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INTRODUCTION 

Extinction of local populations in the field is not easily assessed. 
Important confounding factors are the subjective criteria used to define the 
term "local population", to select the scale of spatial heterogeneity under 
consideration and to infer local population extinction from population 
samples. Yet there exists a wealth of studies suggesting that local 
population extinction is not a rare phenomenon. In two recent papers 
Murdoch et al. (1984, 1985) argued that local populations of scale insects 
in California (Olive Scale, Red Scale, and Cottony-Cushion Scale) and 
Larch sawflies in Manitoba were driven to extinction by parasitoids. 
Similar phenomena have been reported for herbivore-plant systems, such 
as Ragwort and a moth (Van der Meijden, 1979; Van der Meijden et al., 
1985 ), and for predator-prey systems, such as backswimmers, waterbugs 
and mosquitofish feeding on mosquito larvae (Murdoch er al., 1985), and 
phytoseiid mites feeding on spider mites (Huffaker, 1958; Huffaker et al., 
1963; Takafuji et al., 1983; Sabelis and Van der Meer, 1986). 

Even when local populations exhibit unstable dynamical behaviour, one 
may still observe population persistence at a larger spatial scale. Indeed, 
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local predator-prey cycles may proceed out of phase and consequently the 
predators will not wipe out their prey everywhere at the same time. Spatial 
heterogeneity thus creates the possibility of a "hide and seek" game and, at 
least in principle, global persistence may occur despite local extinctions 
(Maynard Smith, 1974; Roff, 1974; Hilborn, 1975; Zeigler, 1977; Hastings, 
1977; Gurney and Nisbet, 1978; Crowley, 1978, 1981; Hogeweg and 
Hesper, 1981; Chesson, 1982 ). 

Two important questions still await a detailed and complete answer (see 
also Hassell and Sabelis, 1987): 

( 1) How can asynchrony of local predator-prey cycles be main­
tained, given the many and varied ways in which the environment, the 
predators, and the prey can all have a synchronizing effect on local interac­
tions? 

(2) Can asynchrony between local cycles indeed produce a prey 
refuge in space and time whose net effect acts as a stabilizing mechanism 
analogous to that of "genuine" refuges in classic predator-prey models? 

In order to answer these questions many factors have to be considered. For 
instance, a variable predator-prey interaction period may enhance 
asynchrony. In addition, small prey colonies may be more or less 
"invulnerable" (since they are not easily detected by predators) and hence 
constitute a temporary refuge in much the same way as invulnerable 
juvenile stages of hosts are in the context of parasitoid-host interactions 
(Murdoch et al., 1987). Similarly, the class of prey searching for a suitable 
patch to found a new colony (prey "aireal plankton") is invulnerable to 
predation. We intend to investigate systematically the influence of such 
factors in future work, exploiting the framework of structured population 
models (Metz and Diekmann, 1986) to build detailed and, hopefully, more 
realistic models. The sole aim of this paper is to call attention to a less 
direct (and therefore easily overlooked) factor which diminishes the effects 
of synchrony: the founding of new prey colonies by prey which leave a 
predator-invaded patch during the interaction period. By analyzing some 
(over)simplified models we will show that this dispersal process has a 
strong stabilizing influence. 

Two Simplified Versions of Hastings' Predator-Prey Patch Model 

We will concentrate on two simple predator-prey patch models which 
are essentially due to Hastings (1977). Both models apply to a situation in 
which patches can belong to three possible categories and where there is 
just one transition possible from each category, viz., empty patches --+ prey 
(invaded) patches --+ predator (invaded) patches --+ empty patches. The 
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invasion rates of predators and prey are taken to be proportional to the 
number of patches they currently occupy (implying that all patches are 
equally accessible from all other patches and that interpatch dispersal is 
instantaneous). The two models differ in that the first assumes a negative 
exponential distribution of the predator-prey interaction period whereas 
the second assumes that this interaction period has a fixed length. 

The first model is described by the system of differential equations: 

dx 
dt =a(x+ey)-bxy 

dy 
dt =bxy-dy. 

( 1) 

Here x denotes the number of prey patches and a the rate at which dispers­
ing prey from an arbitrary prey patch found new colonies in patches which 
were still empty (note that x will increase exponentially in the absence of 
predators). The rate at which predators invade an arbitrary prey patch is 
given by by, where y denotes the number of predator patches and b a 
"reaction" coefficient. For an arbitrary predator patch there is a constant 
probability per unit of time d that first the prey and then the predators go 
extinct. Or, in other words, the interaction period following predator 
invasion is exponentially distributed with mean d- 1• Finally and most 
importantly, the rate at which prey dispersing from an arbitrary predator 
patch found new prey colonies in empty patches is given by ae. Hence, e 

indicates the contribution of a predator patch to the creation of new prey 
patches relative to the contribution of a prey patch. Note that e > 1 means 
that prey dispersal from predator patches is larger than from prey patches 
(which can be the case if the presence of predators enhances the tendency 
of the prey to disperse). 

The system of differential equations ( 1) admits a non-trivial equilibrium, 

x= d/b, y = ad/(b(d- ea)), (2) 

which is biologically relevant (i.e., positive) if and only if d exceeds ea (if 
ea> d the number of prey patches will grow exponentially even in the 
presence of the predators). When e = 0 the system reduces to the familiar 
Lotka-Volterra system for which the equilibrium is neutrally stable. In 
other words, when e = 0 we are precisely at the edge of the stable-unstable 
transition. A straightforward analysis (see Appendix 1) shows that the 
equilibrium is stable (globally and exponentially) when e > 0. We conclude 
that prey dispersal from predator patches can act to stabilize populations 
of predator and prey at a large spatial scale. 

653/34/2-6 
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For a set interaction period of length d-- 1 our variant of Hastings' model 
is described by the system 

dx 
- = a(x + ev) - bxv dt . . 

(3) 

y(t) = b r ... x(s) y(s) ds. 
t--d- I 

The integral equation for y states that at time t the number of predator 
patches equals the sum of those prey patches which were invaded by a 
predator during the time interval [t - d- 1, t]. The non-trivial equilibrium 
of (3) is again given by (2). Using the methods outlined in the appendix of 
Hastings' 1977 paper, the local stability of this equilibrium can be 
investigated. It turns out that now the equilibrium is unstable when e = 0. 
However, when e is sufficiently large (depending on ad 1 ) one obtains 
stability. The results are given in Fig. 1, while Appendix 2 gives an 
explanation of how they were derived. Again, we conclude that prey disper­
sal from predator patches has a significant effect on overall stability. 
Moreover, we note that, as expected, distributed interaction periods allow 
for a larger domain of stability than set interaction periods. 

Finally, let us comment on the difference between the original Hastings 
models and our versions of them. The original models contain yet another 
stabilizing mechanism, viz., a possible lack of empty patches described by a 
logistic factor in the term corresponding to the creation of new prey 
patches. In the original version of model (2) one can also observe the 
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FIG. 1. Stability diagram of the model described by system (3) (see text). 
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stabilizing effect of prey dispersal from predator patches by noting that the 
stable region in the (a, b)-parameter plane is substantially larger when e = l 
than when e = 0 (see Fig. 1 in Hastings, 1978 ). We have eliminated the 
logistic factor in order to demonstrate that prey dispersal from predator 
patches alone (i.e., in the absence of any other stabilizing mechanism) can 
stabilize the equilibrium. 

Admittedly, the assumptions underlying the models discussed above are 
simplistic and the relative importance of prey dispersal from predator 
patches as a stabilizing mechanism is yet to be assessed in more elaborate 
models. Nevertheless the results of the stability analysis presented in this 
paper are interesting in showing that a selectively advantageous property of 
the prey may confer stability to a predator-prey system that would be 
otherwise unstable. 

APPENDIX 

The Jacobi matrix corresponding to the linearization of (I) m the 
equilibrium (2) is given by 

( ;:;: ea:d). 
d-ea 

For a, d, e > 0, and ea< d the determinant is positive while the trace is 
negative. Hence both eigenvalues have negative real part and the 
equilibrium is locally exponentially stable. Global stability follows by 
applying Bendixson's criterion after the change of variables x = exp(u), 
y=exp(r) (see Knobloch and Kappel, 1974, p. 193; Hale, 1969, p.63). 

APPENDIX 2 

The following scaling considerations facilitate the analysis of system (3 ). 
By taking dt as the new time variable we may put d= I provided we 
change a into ad 1 and h into hd 1 while keeping e the same. The constant 
hd 1 now only governs the scale of x and y without affecting the dynamics 
(indeed, by scaling both x and y with this factor it disappears from the 
equations). Therefore, we study the system 

dx 
-=ad 1(x+ ey)-xy 
dt 

y(ll=f' x(s)y(s)ds 
I I 

(4) 
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and in particular the local behaviour near the equilibrium 

x= 1, (5) 

If we linearize about the equilibrium, substitute an exponential trial 
solution, and do some algebraic manipulations we arrive at the charac­
teristic equation 

l -A.K(l) + CK(A.) + D = 0, (6) 

where by definition 

K(A.) =(I -exp( -A.))/l (7) 

and 

e(ad- 1 ) 2 
D = _1 ___ e_a_d __ ,_,.1 (8) 

(notation in accordance with Hastings (1977)). The equilibrium will be 
locally exponentially stable if all roots of ( 6) have negative real parts and 
unstable if at least one root has a positive real part. Therefore the stability 
boundary in the (ad- 1, e)-parameter plane is (partially) characterized by 
the property that ( 6) has a root precisely on the imaginary axis. As 
Hastings observed, we can exploit the fact that (6) is linear in C and D to 
parameterize the stability boundary in the ( C, D)-parameter plane by the 
position of the root on the imaginary axis. Indeed, putting A.= iw, splitting 
(6) into its real and its imaginary part, and solving for C and D we obtain 

C sin(w)- w 
=W ' cos(w)- 1 

2cos(w)-2 + w sin(w) 
D= . 

cos(w)-1 
(9) 

Fortunately we can invert the transformation (8) from the (ad- 1, e)­
parameter plane into the ( C, D)-parameter plane. The inverse transfor­
mation reads 

ad- 1 = C+D, 
D 

( 10) 
e= 2D 2 + 3CD + C2 • 

The stability boundary in Fig. 1 was computed by combining (9) and (10) 
and letting w traverse the interval [O, 2n] (note that both C and D are 
even in w so that we get exactly the same curve for w E [ - 2n, 0]; this 
corresponds to the fact that complex roots always occur in conjugate 
pairs). One needs additional arguments to make sure that this really is the 
stability boundary since, at least in principle, roots may return to the left 
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half plane with a higher value of w or curves corresponding to (9), (10) 
with w E [2krc, 2(k + 1) re], k::;?; 1, could enter the region labelled "stable 
equilibrium" in Fig. 1. In the present case, however, such possibilities can 
be excluded, but the proof will not be given here (available on request). 

At the stability boundary a pair of conjugate roots crosses the imaginary 
axis and therefore the onset of instability is characterized by periodic 
behaviour (the so-called Hopf-bifurcation). 
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Note added in proof: More elaborate models of predator··prey-plant interactions in 

patchy environments are discussed in two forthcoming publications: DIEKMANN, 0., METZ, 

J. A. J., AND SABELIS, M. W. 1988. Experimental and Applied Acarology 5 (extra issue; part 2). 

DIEKMANN, 0., METZ. J. A. J.. AND SABEL!S, M. W. 1988. Proceedings of a Workshop on 

Selected Topics in "Biomathematics, llASA," Laxenburg, Austria. 
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