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Robust Control of Flexible Structures: 
A Case Study* t 
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Using the theory of robust control a controller can be designed for flexible 
systems based on an approximate model which stabilizes this nominal 
model and perturbations within a certain predetermined range. 
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Abstract-A comparison is made between three partial 
differential equation models for a flexible beam with different 
types of damping and varying parameter values. Robust 
controllers can be designed to stabilize all linear systems 
whose transfer functions lie within a ball in the L=- norm. 
Given a nominal model for our flexible beam we calculate 
which sets of models can be stabilized by the same 
finite-dimensional robust controller. By stabilize we mean 
here that the poles of the system are moved to the left of the 
line Res=-/), f3 > 0. 

1. INTRODUCTION 

IN THE LITERATURE several types of partial 
differential equation models have been proposed 
for large flexible structures (Bontsema, 1986; 
Chen and Russell, 1982; De Silva, 1976; Weeks, 
1984). Once one has such a model then there are 
several theories for designing controllers to 
achieve various objectives (Curtain, 1983, 1985; 
Schumacher, 1981). The weakness of this line of 
research as regards application to the control of 
large flexible space structures is that no one is 
sure which type of pde model is appropriate and 
even if this were the case, in practice even the 
estimation of the modes is very approximate, 
especially for the higher frequencies. This is of 
course a common phenomenon in control 
engineering and there is a large body of theory 
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devoted to this robustness aspect of controller 
design (Chen and Desoer, 1982; Curtain and 
Glover, 1986a; Francis et al., 1984; Nett, 1984). 
In particular, in Curtain and Glover (1986a) a 
theory is developed for the robust stabilization 
of infinite-dimensional systems. The idea is that 
if the nominal system has a transfer function 
G0(s) then one seeks to design a robust 
controller such that it also stabilizes all systems 
with a transfer function G(s) such that 
l!G(s)-G0(s)ll .. <E; E gives a measure of the 
robustness. This is a frequency domain approach 
and we try here to understand the implications 
of this theory for large flexible structures 
modelled by partial differential equations. 

In Section 2 we introduce three pde models 
for flexible beams with different types of 
damping: 

model 1: Euler-Bernoulli with structural 
damping, 

model 2: Euler-Bernoulli with viscous 
damping, 

model 3: two beams connected through a 
central disc. 
All three models are assumed to have free ends, 
and the same physical parameters such as density 
and cross-section, but different types of damp­
ing. Models 2 and 3 are fully determined if all 
physical parameters are known, whereas the 
magnitude of the damping term in model 1 is 
usually not known. Model 2 will be our nominal 
system. 

In Section 4 we compare the difference in the 
L .. -norm of the transfer function of model 2 with 
the transfer function of model 1 for different 
values of its damping parameter, a. Also we 
compare the difference in the Loo-norm of the 
transfer function of model 2 with the transfer 
function of model 3 for different values of the 
mass and mass moment of inertia of the central 
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disc. This difference in transfer function norm is 
what is relevant for the robustness question and 
for completeness we summarize the relevant 
results of Curtain and Glover (1986a) in Section 
3. The main results of Section 4 show whether a 
finite-dimensional robust controller designed for 
model 2 (the nominal plant), which moves the 
poles of model 2 left of Res = -{3, will also 
move the poles of models 1 and 3 left of 
Res = -{3. In fact it depends on f3 and the order 
of the compensator, as well as on the parameter 
a in model 1 and on the mass and mass moment 
of inertia of the central disc in model 3. 

Finally, in the conclusions section, Section 5, 
the implications of this study for future research 
in compensator design for flexible systems are 
discussed. 

2. THE MODELS 

2.1. Euler-Bernoulli beam with structural 
damping: model 1 

We consider first a flexible beam of length 2, 
cross-sectional area a, mass density p and 
structural damping with parameter E. The 
Youngs modulus of elasticity is denoted by E 
and the second moment of area of the 
cross-section by I. If we suppose that the beam 
has free ends and first suppose that the damping 
is zero, this leads in the usual way to the 
equations (Bontsema, 1986; Timoshenko et al., 

1974): a2w a4w 
pa at2 + EI ax4 = 0 (2.1) 

o3w o3w 
ax3 (-1, t) = O; ax3 (1, t) = 0 

(2.2) 
a2w a2w 
ax2 (-1, t) = O; ax2 (1, t) = 0. 

To formulate (2.1), (2.2) as an abstract state 
space system on a Hilbert a we introduce the 
following notation 

d4 
A=-4 

dx (2.3) 

D(A) = {w E H4(-l, 1) lf"(-1) = 0 = f"(l); 

f"'(-1) = 0 = f"'(l) }. 

A is a positive, self adjoint operator on 
L 2(-l, 1) and so for our state space we choose 
the following Hilbert space 

~=D(A112)E9L2(-l, 1) (2.4) 

with the inner product 

\ (~~), (:~)) ~ = ( V1, W1) + (A 112v 1, A 112w1) 

+ ( V2, W2) (2. 5) 

where (. , . ) is the usual L 2 inner product. Then 
stl generates a c0 (strongly continuous) semi­
group on ~(Curtain and Pritchard, 1978), where 

stt=[_~A ~l D(.stl)=D(A)E9D(A112); 

c =EI I pa. (2.6) 

Then (2.1), (2.2) have the following formulation 
on a (Bontsema, 1986) 

i: = stlz; where z = (:). (2. 7) 

Equations (2.1, 2.2) can be written as: 

a2w 
Pa-+EIAw =O· 

at2 ' 
(2.8) 

if we assume structural damping with damping 
coefficient Ethen (2.8) becomes 

ciw aw 
pa at2 +EA l/2Tt + EIAw = o. (2.9) 

This can be formulated on ~ as 

i: = (stl + ll'1P1)z 

where 

P1 = [~ -~112 l ll'1 = t::/pa 

(2.10) 

and stl + cx1P1 generates a C0-semigroup on ~ 
(Chen and Russell, 1982). This model is often 
used in theoretical studies, but whereas p, a, E, 
and I are usually known physical quantities, E is 
not. 

2.2. Euler-Bernoulli beam with viscous 
damping: model 2 

This model is the same as in (2.1) except the 
damping term EA 112( aw I at) is replaced by the 
viscous damping term E* I( 85w I at ox4) due to 
Voight (Kolsky, 1953), where E* is the normal 
strain rate, a known physical quantity. This leads 
to a state space formulation on ft given by (2.10) 
with P1 replaced by P2 and 

(2.11) 

Marsden and Hughes (1983) proved that 
stl + cx2P2 generates a C0 semigroup on ft(a2 = 
E*I/pa). 

2.3. Two beams connected through a central 
disc: model 3 

For a third model we consider two beams 
connected through a central disc, where for 
simplicity we have assumed that the thickness of 
the disc in the x-direction is zero. The vertical 

l 
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displacement of the left beam is denoted by 
w1(x, t), of the right beam by wr(x, t) and of the 
central disc by wm(t); the angle of the central 
disc with the neutral axis is denoted by fJm. The 
mass of the central disc is m, the mass moment 
of inertia is Im. 

For the left beam we have the Euler­
Bemoulli equation: 

a2w1 B4Wi 
at2 + c ax4 = O; -1:5x:::.:;0. (2.12) 

The left beam has free ends and so there is no 
bending moment or shear force at the left end: 

a2w1 B3w1 
ax2 (-1, t); ax3 (-1, t)=O. (2.13) 

For the right beam the Euler-Bernoulli equation 
is again: 

a2w B4w _r+ __ r_O· O< <1 
2 C 4 - ' -X- . at ax 

(2.14) 

The right beam also has free ends: 

82wr B3wr 
ax2 (1, t) = O; ax3 (1, t) = 0. (2.15) 

The moments acting upon the central disc are in 
equilibrium and so if M(t) is an external moment 
we have: 

d28 a2w 
Im dt2m = EI ax2r (0, t) 

a2w1 
- EI-2 (0, t) + M(t). (2.16) 

ax 

The forces acting upon the central disc are in 
equilibrium. So if F(t) is an external force we 
obtain: 

d2wm = - El a3wr (0 t) 
m dt2 Bx 3 ' 

83w + EI-31 (0, t) + F(t). (2.17) 
ax 

The two beams are connected through the 
central disc and the whole system has no hinge in 
the middle, which leads to the equations: 

wr(O, t) = Wm(t); 

awl 
- (0, t) = fJm(t) 
ax 

awr (0, t) = em(t). 
ax 

(2.18) 

(2.19) 

We introduce the Hilbert space W given by 

W = L2(-1, 0) E9 L 2(0, 1) E9 IR 2; (2.20) 

with inner product 

(w, w) + (wi. w1) + (w., Wr) 

+ 4M (Wm, Wm>+ 41 ( fJm, em) (2.21) 

where M is half of the ratio between the mass of 
the central disc and the mass of the beams and l 
is 1/6 times the ratio between the moment of 
inertia of the concentrated mass and the moment 
of inertia of the beams regarded as one beam 
without a central disc in the middle. 

The following operator A3 is a densely­
defined, self adjoint operator on W (Bontsema, 
1986): 

d4 
0 dx4 0 0 

0 
d4 

0 0 dx4 
A3= 

-1 d3 I 1 d3 I 
4Mdx3 x=O 4Mdx3 x=O 

0 0 

1 d2 I 
41 dx2 x=O 

-1 d2 I 
41 dx2 x=O 

0 0 

(2.22) 
with 

D(A3) = {w E W" I W1 E H4(-1, 0), Wr E H4(0, 1), 

wj'(-1) = 0, w~(l) = 0, w{"(-1) = 0, 

w'~(l) = 0, W1(0) =Wm, Wr(O) =Wm, 

wl(O) =em, w~(O) =em}· (2.23) 

Consequently .543 = [ _~A3 ~] generates a 

c0-semigroup on the Hilbert space ~3 = 
D(A 112) E9 Wand the relationships (2.12)-(2.19) 
for the two beams with viscous damping 
connected through a central disc and zero 
external force and moment can be abstractly 
formulated on the state space ~3 as 

::i = (.543 + a3P3)~, 

where 

a 3 = a 2 ("T" is the transpose of a vector). 

2. 4. Control and observation 

(2.24) 

It is clear from the foregoing that all three 
models with control and observation take the 
form of an abstract second-order differential 
equation on a Hilbert space W": 

w + aPw + cAw = Bu(t) (2.25) 

y =Cw+ C2w (2.26) 

where for model 3 W is defined by (2.20) and for 
models 1 and 2 W = Lz(-1, 1). The damping 
operator is P =A 112 for structural damping and 
P =A for viscous damping. Thus on the state 
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space 1l = D (A 112) EE! W they all have the form 

i = (s//. + a9J>)z + (~)u; y = (C C2)z; 

z= (w, »-Y; 

sl/. = [_~A ~l gp = [~ _op]. (2.27) 

For the first two models we choose as controls 
a point force F(t) and a point moment M(t) in 
the middle of the beam, which can heuristically 
be formulated by 

u=(F); B=_!_(o(O) -o'(O)). (2.28) 
M pa 

As observation we measure the displacement 
and the angle of rotation in the middle of the 
beam, i.e.: 

[ ah JT Ch = h(O) ax (0) ; C2 = 0. (2.29) 

It can be shown that B and C are well posed 
operators for these models. 

For model 3 the controls are taken to be the 
external force F(t) and moment M(t) as shown 
in (2.16) and (2.17) and so: 

u = (~), B =[It ~ ]· (2.30) 

0 1/Jm 

As observation we choose Wm and em which 
leads to the operator: 

[o o 1 o] 
C= 0 0 0 1 . (2.31) 

B and C are bounded operators for this model. 

2.5. Transfer functions 
First we give the eigenvalues and eigenvectors 

of the operators A, given by (2.3), and A 3 , given 
by ('.L.22) and (2.23). The eigenvalues and 
eigenvectors of A and A 3 are called the 
eigenfrequencies and eigenmodes of the beam. 
The eigenfrequencies and eigenmodes can be 
separated into symmetric and anti-symmetry 
ones. 

For the operator A we find that the symmetric 
eigenfrequencies are 0 and the positive solutions 
of: 

sinh (A;) cos (A;)+ cash (A.;) sin (A.;)= 0. (2.32) 

The symmetric eigenmodes are: 1/V2 and: 

v;(x) = a cos (A.;x) 

( , ) cash (A.;x) - cos (A.;x) ( 
+ '1' COS A; h (i ) (i ) 2.33) 

COS A; + COS A; 

where a can be chosen such that llv;(x)ll = l. 

The anti-symmetric eigenfunctions are 0 and 
the positive solutions of: 

sinh (A.;) cos().-;)- cash (A.;) sin (A.;)= 0. (2.34) 

The anti-symmetric eigenmodes are V(3/2) · x 
and: 

( ) sin (A.;x) 
V; X = 'J' )... 

I 

sin (A.;) sinh (A.;x) - sin (A.;x) 
+y (2.35) 

A; sinh (A.;)+ sin (A.;) 

where y can be chosen such that llv;(x)ll = 1. 
For the operator A 3 with M = m/4pa, 

J = Im/4pa, we find that the symmetric eigenfre­
quencies of the connected beams are 0 and the 
positive solutions of: 

sin A.; cash A.; + cos A.; sinh A; 

+ 2MA.;(1 +cos A; cash A.;)= 0. (2.36) 

The symmetric eigenmodes of the connected 
beams are 1/(2 + 4M) 112 and for x E [-1, 0) 

v;(x) =a{ cos (A.;x) 

+cash (A.;) - MA;(sinh (A.;)+ sin (A.;)) 

cash (A.;)+ cos (.A.;) 

*(cash (A.;x) - cos (A;x)) 

- MA.;(sinh (A;x) - sin (A.;x))} (2.37) 

and for x e (0, 1] 

v;(x) =a{ cos (A.;x) 

+cash (A.;) - MA.;(sinh (A;)+ sin (A;)) 

cash (A.;)+ cos (A.;) 

*(cash (A;x)- cos (A.;x)) 

+ MA;(sinh (A.;x) - sin (A.;x))} (2.38) 

where a can be chosen such that llv;(x)ll = 1. 
The anti-symmetric eigenfrequencies are 0 and 

the solutions of: 

sin A; cash A; - cos A; sinh A; 

+ 2JAT(l +cos A; cash A.;)= 0. (2.39) 

The anti-symmetric eigenmodes are (3/(2 + 
121))112 • x and for x E [-1, 0): 

v;(x) = t {1.1..r<cosh (.A.;x)- cos (A.;x)) +sin (.A.;x) 

sin (A;) -JAi(cosh (A.;)+ cos (A.;)) 

+ sinh (A.;) + sin (A;) 

* (sinh (A.;x) - sin (A;x))} (2.40) 
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and for x e (0, 1): 

v;(x) = t {-JA.f(cosh (A.;x) - cos (A.;x)) +sin (A.;x) 

+sin (A.;) - H~(cosh (A.;)+ cos (A.;)) 
sinh (A.;)+ sin (A.;) 

* (sinh (A.;x) - sin (A.;x))} (2.41) 

where y can be chosen such that llv;(x)ll = 1. 
A modal analysis of the operator d + a~ 

shows that, using a convenient modal decom­
position, it has the diagonal infinite matrix form 

d+a~=diag(.6.j); .6.j=[ O 2 1 ]; 
-Qj -2r:j 

j = 1, 2, ... ' (2.42) 

where for model 1 and 2, Qj = cA.j, for model 1 
we have rj = !a1A.J and for model 2, r:j = !a2A.j, 
where A.j is given by (2.32) or (2.34). For model 3 
we have Qj = cA.j and rj = !a2A.j, where A.j is 
given by (2.36) or (2.39). The eigenvalues of 
sl/. + aP are given by: 

µj = -r:j ± iV(OJ- •J). (2.43) 

Using the same modal decomposition on B and 
C leads to the following transfer function for 
models l, 2 and 3: 

1 .. 1 
G(s) = Go(s) +- 2: 2 2s 02 Gj, (2.44) 

paj=is + r:j+ j 

with 

where for model 1 and 2, vj is an eigenvector of 
the operator A defined by (2.3) and vj is given by 
(2.33) and (2.35). For model 3, V; is given by 
(2.37), (2.38), (2.40) and (2.41). If vj is a 

symmetric mode then avj (0) = 0, and if V; is an ax 
anti-symmetric mode then vj(O) = 0. For models 
1and2, 

Go(s) = _.!:_ [ l/2s2 0 J 
pa 0 3/2s2 · 

For model 3, 

Go(s)=_!_[l/(2+4M)s2 0 J 
pa 0 3/(2 + 12T)s2 • 

3. ROBUST CONTROLLERS 
In Curtain and Glover (1986a), a theory for 

the design of robust controllers is given which 

u, <>---"<+ Y--+----1 G Yt + + 
+ e, 

Fro. 1. The perturbed feedback system. 

allows one to state a priori the maximum 
possible robustness margins. Suppose as in Fig. 1 
we have a possibly unstable infinite-dimensional 
plant with transfer function G, and we wish to 
design a finite-dimensional controller with 
transfer function K, so that it stabilizes the class 
of perturbed plants G + .6. for all transfer 
functions .6., such that ll.6.11., <E. 

A convenient class of infinite-dimensional 
plants is given by the class of p x m matrix 
valued transfer functions B(fJlxm introduced by 
Callier and Desoer (1978). 

Definition 3.1. GE B(f3)Pxm if G has the 
decomposition 

(3.1) 

where Gu is a rational p x m transfer function 
whose poles are in Re µ <?: f3 and G, has an 
inverse Laplace transform f of the form 

00 

t (t) = t(t) + 2: f;o(t - t;) (3.2) 
i=O 

where 

.. 
2: e-"", llf;ll < 00, t; > o 
i=O 

for some w < {3. 
The class of p x m matrix valued transfer 

functions, whose inverse Laplace transform 
satisfies (3.2), is denoted by A_(fJ)Pxm. We will 
consider the class of transfer functions G e 
B(f3lxm, with G proper and no poles on the 
imaginary axis. The class of perturbations will be 
assumed to satisfy the following conditions: 

G and G + .6. have equal 
number of poles in Res<?: 0. (3.3) 

G + !J.. is proper. 

11.6.ll .. <E. 

(3.4) 

(3.5) 

Here the Loe-norm of a p x m transfer function is 
defined by: 

116.11 .. =sup µ~ax(.6. *(jw )!J..(jw )). (3.6) 
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µmax(M) is the largest eigenvalue of a square 
matrix M and * denotes the complex conjugate 
transpose. 

We recall some definitions from Chen and 
Desoer (1982). 

Definition 3.2. The feedback system of Fig. 1 
wit~ 11=0, GE B(Oyxm, G proper, KE B(orxp 
is A_(O)-stable if S, KS, SG, I+ KSG E A_(O), 
where S =(I - GK)- 1• 

Definition 3.3. The feedback system of Fig. 1, 
denoted by ( G, K, E), with E * 0, will be called 
robustly stable if (G + 11, K) is A_(O)-stable for 
all perturbations Ll E B(O)kxm, satisfying (3.3), 
(3.4) and (3.5). 

In Curtain and Glover (1986a), the following 
lemma is stated, which is a version of Theorem 2 
in Chen and Desoer (1982). 

Lemma 3.4. Suppose GE B(O)kxm and G is 
proper, then for E * 0 ( G, K, E) is robustly 
stable if and only if (G, K) is A._(0)-stable and 

llK(/ - GK)- 111:s1/ E. (3. 7) 

From Curtain and Glover (1986a) we get the 
following lemma (see Fig. 2). 

Lemma 3.5. Under the assumptions of Lemma 
3.4, there exists a KE B(O)kxm such that 
( G, K, E) is robustly stable if and only if 

K = K1(I + GsK1)-1 (3.8) 

for some K1 E B(O)kxm, such that (Gu, K1 , E) is 
robustly stable. 

Lemma 3.6. Under the assumptions in Lemma 
3.4, (G, E) is robustly stabilizable if and only if 

inf \IK1(I - GuK1)-1\\oo s 1/E (3.9) 
K1 

where the infimum is taken over all K1 E B(orxp 
such that (Gu, K1) is A_(O)-stable. 

The following lemma from Glover (1986) 
shows that we need only consider rational 
stabilizing compensators K 1 . 

u 
G 

y 

+ 
Gs 1-----c 1 

Ku------' 

FIG. 2. Feedback system with controller given by 
Lemma 3.5. 

Lemma 3. 7. If Gu is rational with all its poles in 
c+ and Gu(oo) = 0 then 

inf llK1(I -GuKi)- 111"' = l/amin(G~) (3.10) 
K1 

where the infimum is taken over all rational K1 

such that (Gu, K1) is A._(0)-stable. Furthermore, 
there exists a rational K 1 such that the infimum 
is achieved. 

Here am;n( G~) is the smallest Hankel singular 
value of the p x m rational transfer function 
G~(s) = GJ(-s). By the Hankel singular values 
of a stable transfer function F, we mean (cf. 
Curtain and Glover, 1986a) the square root of the 
eigenvalues of PQ, where P is its controllability 
gramian and Q is its observability gramian. 

We can now state the main theorem we need, 
which is a special case of Theorem 3 .1 in Curtain 
and Glover (1986a). 

Theorem 3.8. Under the assumption of Lemma 
3.4, (G, E) is robustly stabilizable if and only if 

(3.11) 

From Lemma (3.7) it follows that for the 
calculation of the robust stabilizing compensator 
K we only need to calculate a compensator for a 
finite-dimensional system. In this article we do 
not actually calculate the compensator, but as 
can be seen in Glover (1986) this is very easy 
and it depends on the calculation of a balanced 
realization of G:. With this theorem we can 
compare two systems G1 and G2 • Suppose K is 
the maximal robust controller for G1 defined by 
(3.8) and by (3.10). Suppose furthermore that G2 

depends on a parameter a, G2 ( a). A sufficient 
condition that K also stabilizes G2 ( a) is that 
llG1 - G2(a)lloc:s amin(Gfu). In this way, a range 
is found for the a for which G1 and G2 can be 
stabilized with the same compensator. 

The compensator of Lemma 3.5 will in general 
be infinite-dimensional. One can design finite­
dimensional compensators, but this reduces the 
robustness which can be obtained. One way of 
producing a finite-dimensional compensator is to 
approximate Gs in (3.1) by a reduced order 
model Gs such that 

l\Gs-Gsl\oo:SO<E:Samin(G~) (3.12) 

and then one can construct a finite-dimensional 
compensator k, by replacing Gs in (3.8) by G,, 
which stabilizes G + 11 for all ll.::llloc< E - o. For 
a discussion of the construction we refer to 
Curtain and Glover (1986a) and Glover (1986); 
here we are only concerned with the rubustness 
margins. 

A convenient way of approximating stable 
transfer functions of "nuclear type" is to use 
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truncated balanced realizations or optimal 40 I I I I 
Hankel-norm approximations (Curtain and (!) + 4' 

Glover, 1986b; Curtain, et al., 1986). Infinite-
dimensional linear systems are said to be of 20 

,_ -
(!) +.!>. 

"nuclear type" if their Hankel operator is 
nuclear or equivalently if the infinite sum of its Im s (iii 

Hankel singular values is finite. If G is a transfer t 0 
Ql 

function whose inverse Laplace transform 
satisfies 

h E L1(0, co; [RPXm), t 112h E L2(0, oo; wxm) 

(3.13) 

and whose Hankel operator is nuclear, then one 
can find a rational approximation Gk to G of 
MacMillan degree k such that 

00 

llG - Gklloo :5 2 L a; (3.14) 
k+l 

where we have supposed that the singular values 
a; of G are simple. The above estimate is quite 
close for truncations of balanced realizations, 
whereas the upper bound on the error for 
optimal Hankel-norm approximations is about 
half this (Curtain et al., 1986). For spectral 
systems the nuclear assumption is easy to check 
(Curtain et al., 1985) and for the stable part of 
our system (2.44) to be nuclear it is required that 

,, 1 vJ(O) + ( ~~ (0) r 
~ <co (3.15) 
J=l r1 (QJ- rJ) 112 · 

By using asymptotic estimates for v1(x), r1 and 
Q1, (3.15) is satisfied for all three models. 

In practice, flexible structures are already 
stable, but we want to move the poles of the 
transfer function into the region Res < -{3, 
f3 > 0. therefore if the transfer function is G (s), 
then we apply Theorem 3.8 to the transfer 
function G f3(s) = G (s - {3). The poles of G f3(s) 
will be moved to Re s < 0 and so the poles of 
G(s) to Res< -{3. 

4. RESULTS 

First we compare the Loe-norm of the transfer 
functions for the various models 1, 2, 3 
introduced in Section 2. For the physical 
constants p, a, E, E* and I we follow the data in 
De Silva (1976): 

p = 7868.6 kg m-3 

a= 0.006 m2 

E = 2.00124 x 109 N m- 2 (4.1) 

E* = 6.8974 x 105 Ns m-2 

I= 8.98 x 10-5 m4 • 

The length of the beam is 15.24 m, so to get 

-20 ,__ 
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I I 
- 40 -0.25 -0.20 -0.15 

I 
-o:o 
Res 

(!) +.!>. 
-

+ .:!:. 

I 
-0.05 0.00 0.05 

FIG. 3. Open loop poles of model 1 and 2. + poles of model 
1 with a 1 =0.0025; 6 poles of model 1 with a 1 =0.001; 

0 poles of model 2. 

correct results the parameters c and a-2 are 
divided by (15.24/2)4 • 

. It is then interesting to see how the transfer 
function of model 2, G2 , with viscous damping 
differs from the transfer function of model 1 for 
various values of the parameter a 1 ( a-2 = E* I I pa 
is a physical quantity which we assume to be 
known). Figure 3 gives the eigenvalues of model 
1 (for a-1 =0.001 and a-1 =0.0025) and of model 
2. The eigenvalues show that model 1 and 2 are 
very different, especially in the higher modes. 

The assumption of Theorem 3.1 that cg(s) 
and arcs) should have an equal number of poles 
in Re s > 0 and no poles on the imaginary axis 
imposes a restriction on the parameter a;, 
depending on {3. In Table 1 we have listed the 
a-;s which satisfy this assumption. 

We have plotted the Loc-error llG~ - Gfll,, as a 
function of the parameter a 1 for different values 
of f3; see Fig. 4. Gf(s) = G;(s - /3) and a 1 is the 
unknown damping parameter in model 1. The 
restriction on a-1 as in Table 3 gives rise to the 
asymptotic behaviour of llGf- G~llo:· 

We now make a similar comparison between 
models 2 and 3, for different values of M and J 
(Table 2). Recall that Mand J correspond to the 
ratios between the mass (moment of inertia) of 
the central disc and the mass (moment of inertia) 
of the beams. 

Now we suppose that we design an infinite­
dimensional robust controller for model 2, our 
nominal plant. The maximal achievable robust­
ness margin (with infinite-dimensional compen­
sators) is given by amin(G~), which, of course, 
varies with the chosen stability margin ( = /3). 

TABLE 1. RESTRICTIONS ON THE DAMPING PARAMETER OF 

MODEL 1 (a 1), IMPOSED BY CONDITION 3.3 

I /3 = o. 0065 I o. 000843 < 0 1 < o. 00232 
I /3 = 0. 007 I 0. 000908 < 01<0. 00250 
I /3 = o. 008 I o. 001038 < 0 1 < o. 00286 
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t7 

0.7 

0.2 1.0 t2 1.4 1.6 \.8 2.0 2.2 2.4 2.6 2.8 3.0 

- «1 ( * tl -3) 
FIG. 4. The £,.-distance between model 1 and 2 as a function of the damping parameter a 1 in model 1. 

+.8 = 0.0065; /::, f3 = 0.007; 0 ,8 = 0.008. 

TABLE 2. THE £,.-DISTANCE BETWEEN MODEL 2 AND 3 FOR 
DIFFERENT VALUES OF MAND J 

M J /3 fJ fJ llG3 -G21i 00 

0. 0 0 01 0.000001 0. 0065 0. 2 116 
0.007 0. 1 882 
0.008 0. 1 285 

0. 001 0.000001 0. 0065 0. 6 644 
0.007 0. 6 343 
0.008 0. 5 341 

0.0 0 1 0. 0001 0.0065 0. 6 644 
0.007 0. 6 343 
0.008 0. 5 341 

However, we desire finite-dimensional control­
lers and this incurs an error less than 
II Gf- G~!I .. , which again depends on the 
desired stability margin, (3, and the order of the 
approximation. The robustness achievable by a 
finite-dimensional controller is ::5 amin( Ge#) -
l!Gf- G~!I,.,. We obtained the following results 
for the robustness of the compensator (Table 3). 
The rubustness depends on the approximation 
method, so in general it will not be optimal 
[see (3.14)]. 

t7 

o.2 1.0 t2 1.4 1.6 1.8 

So if we stabilize the finite-dimensional 
unstable part by a controller of order p, then we 
can stabilize the total nominal plant by a 
compensator of order p + n, where n is the order 
of the approximation of the infinite-dimensional 
stable part of the system. So reading from Fig. 5 
and Tables 2 and 3 we see for example that if we 
design a (p + 3)th order compensator for our 
nominal plant with a stability margin of 
(3 = 0.007, then the poles of model 2, of model 1 
with 11'1 = 0.00227 and of model 3 with M = 10-3 

and J = 10-4 will all be moved by this 
compensator to the left of the line Re s = 
-0.007. Figure 5 illustrates for which ranges of 
11'1 it is possible to stabilize model 1 with the 
infinite-dimensional robust compensator (k = oo) 

TABLE 3. ROBUSTNESS OF COMPENSATOR DESIGN ACCORDING 
TO CuRTAIN AND GLOVER (1986a). fJ =DESIRED STABILITY 

MARGIN, k =COMPENSATOR ORDER 

IC f3 /3 = 0. 0065 /3 = 0. 007 (3=0.008 
p+l 1 . 5233 0 . 6107 0 . 2233 
p+2 1 . 5823 0. 6695 0 . 2831 
p+3 1 . 5975 0. 6849 0 . 2999 

CXl 1 . 6409 0 . 7286 0 . 3449 

2.4 2.6 2.8 3.0 
( * tl -3) 

FIG. S. The £,.-distance between model 1 and 2 compared with the optimal robustness a (Gfl#) 
+f3 = 0.0065; !::,. /3 = 0.007; 0 /3 = 0.008. min u • 
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designed for model 2. Recall that for robust 
control we must have (see Theorem 3.8) 
llG~ - G~ll :5 amin(Ge#), where Gu is the un­
stable part of G2 . 

5. CONCLUSIONS 
Robust controller design makes it possible to 

allow for uncertainties in a plant one is 
controlling (for instance, a flexible structure), up 
to a precisely defined degree. The uncertainties 
may be both of parametric type (for instance, 
variation of a damping coefficient) and of 
structural type (for instance, viscous or structural 
damping). Although every stabilizing controller 
will have a certain degree of robustness, robust 
controller design means that the controller is 
constructed together with a robustness margin 
which indicates how much (in a certain norm) 
the actual plant may deviate from the nominal 
plant without impairing stability. Design meth­
ods of this type have only recently become 
available; in the past, nominal designs could only 
be checked by simulation. 

In this context, it should be noted that the 
widely discussed "spillover" effect is just another 
name for the misalignment between a controller 
designed for a nominal plant (in this case, a 
reduced-order model) and the actual plant (the 
full-order model). So this is a problem which is 
fully covered (and, in fact, made more precise) 
by the terminology of robustness. 

A robust controller design method for 
infinite-dimensional systems has been presented 
in Curtain and Glover (1986a) and in this paper 
we have applied this method to some examples 
of flexible structures. As a result, we have 
obtained quantitative statements about the 
degree of accuracy to which a flexible structure 
has to be known in order to be able to increase 
the overall damping by a certain amount, using 
low-order compensators. This gives an idea of 
the orders of magnitude that one should be 
talking about in the discussion on active control 
of flexible structures. 

We would like to mention the following 
specific conclusions. 

(1) It turns out that models that are 
structurally distinct and that show, therefore, 
very different pole location patterns (cf. Fig. 3), 
may nevertheless, for certain parameter values, 
be quite close in the L.,-norm (cf. Fig. 4). The 
proximity is good enough so that a controller 
designed for a model with one type of damping 
may well stabilize a model with another type of 
damping. This would suggest that the modelling 
of damping is not critical, which is reassuring 
since the damping of especially the higher modes 
is hard to measure accurately. On the other 

hand, another variation we have tried is the 
insertion of a central disc having its own mass 
and inertia, and our results show that this kind 
of modification quickly leads to models whose 
Loe-distance from the nominal one is large. It has 
to be kept in mind, however, that we have been 
discussing a highly flexible structure in this 
paper, and the situation may be better for 
structures which already have a large central 
mass to start with. 

(2) The choice of a distance measure is, of 
course, a crucial one in any theory of robustness. 
In this paper, we have used the L .. -distance as 
defined in Curtain and Glover (1986a). This 
distance measure has several important ad­
vantages: its is readily computable, and there is a 
theory available which shows how to construct 
controllers that are optimally robust with respect 
to this measure (see Curtain and Glover, 1986a). 
However, there are also disadvantages. When 
using the L .. -distance, one is not able to compare 
plants that have a different number of poles to 
the right of the critical line that indicates the 
desired overall damping. A consequence of this 
is, for instance, that the theory is not even able 
to predict stability when a compensator is 
applied to a model which is more strongly 
damped than the nominal model to such a 
degree that it has fewer poles to the right of the 
critical line. 

In fact, if one takes a parameter in a nominal 
plant and varies it continously from its nominal 
value, then a plot of the L .. -distances from the 
original model against the parameter values will 
show asymptotes whenever one of the poles of 
the model crosses the critical line. This is 
illustrated in Fig. 4, and from the plot one has 
the impression that the presence of the 
asymptotes has a very strong influence on the 
behavior of the Loo-distances. The peculiarities of 
the Loe-metric are also illustrated by the fact that 
the set of models of type 1, whose poles will be 
shifted beyond the line Re s ::::; - {3 ({3 = 0. 007) by 
a maximally robust compensator for this 
purpose, is not the subset of the corresponding 
set for {3 = 0.0065. This is possible because there 
is a difference between the shapes of balls in the 
L .. -metrics corresponding to {3 = 0.007 and to 
{3 = 0.0065. 

Of course, the problem with the L.,-metric is 
typical for flexible structures, where one has a 
number of poles whose real values are close 
together in the neighborhood of feasible values 
of the the overall damping margin. This problem 
cannot be remedied by frequency-dependent 
weighting, and a totally different measure would 
have to be used in order to be able to compare 
models with different numbers of right half plane 
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poles. Such a measure is given by the graph 
metric defined in Vidyasagar (1984); however, 
this metric is as yet not effectively computable, 
and only limited knowledge is available about 
optimally robust controller design in the sense of 
the graph metric. 

(3) Methods of designing optimally robust 
compensators for infinite-dimensional systems 
are not expected to lead, in general, to 
low-order controllers. In principle, one could 
think of doing optimization with a constraint on 
the controller order, but this is probably rather 
ambitious. A somewhat less demanding ap­
proach could consist of a "reasonable" method 
of approximation of optimally robust compen­
sators. The method proposed in Curtain and 
Glover (1986a), which has been followed in this 
paper, is an approximation of the plant by a 
low-order system for which an (optimally robust) 
low-order compensator can be designed. If the 
approximation of the real plant is good enough 
compared with the robustness margin of the 
compensator then the plant will be stabilized by 
the compensator, and a certain robustness 
margin will be left (equal to the original margin 
minus the approximation error). Our results in 
Table 3 and Fig. 5 indicate that this approach 
works reasonably well for flexible structures. 
The range of <l'1-values for which stabilization of 
model 1 is guaranteed is decreased by 6% for 
~ = 0.0065 and by 54% for ~ = 0.007 when a 
compensator of order p + 3 is used rather than 
the optimal one (of order oo). 
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