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This is an expository paper showing the interplay between the analysis of numerical methods for evolutionary 
partial differential equations and some developments in the stiff ordinary differential equation literature. The 
notions of contractivity, one-sided Lipschitz conditions, logarithmic norms, B-convergence and order reduction 
are of particular importance. 

1. Introduction 

The last decade has witnessed a large development in the analysis of numerical methods for 
linear and nonlinear stiff systems of ordinary differential equations (ODEs). The simple scalar 
test equation u' = /...u has been supplemented by more general model systems, like (following 
Dahlquist [9] and Butcher [7]) dissipative systems. We know at present the behaviour of large 
classes of one-step or multistep ODE methods when applied to such more demanding tests. The 
notions of logarithmic norm (Dahlquist [8]) and one-sided Lipschitz condition have assumed an 
ever-increasing role etc. The developments have not been confined to the issue of stability. For 
one-step schemes the structure of the local error is now much better understood than before, 
mainly due to the B-convergence theory of Frank, Schneid and Ueberhuber [11-13] (which 
extends earlier work by Prothero and Robinson, see [10]). For one-step methods, Dekker and 
Verwer [10] have gathered together most of the results we are referring to. 

The purpose of this expository paper is to show the relevance of this stiff ODE material for 
the field of analysis of numerical methods in partial differential equations (PDEs). We have in 
our mind several possible interactions. People with an ODE background may wish to apply their 
material to concrete PDE cases or may like to know the sort of ODE result that would be more 
beneficial to the PDE research. People with a PDE background should know that the recent stiff 
ODE literature can help them considerably. 

The paper is confined to one-step (two-level) discretizations. Furthermore, and in order to 
keep within reasonable bounds, the exposition is centered around contractive, linear non-autono
mous problems. The final Section 6 discusses the extensions to more general situations. Sections 
2, 3 and 4 are devoted, respectively, to the PDEs to be solved, to their discretizations in space 
and to their discretizations in time. Our treatment emphasizes the parallelism between these three 
realms. Section 5 examines certain aspects of the local error, notably the order reduction 
phenomenon, which renders possible for the order of convergence in time of a PDE scheme to be 
strictly lower than the classical order of the ODE method used for the integration in time. 
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2. Initial value problems in PDEs 

In this section we introduce the PDE problems to be considered in the rest of the paper. With 
those readers without a large PDE background in our mind, the discussion is slightly lengthier 
than it would be necessary otherwise. 

2.1. A simple example 

We begin by presenting one of the simplest examples of a time-dependent PDE problem, 
namely 

0~x~1, t~O, 

u(O, t) = u(l, t) = 0, t ~ 0, 

u(x,O)=u0 (x), O~x~l, 

(2.la) 

(2.lb) 

(2.lc) 

where the initial datum u0 is in L2(0, 1), i.e. is a real, square-integrable function in 0 ~ x ~ 1. 
The method of separation of variables leads to the solution 

00 

u(x, t) = Lan exp(-n 2'Tl' 2 t) sin(n'Tl'x), (2.2) 
n=l 

where the an are the (sin) Fourier coefficients of u 0 , i.e. 
00 

u0 (x) = L an sin(norrx). (2.3) 
n=l 

A•rom these expressions, and recalling that the L2-norm of a function equals the square root of 
the sum of the squares of its Fourier coefficients, it follows easily that, if we consider a second 
initial datum v0 and denote by v = v(x, t) the corresponding solution, then, for each two 
nonnegative times t and s with t > s, 

llu(·, t)-v(·, t)llL2 ~ llu(·, s)-v(·, s)llL2 . 
(0,1) (0,1) 

(2.4) 

Here a symbol like u( ·, t) represents the corresponding function of x obtained by fixing the 
time at the value t. Thus, problem (2.1) is such that: (i) To each initial datum there corresponds a 
unique solution (2.2). (ii) According to (2.4) solutions u and v stemming from two different 
initial data become closer to each other in the evolution s ~ t, a behaviour called contractivity. 
Of importance is the fact that contractivity guarantees that small changes in the datum lead to 
small changes in the solution. 

However, not everything is plain sailing in the considerations above. In fact, it is well known 
that the series in (2.3) does not necessarily converge in the pointwise sense and the same must be 
true for that in (2.2), which reduces to (2.3) when t = 0. Therefore the right-hand side of (2.2) 
does not generally define a continuous function of x and t and the solutions we have been 
ceferring to are only generalized solutions. (See [22, Section 3.1; 21,26,27] for further discussion 
lf this important point. Recall that generalized solutions may possess physical importance.) To 
we genuine solutions, i.e. solutions for which u1 and uxx exist and for which the relations in 
1) hold, it is necessary to impose additional conditions on u0 • These conditions are of two 
ts: (i) u0 should possess continuous derivatives. (ii) u0 should satisfy certain compatibility 
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conditions with the boundary information. Since compatibility conditions play an important role 
later in the paper, it is appropriate to comment on them. We first note that if the solution u of 
(2.1) is smooth, it satisfies, not only the relations (2.lb), but also 

(a 2;ax2 )u{O, t)=(a 2;ax2 )u(l, t)=O, t~O, 

t ~ 0, 

(2.5a) 

(2.5b) 

a hierarchy of conditions at the boundary that follows by noticing that from (2.lb) we can write 

(a;at)u(O, t)=(a;at)u(I, t)=O, (a 2;at 2 )u(O, t)=(a 2;at2 )u(l, t)=O, ... 

while, from differentiation of (2.la), (a 2;at2)u = (a 4/ax 4 )u, .... On taking into account (2.lc) 
we can conclude that for the solution u to be smooth it is necessary that the initial datum u0 

satisfies successively 

u0 (0) = u 0 (1) = 0, 

(a 2;ax 2 )u0 (0) = (a 2;ax2 )u0 (1) = O, 

(a 4/dx 4 )u0 (0) = (a 4;ax4 )u0 (1) = O, 

In general, the smoothness of the solution (2.2) increases as the number of fulfilled compatibility 
conditions and the number of continuous derivatives of u0 increase . 

2.2. Abstract formulation 

It is useful to recast problem (2.1) in the following abstract form. We set X=L2(0, 1) and 
denote by D the subspace of X consisting of functions w for which (i) w" exists and is 
square-integrable and (ii) the homogeneous boundary conditions w(O) = w(l) = 0 hold. Further
more, we introduce the (linear) operator A in X, with domain D, that maps each w belonging to 
D into its second derivative w". With this notation, (2.1) can obviously be rewritten in the 
compact form. 

du/ dt =Au, t ~ 0, 

u(O) = u0 • 

(2.6a) 

(2.6b) 

The fact that the formulae (2.6) have the appearance of an initial value problem for a linear 
system of ODEs should not hide the following features which make the problem at hand 
essentially different from any system of ODEs. 

(i) The eigenvalues of the operator A (i.e. of the two-point boundary value problem w" = A.w, 
w(O) = w(l) = O) are given by - n 2'1T 2 , n = 1, 2, 3, ... , and therefore are negative but with 
arbitrary large magnitude. In this sense, (2.6) possesses infinite stiffness. 

(ii) As a consequence, A cannot satisfy in the L2-norm a (classical) Lipschitz condition 

llAw1 -Aw2ll ~Lllw1 -w2ll, (2.7) 

Uust take for w 1 - w 2 the nth normalized eigenfunction, then the left-hand side equals -n 2'1T 2 

while the right-hand side equals L, so that the inequality cannot hold). 
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In functional analysis jargon, A is a densely defined unbounded operator. Typically, parabolic 
problems lead to the infinite stiffness situation, whlle hyperbolic problems of ten possess purely 
imaginary eigenvalues of arbitrarily large magnitude. 

In principle, it is possible to discretize (2.6) in time by means of any of the standard ODE 
methods. However, we should note in this connection that the convergence of such a discretiza
tion cannot be immediately guaranteed: the classical theory of ODE methods (e.g. [15,16]) relies 
heavily on the use of a Lipschitz condition like (2. 7), something which is not available here. See 
[3,4] for examples of treatments of time discretizations (without space discretization) of PDEs 
like (2.6). 

2.3. Well-posed contractive problems 

In the remainder of the paper, we let Q be a bounded domain in IR d and let X be a Banach 
space composed of functions defined in Q and taking values in !Rs. We denote by A a 
time-independent linear differential operator which differentiates the functions of X with respect 
to the d spatial variables (the coefficients of A may depend on the space variables). With this 
notation (2.6) represents now a system of s partial differential equations for the s components of 
u. It is assumed that appropriate homogeneous boundary conditions have been incorporated by 
suitably restricting the domain of A, just as we did for the heat equation example. This abstract 
formulation can include both parabolic and hyperbolic problems. We suppose that A is such 
that: 

(HI) To each u0 in X there corresponds a unique (possibly generalized) solution of (2.6). 
(H2) For solutions of (2.6) the following contractivity property holds 

II u(t)- v(t) II x< II u(s)-v(s) II x' t >s > 0. (2.8) 

A necessary and sufficient condition for these requirements on A to hold is given in the 
Hille-Yoshida-Philips theorem (see e.g. Aubin [1, Chapter 14] or Kato [17, Chapter 9]). Under 
some auxiliary technical hypotheses, the condition is 

for each 7 > 0, I - 7A is invertible and II (I- rA)- 1 II < 1. (2.9) 

This requirement has an interesting numerical analysis interpretation: (I - rA)- 1 is the operator 
which maps each element w in X into the result of a step, starting from w, of the backward 
Euler rule applied to (2.6) with step length r. 

When the norm in X derives from an inner product ( ·, ·),it is possible to substitute (2.9) by 
the following dissipativity condition: 

for each x in the domain of A, (x, Ax)< 0. (2.10) 

Dissipativity conditions are a particular instance of one-sided Lipschitz conditions, see e.g. [10] 
(recall that here classical two-sided Lipschitz conditions like (2.7) do not hold). For conditions 
analogous to (2.10) and valid when X is not an inner product space, see e.g. [30]. 

It is not difficult to show [17] that (2.9) or (2.10) imply in particular that the spectrum of A 
does not intersect the positive half-plane Re(;\) > 0. However this spectral requirement is not, in 
general, sufficient to guarantee the contractivity of (2.6). An exception is given by the situation 
where X is an inner product space and the operator A is normal: in this case (2.9) and (2.10) are 
equivalent to the condition that the spectrum of A (which is real) lies in A.< 0. 

1 •.• · ...• I 
I•··.· ... ; 
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2.4. Non-autonomous problems 

So far the problems considered have been autonomous, since A in (2.6) has been assumed to 
be independent of t. The class of linear, autonomous problems is too narrow to display some 
important aspects of our subject. We therefore introduce the slightly more general problem, 

du/dt =Au+/( t ), t;;;,: 0, (2.lla) 

u(O)=u0 , (2.llb) 

where f is a function of t taking values in X. We assume that A satisfies the hypotheses 
(Hl)-(H2) mentioned in Section 2.3 and that f is smooth. In this case (see e.g. [l, Chapter 14]) 
the problem (2.11) possesses for each u0 a unique (possibly generalized) solution. Furthermore, if 
u(t) and v(t) are two solutions stemming from the two initial data u0 and v0 , the contractivity 
property (2.8) holds: this follows immediately from (H2) and the fact that the difference of two 
solutions of (2.lla) is a solution of the homogeneous equation (2.6a). 

A simple example on non-autonomous problem (2.11) is given by 

u I = u xx +I ( x' t)' 0 ~ x ~ 1, t ;;;,: 0' ( 2 .12) 

along with the boundary conditions (2.lb) and initial condition (2.lc). On differentiating (2.12) 
we find that, in this case, a smooth solution satisfies 

(a 2;ax2 )u(O, t) + f(O, t) = (a 2;ax2 )u(l, t) + /(1, t) = o, 

(a 4/ax 4 )u(O, t) + (a 2;ax2 )/(0, t) + (a;at)/(O, t) 

t;;;,: 0, 

=(a 4;ax4 )u(l, t)+(a 2;ax2 )/(1, t)+(a;a1)/(1, t)=O, t;;;.O, 

(2.13a) 

(2.13b) 

rather than (2.5). The relations (2.13) induce appropriate compatibility conditions that u0 and j 
should fulfill if the solution is to be smooth. 

3. Space discretization 

The discretization in space of our PDE problem (2.11), by means of finite differences, results 
in an initial value ODE problem 

dUh/dt = AhUh + fh(t ), t > 0, 

Uh(O) = lloh, 

(3.la) 

(3.lb) 

where h is the parameter of a grid in the closure of D having, say, m points; Uh = Uh ( t) is an 
array with m components consisting of approximations to u at the grid points (note that each 
component of Uh is in tum an s-dimensional real vector). The (m X s)-dirnensional, real square 
matrix Ah, the inhomogeneous term fh(t) and the initial condition U0h result from discretization 
of A, f(t) and u 0 respectively. Note that the dimension of Uh increases with decreasing h_ Finite 
element and ·spectral space discretizations can be catered for with very minor modifications (see 
[25)) and will not be treated here. We assume that a norm 11 • II for ( m x s )-dimensional real 
vectors has been chosen which is a discrete analogue of the norm employed in the space of 
functions X. 
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As an illustration of the foregoing notation we consider the central difference discretization of 
the single (s = 1) equation (2.12) on an equidistant grid X; = ih, i = l(l)m, h = 1/(m + 1). The 
matrix Ah takes the well-known form 

-2 1 
1 -2 1 

Ah=h- 2 1 -2 1 (3.2) 

1 -2 

fh(t) is the grid restriction of f(x, t) and a suitable discrete L 2-norm is given by 

The eigenvalues of Ah are 

h- 2 (-2 + 2 cos(n'IT/(m + 1)), n = l(l)m. 

Like those -n 2'1T 2 of the PDE, they are negative, but, of course, now there are only a finite 
number of them. The norm of Ah is given by the smallest eigenvalue and therefore is less than 
4h- 2 • Thus Ah satisfies a classical Lipschitz condition (2.7) with constant Lh = 4h- 2 • Of 
;mportance is the fact that this constant detoriates as h is decreased, something which could have 

'en anticipated by observing that in the limit h ~ 0 the matrices Ah approximate the PDE 
:rator, for which (2.7) does not hold. 

3.1. Contractiue semidiscretizations 

Leaving the heat example and returning to the general problem (2.11) and its semidiscretiza
tion (3.1), we observe that it is very natural to require that (3.1) should also satisfy a contractivity 
condition, thus imitating a property of the problem being discretized. More precisely, we say that 
(3.1) is contractive if, for two solutions Uh and Vh of (3.la), stemming from two different initial 
conditions, and ~or each nonnegative times t and s with t > s, 

(3.3) 

Note that, being linear, the problem (3.la) possess a unique solution for all positive t, provided 
that fh is continuous. The Hille-Yoshida-Philips theorem applies, in particular, to matrices and, 
therefore, the conditions (2.9) and (2.10) (with Ah instead of A) still characterize the contractive 
behaviour (3.3). It is again true that the spectral requirement that Ah has all its eigenvalues in 
Re( A)~ 0 is necessary for (3.3) to hold, but (unless Ah is normal and we use an inner-product 
norm) it is not sufficient. Note in passing that this shows the contractivity of the heat equation 
sernidiscretization studied above. 

A further characterization of the contractivity of (3.1), not available for the PDE itself, uses 
the notion of logarithmic norm µ[Ah] of Ah defined by 

[ ] Ii 111 + rAh II - 1 
JL Ah = m . 

T->0+ 7' 

This number, which depends on the matrix norm being employed, was introduced by Dahlquist 
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in his thesis [8] and independently by Lozinskij (see [10]) and has the important property of 
being the smallest constant C for which 

llexpaAh) II~ exp( C~), ~ > O. (3.4) 

Upon noticing that, in (3.3), 

Uh(t) - Vh(t) = exp((t-s)Ah)(Uh(s)- Vh(s)), 

we conclude that the condition 

µ[Ah]~O (3.5) 

is necessary and sufficient for (3.3) to hold. The condition (3.5), unlike (2.10), is valid in norms 
which not necessarily stem from an inner product. Also (3.5) can be checked in practice more 
easily than (2.9), since closed-form expressions exist for µ[Ah] in the most commonly employed 
norms [10]. 

3.2. Convergence of the semidiscrete solution 

For the convergence analysis of this subsection, we suppose that (2.11) possesses a smooth 
genuine solution u(x, t) and denote by uh(t) its restriction to the grid (generalized solutions 
could also be considered in convergence analysis, see [20,22,26,27]). We restrict our attention to a 
bounded time interval 0 ~ t ~ T and say that (3.1) is convergent if 

max II uh(t) - Uh(t) II= o(l) ash -o, 
0.;;1.;;T 

provided that II uh(O) - Uh(O) II = o(l). Convergence of order p* is defined in the obvious way, 
i.e. replacing o(l) by O(hP*) in both occurrences of the symbol o(l). For simplicity we assume 
hereafter that Uh(O) is taken to be uh(O), so that there is no error in approximating the initial 
function. 

The vector uh(t) - Uh(t) is referred to as the global error in the semidiscretization. Also of 
interest is the truncation error of (3.1) defined by 

ah(t) =Ah(t)uh(t) + fh(t) - (d/dt)uh(t), (3.6) 

which, in practical settings, can be easily bounded by means of a simple Taylor expansion (recall 
that uh(t) is, by assumption, smooth). The semidiscretization is consistent if 

max II o:h(t) II= o(l) ash- 0, 
O~t~ T 

with consistency of order p* defined again in the obvious way. (Our heat equation semidiscreti
zation is, of course, consistent of the second order.) 

So far the notion of contractivity of (3.1) has been introduced as a desirable property that the 
semidiscretization should satisfy in order to imitate the corresponding PDE property. The main 
result of this section is that, for a (p*-) consistent semidiscretization, contractivity implies (p*-) 
convergence. To prove this, subtract (3.6) from (3.la) to arrive at 

(d/dt)(uh(t)- Uh(t)) =Ah(uh(t)- Uh(t))-o:h(t) 

and use the variation of constant formula 
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As noted before, contractivity is equivalent to II exp( ~Ah) II ::::;; 1 and convergence thus foll< 
easily. Note that contractivity is not necessary for convergence: the previous proof also he 
under the less demanding hypothesis that µ.[Ah] can be bounded above by a constant indep 
dent of h, so that llexp(~Ah) II can be bounded independently of h (cf. (3.4)). Examples 
convergence proofs of semidiscretizations along the previous lines can be seen in [33]. 

4. Time discretization 

In order to get numerical approximations to the solution u of (2.11), the semidiscretizat 
(3.1) must be integrated in time. We suppose that this is done by means of a convergt 
pth-order one-step ODE solver, with a constant time step T, leading to a recursion 

un+ 1 =R(TAh)Un+Fn, n=0,1,2, .. ., U0 given, (4 

where R(.) is the so-called stability function associated with the method and Fn is a vec 
originating from the nonhomogeneous term of (3.1). 

4.1. Contractiue time stepping 

In the remainder of the paper, it is always assumed that the semidiscretization (3.1) 
onsistent and contractive (and hence convergent). Once more it is natural to demand that · 
.illy discrete solution un also exhibits a contractive behaviour, or more precisely that, if vn i 

.>econd sequence, satisfying the recursion (4.1), 

11un+1 _ vn+i II::::;; II un - vn II, n = o, 1, 2, .... 
Clearly a necessary and sufficient condition for ( 4.2) to hold is that 

II R ( TAh) II ::::;; 1. 

(4 

(4 

The question thus arises of how to choose the ODE method and the value of T, so that tii 
stepping in the contractive system (3.1) leads to contractive fully discrete solutions. It is probal 
here that the recent literature in stiff ODEs is helpful to the PDE researcher: 

(Cl) The implicit Euler rule performs contractively when applied to any contractive 01 
problem, regardless of the value of T and of the norm employed. This follows trivially from c 
remark after formula (2.9). A direct proof can be seen in [10, pp. 46-47]. 

(C2) Spijker [30] has shown that if an ODE method behaves contractively for any OI 
problem, for any norm and any T, then its order p cannot exceed 1. 

(C3) If the matrix Ah and the value T0 are such that II (I+ T0 Ah) II ::::;; 1 with T0 maximal (i 
the explicit Euler rule with step To behaves contractively), then Spijker [31] shows that a one-st 
method applied to (3.1) behaves contractively for any step size T::::;; rT0, with r the so-call 
contractiuity radius of the method (see [31]). The upper bound on 'T is optimal, in the sense tb 
matrices Ah exist such that violation of the bound results in lack of contractivity. Here the no1 
can be arbitrary; Spijker provides an interesting application to a convection-diffusion problt 
studied in the maximum norm. 

(C4) The negative result in (C2) is, to some extent, counterbalanced by the fact that the 
exist implicit Runge-Kutta (RK) methods of arbitrarily high order that perform contractivt 
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for any value of r and any contractive ODE problem, provided that the norm considered derives 
from an inner product. In fact the literature on contractivity of RK methods is very well 
developed, starting with the paper by Butcher [7] which was in turn motivated by work by 
Dahlquist [9] on multistep methods. To survey all the contributions by Burrage, Butcher, 
Crouzeix, Dahlquist, Hairer, Hundsdorfer, Jeltsch, Spijker, Wanner and others is out of the 
scope of this article and the reader is referred to [10, Chapter 4]. 

(C5) Since the norm of a matrix always exceeds its spectral radius, ( 4.3) implies that, for 
contractivity, all the eigenvalues of R( rAh) should be in modulus ~ 1. These eigenvalues are 
given by R( rA.h) with ;\h an eigenvalue of Ah, and, as a consequence, the spectral condition 

r is such that the products rA.h, A.h an eigenvalue of Ah, belong to the region 
of absolute stability of the ODE method {z: I R(z) I~ 1} 

is necessary for contractivity in any norm . 

(4.4) 

(C6) In the case of inner-product norms and normal Ah, the norm actually equals the spectral 
radius and ( 4.4) is also sufficient for contractivity. An interesting corollary of this result is that, 
for an A-stable method no restriction on r is needed. As a further application of the sufficiency 
of ( 4.4), it is trivial to show that the explicit Euler time stepping applied to our heat equation 
semidiscretization (or in other words the standard explicit method for the heat equation) is 
contractive (in L 2 ) provided that r /h 2 ~ t. The implicit Euler and trapezoidal rules, being 
A-stable, behave L 2-contractively in our model problem, regardless of the value of r. 

(C7) It should be emphasized that in general the spectral condition ( 4.4) guarantees contrac
tivity only under the stated hypotheses, namely that we work with an inner-product norm and 
that Ah is normal. As we will discuss later, attempts to use it outside of this setting may result in 
a catastrophic error propagation. However, it is possible to use a deep theorem due to von 
Neumann [19,23] to show that A-stable methods behave contractively for any step size when 
applied to contractive linear ODEs provided that the norm is of the inner-product type. Note 
that the normalilty of the matrix is not required, as distinct from (C6). Spijker [31, Theorem 6.1] 
provides a further application of von Neumann's result to contractivity studies. See also [14]. 

4.2. Convergence of the fully discrete solutions 

We now position ourselves in the setting of Section 3.2, where (2.11) possesses a smooth 
solution u with grid restriction uh and the interest is confined to a bounded time interval 
0 ~ t ~ T. We study the convergence of the fully discrete solutions, i.e. we wish to know whether 

max 11 uh(nr) - un 11 = o(l), 
O~nr~ T 

as h and r tend to zero subject perhaps to appropriate restrictions. For simplicity we assume 
hereafter that there is no error in approximating the initial condition so that U 0 = uh(O). The 
hypotheses made so far, namely that the sernidiscretization is contractive and consistent (and 
hence convergent) and that the ODE method is convergent, do not guarantee by themselves such 
a fully discrete convergence if h and r tend independently to zero. For example consider the 
explicit heat equation method mentioned above, where it is well known that the supplementary 
hypothesis r / h 2 .,;:;;; ~ must be imposed to obtain convergence. More generally, consider the 
inequality 

11 uh(nr) - un 11 .,;:;;; 11 uh(nr) - Uh(nr) 11+11 uh(nr) - un 11- (4.5) 
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The convergence of the semidiscretization implies that the first term in the right-hand side tends 
to 0 as h ~ 0. For a convergent ODE solver II Uh(nr) - un II tends to 0, as T ~ 0, for fixed h. 
However, the system (3.1) to which the ODE solver is applied changes with h. Therefore, in 
order to achieve the convergence of the fully discrete scheme we must demand that the 
convergence of the ODE solver be uniform, as h varies, in the family of problems (3.1). Such a 
uniformity cannot be established by means of the classical straightforward bounds for ODE 
solvers [15,16] as those bounds typically include factors exp(LhnT), where Lh is the classical 

Lipschitz constant for Ah, and we know that Lh must grow with decreasing h. The idea of error 
bounds that hold uniformly for whole classes of stiff problems has been dominant in the recent 
ODE literature; see notably the B-convergence theory of Frank, Schneid and Ueberhuber 
[11-13]. 

A sufficient condition for the convergence of the fully discrete approximations will be 
presented next. We emphasize that we do not work with the splitting ( 4.5): any conceivable 

bound for II Uh(nT) - un II would involve estimating the derivatives of the semidiscrete solution 
Uh and this is something we prefer to avoid [33]. In what follows, the time space grids are refined 
subject to a condition 

(4.6) 

with 0 < q <co, 0 < r ~ oo (r = oo means, of course, no restriction). 
We introduce the full truncation error of (4.1) defined by 

/r+ 1 =uh((n+ l)T)-R(TAh)uh(nT)-Fn, (4.7) 

and say that the fully discrete method (4.1) is (fully) consistent, if, as T and h tend to zero subject 
to (4.6), 

B= max 11.Bn+lll =o(T). 
O~n-r~T 

(4.8) 

It is easy to prove that, if (i) a fully discrete method is consistent, and (ii) as T and h vary subject 
to (4.6), the ODE solver with step T is contractive on the problem (3.1), then the fully discrete 
method is convergent. To see this, subtract (4.7) from (4.1) to get 

uh((n+l)T)-un+ 1 =R(TAh)(uh(nT)-Un)+,an+ 1 , n=O, l, ... ,[T/T]-1, 

by contractivity and (4.8) 

lluh((n+l)T)-un+l 11 ~ lluh(nT)- Unll+B, n=O, l, ... ,[T/T]-1, 

and induction shows that 

(4.9) 

The requirement of contractivity, which we have just shown to be sufficient for the convergence 
of consistent fully discrete approximations, is not necessary. The minimal requirement leading to 

ich a convergence is that of Lax stability 

sup{ llR(TAhr11: T, h subject to (4.6),0~nT~ T} <co 

4.3) and see [20-22,26-28]. 

ry often in the literature the spectral condition ( 4.4) is used as a criterion for choosing the 
:tep. In cases where ( 4.4) does not imply contractivity (i.e. cases where the matrices are not 
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normal or we work with norms not deriving from inner products) this spectral condition is likely 
not to imply Lax stability and, therefore does not guarantee convergence. The numerical results 

reported in [10, pp. 273-274] are very illuminating in this connection: the spectral condition 
ensures that on any fixed grid any error will be eventually damped as t increases without bound, 
but makes possible for the errors to grow catastrophically prior to that damping. Useful 
references in this area are e.g. [18,24]. 

5. The structure of the full truncation error: Order reduction 

We have just seen in (4.9) that, for contractive time steppings, the error uh(nT) - un can be 
readily bounded, once bounds for the full truncation error 13n + 1 are available. The question 

remains of how to estimate this truncation error. Our aim is to derive, under reasonable 
hypotheses, bounds for II 13n+l II of the form 

(5.1) 

where k is a positive number and C denotes a constant, depending on Tandon the smoothness 
in time of the PDE solution u, but independent of T, h and n, 0 .s;; nT .s;; T. Since our ODE 

method has been assumed to be of order p, we would naively expect that in (5.1) k can be taken 
equal top+ 1. However the fact is that often the exponent k can only be taken to be less than 
p + 1, so that the order of convergence in time of the fully discrete scheme is strictly less than the 
(classical) order of the ODE method used in the time stepping, a phenomenon called order 

reduction. 

Examples of derivation of bounds (5.1) for commonly used, low-order ODE methods can be 
seen in [33]. In [3] Brenner, Crouzeix and Thomee consider the order reduction phenomenon 
mainly in the case where the time stepping is directly applied to the PDE (i.e. no space 
discretization). They consider implicit one-step methods. The implicit case has been further 
considered in [32] by Verwer; illustrative numerical experiments are given. Explicit Runge-Kutta 
schemes are dealt with in [29]. Lack of space prevents us from reporting all these contributions 
and we here limit ourselves to a partial presentation of the explicit case, which is nevertheless 
sufficient to show the flavour of this sort of research. There is a close connection with the 
B-convergence theory mentioned before and references [5,6,11-13] are relevant. 

5.1. The structure of the full truncation error 

In the remainder of the section, we restrict our attention to the case where the ODE method 
used for the system (3.1) is an er-stage pth-order explicit Runge-Kutta method given by the 

array 

C1 

Cz m21 

(5.2) 

cu mu1 mu,u-1 

bl bu-l b" 
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As usual we let 
i-1 

Lh;=l, L:miJ=ci, 
i=l j= 1 

and set mu+l.J = b1 (1 ,,;;,j,,;;, a), Cu+l = 1. 
We begin by defining the residual associated with the ith stage (i = 1, -_.,a+ 1) of the step 

n---?n+l 

i-1 

ri =uh ( ( n + c;) 'T) - uh ( nT) - 7 L m iJ [A huh ( ( n + cJ 7) + fh ( ( n + c1) T)]. (5 .3) 
j=l 

Note that by definition r1 = 0 and that the residuals are defined for the PDE solution uh rather 
than for the solution Uh of the ODE problem (3.1) to which the RK scheme is applied. Upon 
using (3.6) we can write 

i-1 

r; =uh ( ( n + c;) T) - uh ( nT) - 7 L m;1 [ ( d/dt) uh ( ( n + c) 7) + ah (( n + c1) 'T)] 
}=1 

and, if we assume that uh possesses p + 1 derivatives, we can Taylor expand uh and (d/dt)uh to 
arrive at an expression 

r =d. 7 2u<2l(nT) + · · · +d 7Pu(Pl(nT) + R I 12 h lp h I" (5.4) 

Here d;1 are coefficients which only depend on the array (5.2) and R; is the sum of the 
remainder in the Taylor expansion plus the term TLm;1ah((n + c)T) which is the contribution of 
the space error. 

We write down the Runge-Kutta equations (cf. (5.2)) 
i-1 

r; = un + 'T L m J Ah 1) + fh ( ( n + c) 'T)]' 1 ,,;;, i,,;;, (J + 1, 
)=1 

U n+l y 
= a+l' 

and subtract from them the relations (5.3). In this way we obtain a set of equations linking the 
global errors 

the intermediate errors uh (( n + c;) T) - r; and the residuals r;. Elimination of the intermediate 
errors yields an expression for the full truncation error 

a+J 

13n+I = L Q;( 7Ah)r;, 
i= J 

(5.5) 

where Q; is a polynomial of degree ,,;;, a+ 1 - i, whose coefficients depend only on (5.2). Note 
(in connection with the B-convergence theory) that the Q; reflect the internal stability of the RK 
scheme, i.e. the effect on un+J of perturbations in the computations of the internal stages of the 
step n ---? n + 1. Substitution of (5.4) in (5.5) finally leads to the full truncation error expression 

a+l 

13n+l = LµIJTl+JA~uhil(nT) + L Q;( TAh)R;, (5.6) 
I,) i=2 

• 
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where µIJ are scalars which only depend on (5.2) and the summation l,j extends to 1 ~ l ~a - 1, 
2 :;;;;.j:;;;;. p, p + 1 :;;;;. l + j. The important point to notice is that in (5.6) we find not only derivatives 
of uh (which can be supposed to behave nicely as h ~ 0) but also powers of Ah. These are 
expected to have norms which increase with decreasing h, as commented in Section 3. 

5.2. Order reduction 

The subsequent analysis is carried out under the following (reasonable) hypotheses: 

(Hl) The restriction uh(t) of the PDE solution u possesses p + 1 derivatives, which can be 
bounded uniformly in h and t (0:;;;;. t:;;;;. T). 

(H2) The space-time grid refinement is carried out subject to a condition (4.6) with finite r 
(we are dealing with explicit methods) and, for this refinement, T II Ah II can be bounded 
independently of T and h. (In the heat equation model problem, (H2) clearly holds if we set in 
(4.6) q = 2, r arbitrary but finite.) 

The hypothesis (Hl) implies that in (5.6) the terms R;, which originate from Taylor expanding 
uh and the space discretization, satisfy a bound of the form (5.1) with an optimal k = p + 1. On 
the other hand (H2) implies that II Q;( TAh) II can be bounded uniformly in 7 and h, and 
therefore the second sum in (5.6) admits a bound (5.1) with k = p + L 

Thus it remains to estimate the first sum in (5.6). We note again that each term is 0( 7P+ 1), in 
agreement with the fact that the method has order p, but not uniformly in h. 

(1) A first way of obtaining an h-uniform bound for a term like 7I+JA~uhil(n7) is to write 

and employ (Hl) and (H2). The price to be paid is that for such a term the order in 7 is now j 
rather than the former l + j:;;::, p + 1. Generically (i.e. for most RK schemes) the truncation error 
(5.6) has µ 1; =/= 0 for l = p - 1, j = 2 so that in this way we only obtain an 0( 7 2 ) bound for the 
truncation error, regardless of the classical order p of the method being used. We emphasize that 
this order reduction, where the local error in time has only been shown to be 0( 7 2 ), is not 
induced by lack of smoothness in the solution but rather by the presence of powers of Ah in the 
truncation error. 

(2) The pessimistic conclusion we have just reached is in line with the results of the 
B-convergence theory, which gives prominence to the so-called stage order rather than to the 
classical order. Explicit methods possess a stage order equal to 1 regardless of the classical order. 
In actual fact the situation may not be so bad as predicted in (1), since it is often possible to 
estimate expressions like A~uiil(n7) in a second, more advantageous way that we present next. 
For simplicity we consider only the heat equation example (3.2). Let v(x), 0:;;;;. x:;;;;. 1, be a 
smooth function and vh its restriction to the grid. The 2nd, ... , ( m - l)th entry of Ahvh 
approximate values of vxx and therefore can be bounded independently of h. However the first 
and last entry will behave like h- 2 unless v(O) = v(l) = 0. Likewise, the 3rd, ... , ( m - 2)th entries 
of A~vh approximate values of vxxxx and are thus bounded. However, the lst, 2nd, (m - l)th and 
mtb entries will be bounded only if v(O) = v(l) = vxx(O) = vx)l) = 0. The general trend should 
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now be clear. For l = 1, 2,. .. , a - 1 (the highest power of Ah which occurs in (5.6)) 
bounded in h if, at x = 0, 1, 

a2kv/3x 2k=O, k=O,l, ... ,o-2. 

Therefore it follows that an optimal exponent k = p + 1 in (5.1) can still be obtained, provided 
that the theoretical solution satisfies at the boundary the relations 

k = 0, 1,. . ., a - 2, t ~ 0. (5.7) 

The crucial point is that these relations do not in general agree with the relations (2.13) that are 
necessary for the PDE solution u to be smooth. They do agree however if the problem is 
homogeneous, i.e. f= 0, or if, by lucky coincidence, /(0, t) = /(1, t) = 0, fxxCO, t) = fxx(l, t) = 0, 
etc. We conclude that the homogeneous problem has no order reduction but some order reduction 
occurs in any other case, except for the exceptions we have just pointed out (i.e. f, fxx' ... vanish 
at the boundary). For an investigation of the exact amount of reduction and for a means to avoid 
reduction, see [29]. 

A final important point: the reductions we have been mentioning refer to the truncation error 
/3; for the global error uh(nr) - un the reduction does take place, but often not so markedly as 
for the truncation error. The reason for this is that local errors at consecutive steps partly cancel. 
This cancellation can be taken into account in the analysis by a partial summation argument. It 
hus can be shown that in general the reduction in global order is one unit less than in local 
rder. Hence in the previous example of case (1) we also obtain an 0( r 2 ) bound for the global 
rror. For details, the interested reader is again directed to [29]. 

6. Extensions 

In this paper we have been concerned with linear, contractiue PDE problems. This class of 
problems is far too small to include all the problems that arise in the applications. The class of 
nonlinear, contractiue PDEs has received much attention in the literature: the contractivity of the 
solutions can be studied by examining the dissipativity properties of the PDE itself, just as we 
did in (2.11) for the linear case (see e.g. Barbu [2]). Fortunately much of the material in Sections 
3 and 4 can be extended without difficulty to nonlinear con tractive problems. In particular this is 
so for the "consistency+ contractivity ~convergence" results in Sections 3.2 and 4.2. Also the 
study of the contractivity properties of RK schemes, mentioned in Section 3.1 (C4), applies 
totally to the nonlinear case (in fact, this study was from the beginning carried out for nonlinear 
problems). 

However even the class of nonlinear contractive problems is too narrow to include all the 
applications. Often (2.8) must be replaced by 

llu(t)-v(t)llx~ew<t-s)llu(s)-u(s)llx, (6.1) 

with w a positive constant, a situation also studied in the stiff ODE literature (see e.g. [10,12)) 
and in which much of the present material would apply with suitable modifications. Unfor
tunately, (6.1) is not yet the most general conceivable well-posedness requirement in PDEs and 
wider classes of problems can be envisaged, such as those satisfying 

II u(t) - u(t) II x~ C II Uo - Vo II x' 0 ~ t ~ T, 
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for arbitrary v0 (cf. the linear class considered in (16, Chapter 3]) or even only for v0 in a suitable 
ball around u0 • Such more general classes of PDEs will be investigated in a forthcoming paper 
by Lopez-Marcos and Sanz-Serna. 
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