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Stochastic and Chaotic Relaxation Oscillations 
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For relaxation oscillators stochastic and chaotic dynamics are investigated. The 
effect of random perturbations upon the period is computed. For an extended 
system with additional state variables chaotic behavior can be expected. As an 
example, the Van der Pol oscillator is changed into a third-order system 
admitting period doubling and chaos in a certain parameter range. The 
distinction between chaotic oscillation and oscillation with noise is explored. 
Return maps, power spectra, and Lyapunov exponents are analyzed for that 
purpose. 
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1. INTRODUCTION 

Physical systems with periodic behavior usually show fluctuations in the 
period. One is inclined to ascribe this to perturbations coming from the 
environment (noise). The possibility of chaotic behavior of a deterministic 
system of three or more nonlinear differential equations has turned atten
tion to a possible explanation in this direction. 

In this paper we explore the distinction between stochastic and chaotic 
relaxation oscillations. A general theory for Van der Pol-type relaxation 
oscillators with stochastic perturbations is formulated in Section 3. We 
derive equations by which the probability distribution of the time between 
two jumps can be approximated. As an example, we study in detail the 
Van der Pol oscillator with a random forcing and compute the mean and 
variance of the interjump time for small noise intensity. In Section 4 it is 
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shown that a generalized Van der Pol-type oscillator may exhibit chaotic 
dynamics. As a prototype of such a system, we consider the Van der Pol 
oscillator with an additional state variable. In Section 5 this system is 
perturbed by noise and the dependence of the Lyapunov exponents upon 
the noise strength b is investigated. Finally, in Section 6 we discuss various 
methods to detect the presence of a strange attractor in the noisy system 
from a time series of an output signal. We deal with power spectra, return 
maps, and Lyapunov exponents. Among these characteristics, the 
Lyapunov exponents yield the most definite information about the presence 
of a strange attractor. 

The Van der Pol relaxation oscillator is the classical example of a non
linear oscillator with the specific temporal structure as if it is periodically 
reset in its initial state. The equation reads 

d 2x ? dx 
-d , + v(x- - 1) - + x = 0 

r- dr 

which is equivalent, using the transformations 

T = tv, v = 1;fi 

appropriate to the singularly perturbed case, to the system 

dx 1 
s - = v - - x 3 + x 

dt . 3 (l.la) 

dy 
dt = -x (1.lb) 

For s _,. 0 the limit cycle makes two jumps: from A to B and from C to D 
(see ~ig. _I). ;\t the arcs BC and DA the trajectory satisfies y = ~x 3 - x. 
Subst1tut1on m ( 1.1 b) yields an expression for the period: 

1 f1x2-l 3 
-T= --dx=--!n 2 
2 2 -x 2 ( 1.2) 

!n a more refined approach of small but nonzero values of s, where the 
Jumps are replaced by boundary layer approximations, one obtains 

T(s);:::; 3-2 ln 2 + 3as 213 + O(s ln s) (s->0) ( 1.3) 

where -a= -2.33811 is the first zero of the Airy function.< 8 > Equation 
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Fig. I. Trajectories of the system ( 1.1 ) in the limit £-. 0. For any starting value (the origin 
excluded) the solution approaches the limit cycle ABCD. 

( 1.1) can be viewed as a representative of a large class of nonlinear 
oscillators. It is therefore worthwhile to analyze the effect of small changes 
which turn this oscillator into a stochastic or chaotic system. 

2. THE GENERALIZED VAN DER POL OSCILLATOR 

The relaxation oscillations we consider are described by a system of 
differential equations of the form 

dx 
e-:tf = F;(x, y; <:), i= !, ... , m (2.la) 

j= I, ... , n (2.1 b) 

where e is a small, positive parameter. Here the { X;} represent the variables 
which undergo fast relaxation and the { y;} represent the slow variables. It 
is assumed that the system (2.1) has a relaxation oscillation (for the 
definition see ref. 8) as a solution. 

If we let e ~ 0, the so-called discontinuous approximation of the 
oscillation is found which holds over a large phase of the cycle. The 
approximating trajectory satisfies 

dy . 
-= G(x, y, 0) 
dt 

(2.2) 
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and is restricted to the manifold 

ff= {(x, y)IF(x, y;O)=O} (2.3) 

A trajectory of (2.1) remains only near ff if, for y fixed, the stationary 
solution x = x_, of (2.la) is stable with xs satisfying F(x,, y; 0) = 0 and the 
point (x,, y) near the trajectory. When this is not the case, the trajectory 
will exhibit a large change in x over a short time interval of length 0(1:). It 
is is assumed that indeed a subset !1' of ff exists for which the matrix 

A=-' {aF} 
axj mxm 

(2.4) 

has eigenvalues with negative real parts: the stable manifold. At the boun
dary of !1' only one eigenvalue may have a real part in the form of a simple 
zero resulting in det(A) = 0. When the approximating trajectory arrives at a 
point p E O!J', it leaves the manifold ff and the solution jumps instan
taneously to a point r lying in !1' with x,i=xP and y,= Yp· Clearly, the 
equation F(x, y, 0) = 0 must be nonlinear in x. 

As an example, we consider relaxation oscillations of a system with 
one "fast variable" x and two "slow" variables y 1 and Y2· Expressing x as a 
function of y, we obtain for ff 

X= H(y) (2.5) 

x 

'--~~--: 
I 

Yo~ 

Y2 --
Fig: 2. Relaxation oscillation in a system with one fast and two slow variables. At y = Yo the 

limit solution (£--+ 0) JUmps from one point of the manifold ff to a different point, where 
(2.la) with (y,c)=(y0 ,0) is stable. 
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This expression is locally valid: at different branches of § different 
representations are needed. In Fig. 2 the manifold § is stable except for the 
middle branch at the fold. For any starting value away from§ a trajectory 
of (2.1) will jump instantaneously (in the limit as e -+ 0) to one of the stable 
branches. The periodic solution has a jump at y = y0 • Its period satisfies 

T-J.. 1 -r G(H(y), y) ds (8-+ 0) (2.6) 

where the integral is over the closed curve of the periodic solution. Let us 
take an (m - 1 )-dimensional transverse intersection I: c § of (2.2}-(2.3) 
with det(A) #- 0 for all s EI:. Approximating trajectories with jumps at oY' 
generate a Poincare mapping 

P: I:-+ I: (2.7) 

This mapping or a finite repetition of it may have a fixed point that 
corresponds to a periodic solution. When this fixed point is stable, the 
existence of a periodic solution of (2.1) with e > 0 can be proved.! 181 As we 
will see in Section 4, this mapping may also have chaotic solutions, 
corresponding to chaotic behavior of the system. 

3. RANDOMLY PERTURBED OSCILLATORS 

First we will model the influence of random perturbations upon the 
generalized Van der Pol oscillator (2.1 ). Near Y', points in !Rm+n with 
equal values of x will remain close to the trajectory starting in §. Con
sequently, perturbations in the x; directions will not change the velocity in 
the direction along§. Since we wish to study fluctuations in the period, we 
only take into account perturbations in the slow variables {y;}. Thus, we 
analyze the system of stochastic differential equations 

e dX; = F;(X, Y) dt, i= l, ... ,m (3.la) 

p 

dYj = G1(X, Y) dt + f> L ajk(X, Y) dWk, j= 1, ... , n (3.lb) 
k=I 

where W 1 , ••• , WP denote p independent Wiener processes. It is assumed 
that 0 < e ~ [> ~ 1. 

In our perturbation analysis we let & -+ 0 and consider a jumping 
periodic solution L 0 of (2.1) and its stochastic perturbation given by (3.1 ). 
We will apply methods for stochastic differential equations as described by 
Gardiner. C7 l 
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Fig. 3. A segment of the discontinuous limit cycle L 0 between a return point and a leaving 
point projected in y space. In projection all trajectories leave Qk through Uk. 

In the limit e ~ 0 we analyze the reduced system 

p 

dyj = G1(H(y ), y) dt + 8 L (Jjk(H(y ), y) dWk' j = 1, ... , n (3.2) 
k=l 

where x = H(y) is a local solution of F(x, y) = 0. The existence of a 
periodic solution L0 for 8 = 0 implies that the mapping P of (2.7) has a 
stable fixed point. This closed trajectory contains a number of jumps, say 
N. The slow action is on JF from a return point rk to a leaving point Pk+ 1 • 

A jump is made from Pk to rk> k = 1, ... , N. It is noted that r N is connected 
to p 1 by an interval of slow action. Let Uk c f7 be a set of points in a 
neighborhood of Pk satisfying det(A) = 0, so Uk co!/. Then a set of points 
Vk c JF in a neighborhood of rk is defined by 

Vk= {(x, y)I (x, y)e.se', (i, y)e Uk for some .X} (3.3) 

We will analyze stochastic trajectories in a domain Qk of the y space 
that is a sufficiently large neighborhood of the projected segment L~ of L0 , 

which connects the return point 'k-l to the leaving point Pk (see Fig. 3). 3 

The calculation of the distribution of the corresponding time interval 
proceeds by considering the part of the boundary (JQ k formed by the set Uk 
to be absorbing. The remaining part of (JQk is assumed to be at a 
sufficiently large distance of L~ so that it does not play any role in the 
stochastic analysis. 

3 Here and in the following S' is the projection of a set S onto the y space for any Se !Rm+ n. 
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We consider stochastic trajectories of (3.2) starting in V~_ 1 up to the 
moment they reach the boundary at U~. The time Tk needed for this is a 
stochastic variable, called the interjump time. A method for approximating 
its distribution will be developed. For that purpose we first need to have 
information about the distribution of points Pk at V~ ( = vn for a 
stationary oscillation as it goes through the kth jump. 

For a trajectory starting at y E Q k, let the probability of exit he fore 
time t through a surface element dS k( u) located at the point u E U ~ be 
denoted by 

(3.4) 

The probability density of ultimate exit through dS k(u) is then given by 

and satisfies the Kolmogorov backward equation 17 ) 

nk = 3,.(u- y) 

where 

for yon8QkanduEV~ 

p 

aij = I a;kakj 
k= I 

(3.5) 

(3.6a) 

( 3.6b) 

(3.7) 

and with 3,(u - y) a delta function defined on iJQk such that for any test 
function/, 

f o,.(u-y)f(y)ldSk(y)I =f(u), 
DQk 

(3.8) 

If the distribution of starting points at v~ l for a stationary relaxation 
oscillation is denoted by fk _ 1 ( y ), then 

(3.9) 

is the distribution of arrival points at Uk being also ~he station~ry 
distribution of starting points at V~. From the set of N equat10ns (3.9) with 
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the index k taken modulo N we may determine fk(y), k = 1, 2, .. ., N. For 
small noise intensity c:5, the distribution is approximately of the form 

_ Ck { (y- Ykklf Ak(y- Yt>)} 
fk(Y)- c:5"- 1 exp - c:52 ( 3.10) 

and one obtains a set of relations among Ak, k = 1, ... , N. 
Next we consider the interjump time distribution. The time Tk(y) 

needed to reach U /, for the first time from a point y belonging to Vk - 1 is a 
random variable with density 

gk(y, t) = L. gk(u, y, t) ldSk(u)/ 
k 

Its first and second moments Tj/l(y) and Tl2l(y) are defined by 

They satisfy 

and 

n = 1, 2 

L 0 Ti1l=-l in Qk 

Tl1l=O on U/, 

oTk1l/an=0 on aQk/Vk 

Ti2)=0 

oTi2l/an = 0 

on u;, 

(3.11) 

( 3.12) 

(3.13a) 

(3.13b) 

(3.13c) 

(3.14a) 

(3.14b) 

(3.14c) 

where the elliptic operator L 0 is defined by (3.6a ). The unconditional 
probability density of the time Tk between jumps k- 1 and k is 

(3.15) 

with first and second moments given by 

n= 1, 2 (3.16) 
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Example. The Van der Pol oscillator with random forcing term. We 
consider the following stochastically perturbed Van der Pol oscillator: 

c dX = ( Y -1 X 3 + X) dt 

dY = - X dt + 6 dW 

The local solutions of the equation 

(3.17a) 

(3.17b) 

( 3.18) 

are x= H +(Y) for x > 1 and x= H _(y) for x < -1 (see Fig. 1 ). In this case 
there are two jumps and, because of the symmetry, we only have to 
compute the distribution of one interjump time. The sets {Uk} each 
contain just one point, viz. y = 2/3 and - 2/3, respectively. 

Let us analyze the stochastic trajectories on the branch x = H _ (y ). 
The stochastic differential equation for the reduced problem ( E = 0) reads 

dY= -H_(Y)dt+6dW 

Y(O) = y, y < 2/3 

(3.19a) 

(3.19b) 

The domain Q is bounded by a reflecting boundary at y = -oo and an 
absorbing one at y=2/3. For the problem (3.13) and (3.14) explicit 
solutions can be found\7l: 

2 f 2/3 f u { 2 } T(ll(y;6)= 02 Y -xexp 02 [R(u)-R(z)] dzdu 

2 f 2/3 f u { 2 } Tl 2 l(y;6)=p Y -x: Ji 1 l(z;6)exp 02 [R(u)-R{z)] dzdu 

where 

R(y)= r H_(u)du 
-w 

The integrals can be evaluated asymptotically for 0 < 6 ~I, 

r<nl(y; 6) = r&nl(y) + J2T\nl(y) + .. ., 

We find, temporarily suppressing the y dependences, 

T(ll= -~+~H2 -ln(-H ) 
0 2 2 - -

T&2)= {T61)}2 

n = 1, 2 

(3.20a) 

(3.20b) 

( 3.21) 

( 3.22) 

(3.23a) 

(3.23b) 
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]'\l)=~(-1 -1) 
I 4 H:_ (3.23c) 

n2>= -~-~H2 +-1-+2ln(-H ) 
1 4 4 - 2H~ -

(3.23d) 

Consequently, the interjump-time moments are found by substituting 
y = -2/3 and we have the following expected value and variance: 

E(T)= --ln2 --u +O(b) ( 3 ) 3 ~2 4 

2 16 
(3.24a) 

(3.24b) 

To verify this result, a simulation of (3.17) was carried out by numerically 
solving the stochastic difference equations 

X(t + h) = X(t) +~ [ Y(t)-~ X 3(t) + X(t)J 

Y(t+h)= Y(t)-hX(t)+bh 112G(t) 

(3.25a) 

(3.25b) 

where G(t) is a generator of random numbers with a normal distribution 
N(O, 1 ). For e = 0.1 and b = 0.25 we find an agreement with (3.24) with an 
accuracy of 0.001 for a sample of about 100 interjump times. For b suf
ficiently small a linear noise approximation can be made: the distribution 
of interjump times then has a normal distribution. For larger values of b, 
however, there will be nonnegligible contributions from the tail of the 
normal distribution with negative values of the interjump time, which are 
physically impossible. In that case it is proposed to use the inverse 
Gaussian distribution 

( A. )112 [ A.(t-µ)2] 
f(t; µ,A.)= 2nt3 exp - 2µ21 , t~O 

as an approximation. Its expected value and variance are 

E(T) =µ 

Var(T) = µ3/A. 

(3.26) 

(3.27a) 

(3.27b) 

If in (3.19a) H _ were a positive constant, this density function would be 
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exactY 1 l In Fig. 4 the distribution of 197 interjump times, numerically 

computed by (3.25), is given in a histogram. For the values 

e= 0.1 and /j = 0.75 (3.28) 

the asymptotic theory yields 

3 ? 3 3 ?;3 3 •? 

E(T) = T0(e)--/j- =--In 2 +-o:e- -- (j· = 13 
16 2 2 16 . (3.29a) 

(3.29b) 

Consequently, in the inverse Gaussian distribution function (3.26) we have 
to take 

50 

0 

/ 
/ 

µ= 1.3 and ,{ = 7.4 (3.30) 

Fig. 4. Distribution of 197 interjump times from a simulation run of the system (3.17).and. its 

approximation by a normal distribution (dotted line) and by an inverse Gaussian distnbuuon 

(solid line). 
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In Fig. 4 this distribution is represented by a solid line. It is noted that it 
fits the data much better than the normal distribution with the same mean 
and variance (dashed line). 

4. DETERMINISTIC CHAOTIC RELAXATION OSCILLATIONS 

From studies of Lorenz, (l 3J Smale, (23 ) Ruelle and Takens, (20J and 
others it is known that continuous-time dynamical systems may exhibit 
chaotic behavior. It is quite possible to construct a system of type (2.1) 
possessing a limit solution that is a strange attractor and has some of the 
qualitative properties of a relaxation oscillation. By example we 
demonstrate that a system that remains most of the time in a two-dimen
sional manifold still may exhibit chaotic dynamics. 

In Fig. 5 we sketch trajectories of a system with one fast and two slow 
variables. It is seen that for i; ~ 0 the Poincare mapping of the compact 
interval AB into itself agrees qualitatively with the logistic map. In this 
mapping the phenomena of period doubling and chaos are present. (2, 17 ) 

(a) 

:z 
y 

(b) 

0 ----..-:..... ..... -·-. 
c 

Fig. 5. A relaxation oscillator with chaotic dynamics. Following one cycle the trajectories 
generate a mapping of the curve AB into itself. (a) Trajectories in state space, (b) projections 
in the y, z plane. 
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Examples of chaotic relaxation oscillations in fluid mechanics and biology 
are given by Lozi.<14 l Argemi and Rossetto( 1J model the irregular electrical 
activity of nerve cells by a chaotic relaxation oscillator. More systematic 
studies of chaotic dynamics in constrained equations (e = 0) are presented 
by Ushiki and Lozi, <25 J Oka and Kokubu, (I 9 J and TakensY4 l 

Example: A chaotic Van der Pol oscillator. The Van der Pol 
oscillator ( 1.1) can be augmented with a third state variable such that the 
resulting system of equations will have chaotic dynamics, while the regular 
Van der Pol relaxation oscillator is recovered if the third variable is set to 
zero. This is achieved by construction of a vector field similar to the one of 
Fig. 5. After some experimentation we found a system with the simplest 
polynomials 

dx l 3 e-=y--x +x 
dt 3 

dy , 
-= -x-x-z 
dt 

dz 2 -=(x+a)z 
dt 

( 4.la) 

( 4.1 b) 

( 4.1 c) 

In Fig. 6a we sketch the trajectories in the x, z plane fore-> 0. The solution 
jumps from x = 1 to x = -2 and from x = -1 to x = 2. The Poincare 
mapping P 0 of the line (x, y, z) = (2, 2/3, z) into itself is given in Fig. 6b. 
For a< a 1 one periodic solution is found; repeated period doubling occurs 
at ak with 

a 1 = 1.46, a3 = 1.64, ... ( 4.2) 

At a x, = 1.66 the domain with chaotic solutions is entered. 
For a= 1.7 we computed the Lyapunov exponent of P0 , yielding 

,l = 0.31. Taking e a fixed, positive constant, we may derive the Lyapunov 
exponents of a mapping Pe of a transverse plane into itself. Independent of 
the particular choice of the plane that is made, we obtain 

..l,=0.51, ..l 2 = -0.08 for e =0.05 ( 4.3) 

Finally, using the scheme of Wolf et al., (26 l we compute the Lyapunov 
exponents of the flow of ( 4.1 ): 

..l 1 =0.09, ..l 2 =0, for a=l.7, e=0.05 (4.4) 
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(a) 

z 

-2 -1 ox- 2 

(b) 

z-
Fig. 6. A Van der Pol-type relaxation oscillator with a strange attractor in the limit s-+ 0. 

(a) Trajectories projected in the x, z plane; (b) sketch of the mapping at (x, y) = (2, 2/3). 

The relation between the Lyapunov exponents;. of the mapping P0 and ). 1 

of the flow ( 4.1) follows from their respective definitions: 

(4.5) 

and 

. 1 2 p( t) 
,l. 1(e) = hm - log-(O) 

1~ 00 t p 
(4.6) 
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where p( t) is the length of the principal axis of the ellipsoid that evolves 
from a starting sphere at t = 0. Consequently, 

!.~ .A. 1(e)= }~m)T0(z0 ) + ··· T0(zn)J 1 2log lkOo P~(=dl (4.7) 

or 

Jim ), 1(s) = )./( fln 2) 
1:-0 

(4.8) 

Here T0(z k) is the time between two successive crossings at z = zk and 
=~ = z k + i of the line (x, y, z) = (2, 2/3, z) for the system with s = 0, whereas 
T is the average interjump time, which is computed numerically from a 
long run in the same way as .A.. We found f = 5.04, leading to ). 1(0)=0.089, 
which is close to the value ( 4.4) which holds for e = 0.05. A general 
discussion of the relation between 3D flows and ID mappings is given by 
Shaw. (22 ) For the converse of the procedure used here see Kottalam et 
a/., 112 > who reduce the 3D chaotic Lorenz system to a 2D system perturbed 
by noise. 

5. CHAOTIC DYNAMICS PERTURBED BY NOISE 

The influence of external noise on a chaotic system has been exten
sively studied for lD mappings. Crutchfield and Farmer13 > study the 
logistic mapping perturbed by noise. They find the disappearance of 
periodic windows and a lowered threshold for the transition to chaos. 
Moreover, the characteristic exponent .A. increases with the noise strength at 
parameter values corresponding to orbits which are periodic in the deter
ministic limit, whereas noise affects ), very little at chaotic parameter 
values. On the other hand, Matsumoto and Tsuda find that noise may 
regularize chaotic dynamics, 1151 leading to a decrease of ), with the noise 
strength b. They speak of noise-induced order. Effects of noise on ecological 
models are discussed by Schaffer et a!Y 11 

The effects of noise on many-dimensional flows is less well 
investigated. Zippelius and Lucke127 ) study the Lorenz model perturbed by 
external noise. For biochemical oscillators with chaotic orbits see Ebeling 
et al. l4 l and Herzel. 19 ) The latter author finds that for large noise strength 
the maximum Lyapunov exponent may become negative: stabilization by 
noise. The forced Duffing oscillator with external noise is studied by 
Kapitaniak. < lO) 

Here we report results on the chaotic Van der Pol oscillator of the 
preceding section with a small white noise input: 

e dX = ( Y - l/3X 3 + X) dt ( 5.la) 
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dY= (-X-X2Z) dt+ b dW 

dZ=(X+a)Z 2 dt 

(5.1 b) 

( 5. lc) 

where W(t) is a Wiener process and a= 1.7 corresponding to a chaotic 
orbit of the system (5.1) in the absence of noise. 

To study the influence of the noise we have numerically calculated the 
Lyapunov exponents A. 1 , A. 2 , A. 3 along a stochastic trajectory of the system 
(5.1 ). Again we used the procedure of Wolf et al.,l26 l but now augmented 
by a random generator for normally distributed jumps. A similar procedure 
was used by Crutchfield and Farmerr 3 i for lD maps with additive noise. 
The results are summarized in Table I. The value of s was fixed at s = 0.05 
(decreasing e mainly affects A. 3 ). We observe that the first exponent A. 1 first 
slightly increases with b, after which a plateau value is reached. On the 
other hand, A. 2 decreases with b, whereas A. 3 is hardly affected. In contrast 
to the case of ID maps where a single exponent describes the system, we 
now have three exponents whose response to increasing noise strength 
shows opposite tendencies. To obtain a measure of the average stability 
properties of the system (5.1 ), we follow Farmer et al. r6 J and compute the 
Lyapunov dimension dL, which is defined as 

j 

dL=j+ I A.;/llj+ll (5.2) 
i= I 

where A. 1 ~ A. 2 ~ • · • and j is the largest integer such that A. 1 + · · · A.1 > 0. The 
values of dL for various noise strengths are presented in the last column of 
Table I. Due to the limited numerical precision of the measurements, the 
quantitative values of dL are not very accurate. But it seems justified to 
draw the qualitative conclusion that a sudden decrease of dL occurs as b 
increases. We interpret this as an indication that, although the maximum 

Table I. Lyapunov Exponents {A;} of the Flow (5.1) for Various Values of c5" 

0 A1 A1 ,\ 3 A dl 

0 0.090 ± 0.005 0 -54± 5 0.31 2.00 ±0.30 
0.1 0.105 ± 0.005 -0.055 ± 0.005 -56± 5 0.08 2.00 ±0.57 
0.2 0.115± 0.005 -0.07 ±0.01 -54± 5 -0.06 2.00±0.85 
0.3 0.12 ± 0.01 -0.16±0.02 -53 ± 5 -0.10 1.75 ± 0.36 
0.4 0.12±0.01 -0.24±0.03 -52 ± 5 1.50 ± 0.25 
0.5 0.12 ± 0.01 -0.26 ±0.03 -45 ± 5 1.46 ± 0.23 

a 2 is the exponent corresponding to the Poincare mapping Pb01(z). dL is the Lyapunov dimen
sion (5.2). 
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exponent A 1 slightly increases with b, the system is stabilized in a global 
sense by the noise. 

We may generalize the Poincare mapping P0 defined in the previous 
section to a stochastic mapping Pb"l(z) corresponding to oscillations 
perturbed by noise. In Fig. 7 we give the result using 25 values of z with 16 
simulation runs in each point. The noiseless curve P 0 := P&0l(z) is displayed 
for comparison. We also computed the Lyapunov exponent A. of the 
mapping Pb6 l for a number of values of <5. We took P(z) = Q, where Q is a 
stochastic variable distributed according to a normal distribution 
.1V(m(z), s(z)), where m(z) and s(z) are the mean and standard deviation of 
P(z ). For small b the mapping can be approximated by 

z,,=m(zn_ 1)+6N,, 

where N" is distributed according to the distribution vV(O, s(z,, _ i) ), 
allowing us to use the derivative of m(z) in the calculation of A._< 3 ) The 
results are displayed in column 5 of Table I. Since there are various 
approximations involved in the derivation of the numerical algorithm for)., 
these results have only a qualitative validity. The fact that ). decreases 
toward negative values again indicates the stabilizing nature of the noise. 

Finally, we have attempted to link the values of the exponents of the 
flow and the mapping, as we did in the noiseless case. To do this, one has 
to take into account the relative position of the evolving ellipsoid at the 

Fig. 7. 

z.-
1 

.75 

Stochastic Poincare mapping Pi,01(z) for 6 =0.1. Solid line: the noiseless mapping Po. 
Broken line: the average m(z) for b = 0.1. 
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moment of the jump during the relaxation oscillation. For b = 0 the long 
axis of the ellipsoid is perpendicular to the flow at the moment of the jump, 
but for increasing (> a systematic average rotation of the long axis with 
respect to this perpendicular direction was observed. However, we were 
unable to establish a quantitative relation between the exponents of the 
flow and mapping, respectively. 

6. ANALYSIS OF THE DYNAMICS FROM 
THE OUTPUT SIGNAL 

In the foregoing sections we analyzed oscillators with stochastic 
and/or chaotic dynamics from the explicitly given equations of motion. For 

(a) 
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+ + + 
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+ + x * + 

+ + 
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++ + .... 

1o-
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-5 -2 

Fig. 8. Return map of the lowest value of X in a cycle for the system ( 5.1 ). (a) o = O, (b) 
0 = 0.3. 
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real physical systems the exact equations are not always known, so that 
one has to decide from an output signal about the internal dynamics of the 
system. When a physical system shows fluctuations in the period, one is 
inclined to ascribe this to perturbations coming from the environment 
(noise). 

In a chemical system an intermediate reactant which is present for 
only a short time and therefore not noticed (hidden) may influence the 
dynamics and give rise to chaotic dynamics. The perturbation of the period 
has in that case a more fundamental cause. 14•5i The question therefore 
arises whether one can distinguish chaotic from stochastic behavior 
without knowing the internal dynamics, even if the chaotic system is 
subjected to external noise. 

(a) 

52-

I I I I 

0 48 

(b) 
10 

+ 
A 

0 w- 48 

Fig. 9. Power spectra of the system ( 5.1 ). (a) a = 1.4, cl= O; ( b) a= 1.4, cl= 0.3. 
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(c) 
15 

• A 

w+- 48 

(d) 
25 

• A 

48 

Fig. 9 (continued). (c) a= 1.7, fJ = 0; (d) a= 1.7, fJ = 0.3. 

We study this problem here by analyzing the dynamic properties of 
the system (5.1) from the output signal X(t) only. For different values of a 
and (J we take from the x component a time series of 5000 points with a 
time step of 0.0 l. 

First we consider the return map for the lowest x value over each cycle 
(see Fig. 8 ). For a= 1.7 and (J = 0 the points form a Cantor set. For small 
noise a cloud of points around this set is expected. In Fig. 8b we observe a 
breakdown of this cloud for (J = 0.3. From the clustering of data around a 
single point one would be inclined to conclude that the system is more or 
less periodic with some stochastic distribution. The power spectrum (see 
Fig. 9) confirms this observation: the peaks are higher and the area below 
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(a) 

(b) t 

A, 

969 

fraction -

Fig. 10. Largest Lyapunov exponent from the data set as a function of the fraction of the 
time series that is used in the approximation process. (a) a = I. 7, b = O; (b) a = I. 7, b = 0.3. 

the curve has relatively decreased, which is in agreement with the analysis 
of Matsumoto. <16 l 

Finally, in Fig. 10 we plot the largest Lyapunov exponent A. 1 computed 
from the output signal as a function of the proportion of the time series 
that is used in the approximation process.<26 l The process converges to a 
value 0.075 with fluctuations of magnetude 0.025, both in the case without 
( lJ = 0) and with noise ( lJ = 0.3 ). Variation of the tuning parameters of the 
approximation process does not have any significant influence upon the 
value of the largest Lyapunov exponent. Clearly, the presence of chaotic 
dynamics can be detected quite well from the output signal by the method 
of Wolf et al.<26 l This criterion is more dependable than an inspection of 
the power spectrum or a return map, particularly when the signal is 
corrupted by noise. However, it is difficult to decide from the results based 
upon the output signal whether the addition of noise produces a change in 
A. 1 • Such a change can be detected by computations based upon the explicit 
equations of motion, as we have shown in the previous section. 
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