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We consider eight heuristics for constructing approximate solutions to the travel
ing salesman problem and analyze their complexity in a model of parallel computa
tion. The problems of finding a tour by the nearest neighbor, nearest merger, 
nearest insertion, cheapest insertion, and farthest insertion heuristics are shown to 
be g-complete. Hence, it is unlikely that such tours can be obtained in polylogarith
mic work space on a sequential computer or in polylogarithmic time on a computer 
with unbounded parallelism. The double minimum spanning tree and nearest 
addition heuristics can be implemented to run in polylogarithrnic time on a 
polynomial number of processors. For the Christofides heuristic, we give a ran
domized polylogarithmic approximation scheme requiring a polynomial number of 
processors. 1989 Academic Pre~s. Inc. 

1. INTRODUCTION 

With the advent of parallel architectures the design of algorithms has to 
be reconsidered. For a computer with p parallel processors, the best one 
can hope to achieve is to develop algorithms that run p times as fast as on a 
traditional sequential machine. To attain this, the intrinsic parallelism in 
the problem at hand has to be optimally exploited and the overhead due to 
the communication between processors, usually through a fixed intercon
nection network, has to be kept within limits. In theoretical models, an 
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unbounded number of processors is available and the processors communi
cate with each other through a shared memory in unit time. For such a 
model, new complexity classes can be identified. 

Within the class !?J' of decision problems which are solvable in polyno
mial time by a random access machine (RAM), there exist problems that 
can be solved in poly logarithmic work space (log n) O(l), i.e., work space that 
is polynomial in the logarithm of the problem size n; they belong to the 
class POLYLOGSPACE. On the other hand, fJJ also contains problems that are 
unlikely to admit solution in polylogarithmic work space. One way to 
provide evidence that a problem is computationally hard in this sense is to 
show that it is !?J'-complete with respect to log-space transformations, i.e., it 
belongs to fJJ and each problem in fJJ is reducible to it by a transformation 
using logarithmic work space. If such a problem would belong to POLY

LOGSPACE, then it would follow that fJJ r;;,.. POLYLOGSPACE, which is believed 
to be false. The first 9'-complete problem was identified by Cook [3]. To 
prove that a problem P1 in f!J is f!J-complete, it is sufficient to show that 
every instance of a problem P2 which is already known to be fJJ-complete 
can be mapped to an instance of P1 such that "yes" instances of P2 are 
mapped to "yes" instances of P1 and "no" instances of P2 to "no" 
instances of P1, where the transformation requires logarithmic work space 
[8]. It is said that P2 is log-space transformable to P1. 

These concepts have found application in the field of parallel computing. 
The most common model for parallel computation is the PRAM. This is a 
synchronous machine with an unbounded number of processors and a 
shared memory. It allows simultaneous reads from the same memory 
location but disallows simultaneous writes into the same memory location. 
The computation starts with one processor activated; at any step, an active 
processor can do a standard operation or activate another processor; and 
the computation stops when the initial processor halts. By a theorem due to 
Fortune and Wylie [7], the class of problems solvable in F(n) 0 0> time by a 
PRAM is equal to the class of problems solvable in F(n )0 <1> work space by 
a RAM, if F(n);;::: log n. It follows that problems which can be solved in 
polylogarithmic work space by a RAM are solvable in polylogarithmic time 
on a PRAM, and that the solution in parallel polylogarithmic time of 
problems which have been shown to be f!J-complete is very unlikely. In 
other terms, a dramatic speedup from polynomial to polylogarithmic time 
by parallelism can be expected only for those problems in fJiJ that belong to 
the class POLYLOGSPACE. 

In this paper we analyze a number of heuristics for the traveling salesman 
problem (TSP) with respect to the theoretical PRAM model. Each of these 
heuristics can be turned into a decision problem by posing a question about 
the result of the algorithm, such as, for example, "does the tour obtained by 
starting the nearest neighbor heuristic in vertex v1 visit vertex v2 as the last 
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one before returning to vertex v1?" or "does the tour obtained by the 
nearest merger algorithm contain edge { i, j} ?" 

We show that the nearest neighbor, nearest merger, nearest insertion, 
cheapest insertion, and farthest insertion problems thus obtained are 
&'-complete by giving log-space transformations from the circuit value 
problem. Hence, it is unlikely that the corresponding heuristics can be 
implemented to run in polylogarithroic time, even if unbounded parallelism 
is allowed. The double minimum spanning tree and nearest addition prob
lems are shown to belong to the class .ff</, i.e., the corresponding heuristics 
are implemented in polylogarithmic time on a polynomial number of 
processors. If the Christofides heuristic can be implemented in this way 
remains an open question. However, we give a family of randomized 
algorithms that run in polylogarithrnic time on a polynomial number of 
processors and whose performance asymptotically approaches the perfor
mance of the Christofides heuristic. 

The results presented in this paper are primarily of theoretical interest. In 
a practical setting, there is a fixed or perhaps linear number of processors. 
In such an environment, the distinction between the heuristics disappears: 
all the heuristics considered here have parallel implementations with almost 
optimal speedup. 

General references on parallel combinatorial computing are by Cook [4], 
Valiant [19], Johnson [10], and Kindervater and Lenstra [12, 13]. Sequential 
TSP algorithms are dealt with by Lawler, Lenstra, Rinnooy Kan and 
Shmoys [15]. 

2. THE TRA YEUNG SALESMAN PROBLEM 

Given a complete undirected graph and a weight for each edge, the 
traveling salesman problem is the problem of finding a Hamiltonian cycle 
(i.e., a cycle passing through each vertex exactly once) of minimum total 
weight. This well known .ff.9-hard problem has been extensively studied. 
There are n vertices, numbered from 1 up to n, and the weight of edge 
{i, j} (the distance between vertex i and vertex j) will be denoted by du 
(i, j = 1, ... , n). The transformations that we will present in this paper are 
partly defined by means of figures. Edges not shown in the figures are 
assumed to have a weight oo. To assure that the transformations require 
only logarithmic work space, we substitute (-)en for (-)oo, where c = 100 
can be seen to be sufficient. 

We will discuss the implementation of a number of heuristics on a 
PRAM. The tours produced by the heuristics considered below are the 
same when a c6nstant is added to each edge weight. If we add lOcn (with c 
the same as above) to the edge weight in the TSPs constructed by the 
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transformations, the resulting problems will satisfy the triangle inequality: 
diJ ~ dik + dkj for all i, j, k. So, if we show that the nearest neighbor, 
nearest merger, nearest insertion, cheapest insertion, and farthest insertion 
problems are 9'-complete, this is still true for the problems restricted to 
distance matrices that satisfy the triangle inequality. 

We will now describe the heuristics in detail. 

(1) Nearest neighbor 
(i) Start at a given vertex. 
(ii) Among all vertices not yet visited, choose as the next vertex the one 

that is closest to the current vertex. Repeat this step until all vertices 
have been visited. 

(iii) Return to the starting vertex. 

(2) Nearest merger 
(i) Start with n partial tours, each consisting of a single city and a 

self-loop. 
(ii) Merge the tours C1 and C2 for which rnin{dikli E C1, k E C2 } is as 

small as possible. Let { i, j} be an edge of C1 and { k, l} an edge of C2 

for which dik + dJI - diJ - dk1 is minimal. The merged tour is then 
constructed by replacing edges {i, j} and { k, I} by {i, k} and {j, l }. 
Repeat this step until there is a complete tour. 

(3) Nearest addition 
(i) Start with a tour consisting of a given vertex and a self-loop. 

(ii) Find vertices j and k with k belonging to the tour and j not for 
which d1k is minimal, and insert j directly before k. Repeat this step 
until all vertices are inserted. 

(4) Nearest insertion 
(i) Start with a tour consisting of a given vertex and a self-loop. 

(ii) Find a vertex not on the tour which is closest to a vertex already 
contained in the tour. 

(iii) Insert this vertex between two neighboring vertices on the tour in the 
cheapest possible way. If the tour is still incomplete go to step (ii). 

(5) Cheapest insertion 
(i) Start with a tour consisting of a given vertex and a self-loop. 
(i) Find a vertex not on the tour which can be inserted between two 

neighboring vertices on the tour in the cheapest possible way. 
(iii) Insert this vertex between two neighboring vertices on the tour in the 

cheapest possible way. If the tour is still incomplete go to step (ii). 

(6) Farthest insertion 
(i) Start with a tour consisting of a given vertex and a self-loop. 

(ii) Find a vertex not on the tour for which the minimum distance to a 
vertex on the tour is maximal. 
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(iii) Insert this vertex between two neighboring vertices on the tour in the 
cheapest possible way. If the tour is still incomplete go to step (ii). 

The nearest, cheapest, and farthest insertion heuristics differ from each 
other only in the second step. They choose the next vertex to be inserted in 
the tour on different grounds but the actual insertion is done in the same 
way. 

(7) Double minimum spanning tree 
(i) Construct a minimum-weight spanning tree and double its edges. 
(ii) Construct an Eulerian cycle in the graph obtained in step (i) (i.e., a 

cycle passing through each of its edges exactly once). 
(iii) Start at a given vertex and traverse the Eulerian cycle, skipping vertices 

visited before. 

(8) Christofides 
(i) Construct a minimum-weight spanning tree and a minimum-weight 

perfect matching on the vertices of odd degree in the tree. 
(ii) Construct an Eulerian cycle in the graph obtained in step (i). 
(iii) Start at a given vertex and traverse the Eulerian cycle, skipping vertices 

visited before. 

These heuristics can all be implemented to run in low-order polynomial 
time on a sequential computer. We should recall the results concerning their 
worst-case performance on TSP instances that satisfy the triangle inequal
ity; see Chapter 5 of Lawler, Lenstra, Rinnooy Kan and Shmoys [15] for 
details. The nearest neighbor tour may be arbitrarily bad in comparison 
with the optimum. The nearest merger, nearest addition, nearest insertion, 
cheapest insertion, and double minimum spanning tree heuristics produce 
tours that are guaranteed to be less than twice as long as the optimum; the 
performance of the farthest insertion heuristic is unknown. The Christofides 
heuristic always does better than one-and-a-half times the optimum. The 
crucial facts in proving these bounds are that the minimum spanning tree is 
strictly shorter than the shortest tour, that the minimum perfect matching 
on any subset of vertices is no longer than half the shortest tour, and that 
no tour is longer than the Eulerian cycle from which it is obtained. 

3. THE CIRCUIT VALUE PROBLEM 

A logical circuit is a sequence a = ( o:1, ... , am), where each ak is an 
input gate (having a value TRUE or FALSE) or a NAND gate (ak =a; NANO a1 

=-,(a;/\ a), for some i, j < k ~ m). The circuit _value problem is the 
problem of determining whether the last gate am receives the value TRUE or 
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? 

FIG. 1. A logical circuit. 

FALSE, given a truth assignment to the input gates. An example is given in 
Fig. 1. 

This problem has been shown to be 9'-complete [14], even if the input 
gates have fan-out 1 (they appear once as input to another gate) and each 
NAND gate ak (k < m) has fan-out at most 2 [9]. 

4. NEAREST NEIGHBOR 

For the nearest neighbor heuristic we define the nearest neighbor prob
lem in the following way: given a distance matrix (d;1) and two vertices v1 

and v2, does the nearest neighbor tour starting at vertex v1 visit vertex v2 as 
the last one before returning to vertex v1? We will show that this decision 
problem is .9'-complete. For each instance of the circuit value problem, we 
construct a graph in such a way that the circuit value of the considered 
instance is TRUE if and only if the nearest neighbor problem returns a "yes" 
answer. 

Each gate in the circuit is represented by a subgraph. The nearest 
neighbor tour will visit the subgraphs in the order in which the correspond
ing gates are numbered in the circuit. This ensures that if the tour visits a 
subgraph corresponding to a non-input gate, it has traversed the subgraphs 
corresponding to its input gates. 

For NAND gate k (k < m) with fan-out 2 (ak =a; NAND a), we con
struct the subgraph as shown in Fig. 2. The vertex pairs CD- Q) are used 
to connect the different subgraphs. If gate i is input to gate k, a CD- @ 
pair appears as output in the subgraph for gate i and also as input in the 
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FIG. 2. The representation of NANO gate k. 
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subgraph for gate k. The edge weight 0 assures that corresponding vertices 
1 and 2 are always neighbors in the obtained tour. If the fan-out is 1 (0), we 
construct the same subgraph with one arbitrary CD- @ pair of output 
vertices (without output vertices). The subgraph is constructed in such a 
way that if the nearest neighbor tour enters the subgraph at vertex A from 
subgraph k - 1, it leaves this subgraph through vertex B to subgraph 
k + 1. We associate a TRUE (FALSE) value with this subgraph if the nearest 
neighbor tour on its way from A to B passes (does not pass) through the 
output vertices. 

When the tour arrives at vertex A from subgraph k - 1, there are three 
possibilities: 

(i) Inputs i and j have both been visited already. In this case the tour 
must go directly to vertex B and then it will choose the edge of weight 0 to 
subgraph k + 1. This will be the only case where the output vertices are not 
immediately visited. Note that as a result either output vertex 2 has its 
corresponding vertex 1 left as its only unvisited neighbor within the 
subgraph. See Fig. 3a. 

(ii) Either input i or input j is still unvisited. The tour will choose 
vertex 1 of this unvisited input as next vertex, since the edge weight is less 
than the distance to vertex B. From here it goes to the corresponding vertex 
2 (edge weight is 0). As noted under (i), this vertex 2 has no unvisited 
neighbors in the subgraph where it appears as output. Therefore, the next 
vertex must belong to subgraph k, i.e., the tour arrives at the outputs. 
Because edge weights in a subgraph are proportional to the number of that 
subgraph and outputs belong to subgraphs with a higher number, the 
nearest neighbor algorithm will visit all output vertices and after that vertex 
B before leaving subgraph k to subgraph k + 1, cf. Fig. 3b and c. 
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FIG. 3. The possible situations: (a) TRUE NAND TRUE -+ FALSE; (b) TRUE NAND FALSE ..... 
TRUE; (c) FALSE NAND TRUE -+TRUE; (d) FALSE NAND FALSE -+ TRUE. 
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(iii) Both inputs are unvisited. The tour will pass through all vertices of 
subgraph k before going to subgraph k + 1 (Fig. 3d). 

Note that in all cases all unvisited input vertices are included in the tour. 
To summarize the results, the nearest neighbor tour from A to B passes 
through the output vertices if and only if at least one of the input vertices is 
not yet visited. In the circuit value problem, this corresponds to the fact 
that a NAND gate produces the value TRUE if and only if at least one of the 
inputs is FALSE. 

For TRUE and FALSE inputs we construct the subgraphs as shown in Fig. 
4. The subgraph corresponding to input 1 is a special case. Instead of the 
edge of length 0, it has two edges of length 3m + 3 which connect it to the 
subgraph corresponding to NAND gate m. The representation of this last 
gate has a somewhat special structure. The output vertices are replaced by a 
vertex C. Both vertices B and C are connected to input 1 (see Fig. 5). If the 
tour arrives at vertex A of this gate and we are in situation (i), the tour will 
go directly to vertex B and from there to vertex C before it leaves subgraph 
m. Otherwise vertex B will be the last vertex to be visited of this last 
subgraph. 

It should now be clear that a nearest neighbor tour starting at the 
A-vertex of input 1 visits the B-vertex of the last gate as the last vertex if 
and only if the circuit computes the value TRUE. Since the transformation 
can be performed using work space which is logarithmic in the size of the 
circuit, the nearest neighbor problem is .9-complete. So, the construction of 
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FIG. 4. The representation of input k: (a) the representation of a TRUE input; (b) the 
representation of a FALSE input. 
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F10. 5. The representation of NAND gate m. 
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a nearest neighbor traveling salesman tour will probabily require superpoly
logarithmic work space or superpolylogarithmic parallel time. 

5. NEAREST MERGER 

Given a distance matrix and an edge {i, j}, the nearest merger problem 
is the problem of deciding whether the tour produced by the nearest merger 
heuristic contains {i, j}. We will show that this problem is &'-complete by 
giving a transformation from the circuit value problem. 

Consider an instance of the circuit value problem. For each arc, we 
construct a graph as shown in Fig. 6. Gates with fan-out 0 (for example, the 
last gate) are assumed to have an arc from itself to a dummy vertex. The 
dashed edges have a weight greater than 0 and will be described later. The 
nearest merger heurstic first builds the tours A-D-A and B-C-B and then 
merges them to form the tour A-B-C-D-A. 

We also construct the graph of Fig. 7, where m is the number of gates of 
the circuit. The algorithm starts by constructing partial tours of the form 
(2k) - (2k + 1) - (2k), for k = 1, ... , m. The edge weights 

I I I I 

w 00 

c 

I I I I 

Fro. 6. The representation of an arc. 
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FIG. 7. The extra graph. 

-(m -1), ... , -l,Oassurethattheoriginaltour(2m) - (2m + 1)- (2m) 
is merged with the other cycles of weight 2 and finally with the self-loop 
(1) - (1). the result is the tour (2m + 1) - (1) - (2) - · · · -(2k - 1) -
(2k) - · · · -(2m - 1) - (2m) - (2m + 1). 

We will now describe how the graphs are connected. The edge weights 
are chosen such that the nearest merger heuristic will merge the cycles 
of Fig. 6 with the (extended) tour of the extra graph of Fig. 7 in the order of 
the numbers of the gates where the corresponding arcs begin. If a cycle of 
Fig. 6 is added, an edge of weight 0 or 1 will remain in the tour. At this 
point, we associate a value TRUE (FALSE) with the arc if the edge of weight 1 
(0) still belongs to the tour. 

Each cycle corresponding to an arc from an input gate is connected to 
the extra graph as shown in Fig. 8. If the input is TRUE (FALSE), the edges 

I I I I I I I I 

(a) (b) 

FIG. 8. The representation of the input gates; (a) input gate k is TRUE; (b) input gate k is 
FALSE. 
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I I I I I I I I 

FIG. 9. The representation of NANO gate k (fan-out 1). 

{A,B} and {2k-1,2k} ({C,D} and {2k-1,2k}) are replaced by 
{2k - 1, A} and {2k, B} ({2k - 1, D} and {2k, C}). 

For NAND gate k with fan-out 1, the subgraphs are connected as shown 
in Fig. 9. Let us assume that there are no edges in the tour connecting the 
two inputs. We consider the case where one input (left) has the associated 
value TRUE and the other one the value FALSE in detail (see Fig. 10). There 
are two candidates for the merge operation: replace the edge { C, D} of the 
left input and the edge { C, D} of the output by the edges between the C 
and D vertices, or replace the edge {A, B} of the right input and the edge 
{A, B} of the output by the edges between the A and B vertices. The last 
replacement will be chosen, since it is cheaper. 

(a) (b) 

FIG. 10. TRUE AND FALSE -+ TRUE: (a) situation before merging; (b) situation after merg
ing. 
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I I I I I I I I 

FIG. ll. The representation of NANO gate k (fan-out2). 

If NAND gate k has fan-out 2, we connect the subgraphs as shown in Fig. 
11. The case TRUE NAND FALSE --+ TRUE is illustrated in Fig. 12. 

The other cases are left as exercises to the reader. Note that the output 
vertices of a subgraph are always inserted between two edges of weight - oo 
of one of the inputs. 

So far, we have assumed that there are no edges in the tour connecting 
both inputs of the same gate. Because of the way that output vertices are 
inserted in the tour, connecting edges can only occur when the inputs are 
outputs from the same gate. These edges stretch between vertices with the 
same label (A or C). It is, however, impossible to remove them from the 
tour at low cost. Therefore, the same replacements will be made as in 
the case where there are no interconnecting edges between the inputs. 

The above arguments imply that the circuit value of an instance of the 
circuit value problem is TRUE if and only if the nearest merger heuristic 
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(a) 

(b) 

FIG. 12. TRUE NAND FALSE--> TRUE: (a) situation before merging; (b) the two merging 
steps. 

produces a tour which contains edge { C, D} of the subgraph corresponding 
to the arc starting from the last gate of the circuit. The transformation can 
be done in logarithmic work space. Hence, the nearest merger problem is 
&'-complete. 

6. NEAREST INSERTION, CHEAPEST INSERTION, 

AND FARTHEST INSERTION 

Given a distance matrix, a starting vertex, and an edge { i, j}, the nearest 
insertion (cheapest inserton, farthest insertion) problem is the problem of 



PARALLEL COMPLEXITY OF TSP HEURISTICS 263 

eciding whether the nearest insertion (cheapest insertion, farthest inser
on) heuristic produces a tour which contains edge {i, J}. The transforma
ons from the circuit value problem showing that these problems are 
'-complete are similar to the one for the nearest merger problem. We will 
ive only the crucial part of the transformation, leaving the details and the 
erification to the reader. 

rearest Insertion 

For NAND gate k with fan-out 0 or 1 to be simulated, we construct the 
raph of Fig. 13. The output vertices are inserted in the tour in the order A, 
), B, and C between vertices A and B or B and C of one of the inputs. The 
~presentation if the fan-out is 2 is straightforward and not given here 
:dges between both outputs get a weight -1). Representing the inputs to 
1e circuits and starting up the algorithm is similar to the nearest merger 
ase and also straightforward. The result of the nearest insertion algorithm 
: a tour which contains the edge of weight 1 of the output arc of gate m if 
nd only if the circuit produces the value true. 
The transformation requires only logarithmic work space and hence the 

earest insertion problem is 9'J-complete. 

:heapest Insertion 

The same transformation as described for the nearest insertion problem 
rorks for the cheapest insertion problem, because in each step both 

FIG. 13. The representation of NANO gate k. The edges from output vertex A to the 
·ertices A and B of both inputs have weight 2k; all other edges between input and output 
ertices have weight 2 k + 1. 
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algorithms will choose the same vertex to be inserted in the graphs simulat
ing the logical circuit. So, the cheapest insertion problem is 91'-complete as 
well. 

Farthest Insertion 

We can use almost the same transformation as in the previous two cases. 
We construct the same graph as before. Lets; be the number of the step in 
which vertex i would be included in the tour by the nearest insertion 
heuristic; this number is known before the heuristic is actually executed. 
We replace the starting vertex by starting vertices Pi, P2 , P3, P4, and P5, such 
that the farthest insertion heuristic, when started in Pi, first builds the tour 
P 1 - P2 - P3 - P4 - P5 - P1. Edges originally incident to the starting vertex 
are made incident to P3 and P4• In this transformation we have to fill in a 
value for ( - )oo explicitly; we take ( - )lOOn. We add edges from all 
non-starting vertices i to Pi of weight -100n - s;, and to P2 and P5 of 
weight 200n. The edges to P1 have the smallest weights and determine the 
order in which the vertices are added to the tour. The edges to P2 and P5 

prohibit the exclusion of { P1, P2 } and {Pi, P5 } from the tour. Now, 
the farthest insertion heuristic will add the vertices in the same order and in 
the same way to the tour as the nearest insertion heuristic. Herewith, the 
farthest insertion problem is 9-complete. 

7. DOUBLE MINIMUM SPANNING TREE 

In Sections 7, 8, and 9 we will consider implementations of the double 
minimum spanning tree, Christofides, and nearest addition heuristics that 
require polylogarithmic time on a PRAM with a polynomial number of 
processors. We will use the notation 

par[B(i)] S(i) 

to denote that the statement S(i) is to be executed in parallel for all values 
of i satisfying the condition B(i). 

The double minimum spanning tree heuristic consists of three phases; see 
Section 2. Phase (i) (constructing a minimum spanning tree and doubling its 
edges) can be performed in O(log2 n) time with O(n 2/log2 n) processors 
[2]. Phase (ii) (finding an Eulerian cycle) can be done within the same time 
and processor bounds using the techniques from Awerbuch, Israeli, and 
Shiloach [1]. For phase (iii), we first have to find the first occurrence of 
each vertex and then eliminate all duplications. Let Pi, .•• , P;, •.• , P2n-l 

denote the Eulerian cycle obtained in the previous phase, where P; is the ith 
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vertex of the tour. We proceed as follows. 

par[l s i, j s 2n - l] if v; = v1 then c;1 +-- 1 else c;1 +-- 0. 

i-1 

par[l s i s 2n - 1]8; +-- max{O, 1 - L c;1 }. 
j=l 

i 

par[l s is 2n - l]p; +-- L 8i. 
j=l 

265 

Note that 8,. = 1 if v,. occurs for the first time in the tour, 8; = O otherwise, 
and that P; denotes the number of different vertices in v1, ... , P;. We obtain 
the tour t 1 - t 2 - • • • -tn - t1 by: 

par[l sis 2n - l] if 8,. = 1 then tP, +-- v,.. 

Using the partial sums algorithm from Dekel and Sahni [6], we can 
implement phase (iii) within the same resource bounds as the previous 
phases. So, we end up with an algorithm that runs in O(log2 n) time on 
0( n 2/log 2 n) processors, which is best possible with respect to the 0( n 2 ) 

sequential implementation. 

8. CHRISTOFIDES 

The Christofides heuristic also consists of three phases. Since the second 
and third phases are identical to the corresponding phases of the double 
minimum spanning tree heuristic given above, we need only focus on 
implementing the first phase. 

Unfortunately, it is an open question if the minimum perfect matching 
problem belongs to JV<t'. Karp, Upfal, and Wigderson [11] developed a 
randomized algorithm for the problem, which produces the correct answer 
with probability greater than 0.5. However, it runs in polylogarithmic time 
on a polynomial number of processors only if the edge weights are specified 
in unary. A more efficient algorithm of the same type is due to Mulmuley, 
Vazirani, and Vazirani (16]. It runs in time O(log 2 n) on n 3dmaxP(n) 
processors, where d max is the maximum edge weight and P( n) is the time 
needed to multiply two n X n matrices on a RAM. ( P( n) < n 2·376 ; see 
Coppersmith and Winograd [5].) 

We give an approximation scheme for the Christofides heuristic, i.e., a 
family of algorithms that asymptotically approach its performance. More 
precisely, for each e > 0 we give a randomized algorithm that runs in 
polylogarithrnic time on a polynomial number of processors and, if the 
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distances satisfy the triangle inequality, delivers a tour of length less than 
(3 /2 + e) times the shortest tour length; the running time is independent of 
e and the number of processors is polynomial in (l/e). The approach is 
based on the idea that an approximate minimum perfect matching will 
suffice to obtain an approximate Christofides tour and that an approximate 
minimum perfect matching can be obtained by solving a matching problem 
with weights bounded by a polynomial in n. It will be useful to let 
d(G) = I:u.n eEdiJ for any graph G = (V, E) and weight function d. 

For the first phase of the heuristic we construct two Eulerian graphs and 
select the one of smallest total weight. The first of these graphs is a double 
minimum spanning tree. For the second we proceed as follows: 

(i) Find a minimum spanning tree T and identify the set V of vertices 
of odd degree in T. 

(ii) Set µ = 2ed__(T)/ I VI and E = { { i, j} ~ VI diJ ::; 2d(T)/3 }. For 
all {i, J} E E, set diJ = l diJ/µ j. 

(iii) Find a minimum perfect matching M on G(V, E) with edge 
weights J and add these edges to the minimum spanning tree. 

We first show that this procedure has the claimed performance guaran
tee. To do this we show that one of the Eulerian graphs produced has total 
weight less than (3/2 + e)d(C), where C is a shortest tour. Let M denote a 
minimum perfect matching on V with edge weights d;1. If d(T) ~ 
3d(M)/2, then the double minimum spanning tree has weight at most 
2d(T)::; 3d(M)::; (3/2)d(C). 

Now assume that d(T) > 3d(M)/2. Note that !or each { i, ..O rt. E, d;1 
> 2d(T)/3 > d(M), so that M ~ E. Since µdiJ ::; diJ::; µdiJ + µ for 
{i, J} E E, we have 

d(.M) ::; L (µ1; 1 + µ.) 
{i,j}eM 

= µd(M) +µI Vl/2::; µd(M) + ed(T) 

::; d ( M) + ed ( T ) ::; ( 1 /2 + e) d ( C ) , 

and hence d(T) + d(M) < (3/2 + e)d(C). 
As to the resource bounds, O(log2 n) time and (n 2 log 2(1/e))/log2 n 

processors suffice for all of the computations except for finding the mini
mum perfect matching. This subroutine requires O(log 2 n) time and 
n3dmaxP(n) processors (16]. By observing that 

- l 2d(T)/3 J l IVI j {i~~/iJ::; 2ed{T)/IVI = Te"° = O(n/e), 

we conclude that the number of processors required is O(n 4P(n)/e). 
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9. NEAREST ADDITION 

Let "i be the given starting vertex. The order in which the nearest 
addition heuristic adds vertices to the tour corresponds to the way in which 
the algorithm from Prim [17] builds up a minimum spanning tree, starting 
from P1• Therefore, we first construct a minimum spanning tree and direct 
its edges towards Pi. By means of this tree, we can determine for each two 
vertices i and j which one will be visited first. There are two possible 
situations (Fig. 14). In the first situation, one vertex is a descendant of the 
other. Since each vertex is inserted immediately before its parent, the 
descendant will appear earlier in the tour than the ancestor. In the second 
situation, no vertex is a descendant of the other. Let k be the first common 
ancestor of i and j and let i' (j') be the last vertex on the path from i (j) 
to k; i' = i (j' = j) if the path consists of only one arc. If d;'k < dJ'k' then 
vertex i' will be inserted before vertex k, and after that vertex j' will be 
inserted in the tour immediately before vertex k and thus after vertex i'. 

A detailed description of the algorithm is given below. It has a running 
time of O(log2 n) on O(n2/log2 n) processors. Without loss of generality 
we assume that all distances are distinct. 

(i) First, we construct a minimum spanning tree and direct it towards 
vertex Pi, generating arcs (i, t(i)) for i E {1, ... , n} \Pi· For convenience, 
we assume t(P1) = P1. This requires O(log2 n) time and O(n 2/log2 n) 
processors [2, 18]. 

(ii) The next step is to construct an n x n 0-l matrix (c;), represent
ing the transitive closure of the tree ( c;1 = 1 if there exists a path from 
vertex i to vertex j, ciJ = 0 otherwise). Let u(i, /) denote the vertex at 
distance 21 from vertex i, or P 1 if this vertex does not exist. The following 

~ I 
I 

cp 
I 

cb 
tour: v1- ... -i- ... -j- ... -v1 

~ I 
I 

j' 

I 
I 

0 
tour: v1 - ••• -i-... -i'-... - j- ... -j'- ... -k-... -v 1 

FIG. 14. The two possible situations. 



268 KINDERVATER, LENSTRA, AND SHMOYS 

statements do the job: 

par[l sis n]u(i,0) <- t(i). 
for I .... 1 to flog n l do 

par{l ;::; is n]u(i, I)<-- u(u(i, I - 1), I - 1). 

par[l s i, j s n]c;1 <- 0. 
par{l sis n]c,, .... l. 
for I <- flog n l downto 0 do 

par{l s i, j $ n] if C;J = 1 then if ciu(J,I) = 0 then Ciu(J,I) = 1. 

(The "if ciu( , '> = O" condition is added to avoid simultaneous writes into 
c;,,1.) These bperations can be performed in logarithmic time with O(n 2 ) 

processors. To reduce the number of processors, we have to observe that in 
each iteration of the last for I loop we only have to look at those pairs ( i, j) 
for which c;1 = l. The number of these pairs doubles in each iteration. 
Therefore, we perform the last iterations of the for loop in a different way. 
We replace the computation of the c-matrix by the following, where the 
parameter x will be chosen later: 

forl-ltoxdo 
n n 

par{l sis n,(1- l)f-1+1 :'!.j s /f-l)c,1 .... 0. 
x x 

par{l sis n]c,, <-- 1 & assign a processor to (i, i). 
for I .... flog n l downto [log x J do 

par[l s i, j s n & (i, j) has a processor assigned to it] 
if c,u(J,I) = 0 then l';u(J.I) = 1 & assign a free processor to (i, u(j, /)). 

for I .... x down to 0 do 
par{l s i, j s n & (i, j) has a processor assigned to it] if ciu(J. I) = 0 then 

ciu(J.O) = 1 & assign the processor, assigned to (i, j) to (i, u(j,O)). 

By choosing x = flog 2 n l, we achieve a running time of O(log 2 n) with only 
0( n 2 /log 2 n) processors. 

(iii) Now, we compute the total number s; of vertices in the subtree 
rooted by i: 

par[l sis n]s; -E- _Lc1;. 

j 

Let r; denote the number of descendants of the parent of vertex i which 
will be visited after vertex i in the tour: 

par[l s is n] r; -E- L { s) ( t(i) = t(J)) & ( dit(i) < dJt(J))}; rv1 -E- 0. 
j 

Finally, we compute for each vertex i the total number q; of vertices visited 
after i: 

par[l sis n ]q; -E- Ec;1(1 + rJ 
j 
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(if c;1 = 1, then 1 for j and r for the descendants of the parent of j), and a 
nearest addition traveling s~lesman tour has been determined. These last 
steps require the same time and processor bounds as the previous ones. 

10. CONCLUSION 

We have shown that five simple traveling salesman heuristics are sequen
tial in nature, to the extent that they are likely to require superpolylogarith
mic time irrespective of the amount of parallelism allowed. We have also 
shown that the double minimum spanning tree and the nearest addition 
heuristics can be implemented to run in polylogarithmic time on a polyno
mial number of processors. Such a result cannot be obtained for the 
Christofides heuristic as long as the parallel complexity of the matching 
problem is unresolved. However, we have given a family of randomized 
polylogarithrnic algorithms that asymptotically approach the performance 
of the Christofides heuristic. 

Each of the eight heuristics considered above constructs a single traveling 
tour. Other heuristics start from a given tour and perform a series of 
improvements, using neighborhood search, until a local optimum is ob
tained. An obvious research question is what an analysis as pursued in this 
paper can tell us about the complexity of such iterative improvement 
methods. 
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