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Statistics based on uniform spacings are often used in goodness-of-fit pro­
blems. In this paper special attention is paid to the distribution of Greenwood's 
statistic. Although its asymptotic distribution is normal, the normal approxima­
tion is extremely bad, even for large sample sizes. It is shown that the Edge­
worth expansion yields a considerably better approximation for the distribution 
of this statistic. Furthermore, an overview is given of the higher order asympto­
tics for the sum of functions of uniform spacings, of which Greenwood's statis­
tic is a special case. 
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1. INTRODUCTION 

On the basis of past experience or some specific characteristics of an experi­
ment one often hypothesizes that the observations come from a specified distri­
bution. When one tries to ascertain if the observations contradict this 
hypothesis, one is dealing with a goodness-of-fit testing problem. Let 
X 1,X2, ... ,Xn be a random sample from a continuous distribution F0 • Then the 
probability integral transformation, Uj=F0(X1), will transform X 1,X2, ..• ,Xn 
into UI>U2, •.• ,Un where the U;,J=l,2, ... ,n, are independent uniform (0,1) 
random variables. Thus testing the null-hypothesis H 0 : X 1, X 2 , ... , Xn i.i.d. F 0 

can be reduced to testing the simple hypothesis H0 :U1,U2 , ... ,Un are indepen­
dent uniform (0, 1) random variables. The resulting problem op testing unifor­
mity and the related distribution theory have received considerable attention in 
the literature. A particular application of tests for uniformity is in checking the 
performance of random number generators which are used in simulation stu­
dies. 

In this paper we consider a test statistic which is based on spacings. Under 
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these spacings are in fact uniform spacings. These are 
differences between consecutive observations from a uniform 

U i, U 2 , .•• be a sequence of independent uniform (0, l) ran­
:~ ~ U l:n ~ · · · ,,.;;. Un :n denote the ordered U 1 , •• ., Un and 

+l:n ::::. L then the uniform spacings are defined by 

:n - U1-l:n , j=l,2, ... ,n+l. (l) 

discusse,d earlier by WHITWORTH (1887) and others the development 
tests based on uniform spacings received its principal 

""''"'""~ from GREENWOOD (1946). To test the uniformity of the sample he 

n +I 

~=~~. ~ 
j=I 

as a test statistic. In the literature there are many other statistics which have 
been suggested to provide tests based on a function of uniform spacings ( cf. 
the last section of this paper). However the Greenwood statistic yields the 

most powerful one among such tests, against linear non-uniform alter­
natives (cf. WEISS, 1956). 

This paper is organized as follows. In Section 2 we deal with the distribution 
of the Greenwood statistic. In this section we also present the results of a 
numerical investigation. Section 3 discusses higher order asymptotics for statis­
tics which are the sum of functions of uniform spacings. 

2. THE GREENWOOD STATISTIC 

In Section l we introduced the Greenwood statistic as the sum of the squared 
lengths of the n + 1 uniform spacings obtained when a unit interval is divided 
by n points at random (cf. (l) and (2)). However, the exact distribution of Gn 
under the null-hypothesis is not known in a manageable form for n>3. For 
n = l and 2 GREENWOOD ( l 946) gives exact expressions for the corresponding 
distribution functions. GARDNER ( 1952) presents the distribution function of 
(2) for n ::::::3. Most recently KUMGANBAYEV and VOINOV (1986) found a 
method to obtain - at least in principle - the exact distribution function of the 
Greenwood statistic for any value of n. However it appears that the method is 
not easy to apply. 

In a situation where exact results are less tractable or not available, it is 
natural to derive asymptotic distributions. Hopefully these will give accurate 
approximations which can be used in establishing approximate critical regions 
for testing purposes. In 1947 Moran proved the asymptotic normality of Gn 
(cf. (2)). He also indicated that the tendency to normality is extremely slow. In 
Table I the values of skewness Pin and kurtosis f:32n for some selected values of 
n are given. 
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TABLE I. The skewness /31n, and kurtosis /32n of Greenwood's statis­
tic for some values of n. 

n /31n f32n 

5 1.587 6.827 
10 1.706 8.351 
20 1.584 8.201 
30 1.437 7.493 
50 1.218 6.378 
70 1.073 5.673 

100 0.926 5.026 
150 0.775 4.439 
250 0.613 3.909 
500 0.440 3.473 

1000 0.314 3.241 
00 0 3 
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Note that for a normal distribution the skewness vanishes and the kurtosis 
equals 3. 

Better approximations for the distribution function of Gn may be obtained 
by using Edgeworth expansions (cf. (4)). In contrast to the normal approxima­
tion in which only the mean and variance play a role, the Edgeworth expan­
sion involves the first four cumulants (moments). The third cumulant (the 
skewness) and fourth cumulant (the kurtosis minus 3) of Gn deviate from zero 
significantly as indicated in Table 1. This explains perhaps why the normal 
approximation is inadequate. 

In DOES and HELMERS (1982) and DOES, HELMERS and KLAASSEN (1987) 
Edgeworth expansions with approximate cumulants for the sum of a function 
of uniform spacings with remainder o(n -I) are established. For the special 
case of a quadratic function we can replace these approximate cumulants by 
their exact counterparts given in MORAN (1947: see also the corrigendum 
(1981) correcting an error in the formula for the third cumulant). In this way 
we arrive at an Edgeworth expansion of the distribution function F,, of the 
exactly standardized Greenwood statistic (cf. (2)) 

G; = n- 112(n +2)(n +3)112(n +4)112 Gn12-n- 112 (n +3)112(n +4)112 , 

which is given by 

F,,(x) = Fn(x) + o(n- 1) , as n--')oo, (3) 

where (et> denotes the standard normal distribution function and </>its density), 

Fn(x) = cI>(x) - <P(x){.81n(x2 -1)/6 + (.82n-3)(x3 -3x)/24 (4) 

+ /3rn(x 5 -10x3 +15x)/72}, 

with (cf. MORAN (1974, 1981)) 

_ (I On -4)(n + 3)112(n +4)112 

.Bin - n 112(n + S)(n + 6) ' 



exact 
tioned siz.es and various values of the 
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Monte Carlo simulation 
150. 250 and x == 

the normal approxima­
for the above men-

TABLE II. exact function 
exn11rn5:1on and normal approximation. 

lx -2.0 -LS -LO ..0.5 0.0 (l5 LO LS 2.0 2.5 3.0 i 
I (iii j .000 J)04 . IOI .349 .599 .769 .868 .924 .956 .974 .985 I 
! l .OOO .109 .365 .613 .185 .890 .939 .946 .951 .968 i 
! I.OOO .OIO . 16 .345 .584 .759 .865 .926 .957 .975 .986 I I ' I 
\ F I.coo .OOO .104 .350 .605 .789 .896 .939 .945 .952 .969 II I I 

i ! .OOO .016 .124 .341 .575 .753 .863 .925 .959 .978 .987 I 
ii Fm I.OOO .HO .344 .596 .782 .890 .935 .946 .956 .972 ii· 

. f;o 1.001 .025 .133 .338 .567 .745 .859 .922 .958 .976 .987 · 
I ! .OOO .120 .340 .581 . . .880 .931 .949 .963 .979 i 
I ,.002 .!36 .339 .560 .741 .856 .923 .961 .980 .989 I 
I F7() i .OOO .014 .337 .57i .757 .872 .928 .952 .967 .982 I 
! fioo j ·004 .034 .144 .338 .557 .736 .854 .925 .964 .982 .991 1 

l 1.000 .024 .135 .335 .5ti2 .747 .865 .926 .955 .972 .9851 I .039 .145 .329 .545 .724 .850 .922 .962 .982 .991 I 
1 F1sol.ooo .033 .142 .332 .736 .sss .925 .958 .976 .989 1 I fi50 , .008 .047 .150 .330 .541 .724 .849 .925 .965 .984 .993 l 
I F 250 1.005 .042 .l48 .329 .541 .725 .852 .925 .962 .981 .992 
I ~ 1.023 .061 .1s9 .309 .soo .692 .s41 .933 .977 .994 .9991 

In Table m the accuracy of the two meth0·tls of approximation is illustrated. 
Let (cf. (3) and 

and 

l;!enote the maximum error in the region ~ 3 when is approximated by 
F,, and by Ill, respectively. 
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TABLE III. Estimated maximum error in the region -3.;;;;x.;;;;3 when 
the (estimated) exact distribution is approximated by the 
Edgeworth expansion and normal distribution, respectively. 

n d(Fn,Fn} d(Fn,4') 
10 .023 .101 
20 .033 .087 
30 .030 .076 
50 .024 .068 
70 .018 .061 

100 .012 .058 
150 .013 .046 
250 .004 .042 
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The agreement between Fn and Fn is reasonable. Already for n = 10-30 the 
accuracy of the Edgeworth expansion is within .035 of the (estimated) actual 
value. On the other hand the normal approximation is bad even for n = 250: in 
this case the maximum error in the region - 3.0o;;;;;x,.;;;;; 3.0 is greater than .04. 
Hence for n = 10-30 the Edgeworth expansion performs already better than the 
normal approximation for n = 250! 

EASTON and RONCHETII (1986) have suggested a way of using Edgeworth 
expansions for the density of an arbitrary statistic to obtain a so-called 
saddlepoint approximation for it (cf. DANIELS (1987)). However this technique 
is beyond the scope of this paper. 

Instead of considering a distribution function one might be interested in its 
inverse function, i.e. its percentage points. In recent years there has been a 
revival of interest in the percentage points of the Greenwood statistic. BUR­
ROWS (1979), using recursion and numerical integration, produced a table of 
exact percentage points of Gn for n = 2 (1) 10. CURRIE (1981) extended the 
tabulation of Burrows ( 1979) up to sample size 20. HILL (1979; see also his 
corrigendum (1981)) fitted Johnson curves and lognormal curves. STEPHENS 
(1981) approximated percentage points for the Greenwood statistic for various 
sample sizes n and values of the level a by fitting Pearson curves to the first 
four moments. A comparison of Pearson curve points and those given by 
Johnson curves or by lognormal curves fitted to the distribution has been given 
by CURRIE (1981), for n up to 20. It shows that all three methods give very 
similar results for n =20. In DOES, HELMERS and KLAASSEN (1984) the exact 
percentage points of Greenwood's statistic are approximated by Cornish-Fisher 
expansions. Their numerical results indicate that the Cornish-Fisher approxi­
mation behaves quite satisfactory for sample sizes n ;;i: 12 although its perfor­
mance is inferior to that of Pearson curves approximation (cf. STEPHENS 
(1981)). It should be noted that the approximate percentage points based on 
Cornish-Fisher expansions can be computed for any value of a and n. On the 
other hand to apply the Pearson curves method of STEPHENS ( 1981) one has 
either to rely on interpolation for values a and n different from those occuring 
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in his paper or to extend his table. 

3. HIGHER ORDER ASYMPTOTICS FOR THE SUM OF FUNCTIONS OF UNIFORM SPAC­

INGS 

Let g:[O, ao )~R, be a measurable nonlinear function and define statistics Tn 
by 

n +I 
Tn = ~g((n +l)Djn), n;a.I. (5) 

j=I 

Statistics of this form can be used for testing uniformity. For the special case 
with g(x)=x2,Tn reduces to (n +lfGn (cf. (2)). However, there are several 
other statistical applications of uniform spacings. The first study of uniform 
spacings was concerned with the randomness of a series of events and was 
motivated by the fact that the intervals between successive events of a Poisson 
process, conditioned on the number of events in a specified interval, are distri­
buted like uniform spacings ( cf. WHITWORTH (1887) and also the paper of 
STEurEL (1967) in this journal). Furthermore, functions of uniform spacings 
are used in time series analysis for testing for null correlation, studies of 
empirical processes, density and regression estimation and coverage problems 
in which one considers typically intervals of fixed length centered at the U/s 
and where one is interested in the sample size required to cover (0, 1) k times. 
A more or less complete account of the statistical applications of uniform 
spacings can be found in the review papers of PYKE (1965, 1972), and 
DEHEUVELS {1985). 

In the literature there are many statistics of the form (5) which have been 
proposed to provide tests based on uniform spacings. A few examples are: 
g(x)=x 2, suggested by GREENWOOD (1946), g(x)=ix -11 suggested by M.G. 
Kendall in the discussion of GREENWOOD (1946), g(x)=x',r>O,r~l pro­
posed by KIMBALL (1950), g(x)=logx and g(x)=x- 1 both suggested by DAR­
LING (1953). In a paper of SETHURAMAN and RAo (1970) a unified treatment is 
presented of the computation of (asymptotic relative) Pitman efficiencies of 
tests based on the sum of a function of uniform spacings. Though CHIBISOV 

(1961) shows that the efficiency of any test symmetric in the spacings is zero 
relative to the Kolmogorov-Smirnov test, it is still useful to know about the 
efficiency of one symmetric spacings test relative to another. It must be 
pointed out that the negative result about the use of spacings concerns only a 
very specific type of local alternatives for which tests based on spacings are 
inefficient (cf. DEHElNELS (1985)). SETHURAMAN and RAo (1970) show that 
among a large class of symmetric tests of the form (5) the test as proposed by 
GREENWOOD (1946) has maximum efficacy. 

The first general attempt to derive limit theorems for statistics of the form 
(5) was made by DARLING (1953). He derived a formula for the characteristic 
function of Tn, from which he was able to obtain the limit distribution for 
several special functions g. LE CAM ( 1958) presented a powerful technique for 
proving first order limit theorems using a well-known characterization for 
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uniform spacings: Note that interarrival times Y1,j= 1,2, ... , of a Poisson pro­
cess are exponentially distributed and that given the (n + l )-th point 
Qn + 1 ( = ~J ;t 1 Y1) in this Poisson process, the first n points are distributed like 
the order statistics of n iid observations from a uniform distribution on the 
interval (0, Q11 + 1 ). Consequently, we have 

and hence 

Y1 y, Yn+1 
t(D1n,D2,,, ... ,D,,+1,n) = t(-Q-, -Q ~ ' ... ,-Q' ) 

n +l n +I 12 +I 

e((n + l)D1m(n + l)D211 , ... ,(n + l)D,, +1,,,) = 

t(Y1, Y2, ... , Yn +ilQn + 1 =n + l). 

From this it it follows that 

where 
n+l n+I 

W11 = ~ g(Yj), and Sn = ~ (Y1- l), 
j=I j=I 

(6) 

i.e., Tn has the same distribution as a sum of independent random variables 
given another sum of independent random variables. H g would be linear then 
Tn would be degenerate. A survey of the general area of first order limit 
theorems may be found in the just mentioned review papers of Pyke and 
Deheuvels. 

In this journal two review papers about higher order asymptotics have been 
published namely ALBERS (1975) and DOES (1984). For an introduction to this 
subject the reader is referred to these papers. The first question that is dis­
cussed in second order asymptotics is that of the rate of convergence to the 
(normal) limit. According to PYKE (l 972) such a study is of interest. With the 
aid of the characterization (6), DOES and KI.AASSEN (1984a, 1984b) proved 
Berry-Esseen bounds of the order n - 112 for the normal approximation for 
statistics based on uniform spacings under natural moment assumptions. 

The next step is to go beyond Berry-Esseen bounds and investigate higher 
order terms of the distribution function of the statistic Tn defined in (5). Such 
results are called Edgeworth expansions and are of interest for several reasons 
(cf. BICKEL (1974)). 

In DOES and HELMERS (1982) Edgeworth expansions were established for 
statistics of the form (5) under a natural moment assumption and an integra­
bility condition on the simultaneous characteristic function of (Y-1,g(Y)) (cf. 
(6)) where Y is an exponential random variable with expectation I. In DOES, 
HELMERS and KLAASSEN (1987) it is shown that the latter integrability condi­
tion can be replaced by a much weaker and more natural Cramer-type condi­
tion (cf. FELLER (1971), Chapter XVI). It is shown in the latter paper that the 
Cramer-type condition holds under an easily verifiable and mild assumption 
on the function g : if (c,d)C(O,oo) is an open interval on which g is almost 



160 Statistica Neerlandica 42 (1988), nr.3 

everywhere differentiable with derivative g1 such that g' is not essentially con­
stant on {c,d) then the Cramer-type condition holds. Furthermore an indica­
tion is given how to generalize the results to functions g1n; i.e. functions 
depending on the j - th spacing and sample size n. A Berry-Esseen theorem for 
this more general case was proved in DOES and KLAASSEN (1984b). 
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