...

KxN

|xN |

⎞
⎟⎠ .

The motivation for this choice is threefold: first, the flow of the vector field s1 preserves
the distance of each point vortex from the center of the domain. Consequently, the
thermostatted system (2.16)–(2.17) preserves the angular momentum (3.3). Second,
this choice of s1 is divergence-free:

∇ · s1(X) ≡ 0,
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implying that the thermostatted dynamics is a generalized Langevin system (2.19)
and that the integral H̃ in (2.18) with F (H(X)) from (4.1) is preserved in the limit
σ → 0 of zero noise and dissipation. Third, this choice makes the magnitude of s1
isotropic on the domain.

On the other hand, the vector field (4.2) is discontinuous for any point vortex at
the origin. We observed no adverse effects of this discontinuity in our experiments,
however.

4.3. Implementation details. In our numerical implementation, time stepping
is done using a second order, symmetric splitting approach. We solve alternately the
deterministic thermostat system and the noise-dissipation flow for the thermostat
variable.

The latter flow is an Ornstein–Uhlenbeck equation,

ζ̇ = −ασ2

2
ζ + σẇ,

which for a given realization of the Wiener process w(t) has exact solution

(4.3) ζn+1 = e−ετ

(
ζn + σ

√
e2ετ − 1

2ε
Δw

)
,

where ε = ασ2/2 and Δw ∼ N (0, 1).
A full time step of size Δt is constructed by solving (4.3) with τ = Δt/2, composed

with an implicit midpoint step of size Δt for the Hamiltonian part of the vector field,
composed with a second solution of (4.3), τ = Δt/2; i.e.,

ζ∗0 = e−εΔt/2

(
ζn + σ

√
e2εΔt/2 − 1

2ε
Δw

)
,(4.4)

Xn+1 −Xn

τ
= J∇H(X̂)− s1(X̂)ζ̂ ,(4.5)

ζ∗1 − ζ∗0
τ

= h(X̂),(4.6)

ζn+1 = e−εΔt/2

(
ζ∗1 + σ

√
e2εΔt/2 − 1

2ε
Δw

)
,(4.7)

where X̂ = (Xn+1 + Xn)/2 and ζ̂ = (ζ∗1 + ζ∗0 )/2. Equations (4.5)–(4.6) are solved
implicitly using fixed point iteration to a relative tolerance of 10−14.

During a close approach of two vortices, equivalently when the strong vortex
energy is large in magnitude, accuracy and stability considerations motivate the use
of an adaptive time-stepping strategy. Given a step size Δtn in the nth time step, the
subsequent time step is found by solving

(4.8) ΔtnΔtn+1 = (Xn)2Δs2.

Here, Δs is a uniform time step under the time transformation t =  · s, and  is a
monitor function that measures the stiffness of the local solution. This adaptivity ap-
proach is explicit and time-reversible whenever the numerical integrator is symmetric.
For our experiments we use

(x) = min
i�=j

|xi − xj |,

where the minimization is over all vortices and image vortices.
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4.4. Computation of temperatures. We check the inverse temperature β nu-
merically assuming ergodicity. For some function a(X) : D → R

d and an equilibrium
distribution ρ(X) = exp

(−β∗H̃(X)
)
,

∇· ρ(X)a(X) = a(X) ·∇ρ(X)+ ρ(X)∇·a(X) = −β∗ρ(X)a(X) ·∇H̃+ ρ(X)∇·a(X).

Formally integrating over phase space,

(4.9)

∫
D
∇ · ρ(X)a(X) dX = −β∗

∫
D
ρ(X)a(X) · ∇H̃ dX +

∫
D
ρ(X)∇ · a(X) dX.

The expression on the left is zero if either ρ or a is zero on the boundary ∂D of phase
space. The boundary of D consists of configurations for which at least one point vortex
is located on the boundary of the disc. Such a configuration has energy H → −∞.
Likewise, there are points in phase space where two or more point vortices collide and
the Hamiltonian tends to ±∞. The Gibbs distribution (2.6) can be normalized only
for β on an open interval [2]:

(4.10) β ∈
(−8π

Γ2N
,
+4π

Γ2

)
.

To carry out the integration (4.9), we choose a of the form

a = b/ρ, ρ(X) = exp (−βH(X)) ,

where β is the desired inverse temperature and b(X) is some function with b = 0 at
the boundary of the phase space. In this case, the expression for β∗ simplifies to

0 = −β∗〈a · ∇H̃〉+ 〈∇ · a〉.
If the flow is ergodic, then the ensemble averages can be replaced with time averages

(4.11) β∗ = ∇ · a/a · ∇H̃,

and the disagreement of β∗ and β serves as a simple check for nonergodicity. For the
infinite reservoir, H̃ = H , and for the finite reservoir, H̃ = H + γ∗/β∗H2, yielding

(4.12) 0 = −β∗〈a · ∇H〉 − 2γ∗〈a ·H∇H〉+ 〈∇ · a〉.
Choosing two independent functions a1 = b1/ρ and a2 = b2/ρ, where b1 and b2 are
identically zero on ∂D, these equations yield a linear system for β∗ and γ∗. In numeri-
cal simulations we observed that the averages were slow to converge for the coefficient
matrix. Instead we include here only the convergence of the inverse temperature β∗,
which in the finite reservoir case is computed from (4.12) by taking γ∗ = −β∗/(2E0).
As a monitor function we used

b = ∇H
∏
i

(
1− |xi|2

R2

)
, ρ = exp(−βH − γH2),

where β is one of the three inverse temperatures (5.1) and γ is either 0 for the infinite
reservoir or the corresponding reservoir variance (5.2) for the finite reservoir.

Figure 1 illustrates convergence of β∗ to the values of β (5.1) for both the infinite
and finite reservoir. The parameters are taken as in section 5, except that the initial
condition was perturbed, i.e., x1(0) = (2.9, 0.1), and the time averages in (4.12) were
started from T0 = 500.
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*
Fig. 1. Convergence of inverse temperature approximation β∗ for positive (A), neutral (B),

and negative (C) inverse temperature states. Left: Infinite reservoir formula (4.11). Right: Finite
reservoir formula (4.12). The dotted lines show the input values of inverse temperature β.

5. Numerical experiments. For all of the numerical experiments using four
strong vortices, the initial configuration consists of point vortices with circulations
and positions given by [2]:

Γ1 = Γ3 = 10π, Γ2 = Γ4 = −10π,

x1 = (3, 0), x3 = (−3, 0), x2 = (0, 3), x4 = (0,−3).

For both the finite and infinite reservoir thermostats we choose negative, neutral, and
positive inverse temperatures β = S′

B(E) by estimating the slope of the graph [2,
Figure 3(a)] at the desired total energies E0, and then tuning the values to obtain a
close fit to the results reported in [2]. We use

(5.1) β = {−0.006,−0.00055, 0.01}.

This choice of β is close to the theoretical upper and lower limits in (4.10).

The variance of the reservoir is controlled by γ. In the case of an infinite reservoir
γ ≡ 0; for a finite reservoir, from (3.5),

(5.2) γ = β/(−2E0),

where E0 is the total energy of the resolved dynamics plus reservoir. From [2] we take
E0 = {628, 221,−197}.

As can be deduced from the invariant distribution (2.13), the parameter α controls
the variability of the thermostat variable ζ and the rate at which the resolved dynamics
is thermostatted. The parameter σ controls the rate of thermalization of ζ in (2.17).
In all experiments we take α = 0.5 and σ =

√
0.4.

We integrated the thermostatted dynamics over the interval t ∈ [0, T ] with T =
12000 using the time transformation (4.8) and fixed transformed time steps Δs =
Δt0/(X

0) with Δt0 = 0.001. The sampling was performed over the time interval
[T0, T ] with T0 = 1500 to allow decorrelation of the initial conditions. The resulting
time series was sampled uniformly in time in cycles of δt = 0.01 to produce the
histograms shown in Figures 6–9.
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Fig. 2. Distribution of thermostat (thick line), Gaussian fit (shaded).

5

0

-5
-5 0 5

Fig. 3. Motion of a single vortex x1(t) on the interval t ∈ [0, 1000] for β = −0.00055.

5.1. Ergodicity tests. The extended measure (2.13) is Gaussian in the ther-
mostat variable ζ. If the time dynamics is ergodic with respect to (2.13), we expect
the time series ζ(t) to be normally distributed; i.e., ζ ∈ N (0, α−1). A histogram of
the values of ζ is shown in Figure 2 for the neutral case β = −0.00055. The normal
distribution ρ(ζ) =

√
α
2π exp(−α

2 ζ
2) is also plotted in the figure. The agreement is

good, suggesting ergodicity with respect to ζ.
As a second indication of ergodicity, we plot the trajectory of a single vortex

x1(t) in Figure 3. The motion appears well mixed. The density of points along the
trajectory is greater where either the local velocity ẋ1 or the local time step Δtn is
small.
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Fig. 4. Momentum for positive (A), neutral (B), and negative (C) inverse temperature states
for finite reservoir size. An infinite reservoir gives a similar behavior.
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Fig. 5. Time evolution of energy H(t) for infinite (left) and finite (right) reservoirs. Inverse
temperatures: β = 0.01 (A, shifted by −200), β = −0.00055 (B), β = −0.006 (C, shifted by +200).

5.2. Momentum conservation. The function s1(X) in (4.2) is chosen to pre-
serve angular momentum (3.3) of the strong vortex set under the thermostatted dy-
namics. Figure 4 shows the angular momentum M as a function of time for the three
temperatures. We observe that M is preserved to the relative precision of the fixed
point iteration used to solve (4.5)–(4.6).

5.3. Temperature effects. In this section we attempt to reproduce the exper-
iments of Bühler using thermostatted large point vortices. We conduct experiments
using both the infinite reservoir canonical distribution ((4.1) with γ ≡ 0) and the
finite reservoir distribution ((4.1) with γ �= 0).

The time evolution of the kinetic energy of strong vortices is displayed in Figure
5 for both the infinite and finite reservoir models, showing that the thermostat drives
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Fig. 6. Distribution of energy for positive (A), neutral (B), and negative (C) inverse tempera-
ture states. Top: Infinite reservoir size. Bottom: Finite reservoir size.
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Fig. 7. Interparticle spacing among same-signed vortices for positive (A), neutral (B), and
negative (C) inverse temperature states. Top: Infinite reservoir size. Bottom: Finite reservoir size.

the energy evolution towards the desired temperature. Figure 6 shows the probability
distributions of the kinetic energy of the vortices. For the finite reservoir thermostat,
the means and variances are similar to those of [2].

Figure 7 displays the histogram of distances |xi−xj | between like-signed vortices.
Bias in favor of small separations is evident at negative temperatures, consistent
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Fig. 8. Interparticle spacing among opposite-signed vortices for positive (A), neutral (B), and
negative (C) inverse temperature states. Top: Infinite reservoir size. Bottom: Finite reservoir size.

with Onsager’s predictions. The distributions are very similar to those obtained by
Bühler [2]. For the infinite reservoir model, there is a large peak in the distribution at
|xi−xj | ≈ 1, which is inconsistent with Bühler’s simulations. This occurs because too
much energy is drawn from the reservoir. The comparison is recovered in the finite
reservoir model.

Figure 8 shows the histograms of the distance between opposite-signed vortices.
In this case, there is a somewhat milder bias towards close approaches at negative
temperatures, in keeping with Onsager’s ideas. The bias is less pronounced because
the close approaches between a point vortex and its opposite-signed image across
the domain boundary are not included in this statistic. Again the histograms are in
excellent agreement with the simulation data of [2] for the finite reservoir simulation.
For an infinite reservoir, the positive temperature histogram is more peaked.

Figure 9 shows histograms of the vortex distance from the origin. For positive
temperature, the vortices accumulate near the wall. The finite reservoir figures are in
excellent agreement with those of [2]. For the infinite reservoir, the peak at |xi| ≈ 4.9
is closer to the wall than for the finite reservoir, indicating that more energy is drawn
from the reservoir in this case. At negative temperature, the vortices avoid the wall
with high probability.

To observe the effects of temperature on a larger collection of vortices, we also
simulated a set with N = 12, under the same conditions as above at the extremal
temperatures β = −0.006 and β = 0.01. The initial positions in both cases were
defined as shown in Figure 10 in the left panel. The middle and right panels of Figure
10 show characteristic snapshots for each case. Animations available from the sec-
ond author’s web page illustrate the dynamics for positive (http://homepages.cwi.nl/
∼jason/Articles/anim1.avi) and negative (http://homepages.cwi.nl/∼jason/Articles/
anim2.avi) temperature regimes on a short interval t ∈ [1500, 1500.1]. At positive
temperatures, vortices cluster in dipoles, or translate parallel to the boundary of the
domain. Because dipoles translate normal to the dipole axis until they collide with
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Fig. 9. Distribution of distance from origin for positive (A), neutral (B), and negative (C)
inverse temperature states. Top: Infinite reservoir size. Bottom: Finite reservoir size.
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Fig. 10. Snapshots of the case N = 12: The initial vortex placement (left), β = 0.01 (middle),
and β = −0.006 (right). Solid (resp., unfilled) circles indicate negative (resp., positive) circulation.
For positive temperature, clustering occurs pairwise; for negative temperature, large counterrotating
regions occur.

another vortex or the boundary, these pairs are short-lived. In contrast, for negative
temperatures the vortices separate into two relatively stable regions of positive and
negative circulation. Figure 11 shows a snapshot of the stream function from the pos-
itive and negative temperature simulations. For negative temperatures the vorticity
is more concentrated in two counterrotating patches.

6. Conclusions. In this paper we provide proof of concept that the energy ex-
change between a set of strong point vortices and a reservoir of unresolved weak point
vortices can be well modelled with a simple thermostat device that adds only a single
degree of freedom to the phase space of the large-scale flow. Specifically, we are able
to recover the canonical statistics of the strong vortices, as obtained from direct nu-
merical simulations in [2]. By constructing a thermostat for general energy-dependent
equilibrium distributions, we model a canonical ensemble with a finite reservoir.
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Fig. 11. Snapshots of the stream function for case N = 12, β = 0.01 (left), and β = −0.006
(right). For negative temperature, clustering of like-signed vortices yields two strong counterrotating
vortices. See animations at the second author’s web page http://homepages.cwi.nl/∼jason/Articles/
anim1.avi (β = 0.01) and http://homepages.cwi.nl/∼jason/Articles/anim2.avi (β = 0.006).
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