
Logic Colloquium '86
F.R. Drake and J.K. Truss (Editors)
©Elsevier Science Publishers B.V. (North-Holland), 1988

A Complete Inference System for Regular Processes with Silent Moves

J.A.Bergstra
Department of Computer Science, University of Amsterdam,

Kruislaan 409, 1098 SJ Amsterdam;
Department of Philosophy, State University of Utrecht,

Heidelberglaan 2, 3584 CS Utrecht

J.W.Klop
Centre for Mathematics and Computer Science,

Kruis/aan 413, 1098 SJ Amsterdam;
Department of Mathematics and Computer Science, Free University,

de Boe/e/aan 1081, 1081 HV Amsterdam.

We study the notion of bisimulation between process graphs with silent or invisible steps (1-steps).
This leads to a normalisation or minimalisation result for regular processes with 1-steps and subject
to operations + (alternative composition),· (sequential composition) and II (parallel composition or
free merge), thereby answering a question of MILNER (10] and proving the consistency of a version
of Koomen's fair abstraction rule.

Note: This work was sponsored in part by ESPRIT contract 432: Meteor.

Introduction

21

In 'classical' automata theory, the process behaviour of a system or agent which is capable of

performing certain 'steps' or atomic actions, is taken to be a set of execution traces. An execution

trace is a linear sequence of atomic actions, finite or infinite. In recent years it has become

increasingly evident that for several applications such an abstract view is too abstract, i.e. one

needs more information from a system than merely the set of possible execution traces. This is

especially the case where communicating systems are concerned; and this consideration led Milner

to his well-known CCS, Calculus of Communicating Systems (see MILNER [9]). Here processes

are obtained as process graphs (transition diagrams) modulo some notion of observational

equivalence or bisimu/ation.

The present paper also considers processes in bisimulation semantics, although the feature of

communication is not considered here. It is one of a series about 'process algebra', including [1-5],

where several process axiomatisations, each capturing certain process features, have Leen

developed and studied. (The paper can be read independently, though.) One of the goals of process

algebra is to give a uniform axiomatic framework for algebraic process theories such as CCS, by

means of (mostly) equational logic. More specifically, process algebra allows one to provide a very

detailed mechanical description of, say, a communication protocol, along the following lines.

Let P be the process that describes the entire mechanism of a given protocol. Now imagine

that Q, the so-called server specification, describes the intended behaviour of the protocol as seen

from outside. In many cases it is correct to assume that Q is also a process that can be recursively

specified in process algebra. The difference between P and Q is that P takes into account many

internal steps of the protocol. Now the situation that P implements Q is in terms of process algebra

expressed by the equation Q = 'tI(P) where 'tJ abstracts, i.e. replaces by 't, all internal steps of the

J.A. Bergstra and J. W. Klop

protocol. Here "t is Milner's silent step. Verification of correctness of the implementation then boils

down to a proof that Q = "tJ(P) in some suitable model of process algebra. For some protocol

verifications of this sort we refer to [5,8,15]. This application of protocol verification may be

sufficient to suggest that the phenomenon of abstraction is vital in theories about processes. In this

paper we investigate this matter in the bisimulation model under the additional and realistic

assumption that P and Q are finite state (regular) processes. Indeed a complete proof system is

given that allows to derive all true identities P1 = P2 between regular processes involving silent

steps.

We will now discuss the contents of this paper in more detail. As said, we study regular

processes, i.e. processes having finitely many subprocesses ('states'). Such processes can be
obtained as equivalence classes of labeled transition diagrams, or as we will call them, process

graphs. The equivalence relation used here is that of bisimulation or observational equivalence

(congruence) as in MILNER's CCS ([9]). This means that processes are not equated as soon as their

trace sets coincide: the notion of bisimulation is more refined and takes also account of the timing of

the various alternative choices in a process. This is the crucial difference with classical automata
theory. As an example, consider the following six process graphs:

(i) ·1 (ii)~ (iii~ a a a a

b a b a b

(v) (vi)

All have trace set a*ab u (aro}. However, no horizontal pair of process graphs is bisimilar - e.g.
(i), (ii) differ since in (ii) after one or more a-steps always a b-step is possible. On the other hand
all vertical pairs are bisimilar.

This paper has been written in an attempt to answer a question in MILNER [10]: there a
complete inference system is given for regular processes without "t-steps (Milner's system M as it is
called below, in Section 5). It is asked (p. 459 in (10]) whether joining Milner's "t-laws to M
results in a complete proof system "o 1 · . •' r regu ar processes with 't-steps. We answer the question
negatively but formulate additional proof principles which yield a complete system. (For some

remarks on an alternative complete proof system recently given by Milner, see the end of this

A Complete Inference System for Regular Processes 23

Introduction.)

Summary

In the first section (see 'Contents' below) several domains of process graphs are introduced as well

as three notions of bisimulation: i2, !Z't and !Zr-c· The first two correspond for finite process trees

(and also for finite process graphs) to Milner's strong equivalence, respectively observational

equivalence (see Section 6.1). The third one corresponds to Milner's observational congruence.

notation name

bisimulation

"C-bisimulation

rooted "C-bisirnulation

for finite process graphs the same as

strong equivalence

observational equivalence

observational congruence

After making some elementary observations concerning these bisimulations, in Section 2 the notion

of ±±T"C is analysed leading to the main lemma (Corollary 2.4) used in the completeness proof of

Section 6.

In Section 3 a normalisation result is proved which for the simple case of ordinary

bisimilarity (±±) is used in the completeness proof of Section 5.

In Section 5 Milner's complete inference system M for regular processes without 't-steps in

reviewed, as it is a basis for our completeness result in Section 6 where 't-steps are present. Also in

Section 5 we formulate a proof system BPALR which is equivalent to M except that µ-expressions

are expressed as systems of recursion equations, which we need for the extended proof system

BP ~LR in Section 6. The formulation of this system is complicated due to the fact that recursion

equations which are guarded by atoms some of which may be 't, need not have unique solutions (as

ordinary guarded recursion equations do). Albeit in a rather different formalism, a similar

observation is made by HOARE [13], where he notes in Section 3.5.5 that 'unfortunately the

introduction of hiding permits the construction of recursion equations which do not have a unique

solution'. In fact, it is not very surprising that the recursion equation

X =a+ -cX (*)

turns out to have infinitely many solutions, if one realizes that one of the 't-laws to which "C is

subject states that 'tx =-ex+ x. For, (*) thus is the same as

X=a+'tX+X

where the unguarded occurrence of X invites many unintended solutions. This matter is

investigated in Section 7: there the general solution of recursion equations, in which some guards

may be 't, is determined. (For (*) it is: X = 't(a + q), q arbitrary.) Also a criterion, which is

necessary and sufficient, is given for recursion equations (or systems of them) guaranteeing unique

solvability. The criterion is simply that no "-c-cycle" should occur in such a system of recursion

equations. (Above,(*) has a 't-cycle from X to X.) Thus, e.g. the system {X = a+bY, Y = c + -cX}

has a unique solution.

Finally, in Section 8 the merge operator (Ii) without communication is added to the earlier

proof system; the completeness is carried over easily.

24 J.A. Bergstra and J. W. Klop

We conclude this introduction with some remarks about bisimulation versus trace

equivalence, in an attempt to answer the question why one does not simply stick to the 'easier'

notion of trace equivalence (i.e. two processes are trace equivalent if the corresponding sets of

traces coincide).

Suppose a class C of 'primary' objects p is given on which an equivalence relation E is

defined reflecting our view on what the 'essence' of the primary objects is. The equivalence classes

p/E are the intended objects of our universe of discourse. Now operations Fi (i e I) are defined, on

the representations of the intended objects, i.e. on C. A desirable state of affairs would be one in

which Eis a congruence w.r.t. the Fi; for this means in effect that we have defined operations F/E

on the class of intended objects C!E. Otherwise, we must conclude that E 'abstracts too much' of

the primary objects and a finer equivalence E' is called for. Let us call, in the case of the desirable

state of affairs, the equivalence E adequate for the operations Fi.

In the present case, the primary objects are the process graphs; and the operations are+, .,

merge without communication ('free' merge), merge with communication, merge with or without

communication in the presence of 't-steps. For E the candidates are: trace equivalence (if t's are

present, 'external' trace equivalence ='t as defined below), and tt, tt 't' tt rt as above. All

equivalences are adequate for+, ·, alternative and sequential composition. However, when the

parallel composition operators (i.e. the various merges) are considered, the notions of equivalence

separate:

(i) trace equivalence is adequate for free merge, also in the presence of 't-steps - but not for

merge with communication as in CCS or ACP;

(ii) bisimulation (tt) is adequate for merge with communication;

(iii) 't-bisimulation (ttt) is almost (but not quite) adequate for merge with communication plus

t-steps as in CCS or ACP't;

(iv) n-bisimulation (ttrr) is adequate for merge with communication plus t-steps.

It should be remarked that in this paper we do not deal with communication; a development

including also communication seems possible along similar lines, though. But also for the

communication-less case, bisimulation (and its variants) is in our opinion a fundamental notion

with a clear elegance and a strong justification.

Addendum. After completion of the report version of this paper (Report CS-R8420, Centre for

Mathematics and Computer Science, Amsterdam), MILNER [12] discovered an elegant complete

axiom system for regular processes with t-steps which is simpler than the one we give in Section

6; it is formulated in terms of µ-calculus, like Milner's system M for the t-less case (see Section

5.2). Apart from the usual axioms for recursion such as µ1,µ2 (see Table 1 in Section 5.2), the

'critical' axioms are:

µX('tX + E) = µX('tE)

µX('t(X + E) + F) = µX(tX + E + F)

where E,F are arbitrary expressions. Using these axioms each expression (having a corresponding

A Complete Inference System for Regular Processes 25

process graph containing possibly 't-cycles) can be proved equal to one whose corresponding graph

has no 't-cycles. Roughly, these axioms 'replace' our rule R4 in Table 9.

Contents

I. Process graphs and bisimulations
2. An analysis of rt-bisimulation
3. Normal and rigid process graphs
4. Operations on process graphs
5. Proof systems for regular processes without silent moves

5.1 Preliminary syntax definitions
5.2 Milner's proof system M
5.3 The proof system BPALR
5.4 A comparison between Milner's Mand BPALR

6. A proof system for processes with silent moves
6.1 Milner's ~-laws
6.2 Recursion together with silent moves

7. Solving systems of ~-guarded recursion equations
8. PA~LR: a proof system for regular processes with ~-steps and free merge
References.

1. Process graphs and bisimulations

We will start with the preliminaries of introducing some domains of process graphs as well as

(several variants of) the semantical notion of equivalence between process graphs called

bisimulation. Furthermore we will state in this section several elementary observations concerning

bi simulation.

1.1. Graph domains

First some standard terminology. All graphs considered in this paper are connected, rooted multi­

digraphs, that is: the graph has a root ('starting node'), the edges between the nodes are directed

and between two nodes there may be several edges, and every node is accessible from the root. The

out-degree of a node sin graph g is the number of edges starting from s. Likewise the in-degree is

defined. If the out-degree of s is zero, sis an end-point or end-node. A path re in g is an

alternating sequence of nodes and edges:

re: s0 -> s1 -> _, sk

for ~O. The length of the path is k, its number of edges. If k<':l and so and sk coincide, re is a

cycle. In particular, if k= 1, and so,s 1 coincide, re is a loop. Ifs is lying on a cycle, it is called

cyclic, otherwise acyclic.

A graph g is finitely branching if the out-degree of every s E NODES(g), the set of nodes of

g, is a natural number. A graph is finite if NODES(g) and EDGES(g) are finite. The graph g is a

tree if all its nodes are acyclic and the in-degree of every node is ~I (viz. 0 for the root and I forthe

other nodes).

Ifs is a node of g, the subgraph (g)5 of g is the graph with roots and all the nodes and edges

accessible from sin the obvious way.

Graphs differing only in their naming of the nodes are considered to be identical.

J. A. Bag.ma and J. W. Klop

The graphs considered so far, are the underlying structure for process graphs: these are
gmpb labekd with atomic actions from the alphabet At. Here A't = { 't, a, b, c, ... } is a finite set
rnntaim11g a special elemeni t (the 'silent' action). We use the variables a,b,c for A't-{'t}, and
U,\ •.. for At. (The finiteness of Ai; is in this paper not important.) Intuitively, a process graph like
in figure !, is a process capable of performing sequences of actions ('execution traces') given by
:he various paths staning from the root. For instance, ababab .. ., or abt'tt

Figure I

The process graph in Figure I contains labeled paths as e.g. it: so __,a s1 __,b sz--; t s4 also
written as it: so ...,ab't s4. Here ab't E At*· the set of finite words over At, including the empty
word IS.

The crucial difference with 'classical' automata theory is that we are not exclusively
interested in the set of execution traces determined by a process graph, as explained in the
introduction.

Now we have the following process graph domains: GKAi• the set of finitely branching
process graphs g over the alphabet A't such that the cardinality of NODES(g) does not exceed the
cardinal number JC. Mostly, we will drop the subscript A't and moreover we will be only interested
in the case JC = ro, and write G instead of aro. 'f is the subdomain of G consisting of process
trees. iR is the domain of finite process graphs, also called regular process graphs. f = 1f n lR is
the set of finite process trees. GP is the set of finitely branching process graphs with acyclic root.
Likewise RP= lR n GP. (See Figure 2.)

G

Figure2

A Complete Inference System for Regular Processes 27

EXAMPLE 1.1.1. The following process graphs have a position in Figure 2 as indicated:

a ~ -: a l

->' ' b b
a >:Ii!

a a
I I(b

Figure 3

1.2. Root-unwinding

It will be convenient to have a canonical transformation of a process graph g E G into an

'equivalent' root-acyclic one in GP. (Here 'equivalent' is in a sense which will be explained

below, in Proposition 1.3.1.2.)

DEFINITION 1.2.1. The map p: G ~ G, root-unwinding, is defined as follows. Let g E G have

root r; then p(g) is defined by the clauses

(i) NODES(p(g)) = NODES(g) u (r'} where r' is a 'fresh' node;

(ii) the root of p(g) is r';

(iii) EDGES(p(g)) = EDGES(g) u {r' ~us I r ~us E EDGES(g) };

(iv) nodes and edges which are inaccessible from the new root r' are discarded.

EXAMPLE 1.2.2. (i) In Example 1.1.1 (Figure 3) we have p(g1) = g2 and p(g5) = gfr Further,

p(g3) = g3 and p(g4) = g4. E.g. p(g4) is obtained as in Figure 4:

r I

Figure 4

J. A. Berg.ma and J. W. K/op

Note ihat p is idempotent: p2(g) = p(g).

U. Bisimulatiuns

On the process graphs considered so far we have a semantical notion of equivalence, called

bisimulation. The original notion is from PARK [14]; it was anticipated by Milner's observational

t'quiva!ence (see [9]) which has a more involved definition but coincides (on the set of finite

process graphs, not for infinite ones) with bisimulation. We consider three variants:

" bisimularion (on G x G)

"t t-bisimulation (on G x G)

"rt rooted t-bisimulation (on GP x GP).

I.3.1. Bisimulation: tt

Let g,h e G. The relation R k NODES(g) x NODES(h) is a bisimulationfrom g to h, notation

R: g" h, if

(i) Domain(R) = NODES(g) and Range(R) = NODES(h)

(ii) (ROOT(g), ROOT(h)) e R

(iii) if (s,t) E Rands _,us' E EDGES(g) then there is an edge t _,u t' E EDGES(h), such that

(s',t') e R. (See Figure 5.)

(iv) if (s,t) e Randt _,u t' e EDGES(h) then there is an edge s _,u s' e EDGES(g), such that

(s',t') e R. (See Figure 5.)

(In Figure 5 the dotted lines have the usual 'existential meaning.)

Funher, we write g " h if3R R: gtt h. In this case g,h are called bisimilar.

Figure5

EXAMPLE 1.3.1. l. (i) See Figure 6; the curved lines denote the bisimulation.

(ii) The graphs in Figure 7 (a) (b) are not bisirnilar.

~·::··:.~_-_ ... _

:. a
·::····" .. ·

·

Figure 6 Figure 7 (a) (b)

A Complete Inference System for Regular Processes 29

It is easy to see that bisimilar process graphs have the same sets of traces. The reverse,

however, does not hold as Example 1.3.1.1 (ii) shows. The following facts are easily proved:

PROPOSITION 1.3.1.2.

(i) Let g e G. Then g tt p(g).

(ii) The relation tt (bisimilarity) is an equivalence relation on G.

(iii) If g,h e G, R: g tt hand for s e NODES(g), t e NODES(h) we have (s,t) e R, then

R': (g)s tt (h)t• where R' is the restriction of R to the nodes of (g)s and (h)t.

1.3.2. 't·Bisimulation: !:! 't

Note that an equivalent definition for ordinary bisirnulation can be given as follows: replace in the

definition of 1.3.1 clauses (iii), (iv) by:

(iii)' if (s,t) e Rand 1t: s ""* w s' is a path in g (determining the 'word' u1 u2 ... uk (1<2:0) of labels

along the edges in 7t), then there is a path 7t': t - w' t' in h such that (s',t') e R and such that

w = w' (w,w' are identical).

(iv)' likewise with the role of g,h interchanged.

The definition of tt't now parallels that for tt, with as only alteration that w = w' is replaced by

w ='t w'. Here w ='t w' (w, w' e At* are equivalent modulo 't) if w ,w' are identical after deletion

of 't's. E.g. 't; 't't't; E (the empty word); ab't't'tc't ='t 'ta'tb'tC. Processes g,h e G such that

g tt 't h are called 't-bisimilar.

1.3.3. Rooted 't· bisimulation: !:! rt

Suppose g,h e GP and R: g tt't h in such a way that

(s,t) e R => s = ROOT(g) and t = ROOT(h), or:

s ,;, ROOT(g) and t,;, ROOT(h).

(So a non-root cannot be related in the bisimulation to a root.) Then R is called a rooted

't-bisimulation between g,h and we write

R: g ttr't h.

Such g,h are called r't-bisimilar (via R). Note that g tt h => g tt't hand g ttr't h => g tt't h. As

before, tt rt and tt 't are equivalence relations on GP and G, respectively. Also tt 't, tt r't are

invariant under p (root-unwinding).

EXAMPLES 1.3.4.

(i) 6
a

(ii) ·!

Figures

(iii) A.~~ ? '\~r~ a ~
b

30 J.A. Bergstra and J. W. Klop

Sorne fu.'1hcr obvious fac1s are:

PROPOSITION 1.3.5. (i) Let g,h e G be t-bisimi/ar via R. Let (s,t) e R. Then (g)s and (h\ are
<-bisimilar (via the appropriate restriction ofR). (The nodes s,t are called in this case t-bisimi/ar.)
(ii) Let g,h e GP and R:g"'rr.h. Let (s,t) e R. Then (g)s "'t (h)t (in general not rt-bisimilar). D

PROPOSITION 1.3.6. Let g,h e G and suppose R: g ±± has well as R': g ±± h. Then

RvR ': g ±± h. Similar for ±± t and ±±rt· D
(Nore that the intersection of bisimulations R,R' need not be a bisimulation.)

DEFIN1TION 1.3.7. (i) At-cycle in a process graph g is a cycle

it: so-+t s1 -+t ... -+t sk =so (~!).

(ii) At-loop is at-cycle of length 1:

it: so -+ t SO·

REMARK 1.3.8. The reason for restricting the notion of rt-bisimulation to GP (root-acyclic

process graphs) is as follows. Consider the three graphs in Figure 9.

gl: 1 ~: P' ~' t>o
a T

(a) a

(b) (c)

Figure 9

In view of later developments below we want not gl ±±rt g2 but we do want g2 ±±rt g3 (= p(g2)).
A definition of "'rt on all G with these properties would be more involved. Also, the restriction to
GP makes sense since ±±rt will prove to be a congruence on GP w.r.t. the operations +,-,II, lL
defined in Section 4; and + is most naturally defined on GP. (On the other hand, ±± t is not a
congruence w.r.t. +; cf. our discussion in 6.1.)

PROPOSITION 1.3.9. Let g E G contain at-cycle passing through the nodes s,t. Then s,t are
t-bisimilar (i.e. (gls "'t (g)i!.

PROOF. (See Figure 10.) Note that every pointing accessible forms is accessible from t and vice
versa. Hence the node sets of (g)5 and (g)t coincide. Now let Id be the identity relation on
NODES((g)s)· Then it is easy to verify that Id u { (s,t)) is a t-bisimulation from (g)s to (g)t. o

A Complete Inference System for Regular Processes 31

Figure 10

PROPOSITION 1.3.10. (i) Let g e G contain 't-bisimilar nodes s,t. Let g't(s,t) be the result of

adding a 't-edge from s to t. Then g and &'T;(s,t) are 't-bisimilar.

(ii) Let g e GP contain non-root nodes s,t which are 't-bisimilar. Then g !:!rt g't(s,t)·

PROOF. (i) Let Id be the identity relation on NODES(g) (= NODES(g't(s,t))). Then Id u { (s,t)} is

a required 't-bisimulation from g to &'T;(s,t)· (ii) Similar. o

This proposition says that adding 't-steps between 't-bisimilar nodes in a graph g does not

change the "'t-bisimilarity character" of g (and for the same reason, of any node q, or better,

subgraph (g)q of g). Here the 't-bisimilarity character of g is the class of all g' e G which are

't-bisimilar with g. In particular, the 't-bisimilarity character is not disturbed by appending 't-loops

to nodes of g. Vice versa, removing 't-loops also does not change the 't-bisimilarity character.

EXAMPLE 1.3.10.1.

Figure 11

Just as all 't-loops can be removed from g without changing 't-bisimilarity (which follows

from the previous proposition, by takings= t), it is possible to remove all -c-cycles from g. We

need a definition first:

DEFINITION 1.3.11. Let g e tG contain nodes s,t. Then gid(s,t) is the process graph resulting

JA. Bergstra and J. W. Klop

from the identification of sand 1, in the obvious sense.

EXAMPLE 1.3.l I. I. Let g be as in Figure 11. Then gid(s,t) is:

A a
b

Figure 12

PROPOSITION J .3.12. (i) Let g e G and suppose s,t e NODES(g) are 't-bisimilar. Then g and
gid(s,t) are t-bisimiiar.
(ii) Let g e GP and suppose the non-root nodes s,t E NODES(g) are 't-bisimilar. Then

g "rt gid(s,t)·

PROOF. Obvious. D

COROLLARY 1.3.13. (i) Every g e G is 't-bisimilar with some g' E G without 't-cycies.
(ii) Every g E GP is rt-bisimilar with some g' E GP without 't-cycles.
(iii) Every g E lR is t-bisimilar to some g' E lR without infinite 't-paths.

PROOF. Follows from considering Figure 13. D

g

Figure 13

We conclude this section with a proposition needed in the sequel, which illuminates the
difference between "'t and "rt·

PROPOSITION 1.3.14 . . Let g,h E G and let tg, 'th be the result of prefixing a 't-step. Then:
g,;th ~ tg!:!rtth.

PROOF.(~) is trivial.({::): Let r,r' be the roots oftg, 'th and let s,s' be the roots of g,h. Let R be
an rt-bisimulation between tg and 'th (see Figure 14). Then R' =(Ru {(s,s')}) - {(r,r')) is a
t-bisimulation between g,h. D

A Complete Inference System for Regular Processes 33

g

Figure 14

2. An analysis of n-bisimulation

The main result of this section is that an rt-bisimulation R between g,h E G can be analysed into

more simple parts:

g

J
t.(g)

J
E(t.(g)) !:!

h

l
t.(h)

J
E(t.(h))

(Corollary 2.4). I.e. g !:! rt h iff g,h after 'preprocessing' (by means of some simple operations

t.,E: G -+ G), are bisimilar in the ordinary sense where 't does not play its special role. This

analysis is the basis for the completeness theorem in Section 6 where syntax and axioms are given

describing rt-bisimulation.

In Section 3, the present analysis will be connected to a normalisation procedure for process

graphs with 't-steps.

2.1. The operation t.

First we need some terminology: if g E G, then an arcing is a part of the form (a) in Figure 15

(here u E A't). In case n = m = 0, the arc is a double edge as in (b). Other special cases are in

Figure 15 (c), (d): these are called t.-arcs. It is not required that the three nodes displayed in (a)-(d)

are indeed pairwise different. The u-step between nodes s,t is called the primary edge of the arc.

1:~~ :ou]> J?
t~

m)O 1-steps

(a) (b) (c) (d)

Figure 15

Now the operation t.: G -+ G is defined as follows: whenever g E G contains a path

s1 -+ 't s2 -+u s3 (where s1 ,s2,s3 need not be pairwise different), an edge s1 -+u s3 is added if not

.14 J.A. Bergstra and J. W. Klop

yet present. Likewise for every path s1 -+u s2 -+t s3. A(g) is the result of this completion of g

with edges as indicated.
Further, we say that g e G is A-saturated if A(g) = g.

EXAMPLE 2. 1.1. Figure 16

g

~
a

(a) ---t--- (b) (c)

·~
~b

,.

PROPOSmON 2.1.2. (i) A(g) ttt g if g e G; (ii) A(g) ttrt g if g e GP.

PROOF. The identity relation R gives a (r)t-bisimulation. D

ll The operation E

(d)

Call a node of g e GP internal if it is not the root, and an edge of g internal if it is between internal

nodes. Further, call an internal t-step s -+ t tinge GP an E-step if s,t are "t-bisirnilar. Finally,

consider the set of internal nodes of g e GP and the equivalence relation on this set given by

t-bisimilarity. We will call the equivalence classes: clusters. So E-steps always occur 'inside' a
cluster (see Figure 17).

A Complete Inference System for Regular Processes 35

(a) (b)

Figure 17

(Clusters are indicated with (_) .)

NOTATION. If s,s' are in the same cluster we write also s - s'.

The concept of clusters of nodes makes the structure of a process graph more perspicuous -

of course, it also anticipates the normalisation procedure in Section 3, where in essence the clusters

are collapsed to single nodes.

In particular, a-saturated process graphs g have a local structure as indicated in Figure 18:

/ -­/'

\,.._ p

Figure 18

cluster y in g

y'

36 J.A. Bergstra and J. W. Klop

Namely, if "f is a cluster in g and s -+at is an 'incoming' edge, then the endpoint t is carried in the

direction of the e-steps, thus providing arrows s -+at', s -+at". Vice versa, if t' -+b p is an

outgoing edge, the starting point t' is carried backwards along e-paths. This is a simple

consequence of .6-saturation and in fact it does not depend on the particular nature of e-steps.

Moreover, and this does depend on the definition of cluster in terms of :tt't, if "f has an outgoing

edge -+b to some cluster y, then from every point in "f there is an edge -+b to "(. We will need this

last fact so let us prove it:

PROPOSITION 2.2.1. Let g e GP be A-saturated. Lets -+u t be an edge of g and lets' - s. Then

g contains an edges' -+u t'for some t' - t.

PROOF. Consider an rt-bisimulation R of g with itselfrelating s to s'. (R can be taken to be the

union of the identity relation on g and a t-bisimulation from (g)s to (g)s•.) Now by definition of

t-bisimulation, given the edge s -+u t and s - s' there is a path 7t: s' - t' with label tnutm in g for

some n,m ~ 0 and some t' with t' - t. By virtue of A-saturation, we now have an edge s' -+u t'. D

Now we would like, in order to obtain the 'structure theorem' 2.4 concerning

(r)'t-bisimulation as well as the completeness result in Section 6, to omit all e-steps in a A-saturated

graph g, resulting in a graph g' which is still rt-bisimilar to g. Here the need for A-saturation

comes in, for omitting e-steps could make a non-A-saturated graph g disconnected, as in Example

2.1.1 (a): there the t-step in g (which clearly is an e-step) cannot be removed, but it can in A(g).

DEFINITION 2.2.2. E is the operation from GP to GP which removes in g e GP all e-steps (as

well as parts of g which become disconnected in that process). If g = E(g), g is called prenormal.

PROPOSITION 2.2.3. E preserves .6-saturation.

PROOF. Suppose g e G is A-saturated. The only possibility for E(g) to have lost the propeny of

A-saturation, is that one of the removed e-edges was the primary edge of a A-arc:

-----------...._
/ ' (,_:_y_:) """""' ln'

' '

53 Figure 19

This is impossible, since then s3 is t-bisirnilar to s1 ·82· To see this, note that adding an edge

s2 --+ 't s 1 does not change the t-bisimilarity character of any point in g (Proposition 1.3.10). But

then s1,s2,s3 are i:-cyclic, hence t-bisirnilar (Proposition 1.3.9). This means that the t-steps

A Complete Inference System for Regular Processes

s1 ~'t s3, s3 ~'t s2 are in fact £-steps in g. However, then E would have removed them. D

PROPOSITION 2.2.4. (i) If g e !GP is Ii-saturated, then g ttrt E(g).

(ii) Forge GP: E(/i(g) f:!rt g.

37

PROOF. (ii) follows from (i) and Proposition 2.1.2. As to (i): Because g is Ii-saturated, applying

E does not disconnect nodes of g. That is, g and E(g) have the same nodes. Now let Rm be the

maximal rc-bisirnulation from g to itself. (By Proposition 1.3.6 there is a maximal one.) We will

show that Rm is also an rt-bisimulation between g and E(g).

E(g)

R

--~-----j

----- t

s'

:c---------
t - --- ---

Figure20

Now the easy half of checking that Rm is the required rc-bisimulation, is as follows. Let s ~u t be

in E(g) such that s',s are related. Then there is a path s' - t' in g, with label '!:llutm, with t',t

related by virtue of the fact that Rm is an rc-bisimulation.

In the other direction, lets -+u t be in g. Again there is a path s' t' in g with label tnu'trn

such that t',t are related. If this is also a path in E(g) we are done. If not: since g is Ii-saturated, and

hence (Proposition 2.2.3) E(g) too, we have a direct s' -+u t' step in g (see Figure 20). If this

u-step is in fact an £-step, it is omitted in E(g). But then t and s' are related (since Rm is maximal)

and we are done. o

Now we anive at a key lemma:

LEMMA 2.2.5. Let g,h e GP be Ii-saturated and prenormal. Then:

g fire h => g tt h.

JA. Bergstra arid J. W. Klop

PROOF. (l) Let R be an rt-bisimulation between g,h. Then there is no 't-step in g which is
"contracted" by R in h, as in Figure 21 (and likewise with g,h interchanged):

r

rs E- ____ R----f--...-o t
i ---- -----

s'

h

Figure 21

Namely, ifs = r, the root of g, then this claim follows by definition of "n· Otherwise, s -; 't s' is
an internal step (s' 1' r since g e GP) and now by Proposition 1.3.5 (ii):

(g)s "t (h)t "t (g)s'·
That is: s ~ 't s' is an e-step. But then g is not prenormaL
(2) Let s ~us' (u e At) be a step in g (see Figure 22):

Figure 22

By definition of the rt-bisimulation R, there is given at such that (s,t) e R, a path t - t' with label
-cnu'tm, for some t' such that (s',t') e R. By .6.-saturation of h, there is now a step t _.u t'.
(1) and (2) together imply that the rt-bisimulation R is in fact an ordinary bisimulation. D

REMARK 2.3. Note that the condition of .6.-saturation in the preceding lemma is necessary: for
consider g,h as in Figure 23:

g= ----~----- =h

A Complete Inference System for Regulw Processes 39

Here g,h are prenormal and rt-bisimilar (by Ras in the figure). However they are not bisimilar.

After Li-saturation they are bisimilar:

Figure24

COROLLARY 2.4. Let g,h e GP and let g ttrt h. Then E(A(g)) tt E(t.(h)).

PROOF. By Proposition 2.1.2, Ag ttri: ilh. By Proposition 2.2.4, E(t.g) !:!rt E(Ah). By

Proposition 2.2.3, E(Lig) and E(Ah) are A-saturated. Hence by Lemma 2.2.5 these two graphs are

bisimilar in the ordinary sense. o

3. Normal and rigid process graphs

In this Section we prove (Corollary 3.3.3) a minimalisation result for finite process graphs. From

the previous Section 2 we need only the concept of 'arc' (in 2.1) and 'cluster' (in 2.2). The results

in this section are not used in the sequel except for Corollary 3.3.4 which describes a

minimalisation procedure for process graphs without 't'-steps.

3.1. Rigid proce&<j graphs

DEFINITION 3.1.1. (i) Let g e IG, and let R be a bisimulation ('t'-bisimulation, respectively) from

g to itself. Then R is called an autobisimu/ation (t-autobisimulation, respectively) of g.

(ii) Likewise we have for g e GP an rt-autobisimulation.

(iii) 1f g e G and the identity relation is the only autobisimulation of g, then g is called rigid.

Likewise g is 't'-rigid if it has only the trivial -c-bisimulation. If g e GP, g is n-rigid if it has only

the trivial n-autobisimulation.

ExAMPLE 3.1.2. (i) -7o-L-O a is rt-rigid but not rigid.

(ii) -7~ is not rt-rigid, not 't'-rigid, but is rigid.

Note that for g e G, -c-rigid implies rigid; and for g e GP, 'C-rigid implies r't'-rigid.

Furthermore, if g e GP and g is rt-rigid then the subgraphs of g corresponding to internal nodes

40 JA. Berg.ma and J. W. Klop

are t-rigid. Also (cf. Proposition 1.3.14) forge G:

g is t-rigid <=> tg is rt-rigid.

PROPOSITION 3.1.3. Let g e GP. Then: g is rt-rigid <=> g has only singleton clusters.

PROOF.(=>) Suppose g has a cluster containing different nodes s,t. So by definition of cluster, s,t

are internal nodes which are i:-bisimilar (i.e. (g)s "t (gltl· Let R be a 't-bisimulation between (g)s

and (g)1. Then Idg u R is a non-trivial rr-autobisimulation of g, contradiction.
(<=)Suppose g has a non-trivial n-autobisimulation R. Then R relates different internal nodes s,t

to one another. But then s,1 are in the same cluster, contradiction. D

3.2. Normal process graphs
DEFINITION 3.2.1. (i) An rt-rigid process graph g E GP is minimal if g contains no double

edges, no i:-loops and no arcs (see the definition in 2.1).

(ii) If g is rt-rigid and minimal, we will call g rt-normal.

THEOREM 3.2.2. Let g,h E GP be rt-normal and suppose g ttr't h. Then g,h are identical.

PROOF. Let g ttri: h via R. Then Risa bijection from NODES(g) to NODES(h), because g,h are
ri:-rigid (so they have only singleton clusters; now apply Proposition 1.3.5). Furthermore R maps

the edges of g bijectively to those of h; more precisely:

Claim.
(i) Ifs -tut with s ~ t is an edge of g and (s,s') E R, then there is an edge s' ~u t' in h for

some t' with s' ~ t' and (t,t') E R.

(ii) Ifs -ta s (a e A) is a loop in g and (s,s') e R then there is a loop s' ~a s' in h.

(iii) Likewise vice versa.

With the claim we are through, since R is then an isomorphism between labeled graphs.
(Intuitively, this can easily be seen by noting that a process graph g without double edges can be
considered as an algebraic structure, in the sense of model theory, with universe NODES(g), a
constant ROOT(g) and binary relations a,b,c, ... (the labels of EDGES(g)).)

Proof ofrhe claim: Lets -tut be an edge as in (i) or (ii) of the claim. Let (s,s') e R. (See Figure
25.)

Figure 25

Suppose there is not a 'direct' step s' ~u t', (t,t') e R. Then since R is an rr-bisimulation there is

A Complete Inference System for Regular Processes 41

a paths' s" (with label i:n), s" -?u t", t" t' (with label i:m) from s' tot', (t,t') e Ras in the

figure, such that n + m f'. 0. Say n ;to 0. Now s' __,. 't't .. 't s" cannot be a i:-cycle (i.e. s f'. s") since by

Proposition 1.3.8 the points on a 't-cycle are 't-bisimilar and here we have singleton clusters. So,

going backwards from s" we finds"' with s;tos"' as in the figure. Likewise the steps" -?u t" can

be carried backwards to a paths"' _,. t"' with label i:ku'tl in gas in the figure. Finally, carrying t"

..... 't't .. 't t' backwards tog we must end in t since Risa bijection between the node sets. However,

the result is an arc in g, in contradiction with the normality of g.

Hence there is a direct step s' -?u t', (t,t') e R. By the bijectivity of R it follows from s f'. t

that s' ;to t', which proves (i); and it follows from s =t that s' =t ', which proves (ii). Claim (iii) is

like (ii) with g,h interchanged. o

COROLLARY 3.2.3. Let g e GP.Then there is a unique Nr't(g) e GP, the r't-normalisation of g,

such that Nr't(g) is r't-normal and g ttrc Nrt(g).

PROOF. Given g, one collapses the clusters (in the sense of identifying nodes as in Definition

1.3.11) to singletons. The resulting g' is r't-rigid and g ttr't g' follows from Proposition 1.3.12.

Then superfluous edges (double edges, 't-loops and the primary edges of arcs) are removed. These

removals preserve r't-bisimilarity. The uniqueness follows from Theorem 3.2.2. o

Specialising to the i:-less case, we obtain the following result (used in Section 5 for the

completeness proof ofBPALR).

COROLLARY 3.2.4. (i) Let g e GP. Then there is a unique N(g), the normalisation ofg, such

that N(g) is normal (i.e. rigid and minimal) and g tt N(g), obtained by repeatedly identifying

bisimilar nodes and removing double edges.

(ii) Let g,h e GP and g tt h. Then N(g) = N(h). o

4. Operations on process graphs

We will now define some operations on process graphs, namely:

+ (alternative composition or sum)

(sequential composition or product)

II (parallel composition or merge)

lL (left merge).

4.1. Alternative composition
Let g,h e G. Then g + h is the result of glueing p(g) and p(h) together by identifying their roots.

ExAMPLE:

42 J.A. Bergstra and J. W. Klop

Figure 26

4.2. Sequential composition
Let g,h e G. Then g·h is the result of appending h at all endpoints and all t-endpoints of g. Here a

t-endpoint is a nodes from which only 't-steps are possible and such that (g)s has no endpoints.

EXAMPLE:

Figure27

4.3. Parallel composition

Let g,h e G. Then gllh is the result of taking the Cartesian product of g,h.

EXAMPLE:

~
' b r

c

Figure 28

4.4. Left-merge

For g,h e G, the left-merge gll..h is defined as the subgraph of p(g)llh obtained by stipulating that

an initial step must be one from p(g).

EXAMPLE:

A Complete Inference System for Regular Processes 43

~b
'[IL

b r
Figure 29

THEOREM 4.5. rt-bisimilarity is a congruence w.r.t. the operations +,-.11.ll on GP. That is.for

g,g',h,h' with g ;;rt g', h tirt h' we have g D g' tirt h O h'for o e {+,-,II.Ill.

PROOF. Routine. In all four cases the required rt-bisimulation (between g o g' and h o h') is

constructed in a straightforward way from given rt-bisimulations between g,g' and h,h'. o

REMARK 4.5.1. Note that t-bisirnilarity is not a congruence: a tit ta, b tit b but a+b tit ta+b

does not hold. Nor is it a congruence w.r.t. ll_: all_b tit tall_b does not hold.

4.6. Collapsing process graphs

In this subsection, in which process graphs with +,. and ;; only will be considered, we define a

useful operation on process graphs, namely collapsing isomorphic subgraphs:

collaps : G -t G.

If g E G, let Sub(g) be the set of sub-process graphs of g modulo process graph isomorphism (::):

we abstract from the identity of the nodes. The isomorphism class of a subgraph h of g is h-.

EXAMPLE. (i) If g = -t~ ... (infinitely many consecutive steps

altematingly labeled with a,b), Sub(g) consists of g- and g'-, where g' is g with a,b interchanged.

(ii) If h = -t~, then Sub(h) contains five elements.

Now collaps(g) is the process graph with node set: Sub(g) u {0), if g has a terminating

path, and Sub(g) else. The root of collaps(g) is g-, and for gl-,gr E Sub(g) there are edges

g1- -ta g2- whenever g1 = a·gz or gl = a·gz + h for some h,

and g1- -ta 0 whenever g1 =a or g1 =a+ h for some h.

In the example above:

collaps(g) = ~
and collaps(h) :::: h.
Note that collaps does not identify subgraphs which are merely bisirnilar. Now there is the

following theorem:

THEOREM 4.6.1. Let g,h e G. Then:

(i) collaps(g) ;; g
(ii) collaps(g o h) ti collaps(g) D collaps(h),for D = + ,-.

44 J.A. BergstraandJ.W. Klop

PROOF. (i) The collaps operation gives the bisimulation in a direct way: s e NODES(g) is related

to (gls- e NODES(co/laps(g)). It is easy to check that this relation is a bisimulation.

(ii) By Theorem 4.5 restricted to tt, tt is a congruence w.r.t. +, on IG. Hence by (i):

g D h tt collaps(g) D collaps(h).

Again by (i): collaps(g D h) tt g D h. Therefore (ii) follows. D

5. Proof systems for regular processes without silent moves

As a preparation for the completeness result in Section 6 for "recursion plus 't-steps", we first treat

the case without 't-steps. In panicular, Milner's complete proof system for this case is presented

and compared with a variant (BPALR) in which the µ-formalism is replaced by systems of

recursion equations.

5.1. Preliminary syntax definitions

We will now specify the syntax necessary to deal with the semantic domain of regular processes

RP(+,.)/ttrt, and at the end of this paper, RP(+,.,11,lU/ttrt (Section 8). At the basis of this

syntax is the finite alphabet Ai; = A u ('t}, where A = { a,b,c, ... }, of atomic actions, used above as

labels of the edges of the process graphs. (We will not notationally distinguish between the formal

alphabet symbols and the edge labels; nor will we distinguish the syntactic function symbols

+.-,11.lL from their semantical counterparts in RP(+,-,11,lU. In turn, the latter will not be

distinguished from the corresponding operations induced in the quotient structures modulo ttrt.)

5.1.1. Linear and guarded terms over Av V AR, +, ·

Let VAR be a denumerably infinite set of variables {X,Y,Z, ... }. Terms (or expressions) T over

Ai;. VAR, +, · are defined as usual. We will assume commutativity and associativity of +, and

associativity of·. A term T is A-r-guarded if every occurrence of a variable in T is preceded by

some u e Ai:· More formally:

(i) 't,a,b,c, ... are Ai;-guarded,

(ii) ifT is Ai;-guarded and T' is an arbitrary term, then T·T is Ai;-guarded,

(iii) ifT,T' are both Ai;-guarded then so is T + T'.

Likewise we define: T is A-guarded, by omitting 't from the previous definition; A= {a,b,c, ... }

stands for Ai;-('t}. Instead of Ai;-guarded and A-guarded, we will also say for short: 't-guarded,
guarded respectively.

EXAMPLE. abX + 'tXX is 't-guarded but not guarded, (aX + b(Y + a))(X + a) is guarded hence

't-guarded, (aX + Y + a)(X +a) is not ('t-)guarded.

Further, we define a term T to be linear if all occurrences of variables are 'at the end'. More

precisely:

(i) variables are linear,

A Complete Inference System for Regular Processes

(ii) closed terms (i.e. terms not containing variables) are linear,

(iii) if T,T' are linear, then T + T' is linear,

(iv) if T is closed and T' is linear, then TT is linear.

EXAMPLE. The three terms in the previous example are not linear; aX + b Y + c is linear;

(a+ t)(Y + b) is linear. A term T is strictly linear if it is of the form

2_1$i:Sn Ui + :2,l:Sj:Sm VjXj
for some n,m;:: 0, ui,vj E A't: and Xj E VAR.

5.1.2. Canonical LR-expressions

R-expressions are syntactical constructs of the form

<X1 I E>

45

where X 1 e V AR and E = { Xi = Ti(X) I i = 1, ... ,n} is a set of "recursion" equations such that the

Ti(X) (the bodies ofE) are ~-guarded. The Ti(X) may contain variables from X = X1, ... ,Xn, a

list of pairwise different variables. Superfluous equations in E may be omitted; an equation Xi =
Ti(X) is superfluous if Xi is not 'accessible' from X 1, in the obvious sense.

An example of an R-expression:

also written as

<X IX= a(XllY) + bXX, Y =(a+ b)XY>,

X = a(XllY) + bXX

Y=(a+b)XY.

Another notation occurring in the literature for <X 1 I E> is:

X1 where X1 = Ti(X), ... , Xn = Tn(X).

LR-expressions are R-expressions where the bodies Ti(X) are linear; this entails that only+,- are

admitted as operators in such expressions. In this paper we will only consider LR-expressions.

An LR-expression <Xi I E> as above is canonical if E does not contain superfluous

equations and the bodies Ti(X) are strictly linear.

It is understood that LR-expressions that differ only by a renaming of variables, are identical.

DEFINITION 5.1.2.1.

(i) A linear term is in prefix normal fonn if it has no subterm (x + y)z. (Note that a strictly linear

<X 1 I E> is in prefix normal form, but not conversely (cf. <X IX= a(X + b)>).

(ii) If <X1 I E> is an LR-expression, then prefix(<X 1 I E>) is the LR-expression obtained by

reducing the Ti(X) in Evia the rewrite rule (x + y)z ~ xz + yz until the prefix normal form of

Ti(X) is reached.

(iii) In the sequel we will need the operation tree which unfolds a prefix LR-expression into a

possibly infinite tree E 'f. It is defined as follows: if

<X1 I E> = <X IX= ~<n ~ + I,j<m bjTj, E'>,

then tree<X I E> is

46 J.A. Bergstra and J. W. Klop

•o

EXAMPLE. tree<X I X = a(X + b)> = .}b
A '-a

This definition could be given in a more formal way, but it is standard how to do so. (Just think of

<X1 I E> where E = {Xi = Ti(X1, ... ,Xn) Ii= l, ... ,n} as a TRS (Term Rewrite System) with

rewrite rules Xi ~ Tj(X). The tree of X1, or of an arbitrary term, as given by this TRS <X.1 I E> is

now defined in the usual way.) The well-definedness of the tree operation is a consequence of our

requirement that the equations in E are Ac-guarded.

Before presenting the proof system BPALR using these LR-expressions, we will first

consider Milner's complete inference system M.

5.2. Milner's proof system M

In [10], Milner has given a complete proof system for regular processes with +, prefix

multiplication a·, but without 't-steps. Since Milner's completeness theorem will play an important

role in the sequel, we will exhibit this proof system, which is called here 'M'; furthermore we

formulate an equivalent proof system BPALR which conforms to the notations of this paper and is

the basis of the complete proof systems BP ArLR and P ArLR in Sections 6 and 8.

The set of terms Ter(M) in Milner's proof system is slightly different from the set of terms as

introduced in the previous section.

DEFINITION 5.2.1. Ter(M) is defined as follows. A= (a,b,c, ... } is a set of unary operators

(rather than constants as in 5.1). There is one constant, 0. Further, V AR = (X, Y ,Z, ... }. Now:

(i) 0 e Ter(M)

(ii) a e A, Te Ter(M) => a(T) e Ter(M).

(Notation: instead of a(T) we write a·T or aT. This construction is called prefix

multiplication.)

(iii) T,T' e Ter(M) => T + T' e Ter(M)

(iv) V AR k: Ter(M)

(v) X e V AR, Te Ter(M) => µX(T) e Ter(M). (Alternative notation: µX.T for µX(T).)

5.2.2. Semantics of M

First we need to enlarge the domain JR. of process graphs:

DEFINITION 5.2.2.1.

(i) Let G' = G u { 0} where 0 is the 'zero' process graph consisting of just one node.

A Complete Inference System for Regular Processes 47

(ii) Let C = { (g,v) I g e G', v: NODES(g) -71\in(VAR) }.

Here '.P fin CV AR) consists of the finite subsets of V AR, and vis a map assigning to each node of

process graph g such a finite set of variables.

A pair (g,v) is called a chart in MILNER [10). Elements from C will simply be denoted by

g,h,

Note that G <;;; C, if (g,0) is identified with g, 0 being the map assigning 0 <;;; V AR to

each node in g.

EXAMPLE. -?o X,Z -?o--L---0 b
X,Y

are elements of C.

Process graphs without variables assigned to the nodes (so elements of IG') are called

closed.

DEFINITION 5.2.2.2. On C the following operations are defined. Let g,h e C.

(i) The sum g + h is defined as in Section 4: cyclic roots have to be unwound first, and

furthermore the variables at the roots which are glued together, are joined. (See MILNER [1 OJ for a

more formal definition.)

EXAMPLE:

A X,Y

·vb
z

+ ~,v = ~x,v + ~.v
~y a X,Y a U,V

a b a c

y

(ii) a·G (prefix multiplication) is defined in the obvious way.

(iii) Recursion: µX.g is defined for every X e V AR as follows. Every node s in g with an X

assigned to it, gets in the chart µX.g the 'facilities' that the root r of g has:

- whenever r -?a t is an edge in g, s -?a t is added in µX.g.

- Moreover, s gets the variables of the root r.

- Finally, all X's are erased.

EXAMPLE:

(1)
µX (!~) = l,

(2) µX.X = µX (6 X) = 6 = 0

(3)
µY (µX 1:) = /ff ~J y)=cl

X a Y a a

48

(4)

(5)

J. A. Bergstra and J. W. Klop

µX XAX ~ .-~ a

bI Ic rr
µY (1·y)

a y
b
y

a _fa_ a

T
On C the notions of bisimulation and bisimilarity (!:!)are defined as above (in 1.3.1) with

the requirement that related nodes have the same variables assigned to them. So in particular, the

restriction of the notion of bisimilarity to G C C coincides with the one defined above. As before,

!:! is an equivalence relation, and moreover a congruence w.r.t. the operations+, a·, µX on C. We

denote by g/ !:! the congruence class of g e C modulo !:! , and C/ !:! = { g/ !:! I g e C}.

by:

To define the semantics [T]M e C/ !:! of a tenn T e Ter(M) we first define

[]M: Ter(M)--+ IC

[O]M = 0 (= --+o), [X]M = --+o X

[T + T'JM = [T]M + [T']M

[a·T]M = a·[T]M

[µ.X.T]M = µ.X.[T]M.

Finally, []M: Ter(M)--+ IC is defined by

[T]M = [T]M/!:!.

S.2.3. The proof system M

This system consists of the axioms and rule in Table 1:

M
x+O=x AO
x+y =y+x Al
(x + y) + z = x + (y + z) A2
x+x=x A3

µ.X.T(X) = µY.T(Y) µO

µ.X.T(X) = T(µ.X.T(X)) µ1

x =T(x)
---- T(X) guarded µ2
x=µX.T(X)

µ.X(X + T) = µX(T) µ3

Table 1

A Complete Inference System for Regular Processes 49

REMARK 5.2.3.1. (i) It is implicitly assumed that'=' is a congruence - this saves us some

axioms as compared with the presentation of Min MILNER [10] (p. 454).

(ii) The axiom (scheme) µO allows renaming of variables. Our notation T(X) is slightly informal

and intends to avoid the use of explicit substitution operators. In itself, writing T(X) does not say

anything about T: it may contain X but also other variables. Only when T(X) and T(S) occur in the

same "textual" context, they denote T and T[X:=S] respectively where [X:=S] denotes the

appropriate substitution of S for the free occurrences of X.

(iii) One can show that µO is superfluous as every instance of it can be derived from the other

axioms and rules (from µ1-3). E.g.

µX(X + aX) = (µ3)

µX(aX) = (µ1)

a·µX(aX) = (µ3)

a·µX(X + aX)

and likewise

µY(Y + a·Y) = a·µY(Y + a·Y);

hence by µ2:

µX(X + aX) (= µZ(aZ)) = µY(Y + a·Y).

(iv) As to µ2, the definition of 'guarded' as in Section 5.1.1 has to be extended by:

T guarded => µX.T guarded.

THEOREM 5.2.3.2. (Milner). For all T,S E Ter(M):

M f- T = S ~ [T]M = [S]M. 0

EXAMPLE 5.2.3.3.

(i) µX(aX) = µY(aY + µX(aX)).

PROOF: Let L be µX(aX) and R = µY(aY + µX(aX)). Then L = aL, hence L = aL + aL; and

R = aR + L = aR + aL. So both L,R satisfy the guarded recursion equation x = ax + aL.

Therefore by µ2, L = R.

(ii) µXµY(Y + aX) = µX(aX)

(iii) µXµY(Y + aX + bY) = µX(aY + bY)

(iv) Suppose M,N,M',N' E Ter(M) satisfy

M=aM+bN M' = aM' + bN'

N=cM+dN N' = cM' + dN'

Then f- M = M', since both solve the guarded equation

x = ax + b·µY(cx + dY).

(v) Every closed TE Ter(M) is provably equal to a term T' where all subtenns are guarded.

5.3. The proof system BPALR
We will now give an 'equivalent' proof system BPALR· The terms of BPALR as in Section 5.1,

that is: O is absent, multiplication is general, a,b,c, ... E A are constants and R-expressions take the

place of µ-expressions in M. Moreover, the 'bodies' of the LR-expressions must be guarded.

50 J.A. Bergstra and J. W. Klop

x+y=y+x
(x + y) + z = x + (y + z)
x+x=x
(x + y)z = xz + yz
(xy)z = x(yz)

xi = ~ I E>, i=l, ... ,n

x1 =T1(x)

Al
A2
A3
A4
A5

Rl

~ = Ti(x), i=l, ... ,n
------Ti(X) is A-guarded R2

x1 =<X1 IE>

Table 2

Here E = {Xi = Ti(X 1, ... ,Xn) Ii = l, ... ,n}. The rules Rl,2 correspond to µ1,2 in Table !. In

particular, Rl implies the following axiom (which is equivalent to Rl):

<Xi I E> = T1(<X1 I E>, ... , <Xn I E>)

and this axiom corresponds exactly to µl.

·The axiom µ3 in M has no counterpart in BPALR• by the restriction on the Ti in an

LR-expression. The axioms A4, A5 come in here since multiplication is general.

5.3.1. Semantics ofBPALR

As for M, we define the semantics [M] of M e Ter(BP ALR) via the intermediate semantics [M] in

JR. The main difference is that while µ-terms obtained their intermediate semantics in an

'inside-out' way, via charts e C, LR-expressions (which are always closed) obtain their semantics

'at once'. More precisely:

DEFINITION 5.3.1.1. []: Ter(BPALR) ~ IR is defined by the following inductive clauses:

(i) [a]=~~

(ii) [S + T] = [S] + [T]

(iii) [S-TJ = [SHTJ
(iv) [<X I E>J = p collaps tree prefix <XIE>.

Further,[]: Ter(BPALR) ~R/t! is defined by [T] = [T]/t!.

It is easy to see that the operation [] thus defined, indeed yields process graphs e IR (i.e.

finite ones). This is a consequence of the fact that tree<X I E> has only finitely many subtrees:

namely not more than the number of subtenn occurrences in E.

REMARK 5.3.1.2. (i) If <X 1 I E> is a canonical LR-expression, define the direct intermediate

semantics [<X1 I E>) where E = {Xi = Ti(X) I i = l, ... ,n} as the graph e JR. with nodes

X1, ... ,Xn (and possibly the termination node 0), root X1, and transitions as given in the obvious

way by the equations in E. Now it is not hard to prove that [<X1 I E>J t! [<X 1 I E>I. In the

sequel these two are sometimes confused - but only in contexts where we work modulo tt.

A Complete Inference System for Regular Processes 51

(ii) Instead of using the present co/laps operation in the definition of the intermediate semantics of

LR-expressions, we could equally well have used a collapsing operation which collapses all

bisimilar subgraphs (rather than isomorphic ones).

The proof system BPALR turns out to be "equivalent" to Milner's system Min a sense

which will be made more precise in the next section. In itself this is not very surprising -· the

rationale for our introduction of BPALR is the wish to extend Milner's completeness theorem

(5.2.3.2) to the case where t-steps are present; and at least in the treatment below, LR-expressions

are more suitable for that purpose than µ-expressions. The presence of general multiplication in

BPALR is not essential here (but would be in extensions of BPALR to include nonlinear recursion

equations); nor is the absence of 'O' essential.

As for M, there is the following completeness theorem (5.3.2) for BPALR· Part of the proof

is mutatis mutandis the same as for Milner's completeness theorem: there we give a sketch of one

crucial argument for the sake of completeness. Another part of the proof employs a new argument

based on the normalisation procedure of Section 3.

THEOREM 5.3.2. Let T,S be closed terms e Ter(BPALR). Then

BPALR ~ T = S <=> [T] t! [S] <=> [T] = [S].

PROOF. Soundness of BPALR· The soundness of axioms Al-5 is easy to verify. As to Rl: let Si·

<Xi I E> be as in the formulation of Rl in Table 2. (In Rl in Table 2, Si is xi.) We have to prove

[S1l tl [T1 <s1····,Sn)J.
We may suppose, by definition of [], that <X 1 I E> is in prefix normal form. For definiteness, let

us consider the LR-expression

<X I E> = <X I X = abX + a(X + Y + cY) + b, Y = b(aX + dY) + e>,

abbreviated by S· Further, TI = <Y I E>. We have to prove

[Sl tt [abs+ aCs +TI+ CT\) + bJ,

or [S] tt ab[S] + a([S] + [TI] + c[T]]) + b

(with a slight abuse of notation: a,b,c in the last RHS stand for -rn--4 etc., +,. are sum,

product in R) That is (abbreviating collaps tree by r.;J. and tree by f):

r.:J.(S) tl ab·cr@ + a(r.;J.(S) + r.;J.(TJ) + c·r.;J.(TJ)) +b.

By Theorem 4.6.1 this amounts to proving

r@ tl ab·f@ + a(f(S) + f(TJ) + c·f(TJ)) +b.

Indeed this holds, even with '=' for 'tl ', by definition of tree.

The soundness proof ofR2 can be found in a detailed way in MILNER (10). We give a sketch

of the main idea involved (again considering a definite example): suppose, as the premiss of the

rule R2 that for some terms M 1,M2,M3:

[Mi] tt [a+ bM2 + cM3]

[M2] tt [bM 1 + aM3]

[M3] tl [b + cM3 + aM2]

(=a+ b[M2] + c[M3])

(=b[M1] +a[M3])

(= b + c[M3l + a[M2D·

J. A. Bergstra and J. W. Klop

Then we must prove:

[Mil" [<X IX= a+ bY + cZ, Y = bX + aZ, Z = b + cZ + aY>]

I.e. (by Remark 5.3. l.2(i)) we must prove that [M 11 is bisimilar to the graph in Figure 31.

Figure 31

Let g be the displayed process graph. Let gi =[Mi]. Now we want to 'lay out' the graph &1 on gin

such a way that edges are respected. We sketch the procedure:

STEP I. &1 " a+ bg2 + cg3. Therefore, by elementary properties of", it follows that the direct

subgraphs of gl, call them g1 l , ... ,gln• can be matched with the direct subgraphs of a + bg2 +

cg3. In a picture, we can lay out the g11, ... ,g1n along the initial part of g: e.g.

Figure 32

STEP 2. Now in the example, g11 "' g3 = [M3]. Since g11 ;; g3 " b + cg3 + ag2, the subgraphs

of gll, call them gll l• ... ,gllk• can be matched with the direct subgraphs of b + cg3 + ag2. So

we lay out the graphs gl l l•"·•gl lk onto g3,g2, say as follows:

Figure 33

A Complete Inference System for Regular Processes 53

Likewise the subprocesses of g12,g13, ... are laid out. Continuing this way we can Jay out all the

subprocesses of g1 onto g, in such a way that edges leading from one subprocess to its direct

subprocesses, are respected by g. But this lay-out then gives a bisimulation as required in the
obvious way.

Completeness. (This argument differs from the completeness proof in MILNER [10].) First we

transform an expression to a canonical LR-expression. That products of LR-cxpressions can be

eliminated is demonstrated by Remark 5.3.4 (v). From Section 3 we know that if graphs g,h are

bisimilar, repeatedly identifying bisimilar nodes in g and likewise in h, and removal of double

edges leads to a common "reduct" of g and h. Now removal of double edges is provable (from A3.

Rl, R2). Also identification of bisimilar nodes is provable, namely by the following rule whose

instances are provable as shown in the example below (5.3.3). In this 'identification rule' the

following notation is used: E = {Xi = Ti(X 1, ... ,Xn) Ii= l, ... ,n}, and Ek=k' results from Eby

replacing Xk = Tk(X) by Xk = Tk(X) + Tk0(X), removing Xk' = Tko(X), and replacing all

occurrences of Xk' by Xk-

EXAMPLE: If E = (X 1 = a:x:1 + bX2 + cX3, X2 = aX1 + cX2, x3 = aX 1 + aX3 }, then Ez=3 =

{X1 = aX1 + bX2 + cXz, Xz = aX1 + cXz + aXJ + aXz}.

Identification rule
<Xk I E> = <Xk' I E> for some k,k'

<X1 I E> = <X1 I Ek=k'>

The identification rule is easily proved from A3, Rl, R2 (see Example 5.3.3). Hence BPALR is

complete. o

EXAMPLE 5.3.3. Let~= <XIE>= <X IX= bY + cZ, Y = aY, Z = aZ + aU, U = aU> and TJ =

<Y I E>, ~ = <Z I E>, u = <U I E>.

Figure 34

Now clearly BPALR f- TJ =~-Hence by the identification rule:

~=<X IX= bY +cY, Y = aY+ aY +au, U =aU>

Indeed BPALR f- (*);namely:

(*).

54 J.A. Bergstra and J. W. Klop

a Figure 35

by Rl, f- S = brj + cs, 11 =art, s =as+ au, u =au. Since f- 11 = s, we have by A3:

f- I; = b1l + cs, rt = T\ + ~ = a71 + as +au; u = au and by substitution of 11 for s:

f- I; = bT\ + c71, 11 = a11 + aT\ + au, u = au. Hence (*), by R2.

REMARK 5.3.4. A standard manoeuvre to prove identities between LR-expressions in BPALR is

using Rl to 'externalize' an LR-expression, apply some axioms and 'internalize' the result with

R2. In this way one proves:

(i) BPALR f- T·<X I E> =<YI Y = TX, E> for T closed, Y not in <XIE>.

(ii) Renaming of bound variables.

(iii) Omitting of superfluous equations: BPALR f- <XIE>= <XIE v F>.

(iv) The rule

is provable, i.e. all its instances are provable.

(v) Multiplication of LR-expressions is realised by appending the right factor at all terminal

nodes of the left factor. This is also provable: e.g.

f- <X IX =aX+ b>-<Y I Y = cY>=<X IX= aX +bY, Y = cY>

is proved as follows. Lets= <X IX= aX + b>, 11 = <Y I Y = cY>. Then I;= al;+ b, 11 = c11.

Hence S11 =(al;+ b)rt = a/;11 + b'fl. Therefore (R2) STl = <Z IX= aZ + bY, Y = cY>.

REMARK 5.3.5. (The Expansion Rule.) The following 'proof rule' is often convenient to prove in

BPALR the equality of canonical LR-expressions. It is the syntactical counterpart of the

normalisation theorem 3.3.4.

(1) Let <Xi I E> = <X1 I {Xi = Ti(X) Ii= 1,. . .,n}> be a canonical LR-expression. Then we

may 'expand' the j-th equation Xj = Tj(X) as follows:

let Xj, X'j, X"-, .. ., x(lj) be Xj with some variant variables (fresh symbols). Add to E the

equations x/k~ = TjCX), k = 1,. . .,lj. Result: E'. Now replace, in an arbitrary way, occurrences of

Xj in the RHS's of equations in E', by occurrences of x/k), k = O,. . .,lj. Result: E*.

It is not hard to prove that

BPALR f- <X1 I E> = <X1 I E*>.

EXAMPLE: f- <X IX=aX+ bX>= <X IX= aX +bY, Y = aY + bX>.

A Complete Inference System for Regular Processes 55

(2) In a more refined version of this procedure, we may take copies of the a.Xj in the RHS's of

E' (i.e. replace a.Xj by a.Xj + a.Xj + ... + aXj) and then substitute the variant variables~ (k).

Moreover, the procedure may be applied simultaneously to several Xj 1, Xj2, ... in X.

EXAMPLE: ~ <X IX= aX + bY + cX, Y = aY + bX>

= <X I X = aX' + b Y" + cX" + cX + cX,

X' = aX + aX' + b Y + b Y' + cX,

X" = aX + aX" + bY" + cX + cX' + cX',

Y = a Y' + a Y" + bX',

Y' = a Y' + a Y" + a Y + bX" + bX,

Y" = aY + bX>.

Now it follows from the normalisation procedure described in Section 3, that this expansion

procedure is complete as far as canonical LR-expressions are concerned.

Note that root-unwinding (p) is an instance of Expansion. Likewise the procedure in the

proof of Thm. 7. 3 to remove loops.

5.4. A comparison between Milner's Mand BPALR

Although there is an obvious resemblance between Mand BPALR• the semantic mappings []for

BPALR are rather differently defined. Comparing the effects of these semantic mappings is the

purpose of the present section. The first task is to find syntactic translations between closed

M-terms and closed BPALR-terrns. We will define mappings

<p: Terc(BPALR) ~ Terc(M)

'Jf: Terc(M) ~ Terc(BPALR)

(Terc denotes 'closed terms') such that 'Jfo<p =id and every TE Terc(M) is provably equal to some

T' in the range of <p.

DEFINITION of <p. Let TE Terc(BPALR). Then <p(T) =$(prefix T), and <I> is inductively defined

as follows: <!>(T 1 + T 2) = <l>CT 1) + <l>(T 2)

$(aT) = a·<!>(T)

$(a)= a

<l>(<X1 I E>) = µX1 .<1>Ex1T1(X1, .. .,Xn)

(here E = {Xi = Ti(X 1, ... ,Xn) Ii= 1,. . .,n}). For V <:;;; {X1, .. .,Xnl the auxiliary operators <l>Ev

are defined by:

<l>Ey(T1 + T2) = <l>Ey(T1) + <l>Ey(T2)

<l>Ey(aT) = a·<!>Ey(T)

<l>Ey(a) =a

<l>Evcxi) = xi if xi e v

<l>Ey(Xj) = µX1.<1>Evu(Xi) Ti(X) ifXi e: v.

EXAMPLE. Let T be ab<X I E> = ab<X IX = aY, Y = bX>. Then

<l>(T) = ab<i><X I E> = abµX.<iJEx(a Y) =

abµX.a<l>Ex(Y) = abµX.aµY.<l>Ex,y(bX) =

56 J.A. Bergstra and J. W. Klop

abµX.aµY.b4>Ex,y(X) = abµX.aµY(bX).

The operation \jf is in fact not defined on all closed M-terms, but only on those where the bodies

of the µ-expressions are of the form I,~ Ti. (Here Ti may be 0.) It is not hard to prove that every T

E Terc(M) is provably equal to such a term. Now \jf replaces in a closed M-terrn as described,

every maximal (hence closed) µ-expression by an LR-expression in the obvious way, by assigning

to the µ-expression µX.T(X) the variable X and using µ1 to obtain X = T(X). The µ-expressions

in T(X) are eliminated likewise.

EXAMPLE. \j/(ab(µX.a(µY.bX))) = ablJl(µX.a(µY.bX)) =

ab<X IX= aY, Y=bX>.

Now qi and 'JI are not exactly each other's inverse; e.g.:

qi(<X IX= aY + bY, Y = cX + dY>) =

µX(aµY(cX + dY) + bµY(cX + dY)) =

µX(aµY(cX + dY) + bµZ(cX + dZ)) = T,

and

\j/(T) = <X IX= aY + bZ, Y = cX + dY, Z = cX + dZ>.

Butthey are inverse "modulo tt". In a theorem:

THEOREM 5.4.1. Let TE Terc(BPALR) and SE Terc(M), Se Dom \j/. Then:

(i) [qi(T)]M = [f]

(ii) ['Jl(S)] = [S]M

(iii) ['JI(qi(T))] = [T]

(iv) [qi('Jf(S))]M = [S]M.

In fact the situation is as in the following diagram (see Figure 36). Here the diagrams formed

by the heavy arrows are commuting diagrams.

PROOF. (iii) and (iv) follqw at once from (i) and (ii).

PROOF of (i).The proof consists of seven parts, some of which only will be sketched.

(1) First we define a derivation to be a triple T -ta S (S is called derived) where T,S e

Ter(BPALR), a E A, and such that T = aS + R or T = aS for some R.

EXAMPLE: a(X + bY) -ta X + bY; X + bY --tbY.

Next, given an LR-expression <Xi I E> where E = {Xi = Ti(X) Ii = 1,. .. ,n}, we define the

derived subterm occurrences (dso's) of <Xi I E> as follows:

the occurrence of X 1 in the LHS of X 1 = T 1 (X) is a dso;

dso's are closed under derivation;

if Xi + T is a dso, then the derived subterrns of Ti(X) are dso's.

Dso's will be denoted by underlining these subterm occurrences. Since we want to distinguish all

A Complete Inference System for Regular Processes

occurrences, we imagine these underlinings to have different colours (e.g. a natural number).

prefix (provable canonical 1u

in BPALR)

[

[JM
Se Terc(M)n Dom'f ~-----------_,,,,

(provable
in M)

(via t)

Figure 36

l I
direct

I!

9 I c Jl

57

EXAMPLE. Let <XIE>= <X IX= aX + b(Y + c) + d, Y = a(X + bY)>. Then the dso's are given
by the underlining:

<X IX= aX + b(Y + c) + d, Y = a(X + bl'.)>.

Now the derived sub term graph of <X 1 I E>, dsg<X 1 I E>, has root X, nodes: the dso's with an
identification of all occurrences of Xi, and edges: the derivations.

EXAMPLE:

Figure 37

58 J.A. Bergstra andJ. W. Klop

(2) CLAIM: dsg<Xl l E> !t [<X1 l E>].

PROOF of the claim. <X 1 l E> can be converted (in BPALR) to a canonical <X 1 I F> having the

same dsg, by replacing the non-variable dso's by fresh variables.

EXAMPLE: for <X I E> as above:

<X I F> = <X I X = aX + bY' + d,

Y'=aZ+c,

Z=aX+bY'+d+bY,

Y=aZ>.

For a canonical <X IF>, the dsg coincides with [<X IF>]. Hence

dsg <XIE>= dsg<X IF>= [<X IF>] !:! [<XIE>],

where the last step is by soundness of BP A LR.

(3) We repeat parts (1), (2) now for µ-expressions e Ran(<p).

Derivations T -+a S are defined by:

aS-tas

ifT-ta S then T + T' -ta S

ifT -ta S then µX(T) -ta S.

(The first two clauses are as forBPALR-terrns; the third is new.)

Now the dso's of Te Terc(M) are:

Titself

dso's are closed under derivation.

EXAMPLE: Let T be q>(< X I E>) from above. Then its dso's are:

µX(aX. + b(µY(a(~ .. :~ ... !?X)) + c) + d).

Further, the dsg of T is defined as follows:

every dso is a node (now there is no identification of occurrences of the same variable); T itself is

the root. Edges are given corresponding to the definition of dso's, together with the stipulation that

if (µX.T) -ta Sand X is a dso in T, then X -ta S.

(4) CLAIM. Let Te Terc(M) ri Ran(<p). Then:

dsg(T) = [TlM-

The proof of this claim follows straightforwardly from the definitions of RHS and LHS.

EXAMPLE: For the µ-expression in the example above we have the graph

A Complete Inference System for Regular Processes 59

Figure 38

(5) We now extend the translation <p from BPALR-terms to M-terms to .!j2, accepting underlined

BPALR-terms and delivering underlined M-terms. Some typical clauses are:

.!12(<K I E>) = µX.<j>Ex(E)

= µXi.<l>Vu{Xi} Ti(X) else.

(6) Next one proves that .!12 carries over the dso's of a BPALR-term T into the dso's of <p(T).

(7) Bearing in mind that underlinings have a colour, we now define a bisimulation R between

dsg(T) and dsg(cp(T)): the relation R is simply: having the same colour. It follows easily that Risa

bisimulation indeed.

The proof of (ii) is left to the reader. D

6. A proof system for regular processes with silent moves

In this section we will formulate a proof system BPAtLR for regular processes with t-steps,

subject to the operations+,-. The proof of the completeness of this system has as main ingredients:

the analysis of rt-bisimulation described in Theorem 2.4, and the completeness of Milner's M, or,

as we will use, its equivalent formulation BPALR· As an introductory step we consider first

Milner's 't-laws for the simple case of finite process trees - i.e. finite processes not involving

recursion.

60 J.A. Bergstra and J. W. Klop

6.1. Milner's t-laws

To place matters in some perspective, we review some well-known facts about Milner's notions of

observational equivalence, observational congruence, Park's notion of bisimulation and Milner's

t-laws. This will aim at an understanding of the difference between t-bisimulation (ttt) and its

variant ttrc, introduced in [4].

(1) Let 1' be the domain of finite process trees, and let 'f' = 1' u {O} where 0 is the zero

graph ~o. consisting of one node only. MILNER [9] defines a decreasing sequence "'0 ;;i -1 ;;i ...

;;i K ;;i ... of equivalence relations on 1", and calls - = n1.a:o -k strong equivalence. This is a

congruence w.r.t. +and 'prefix multiplication' u· (u e At). PARK [14] replaced the construction of

- by his more directly defined notion of bisimulation !:t, which is not the same as - on T but

which does coincide with - in the restriction to finite trees F' (=Fu {0}). It turns out that

F(+, u., 0) I tt is isomorphic to the initial algebra corresponding to the present signature and

axioms:

x+O=x
x+y=y + x
(x + y) + z = x + (y + z)
x+x=x

Table4

AO
Al
A2
A3

(2) For the signature favoured in this paper, +, " u (e ~). there is the very similar result that

F(+," u) I !:t is isomorphic to the initial algebra of the axioms in BPA:

BPA
x+y=y+x
(x + y) + z = x + (y + z)
x+x=x
(x + y)z = xz + yz
(xy)z = x(yz)

Tables

Al
A2
A3
A4
A5

(3) Next, t is introduced, i.e. its special properties are postulated now. This leads Milner to the

notion of"' (observational equivalence), defined as in (1) as the limit of a decreasing sequence "'i·

Again, the definition is smoother via the corresponding notion of t-bisimulation !:t t• which

although different on infinite trees, coincides with "' on the finite trees in F'. This equivalence, as

pointed out by Mil..NER [9], is not a congruence, notably not w.r.t. +. For, ta ttt a, b tt t b but not

ta+b ttt a+b. Additive contexts are the only ones where !:tt 'misbehaves'.

Still, the equivalence relation ttt can be axiomatised as MILNER [9] shows (see also for a

clear discussion on these matters: BROOKES [6]), as follows:

A Complete Inference System for Regular Processes 61

x"' 'CX

C[x + 'CX] "' C['tX]

C[ux + u(tx + y)] "' C[u(tx + y)].

Here C[] is an arbitrary context. Note that the first axiom may not be used in a context. MILNER

[9] states the completenes of this set of axioms for"' (or tt't). (The proof is in HENNESSY -

MILNER [7) and also in MILNER [11).)

(4) Although "' (tt't) is not a congruence on all finite trees in lF', it is one after restriction to

stable trees. A tree is called 'stable' in [9] if it has no initial t-step. Thus 'a+b' is stable but ''ta + b'

is not.

(5) :::: not being a congruence w.r.t. +, Milner defines ::::c, observational congruence, by 'brute

force': x "'c y <:::) V'C[] C[x] "'- C[y]. This ,,.c is by definition a congruence, and it turns out that

-:::::.c can be axiomatised too, namely by A0-3 and on top of those the so-called 't-laws of Milner:

U'tX = UX

X+'tX='tX

u(x + 'ty) = u(x + -cy) + uy

Tl'

T2

T3

That is, compared to the axiom schemes in (3) one has only to prefix both sides of the first axiom

by a guard u e At. However, by the brute force definition of "'c, the direct connection with (a

notion of) bisimulation is not clear now. On the other hand, for stable trees nothing of this

connection is lost: the t-laws plus A0-3 axiomatise precisely the notion of tt t for them.

(6) A completeness proof for stable trees was also given in [2], where 'stable' is called

'externally guarded'. That proof uses as an extension of the domain lF of finite trees the domain H

of finite acyclic graphs. The proof is given by 'graph reductions' on the elements of H, e.g. a part

as in (a) may be replaced by (b) (cf. the definition of 6-arc above, in Section 2.1):

(a) (b)

The t-laws of Milner are, in the signature used in [2] and this paper, slightly different:

X't=X

tx+x=tx

a(tx + y) = a(tx + y) + ax

T1

T2

T3

(In T3, a e A. The case t(tx + y) = t(tx + y) + tx is derivable from T2 and A3 (x + x = x).)

(7) Instead of either not having ,,,c correspond directly to a notion of bisimulation (as in (5)) or

restricting the trees to stable ones, the following point of view was introduced in [4]: define a

restriction of tt't, called ttrt (Definition 1.3.3 above) by requiring that roots may only be related to

roots. The upshot of this restriction is that initial t-steps may not be "contracted" in a bisimulation

62 J.A. Bergstra andJ. W. Klop

R:

That is, initial t's are treated as if they were not t's. In effect, the graphs are then stable. One

proves easily:

PROPOSITION 6.1.1. Let g,h e IG. Let g',h' be the results of replacing initial t's by a fresh

symbol t. Then : g !:!rt h <=> g' tit h'. o

Also, !:!rt is a congruence on the domain of all process graphs. In fact, tirt coincides with ::F
Thus, the advantage is that again there is a good correspondence between the semantics,

lF(+;,u)/tirt (ueAc), and the syntax, BPAt:

BPAc
x+y=y+x
(x + y) + z = x + (y + z)
x+x=x
(x + y)z = xz + yz
(xy)z = x(yz)

X't=X
tx+x=tx
a(tx + y) = a(tx + y) + ax

Table6

Al
A2
A3
A4
A5

Tl
T2
T3

Namely, F(+; ,u)/tirt and the initial algebra of BP Ac are isomorphic.

(8) Of course, a similar result holds for the signature used by Milner. There one has that the

process domain F'(+,u')/tirt is isomorphic to the initial algebra of

x+O=x
x+y=y +x
(x + y) + z = x + (y + z)
x+x=x

U'tX=UX
x+tx=tx
a(x + ty) = a(x + ty) + ay

Table7

AO
Al
A2
A3

Tl'
T2
T3

(9) The remarks in (1)-(8) all concerned processes corresponding to finite process trees (terms

without recursion). It also is the case that for finite process graphs (yielding regular processes)

A Complete Inference System for Regular Processes 63

"'rt coincides with observational congruence:

PROPOSITION6.l.2.Let g,heJRP(+;,u).Then g"rth ~ 'V'C[]C[g] "tC[h].

PROOF. (=>) g "rt h => C[g] "rt C[h] => C[g] t!'t C[h]. (<=)Suppose g #re h. We must
prove: C[g] ~ 't C[h] for some context C[]. If g # t h we are done: take the trivial context.
Otherwise we are in the situation that g f-rt h but g t!'t h. For convenience, unwind g,h to the
(possibly infinite) trees Tg,Th. Then also Tg Pre Th, Tg "'t Th. Now it is easy to prove that
either Tg must contain an initial t-step to a nodes such that sin every t-bisimulation from Tg to Th
is related to the root of Th, or vice versa (with the role of g,h interchanged). Write

(ij 2:: 0, ui,vj E At). Next, let q E IR.P be such that (i) q contains no t-steps, (ii) q is not t-bisimilar
to any summand of (Tg)s, i.e. LiEX Uj + LjEY vjTj where X ~ { l, .. .,n}, Y ~ { l, ... ,m}. Now
consider Tg + q and Th + q. These are not t-bisimilar. For, by (i) the node s in Tg must be related
in a supposed t-bisimulation to the root of Th + q; but this would entail a t-bisirnilarity of q with a
summand of (Tg)s as indicated. Hence also Tg + q +t Th+ q. o

6.2. Recursion together with silent moves

In view of the completeness results mentioned above (in Sections 5 and 6.1), it is a natural
question, posed by MILNER [10], whether the join' ofM and t-laws (or equivalently, BPALR and
t-laws) is complete for recursion with silent moves. The answer is no, for various reasons.
(1) In the first place, the rule µ2 in M (or R2 in BPALR) does not hold for A,;-guarded recursion
equations in the presence of the t-laws. For, consider X = a + tX. Even though this recursion
equation determines in an intuitively clear sense (which will be made precise below, via the
abstraction operator tr) a unique process tree, by unfolding, it has infinitely many solutions,
already in the domain of finite processes. Namely, every X = t(a + p) for arbitrary p satisfies the

equation:

X. = t(a + p) = * t(a + p) +a= tt(a + p) +a= tX +a.

Here(*) is by the equation t(x + y) = t(x + y) + x which follows easily from BPAt. As shown
below, t(a + p) is also the general solution of X =a+ tX.
(Remark: already the equation X = tX admits infinitely many solutions: X. = tp, for arbitrary p.)

So µ2 (R2) is false for At-guarded recursion equations, although it remains sound for
A-guarded recursion equations. Therefore we restrict µ2 (R2) in this way. However, now too
much is lost: one does want to prove e.g. <X IX = tX> = <X I X = tY + tX, Y = tX> (**) (or:
µX. tX = µX.(tX + µY. tY)), since such equations do not depend on the special nature oft.
Restricting µ2 (R2) to the A-guarded case would prevent us from proving (**).

To compensate for this loss we use the operator tr where I~ A (which was introduced in

64 J.A. Bergstra and J. W. Klop

[4] on different grounds, namely to be able to distinguish formally between internal moves i and

invisible or silent moves t; cf. also Section 7 .12). This abstraction operator t1 is axiomatised by:

t1(X) = X

t1(t) = t

t1(a) =tifa e I

t1(a) = aifa rt I
t1(x + y) = t1(x) + t1(Y)

t1(ty) = t· tJ(Y)

t 1(ay) = t 1(a)· tr(Y)

t1(<X1 I E>) = <X1 l t1(E)>

Tables

TIO

Tll

TI2

TI3

TI4

TIS'

TIS"

TI6

Here E = {Xi = Ti(X) Ii= l, .. .,n}, X = X 1,. . .,Xn and tr(E) = (Xi = tr(Ti(X)) Ii= l,. . .,n}.

Now equation (**) above can be proved: Let i e A be a fresh symbol, acting as a 'stand-in' for 't.

Write 't(i} as "ti· Then

/- <X I X = iX> = <X I X = iY + iX, Y = iX>

by using R2 for the restricted case of A-guarded recursion equations. Hence

I- ti<X IX= iX> = ti<X = iY + iX, Y = iX>

and byTI6:

1-<X IX= ti(iX)> = <X IX= ti(iY + iX), Y = ti(iX)>.

So I- (**).

(2) Even with this restriction of R2 and addition of TI0-6 the proof system would not be

complete. Namely, the equation

<XIX=tX>=t (***)

(or µX. tX = tO in Milner's signature) is valid as the corresponding graphs are clearly rt-bisirnilar.

However, (***) is not provable with the proof system proposed thus far. We will not rigorously

prove this incompleteness, but sketch a proof. In the notion of itrt and ttt a choice is made (as

MILNER [9] also remarks) of treating the possibly infinite execution of at-loop ... {)t as if a

fairness condition was imposed: viz. that after some finite number of loop executions no further

executions of it are performed, and either an alternative is chosen (as is possible in e.g 't~)
or we have succesful termination. Here a different choice could be made, if a constant 8 denoting

deadlock or failure is present as in ACP or ACP t (see [4]). Then at-loop without alternative can be

treated as o. That is, there is a notion of rt8-bisimulation (;z rt Ill in which

-t~ itrt8 all.

We will not define itrt8 here more precisely, but state merely that process graphs modulo this

A Complete Inference System for Regular Processes 65

notion of bisimulation are also a model, '.F' = lF(+;,u,8)/ "'n:8 (u e At), of the proof system
proposed thus far, P = BPA*LR + Tl-3 + TI0-6 where * denotes the restriction of R2 to
A-guarded equations. Now '.f' I= a·<X IX= tX> = a8"' at= a, and hence PW a·<X IX= tX> =
at, i.e.P ~ (***).

We will now present, in Table 9, a proof system BPAtLR which is claimed to be complete
for lF(+;,u)/ ot!rt· In the table the following notation is used: a e A, I\: A; further E will always
be {Xi = Ti(X) Ii= 1, ... ,n}, where the terms Tj(X) are linear and may contain variables from X =
X1, ... ,Xn but no other. We write t1(E) for {Xj = t1(Ti(X)) Ii= l, ... ,n) and E_k =
E - {Xk = Tk(X)). With BPAtI the proof system without the recursion part is meant; that is: Al-5,
Tl-3, TI0-6. Now BPAtI I- E = E' as in the premiss ofR3 in the table below denotes a conversion
of some of the Ti(X) in E to Ti\X) by means of the axioms in BPAtI• result: E'.

BPAtLR.------------------:-:­
Al x+y = y + x

(x + y) + z = x + (y + z)
x+x=x
(x + y)z = xz + yz
(xy)z = x(yz)

Xt=X

tx+x=tx
a(tx + y) = a(tx + y) + ax

t1(X) = X
t1(t) = 't
t 1(a) = t if a e I
t1(a)=aifa1 I
t 1(x + y) = t 1(x) + t1(Y)
t 1(ty) = t· t 1M
t1(ay) = t1(a)· t1(Y)
t1(<X1 IE>)=<X1 lt1(E)>

xi = <Xi I E>, i = 1, ... ,n

x1=T1(x)

xi = Ti(x), i = l, ... ,n
------- Tj(X) is A-guarded

x1 =<X1 IE>

BPAtl f- E = E'

<X 1 I E> = <X 1 I E'>

t<Xk I E> = t<Xk' I E> for some k,k' "' 1

<X l I E> = <X 11 E_k, Xk = Tk(X) + tXk•>

<Xi I E_k, Xk =tXk> = <X1 I E_k,Xk=t>

Table9

A2
A3
A4
AS

T1
T2
T3

TIO
Tll
TI2
TB
TI4
TIS'
TI5"
TI6

Rl

R2

R3

R4

R5

66 J.A. Bergstra and J. W. Klop

6.2.1. Discussion of BPAtLR

Axioms Al-5, Tl-3, TI0-6 have been discussed above. Rl,R2 were already present in BPALR;

here with the proviso on R2 discussed above. R3 says that conversions may take place inside the

bodies of an LR-expression. In the case of BPALR this rule was provable; here it is not, if the

conversions in the Ti(X) of E = {Xi = Tj(X) Ii= 1, ... ,n} are applications of the t-laws Tl-3 or

TI0-6. (For applications of Al-5 we do not need R3, in fact. Then applying Rl,2 and TI0-6

suffice.)

EXAMPLE 6.2.1.1. Toprove:<XI X = aY +aZ, Y =tZ+ b,Z=cZ>= <X IX= aY, Y= tZ+

b, Z = cZ>. (See Figure 39(a),(b).)

T

Figure 39 (a) (b)

PROOF. Let i be a 'fresh' atom. Let _xi = <X I X = a Y + aZ, Y = iZ + b, Z = cZ> = <X I E>, and

yi = <Y I E>, z.i e <Z I E>. Then

I- xi = ayi + aZ.i. yi = ;zi + b, zi = c·z}. (Rl)

I- xi = a(i.Zi + b) + a:z} 'zi = cz.i .

1- x_i = <X I X = a(iZ + b) + aZ, Z = cZ> (R2)

I- t{iJ<zi> = t{i}(<X IX= a(iZ + b) + aZ, Z = cZ>)

I- X = <X I X = a(tZ + b) + aZ, Z = cZ>

Here X is the LR-expression in the LHS of the identity to prove. Further:

1- X= <X I X=a(tZ + b), Z = cZ> (T3)

Finally, let Xie <X IX= a(iZ + b), Z = cZ> = <X IF> and Zi_ e <Z IF>, then

I- Ai =<X I X=aY, Y = iZ + b, Z =cZ> (Rl,R2)

Hence: 1-X=<XIX=aY,Y=tZ+b,Z=cZ> (TI0-6) o

The axiom R5 was already discussed above and reflects the bias towards fairness w.r.t.

t-steps of ttrt· We should note here that in a more definitive treatment ofLR-expressions in which

nesting of such expressions is allowed, R5 could be simplified to: <X I X = tX> = t.

The rule R4, finally, is the only one of the axioms and rules in BPAtLR which, it seems,

cannot very well be expressed in the µ-formalism of Milner's M. Its role is to enable one to insert

t-steps between t-bisimilar (non-root) nodes. A special case ofR4 is the case that k = k': then we

have the axiom <X 1 I E> = <X 1 I E-k• Xk = T k(X) + tXp which enables one to provably append

at-loop at 'node' Xk (k # 1). The rule R4 could be called 'internal t-introduction', where 'internal'

refers to the fact that k,k' # 1 in the premiss of the rule (i.e. the 'nodes' Xk,Xk' are non-root

A Complete Inference System for Regular Processes 67

nodes, or 'internal' nodes). To profit from R4 we need also the following version R4* which is
slightly weaker but in which the asymmetry in R4 is removed:

LEMMA 6.2.2. (General 't-introduction) The following rule is provable in BPArLR:

't<Xk I E> = 't<Xk' I E> for some k,k'
R4*

PROOF. (Note that by the symmetry in the premiss of R4* we have as a consequence even:

't<Xi I E> = 't<Xi I E-k· Xk = Tk(X) + 'tXk» for all i = l,. .. ,n.) Now consider <Xo I Xo = 'tX1,
E> where E = {Xj = Ti(X1 •... ,Xn) Ii= l, ... ,n}. The 'nodes' <Xk I E> and <Xk' I E> from the
premiss ofR4* are internal w.r.t. <Xo I Xo = 'tX1, E>. Hence R4 applies and yields, acting on the
same premiss: f- <Xo I x0 = 'tX1, E> = <Xo I Xo = 'tX1, E_k, xk = Tk(X) + 'tXk».
Now clearly f- <Xo I Xo = 'tX l • E> = 't<X 1 I E>

and f- <Xo I Xo='tX1. E_k, xk = Tk(X) + 'tXk<> = 't<X1 I E_k, xk = Tk(X) + 'tXk<>.
Hence D

EXAMPLE 6.2.3. We want to prove that the LR-expressions corresponding to the following
graphs are equal:

Figure40

So to prove: <X IX =aY, Y = bY> =<U I U =aV, V = bW +'tW, W =bV +'tV + 'tW>.

PROOF.

By Rl,R2: BPA'tLR f- <X IX= aY, Y = bY> =<U I U = aV, V =bW, W = bV>.
Abbreviate !l = <U I E>, .Y. = <V I E>, W = <W I E>

where E={U=aV,V=bW,W=bV}.

Now f- .Y. = W,

hence f- 't.Y. = 'tW,

hence by R4: f- 1l. = <U' I U' = aV', V' = bW' + 'tW', W' = bV'> (= Jl').
By R4* in Lemma 6.2.2,

f- 't.Y. = 't.Y.', 'tW = 'tW'.

Hence f- 't.Y.' = 'tW'.

ByR4: f- Jl' = !l" = <U" I U" = aV", V" = bW" + 'tW", W" = bV" + tV">.
FinallybyR4,f- Jl" = <U"' I U"' = aV'", V"' = bW"' + 'tW"', W"' = bV'" + 'tV"' + 'tW"'>. D

DEFINITION 6.2.4. The semantics of BP ArLR is defined, analogously to that of BPALR• via an

08 J.A. Bergstra and J. W. Klop

intermediate semantics []: Terc(BP~LR) ~ R(+;,'t1,u) (u e A't), with as only extra clause that
['tJ(T)] = t1([11). Here 'tJ in the RHS is the operator on graphs renaming the a e I into 't. Further,

forT E Terc(BPAtLR) we define rn = [T]f!:!rt·

For the completeness proof of the next theorem we need the following lemma stating that the
operation 11 which makes a graph 11-saturated and the operation E on 11-saturated graphs (see

Sections 2.1and2.2), are "provable in BPA.c1R"·

LEMMA 6.2.5. (i) For every canonical LR-expression T there is a canonical LR-expression T'

such that BP~LR I- T = T' and .1([11) = [T'].
(ii) For every canonical LR-expression T' such that [T'] is 11-saturated, there is a canonical
LR-expression T" such that BPA'tLR I- T' = T" and E([T']) = [T"].
(iii) (Combining (i) and (ii):) For every canonical LR-expression T there is a canonical
LR-expression T" such chat BPAtLR I- T = T" and [T"] = E(l1([T])).

PROOF. (i) The operation 11 consists of successively adding edges to form 11-arcs. As Example

6.2.1.1 shows, each such addition is provable in BP A'tLR.
(ii) Using R4 and R4* in Lemma 6.2.2, one can (as illustrated in Example 6.2.3) provably add (or

omit) "i::-steps" as they were called in Section 2.2. D

For the proof of the completeness theorem 6.2.7 we need the following simple fact:

PROPOSIDON 6.2.6. Let T,S be canonical LR-expressions. Then:

BPALR 1- T = S => BPA'tLR 1- T = S. D

THEOREM 6.2.7. Let T,S e Terc(BP~LR). Then:
BPA'tLR I- T = S <=> [T] "n [S] <=> [T] = [S].

PROOF. Soundness. Part of the soundness proof is identical to that for BPALR in Theorem
5.3.2, another part is a consequence of properties of !:!T't. We will not work out the tedious details
here.

Completeness. Suppose [TJ = [S]. We may suppose T,S are canonical LR-expressions. Here we
use soundness of BPA'tLR' and the same procedure as for BPALR (in Theorem 5.3.2) for
eliminating products of LR-expressions, this time with the additional help of R5 in Table 9.
Namely: suppose the node U has as subgraph a bunch of possibly intersecting 't-cycles, i.e. from
U there is no terminating path and all paths from U contain only 't-steps. See Figure 41(a). Then,
using 't!, Rl, R2 we replace this subgraph by one t-loop: see Figure 4l(b). Now R5 removes this
t-loop (Figure 4l(c)), after which a right factor can be appended.

A Complete Inference System for Regular Processes 69

Figure 41 (a) (b) (c)

Now consider the hypothesis [T] ~rt [S]. By Corollary 2.4, EMTJ ~ EMS] (ordinary

bisimulation). By Lemma 6.2.5(iii), there are T'', S" provably equal to T,S respectively such that

[T"] = Etl[T] and [S"] = Etl[S]. Hence (T"] ~ [S"]. So, by the completeness theorem (5.3.2) for

BPALR we have: BPALR I- T" = S". By Proposition 6.2.6: BPA'tLR 1- T" = S". Hence BPA'tLR
1- T= S. o

EXAMPLE 6.2.8. We conclude this section with one more example of a proof in BPA-cLR· To

prove the equality of the terms corresponding to graphs g,h:

A possible proof employs the following transformations (of the corresponding expressions):

!
b

R!,2 et aAa -
66

b b

A RH.TI3,TIM h
b b b b

Another proof uses the transformation:

~
Rl,2

b

7. Solving systems of A't-guarded recursion equations

As already remarked in the previous section, a system of recursion equations that are A't-guarded

(rather than A-guarded as in Section 5) need not have a unique solution, e.g. X = a + -cX admits

infinitely many solutions in RP(+;,u) I ~n· We will now determine the solution set of such

70 I.A. Bergstra and J. W. Klop

systems of A.c-guarded recursion equations. To this end we employ the following theorem (7.3).

DEFINITION 7.1. Let <X1 I E>=<Xi I {Xi = Ti(X) Ii= l, ... ,n}> be a LR-expression. We say

that closed terms Mi e Ter(BPAi:LR) solve <Xi I E> if [Mi]= [Ti(M}], or equivalently,

[Mi] ;:irt [Ti(M)] (i = l, ... ,n). Likewise we say that the process graphs gi e JRP(+;,u) solve

<Xi I E> if gi ttrt Ti(g), i = l,. .. ,n. Here M = Mi, ... ,Mn and g = gl, ... ,gn.

DEFINITION 7.2. Let <X1 I E> be a canonical LR-expression. Then <Xi I E> is 't-cyclefree if

the process graph [<X 1 I E>] does not contain a 't-cycle.

THEOREM 7.3. Let<X1 I E>be a canonical 't-cyclefree LR-expression. Then <Xi I E> has a

unique solution in JRP(+;,u) I ;:irt·

PROOF. The existence of a solution is clear. Now suppose that the graphs gi e JRP(+;,u) solve

<Xi I E>.

Claim 1. Without loss of generality we may suppose that <X 1 I E> has no loops, i.e. no cycles of

length 1. (This assumption is not essential but simplifies the proof somewhat.)

Proof of claim 1. Suppose <X 1 I E> has a loop: say E contains the equation Xi = aXi + Then

we transform <Xi I E> to the LR-expression <Xi I E'> by introducing a new variable Xi'·

replacing every occurrence of cXj in E by cXi + cXi'• replacing the equation Xi = aXi + ... by

equations Xi = aXi' + ... , Xi' = ~ + Graphically, this amounts to placing a new node Xi'

on the a-loop from Xi to itself and copying for Xi' the in- and out-edges which Xi has, i.e. if

Xi -4u Xk then Xi' -4u Xk and ifXi +-u Xk then Xi' +-u Xk (In fact, this procedure is just an

example of expansion as in 5.3.5.) Now if <X 1 I E> has two different solutions, clearly also

<X 1 I E'> has two different solutions. Hence to prove unique solvability of <X 1 I E> it suffices to

prove this for<X1 I E'>. End of proof of claim 1.

So suppose we have the system ofbisimilarities {gi ttr't Ti(g) Ii= l, ... ,n} (*).We want to

prove that gi ;:ir't [<Xi I E>], the 'canonical' solution of <X1 I E>. Note that by the definition in

5.3.1, [<Xi I E>] is root-unwound. By symmetry, it suffices to prove the case for i = 1.

Now we construct a process graph G which is an amalgam of the process graph [<X 1 I E>]

and the process trees T(gi), i = l, ... ,n. Here T(gi) is gi completely unwound to a tree. G is

constructed by glueing the root ri of T(gi) and the node Xi in [<X1 I E>] together. For the

exposition, the part of G originating from [<Xi I E>] is drawn in a horizontal plane and the

appended T(gi), i = l, ... ,n, are hanging downwards as in Figure 42.

In the example of the figure, the system of bisimilarities (*)(or rather the root-unwound

version w.r.t. gl) is {g1 ;:ir't ag3 + cg2, g2 ;:ir't ag4, g3 ttrt bg4 + 'tgz, ~ !:!r't 'tg3 }. We call the

part of G consisting of aT(g3) + cT(gz), the successor graph of T(g1), likewise the part of G

consisting of aT(g4> is the successor graph of g2, etc. The assumption given by the system (*) of

bisimilarities entails that each T(gi) is r't-bisimilar to its successor graph. (This follows since the

operation T respects :ttrt and :ttr't is a congruence w.r.t. ·and+.)

A Complete Inference System for Regular Processes 71

G

Figure42

Now choose an rt-bisimulation from T(gi) to its successor graph and connect each node sin
T(gi) by an arrow (-4) to the nodes tin the successor graph whenever s,t are related by the chosen
bisimulation. Call the -4-paths originating in this way in G, bisimulation threads. For a
bisimulation thread t -4 t' -4 t" -4 ... -4 t(n) we also write t _.. t(n).

Figure43

72 J.A. Bergstra and J. W. Klop

Then G together with some bisimulation threads is as in Figure 43 above.

Claim 2. (i) From every nodes in T(g1) there is a bisimulation thread leading to a node Xi in G.
(ii) Let R be the relation between NODES(T(g1)) and the process graph [<X 1 I E>] (in the
horizontal plane) given by (i), i.e.

s R Xi <=> s __,, 1t Xi for some bisimulation thread 7t.

Then R is art-bisimulation between T(g1) and [<X1 I E>].

With Claim 2(ii) we are done, since then gl ;:;rt T(g1) "rt [<X i I E>]. In order to prove the
claim we need two concepts:

the depth of a node s in a process tree T is the number of steps which it takes to reach s from
the root r,

the external depth of a node s in a process tree T is the number of non-1:-steps it takes to
reach s from the root r.

Proof of Claim 2(i): Lets e NODES(T(g1)), and let n:: r1 _,. s be the (unique) path in T(gJ) from
its root r1 to s. Then there is a path n:* from the root of the successor graph of T(g1) to some s'
such that 7t ='C n:* (i.e. n,n:* are externally equivalent, that is: determine the same words over A
after skipping 'C's). See Figure 44(a). The first step of this path n* is "horizontal". Leaving out this
first step of n;* we have a vertical path n' in some T(gi)·

cr, ptth in [(X1 !E)]

1T n' 1111

s

s

Figure44 (a) (b)

A Complete Inference System for Regular Processes 73

Continuing this procedure, we find vertical paths x,x',x", ... ,x(m) (see Figure 44(b)) connected

by a horizontal path CJ such that x ='C CJ1t(m). Since a can be prolonged arbitrarily, and since the

horizontal graph [<X 1 I E>] was supposed to be '!:-cycle free, eventually all non-1:-steps in 1t will be

'absorbed' by a horizontal path a. I.e. for some m, x(m) consists only of '!:-steps. In other words,

we have pushed s upwards to external depth 0. Further we can get at the "surface" (depth 0) since

eventually a node Xi must be reached in the upper plane from where no '!:-step is possible. Then we

have arrived at a situation as in Figure 45(a), which proves Claim 2(i).

0 x.
->0_....:>-->0--~~~~-H:;::;::Q"-+9-+<;>---,»;;;>0J

s'

Figure45 (a) (b)

Proof of Claim2(ii) is straightforward. (See Figure 45(b).) Given a path x: s - s' in T(g1), and a

bisimulation thread from s to some Xi, we find a path CJ: Xi Xj for some Xj by following a

bisimulation thread 'below' the one from s to Xi. The same argument applies for the other

direction: given a path CJ: Xi - Xj we find going backwards a bisimulation thread below the one

from s to Xi ending up in a point s' below s. Hence bisimulation threads constitute an

rt-bisimulation between T(g1) and [<X1 I E>]. D

REMARK 7 .3.1. The following example shows that if the condition of absence of '!:-cycles is

omitted, it is indeed not always possible to 'surface' via a bisimulation thread. Let gl = g2 = g3 =

t(a +b).Then gl ,g2,g3 solve <X IX= '!:Y, Y =a+ 'tZ, Z = tY>, i.e. gl !:!rt 1:g2, g2 !:!rt a+ tg3

and g3 !:!rt 'tg2. Now G together with all possible bisimulation threads is as in Figure 46. Indeed

the end-point of the b-step cannot be related with a node X, Y,Z.

Figure46

74 I.A. Bergstra and J. W. Klop

7.4. In order to formulate the general solution of ~-guarded systems of recursion equations

<X1 I E>, we first perform a syntactical transformation on <X1 I E>. The system <X1 I E> is

supposed to be canonical.

Call two nodes Xi,Xj (ij = l, ... ,n) t-cyclic equivalent if there is at-cycle through Xi,Xj in

the corresponding graph. (Special case: if i = j and Xi supports a 't-loop.) Notation: Xi "''t Xj.

Further, call a node Xi t-cyclic if 3j Xi "'t Xj- So "''t is an equivalence relation on the set of
't-cyclic nodes (not on the set of all nodes).

Now transform <X 1 I E> as follows:

Step 1. Partition the nodes x1, ... ,Xn into t-cyclic and non-'t-cyclic nodes.

Step 2. Partition the 't-cyclic nodes in 't-cyclic equivalence classes. Denote these equivalence classes

byXi/=t·
Step 3. Remove in the RHS of equation Xi = Ti(X) all summands 'tXj such that Xi "''t Xj in the
original system <X 1 I E>. Result: <X 1 I E'>.

Step 4. Let Xi bet-cyclic (in the original system). Add to the RHS of Xi = Ti'(X) in E', all RHS's

of the equations Xj = Tj'(X) in E' whenever Xi "''t Xj in the original E, plus an arbitrary Q (fixed
for one t-cyclic equivalence class). Prefix the result with 't.

EXAMPLE 7.4.ll(i) <XIE> where E = {X = aY + bZ, Y = bY + 'tZ, Z = aZ + 'tY}. So Y ""'t z.
Now denote a "'t -class by a box:

X=aY+bZ
E: Y=bY +tZ

Z=aZ+tY

This system is transformed to

X=aY+bZ

EQ: Y = t(bY + aZ (+Q))

Z='t(bY +aZ(+Q))

(ii) X = 'tX is transformed to I X = 'tQ I

(iii) X = tX +a is transformed to IX= 't(a (+Q)) I

(iv) X = 't(X +a) has the same general solution as X = 'tX + a: first transform X = 't(X + a) to

{X = tY, Y =tY +a} which has general solution {X = 'tY, Y = t(a (+Q))}, hence X = tt(a (+Q))
='t(a (+Q)).

(v) x1 =a+bXz+tX3
x2 = tX2 +a

X3=a+bX1 +tX4

A Complete Inference System for Regular Processes

X4 = c + dX2 + tX5 + tX3

X5 = d + aX4 + tX3 + tX5 + tX4

is transformed to

X1 =a+bX2+tX3

I X2 = t(a (+Q1)) I
X3 = t(a + c + d + bX1 + dX2 + aX4 (+Q2))

X4=X3

X5=X3

(vi) The system {X = 't(a(tX + Y) + b), Y = t(i:aX + tY)} has the general solution

75

(X = t(a(tX + Y) + b), Y = 't(taX (+ Q))} (Q arbitrary) as can be seen via conversion to a

canonical system and back. The last system, parametrised by Q, has a unique solution by the
following theorem.

NOTATION 7.4.12. The transformation of <X1 I E> will be written as <X1 I EQ> where Q =
Qi , ... ,Qk are arbitrary closed terms occurring, as in Step 4 of the transformation procedure, in the

=i:-classes Xuf=t, ... , XiJd=t·

Now the results <X 1 I EQ> of this transformation are '!:-cycle free systems of recursion
equations. Hence, by the preceding theorem, they have unique solutions. Par abus de langage, let

us denote these solutions also by <X1 I EQ>.

A useful generalisation of the preceding theorem can be phrased in terms of the following
concept:

DEFINITION 7.5. A term T(X) containing no other variables than those in X, is essentially

A-guarded if every occurrence ofX is preceded by some a e A. More precisely:

(i) closed terms (i.e. without variables) are essentially A-guarded,

(ii) for every term S and a e A, aS is essentially A-guarded,

(iii) if S1,S2 are essentially A-guarded then so is S1 + S2,
(iv) if Sis essentially A-guarded then so is S·T for all T.

EXAMPLE 7 .6. t + t(atXY + btX) is essentially A-guarded.

THEOREM 7.7. Let E = (Xi = Ti(X1, ... ,Xn) Ii= l, ... ,n} be a sy~tem of essentially A-guarded,

linear recursion equations. Then E has a unique solution in JRP(+;,u)/!!r't (u E A't).

PROOF. Converting E to a canonical system of recursion equations yields a system which is

t-cycle free. o

76 J.A. Bergstra and J. W. Klop

EXAMPLE 7.8. (X = t + t(atX + bt(X + tY)), Y =a+ t(aX + tbY)} converts to (X =t + tU,

U =aV + bW, V=tX, W=tZ,Z=t+tU +tY, Y= a+tA,A=aX +tB,B = bY}, which has

no t-cycles.

Now we anive at the main theorem of this section:

THEOREM 7.9. Let <X 1 I E> be a canonical LR-expression, so containing ~-guarded recursion

equations. Then every solution of <X1 I E> in JRP(+;,u)/tirt (u e ~)is of the form <X1 I EQ>

for some Q, and vice versa. In particular, if <X1 I E> is t-eyclefree, Q is empty and the solution is

unique.

PROOF SKETCH. We sketch the proof by demonstration on Example 7.4.l(i) above: LetX, Y, Z

be the unique solution of <X I EQ>· So

X=aY+bZ

Y = t(bY + aZ (+ Q))

Z = t(bY + aZ (+ Q)).

Now x,y.z is a solution of <X I E>:

X=a.Y+bZ

Y = t(bY + aZ (+ Q)) = b.Y + t(bY + aZ (+ Q)) = b.Y + tt(b.Y + aZ (+ Q)) = bY + tZ
Z= .•. =aZ+tY.

Vice versa, let X*,Y*,Z* solve <XIE>, then for some Q we have that X*,Y*,Z* are the unique

solution of <X I EQ>:

X*=aY*+bZ*

Y* = bY* + tZ* = bY* + t(aZ* + tY*) = bY* + t(aZ* + bY* + tY*) =

= t(aZ* + bY* + tY*) = t(aZ* + bY* + Q)

Z* = aZ* + tY* = aZ* + t(bY* + tZ*) = aZ* + t(bY* + aZ* + tZ*) =

= t(bY* + aZ* + tZ*) = t(bY* + aZ* + Q').

Now Q = Q', i.e. tY* = tZ*, is seen as follows:

Y* = bY* + tZ* = bY* + t(aZ* + tY*) = bY* + aZ* + t(aZ* + tY*) = bY* + aZ* + tZ*

hence tY* = t(bY* + aZ* + tZ*). Further, Z* = t(bY* + aZ* + tZ*) as derived already; hence
tY* =tZ*. o

REMARK 7 .10. It is not hard to see that the unique solvability of systems of recursion equations

A Complete Inference System for Regular Processes 77

as in the preceding theorem is preserved when parameters Q = Q 1, ... ,Qn are admitted in the RHS's

of the equations Xi = Ti(X), i = 1, ... ,n. In fact, the Q. are new names for elements Q in

RP(+,· ,u)/ t1 rt· To see this, note that one can eliminate the names Q in favour of a larger system of

equations, as follows: first choose representatives qi e RP(+; ,u) of the Qi; by Corollary 1.3.13

these may be supposed 't-cycle free. Then write down the canonical LR-expressions denoting these

% these are 't-cycle free too. Next, use the definitions of the qi to extend the original system of

equations. This extended system, which is still 't-cycle free, has then a unique solution vector,

containing the desired solution vector.

EXAMPLE 7.11. Let Ql,Q2 denote Q1.Q2 e RP(+;,u)/ttrt·

Then (X = 't(aY +Qi), Y = 't(bX + Q1)} has a unique solution in JRP(+;,u)/ttrt·

7.12. KOOMEN'S FAIR ABSTRACTION RULE. A proof rule which is convenient in

computations is Koomen's Fair Abstraction Rule (KF AR). It was used by CJ. Koomen of Philips

Research in a formula-manipulation system based on CCS [9], and defined explicitly in [l] (see

also [5] where it served to give an algebraic verification of a simple version of the Alternating Bit

Protocol). In the name KFAR, the adjective 'fair' refers to the bias that rt-bisimulation has towards

a fair execution of 't-paths in the sense that, after finitely many executions of a 't-cycle, an

alternative not on the 't-cycle will be chosen if possible. (This bias was already discussed in

MILNER [9].) The formal version of the rule KFAR (which is in fact parametrised by k~ 1) is:

Vn E zk Xn = in'Xn+l + Yn (in E I)

'tI(xn) = 't''tICLmeZk Ym)

Here the subscripts n,n+ 1 are elements of Zk = {0,1, ... ,k-1} in which addition is modulo k. The

Xn,Xn+ l •Yn·Ym are meta-variables ranging over the process algebra under consideration, in our

case: JRP(+;,u)/tirt· They should not be confused with formal variables X, ... which appear in

LR-expressions. The in are elements of A; we always require I l:: A, so in cannot be 't. This is

essential, as we will show. We conceive the in (or more generally, the elements of I) as internal

steps (but not, as 't is, invisible or silent) which can be abstracted to yield 't-steps. We will explain

the rule by some examples.

x=ix
(i) KFAR1:

't(i}(x) = 't

x=a+ix
(ii) KFAR1:

't(i)(x) ='ta

(iii) KFAR3: If x = iy + p, y = jz + q, z = kx + r, then 't(i,j,k}(x) = 't(ij,kj(Y) = 't(i,j,k)(z) =
't('t(ij,k}(p) + 't(i,j,k}(q) + 't(ij,k)(r)).

Before proving that KFAR is valid in the model JRP(+;,u)/ttrt, and hence can be added

78 J. A. Bergstra and J. W. Klop

consistently to the proof system BPA'tLR• we remark that it is essential that the

io.i1 •... ,ik-1-"cycle" appearing in the hypothesis of KFAR is not a cycle of 't-steps. Indeed, the

'version' of KFAR: "If 'Vn e ~ Xn = 'tXn+ 1 + Yn• then Xn = 't(LYm)" would simply be false:

from x = a + 'tX it does not follow that x = 'ta, as we already remarked. This is an important reason

for the introduction of 'tl and the distinction of internal steps from t-steps.

THEOREM 7.12.1. RP(+;,u)/t!n I= KFAR.

PROOF. We give the proof for KFAR3 and use Example (iii) above. So suppose gl ttrt ig2 +h1,

g2 ttrtjg3 + h1, g3 t!rt kg1 +h3 where g1/ t!rt = x, g'lf ttrt = y and g3/ ttn = z. We may

suppose by Corollary 1.3.13 that hi ,h2h3 are 't-cycle free.

Now by Remark 7 .10 the present system of equations has a unique solution (as it is 't-cycle

free) modulo ttrt, namely g1,g2,g3. Hence g1 t!rt the root-unwinding of

which is by (the proof of) Corollary 1.3.13 rt-bisimilar to

A Complete Inference System for Regular Processes

So

gl ~rt t('t(i.j.k} (h1) + 't{i.j.kj(h2) +t{i.j.k}(h3)),
and hence

x = t('t(i.j.k}(p) + 't(i.j.kj(q) + t(i.j.kj(r)),
which is the consequence ofKFAR3 we wanted. o

79

REMARK 7 .12.2. Note that by the same proof we obtain a slightly stronger version of KF AR (as

valid in the domain of regular processes), namely one in which some but not all of the in (n e Z)

may be t. Thus we may, e.g., conclude from x = iy + p (i e I C A), y = tx + q that t1(x) = 'tJ(Y) =
't" t1(P + q).

8. P A.cLR: a proof system for regular processes with 't-steps and free merge

It is not hard to extend the proof system BP~LR with axioms for the interleaving (or free merge)

operator 11. (Here 'free' denotes the absence of communication.) Let P~LR be BP~LR plus the

axioms in the following table, where a e ~:

x 11 y = x lL y + y lL x

(ax) lJ.. y = a(x II y)

a lL y=ay

(x + y) lJ.. z = x lJ.. z + y lL z

Table 10

Ml

M2

M3
M4

Warning: LR-expressions are defined as before; II and the auxiliary operator lL (left-merge) may

not occur in the bodies of LR-expressions, since otherwise we would leave the realm of regular

processes. (E.g. the process uniquely defined by X = a(b II X) is not regular.)

The semantics of P~LR is the obvious extension of the semantics of BP~LR• using the

80 J.A. Bergstra and J. W. Klop

operations II. ll on graphs which were defined in Section 4.

THEOREM 8.1. LetT,S be closedP~LR-terms. Then: P~LR I- T = S <=> [T] = [S].

PROOF. Compared to the completeness proof of BP AcLR the only extra fact to be proved is that

the merge of two expressions T,S can be eliminated in a provable way. Here the main task is to

show this for LR-expressions; this we will do now.

Let X1 == <X1 I (Xi = Ti(X) Ii= l, .. ,n}> and Y1==<Y1 I {Y 1 = Sj(Y) I j = l, ... ,m}>. Let

D1, ... ,Dk be the derived subterms of X1 (see the definition of 'derived subtenn' in the proof of

Theorem 5.4.1) and let E1, ... ,Ek' be the derived subterms of Y1- Let !li (i = l, .. .,k) be Di where

the formal variables X1, ... ,Xn are replaced by Xi····Xn; likewise lij G = l, ... ,k') is defined.

Further, abbreviate

.llij == l2i II Ej
Yij == 12i ll Ej

.W:ij == Ej ll lli·

Now, using the axioms Ml-4 and the recursion equations in X1. Y1 as rewrite rules from left to

right, a simple computation shows that the set of expressions l.llij•Yij•.W::ij.12i.Ej I i = l, ... ,k; j =

l, ... ,k'} can be expressed "guardedly in itself'. That is:

llij = Pij<ll.Y..lY.Jl.E:l

.Yij = Qij(ll~.I!.E)

:W.ij = Rij (ll.Y.lY..I!.E)
l2i = Fi<D..E)

Ej =Gj<D..E>

for some guarded terms Pij(U,V,W,D',E'), QijC U,V,W,D',E'), Rij(U,V,W,D',E'), Fi(D',E'),

Gj(D',E') not containing 11. !l. Here the U,V,W,D',E' are (strings of) formal variables. Hence

ll11 =X1 II Y1 =
<Uu I (Uij =Pij(U,V,W,D',E'), vij = Qij(U,V,W,D',E'), wij =

Rij(U,V,W,D',E'), Di'= Fi(D',E'), Ej' = Gj(D',E') Ii= l, ... ,k; j = l, ... ,k'}>

and likewise for X1 ll Y1 and .Y.1 ll X.1 · So the operators II. ll are eliminated. (If the

LR-expressions X1.Y1 contain 't-guarded recursion equations, the same procedure is followed

after the detour via 'tI as demonstrated in Example 6.2.1.1.) o

EXAMPLE 8.2. Consider <X IX= a(X + b)> II <YI Y = cY>. The derived subterms of X are X,

X+ bandofYonlyY.Now

A Complete Inference System for Regular Processes 81

K.11 Y = X lL Y + Y lL X = a<X + b) 1L Y + cY lL X = a((X + bJ 11 Y) + c(Y II x;

<X + bl II Y =<A+ b) lL Y + Y lL <X + b) = x 1L y + b 1L y + y 1L <X + bJ =

a<X + b) 1L Y + bY + cY 1L <X + b) = a(<X + b) 11 Y) + b.X + c<Y 11 <X + b)).

HenceX II Y= <U I U =aV +cU, V=aV +bY +cV, Y=cY>.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J.C.M. BAETEN, J.A. BERGSTRA, J.W. KLOP (1985). On the consistency of Koomen's
Fair Abstraction Rule, CWI Report CS-R8511, Amsterdam. To be published in TCS.

J.A. BERGSTRA, J.W. KLOP (1983). An abstraction mechanism for process algebra, Report
T.W 231/83, Centre for Mathematics and Computer Science, Amsterdam 1983.

J.A. BERGSTRA, J.W. KLOP (1984). Process algebra for synchronous communication,
Information and Control 60 (1/3), 109-137.

J.A. BERGSTRA, J.W. KLOP (1985). Algebra of communicating processes with abstraction,
Theor. Comp. Sci. 37 (1), 77-121.

J.A. BERGSTRA, J.W. KLOP (1986). Process Algebra: Specification and Verification in
Bisimulation Semantics, Proceedings of the CWI Symposium Mathematics and Computer
Science 1986 (eds. M. Hazewinkel, J.K. Lenstra, L.G.L.T. Meertens), CWI Monographs
4, 61-94, North-Holland, Amsterdam 1986.

S.D. BROOKES (1983). On the relationship of CCS and CSP, Proc. lOth ICALP (ed. J.
Diaz), Barcelona 1983, Springer LNCS 154, 83-96.

M. HENNESSY, R. MILNER (1985). Algebraic laws for nondeterminism and concurrency,
JACM 32, 137-161.

C.P.J. KOYMANS, J.C. MULDER (1986). A modular approach to protocol verification using
process algebra, Logic Group Preprint Series Nr.6, Dept of Philosophy, State University of
Utrecht.

R. MILNER (1980). A Calculus of Communicating Systems, Springer LNCS 92.

[10] R. MILNER (1984). A complete inference system for a class of regular behaviours, Journal
of Computer and Systems Sciences, Vol.28, Nr.3, 439-466.

[11] R. MILNER (1984). Lectures on a Calculus for Communicating Systems, Working Material
for the Summer School Control Flow and Data Flow, Munich, July 1984.

[12] R. MILNER (1985). A complete axiomatisationfor observational congruence of finite-state
behaviours, manuscript, Univ. of Edinburgh.

[13] C.A.R. HOARE (1984). Notes on Communicating Sequential Processes, Working Material
for the Summer School Control Flow and Data Flow, Munich, July 1984.

[14] D.M.R. PARK (1981). Concurrency and automata on infinite sequences, Proc. Sth GI
Conference, Springer LNCS 104.

[15] F.W. VAANDRAGER (1986). Verification of two communication protocols by means of
process algebra, CWI Report CS-R8608, Amsterdam.

