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Abstract

Asymptotic expansions are given for large values of n of the general-
ized Bessel polynomials Y µ

n (z). The analysis is based on integrals that
follow from the generating functions of the polynomials. A new simple
expansion is given that is valid outside a compact neighborhood of the
origin in the z−plane. New forms of expansions in terms of elementary
functions valid in sectors not containing the turning points z = ±i/n
are derived, and a new expansion in terms of modified Bessel functions
is given. Earlier asymptotic expansions of the generalized Bessel poly-
nomials by Wong and Zhang (1997) and Dunster (2001) are discussed.

2000 Mathematics Subject Classification: 30E10, 33C10, 33C15, 41A60.

Keywords & Phrases: generalized Bessel polynomials, asymptotic expansions, Bessel

functions, Kummer functions.

1 Introduction

Generalized Bessel polynomials of degree n, complex order µ and complex
argument z, denoted by Y µ

n (z), have been introduced in [4], and can be
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defined by their generating function. We have [3]:

(

2

1 +
√

1 − 2zw

)µ e2w/(1+
√

1−2zw)

√
1 − 2zw

=

∞
∑

n=0

Y µ
n (z)

n!
wn, |2zw| < 1, (1.1)

with special values Y µ
n (0) = 1, n = 0, 1, 2, . . ..

The generalized Bessel polynomials are important in certain problems
of mathematical physics. For a historical survey and discussion of many
interesting properties, we refer to [3].

In [2] and [13] detailed contributions on asymptotic approximations are
given on the generalized Bessel polynomials. Wong and Zhang use integral
representations and Dunster’s approach is based on a differential equation.
Our approach also uses integrals as starting point.

Our approach is different from that of Wong and Zhang [13]. We give
expansions that are similar to those of the modified Bessel functions, and the
expansions reduce to these expansions when µ = 0. For the expansions in
terms of elementary functions we give a simple description for the domains
of validity.

In §3 we start with a simple expansion valid outside a fixed neighborhood
of the origin. In §4 we give expansions that hold uniformly with respect to
z inside the sectors |ph ± z| ≤ 1

2π − δ, where δ is a small positive number.
At the end of this section we compare our results with those in [2] and [13].
For complementary sectors (and extensions of these) we give an expansion
in terms of the modified Bessel function Kn+ 1

2

(z) and its derivative. In fact,

this is an expansion in terms of Y 0
n (z), and this expansion holds for all z.

In the Appendix §7 we summarize the expansions of the modified Bessel
functions. These expansions play a role when comparing the results for the
generalized Bessel polynomials with those for µ = 0.

2 Representations and relations with Bessel and
Kummer functions

For µ = 0 the generalized Bessel polynomials become well-known polynomi-
als that occur in representations of Bessel functions of fractional order. We
have in terms of the modified K−Bessel function [9]1:

Y 0
n (z) =

√

2

πz
e1/zKn+ 1

2

(1/z) =
n
∑

k=0

(

n
k

)

(n+ 1)k

(

1
2
z
)k
, (2.1)

1http://dlmf.nist.gov/10.49.E12
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where (p)k is the Pochhammer symbol defined by

(p)0 = 1, (p)k =
Γ(p+ k)

Γ(p)
, k ≥ 1. (2.2)

For Y µ
n (z) an explicit formula reads [4]

Y µ
n (z) =

n
∑

k=0

(

n
k

)

(n+ µ+ 1)k

(

1
2
z
)k
. (2.3)

The simple integral representation

Y µ
n (z) =

1

Γ(n+ µ+ 1)

∫ ∞

0
tn+µ

(

1 + 1
2
zt
)n
e−t dt (2.4)

gives the representation in (2.3) by expanding (1 + 1
2zt)

n in powers of z.
From the generating function in (1.1) we have the Cauchy integral rep-

resentation

Y µ
n (z) =

n!

2πi

∫

C

(

2

1 +
√

1 − 2zw

)µ e2w/(1+
√

1−2zw)

√
1 − 2zw

dw

wn+1
, (2.5)

where C is a circle with radius smaller than 1/|2z|.
When z = 0 all polynomials reduce to unity, the first few polynomials

being

Y µ
0 (z) = 1, Y µ

1 (z) = 1 + 1
2
(µ+ 2)z,

Y µ
2 (z) = 1 + (µ+ 3)z + 1

4
(µ+ 3)(µ+ 4)z2.

(2.6)

More values can be obtained from the recurrence relation

AnY
µ
n+2(z) = BnY

µ
n+1(z) +CnY

µ
n (z), (2.7)

where

An = 2(2n + µ+ 2)(n + µ+ 2),

Bn = (2n+ µ+ 3)(2µ + z(2n+ µ+ 4)(2n + µ+ 2)),

Cn = 2(n+ 1)(2n + µ+ 4).

(2.8)

There is also a recursion with respect to µ:

(n+ µ+ 2)Y µ+2
n (z) = (2n+ µ+ 2 − 2/z)Y µ+1

n (z) + (2/z)Y µ
n (z), (2.9)
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and for the derivative we have

d

dz
Y µ
n (z) = 1

2
n(n+µ+ 1)Y µ+2

n−1 (z) =
n+ µ+ 1

z

(

Y µ+1
n (z) − Y µ

n (z)
)

. (2.10)

These relations are special cases of known analytic continuation formula for
the Kummer functions. See, for example, [7] and [10, p. 13]. They follow
also from (2.4) by integrating by parts.

The relations with the Kummer functions are

Y µ
n (1/z) = (2z)n+µ+1U(n+ µ+ 1, 2n + µ+ 2, 2z),

= (2z)−n
Γ(2n + µ+ 1)

Γ(n+ µ+ 1)
1F1(−n;−2n− µ; 2z).

(2.11)

For ℜz < 0 it is convenient to have the representation

Y µ
n (−1/z) = Fµn (1/z) + Uµn (1/z), (2.12)

where

Fµn (1/z) =
n! (2z)n+µ+1e−2z

Γ(2n+ µ+ 2)
1F1(n+ 1; 2n + µ+ 2; 2z),

Uµn (1/z) =
(−1)nn! (2z)n+µ+1e−2z

Γ(n+ µ+ 1)
U(n+ 1, 2n + µ+ 2, 2z).

(2.13)

For µ = 0 we have

F 0
n(z) =

√
2πze−zIn+ 1

2

(1/z), U0
n(z) = (−1)n

√

2z

π
e−zKn+ 1

2

(z), (2.14)

and this corresponds to the relation

Y 0
n (−z) =

√

2

πz
e−1/z

(

(−1)nKn+ 1

2

(1/z) + πIn+ 1

2

(1/z)
)

. (2.15)

3 A simple expansion

The interesting region in the z plane for uniform asymptotic expansions is
a neighborhood of size O(1/n) of the origin, where the zeros appear. For z
outside a fixed neighborhood a simple expansion will be derived.

First we mention

Y µ
n (z) = 2µ+ 1

2

(

2nz

e

)n

e1/z ×
(

1 − 1 + 6µ(µ+ 1 + 2z−1) + 6z−2

24n
+ O

(

1/n2
)

)

.
(3.1)
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This is derived in [1] and mentioned in [3, p. 124] and [13]. More terms in
this expansion can be obtained, for example by using the Cauchy integral
given in (2.5).

In this section we derive a simple asymptotic expansion related to the
result in (3.1) by expanding part of the integrand in (2.5) in powers of
W =

√
1 − 2zw. First we notice that the main asymptotic contributions

from the contour integral in (2.5) come from the singular point w = 1/(2z),
and when w ∼ 1/(2z) the quantity W is small.

We have
(

2

1 +
√

1 − 2zw

)µ

e2w/(1+
√

1−2zw) = 2µe1/z(1 +W )−µe−W/z (3.2)

and we expand for m = 0, 1, 2, . . .

(1 +W )−µe−W/z =
m−1
∑

k=0

L−µ−k
k (1/z)W k +WmUm(W ). (3.3)

The appearance of the Laguerre polynomials becomes clear when expanding
both the exponential and binomial and by comparing the coefficients with
the representation

Lαn(x) =

n
∑

m=0

(

n+ α
n−m

)

(−x)m
m!

. (3.4)

Introducing this expansion in (2.5) we find

Y µ
n (z) = n! 2µe1/z

m−1
∑

k=0

L−µ−k
k (1/z)Φ

(n)
k + n!Rm(n), (3.5)

where

Φ
(n)
k =

1

2πi

∫

C
(1 − 2zw)(k−1)/2 dw

wn+1
= (2z)n

(

1
2 − 1

2k
)

n

n!
, (3.6)

and

Rm(n) =
2µe1/z

2πi

∫

C
(1 − 2wz)(m−1)/2Um(W )

dw

wn+1
, (3.7)

with C a circle with radius less than 1/|2z|.
After the change of variable w = (1 − t/n)/(2z) we have

Rm(n) =
(2z)n2µe1/z

2πi n(m+1)/2

∫

C
t(m−1)/2Um

(

√

t/n
) dt

(1 − t/n)n+1
. (3.8)
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The function Um(W ) is analytic in |W | < 1 and O(1) as W → 0. This means
that |Um(W )| < Cm with Cm a positive constant, on and inside the path C
of integration in (2.5). Hence, |Um(

√

t/n)| < Cm on C (indeed, the path C
has been modified after the change of variable, but we can set it equal to
the previous path). Also, (1 − t/n)−(n+1) is bounded on C (and converges
to et for large n). Therefore, the above integral is O(1) as n→ ∞. Hence,

Rm(n) = O
(

(2z)n

n(m+1)/2

)

, n→ ∞, z 6= 0, (3.9)

which is comparable with the large n behavior of Φ
(n)
m .

From the integral in (3.6) it easily follows that Φ
(n)
2k+1 = 0 for k =

0, 1, 2, . . . , n, and we see that, when n is large, only the even terms in the

series give contributions. We notice that Φ
(n)
2k constitute an asymptotic se-

quence. This follows from

Φ
(n)
2k+2

Φ
(n)
2k

=
Γ(−1

2 − k + n)

Γ(1
2 − k + n)

=
1

−1
2 − k + n

= O
(

n−1
)

, n→ ∞. (3.10)

We can collect the results of the section as follows.

Theorem 1 For n→ ∞ we have the asymptotic expansion

Y µ
n (z) ∼ (2z)n 2µe1/z

∞
∑

k=0

L−µ−k
k (1/z)

(

1
2
− 1

2
k
)

n
, (3.11)

which holds uniformly for |z| ≥ z0, where z0 is a positive constant.

In Table 1 we give the relative errors δ when we use the expansion in
(3.11) with terms up and including k = 20, for µ = 17/4 and several values
of z and n. We see a quite uniform error with respect to z, except when
z = ± 1

10 .

Remark 1 If we wish we can expand the Pochhammer symbols in (3.11)
for large n and rearrange the series. In that way we can obtain an expansion
of Y µ

n (z) in negative powers of n, and this expansion is comparable with an
expansion of which the first terms are given in (3.1).

Remark 2 In (3.11) we expand the generalized Bessel polynomials Y µ
n (z)

in terms of another set of polynomials, the generalized Laguerre polyno-
mials. Because the degree of these polynomials does not depend on the
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Table 1: Relative errors δ in the asymptotic expansion in (3.11) with terms
up and including k = 20 for µ = 17/4 and several values of z and n.

z = 10j z = −10j

j Y µ
n (z) δ j Y µ

n (z) δ

n = 50 -1 0.4232e034 0.16e-03 -1 0.1961e026 0.26e-11
0 0.1211e081 0.38e-07 0 0.1778e080 0.62e-08
1 0.5131e130 0.17e-07 1 0.4235e130 0.14e-07
2 0.4707e180 0.16e-07 2 0.4617e180 0.15e-07
3 0.4666e230 0.15e-07 3 0.4657e230 0.15e-07

n = 100 -1 0.1681e093 0.30e-07 -1 0.5251e084 0.68e-15
0 0.3190e189 0.10e-10 0 0.4501e188 0.18e-11
1 0.1325e289 0.47e-11 1 0.1089e289 0.39e-11
2 0.1213e389 0.43e-11 2 0.1189e389 0.42e-11
3 0.1202e489 0.43e-11 3 0.1200e489 0.42e-11

large parameter, they can be evaluated much easier than the polynomials
Y µ
n (z). In fact, to compute the Laguerre polynomials we can use a recur-

rence relation, which follows from differentiating (3.3) with respect to W .

Let ck = L−µ−k
k (1/z), then

z(k + 1)ck+1 = −(µz + kz + 1)ck − ck−1, k = 1, 2, 3, . . . , (3.12)

with initial values c0 = 1, c1 = −(µz + 1)/z.

Remark 3 For general values of µ the expansion in (3.11) is not conver-
gent, but for µ = 0,−1,−2, . . . it is. For example, for µ = 0 a relation
for the K−Bessel function should arise. We have from (3.3) L−k

k (1/z) =
(−1)k/(k! zk), which gives the convergent expansion

Y 0
n (z) = (2z)ne1/z

∞
∑

k=0

(−1)k

k! zk

(

1
2
− 1

2
k
)

n
. (3.13)

Summing the series, separating the terms with even and odd k, we obtain

Y 0
n (z) = (−1)ne1/z

√

π

2z

(

I−n− 1

2

(1/z) − In+ 1

2

(1/z)
)

, (3.14)

and by using a well-known relation between the modified Bessel functions
the representation in (2.1) arises.
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Remark 4 The expansion in (3.11) is simpler than those of the following
sections: it is easier to obtain and the coefficients are easily computed. When
z is small the expansion in (3.11) breaks down. The Laguerre polynomials
(k ≥ 1) are not bounded, although the factor (2z)n in front of the expansion
has some control. But the main concern is the exponential factor e1/z , which
has an essential singularity at z = 0. Recall that the polynomials Y µ

n (z) all
tend to unity when z → 0. As mentioned in Theorem 1, for the expansion
in (3.11) we have to exclude a fixed neighborhood of the point z = 0.

4 Expansions in terms of elementary functions

By using saddle point methods we obtain expansions that hold uniformly
inside sectors |ph ± z| ≤ 1

2π − δ, where δ is a fixed small positive number.
For Y µ

n (z) we take ν = n+ 1
2 as the large parameter. This gives a suitable

identification of the results with those for the Bessel function Kn+ 1

2

(z) when

µ = 0; see also (2.1). In addition we replace the argument z of Y µ
n (z) by

1/(νz) (observe that in [2] ν is also the large parameter, and the Bessel
polynomial is considered with reversed argument).

Because for both cases |ph ±z| ≤ 1
2π−δ the derivation of the asymptotic

expansion is very similar we first summarize the results in the following two
subsections, and in §4.4 we give the details of the analysis.

4.1 Expansion holding for |ph z| <
1

2
π

Theorem 2 For large values of n we have the expansion

Y µ
n (ζ) ∼

(

1 − z +
√

1 + z2
)µ√

z

(1 + z2)
1

4

eνz−νη
∞
∑

k=0

Ak(µ, z)

νk
, (4.1)

and the expansion holds uniformly inside the sector |ph z| ≤ 1
2π − δ. Here,

δ is a small positive constant, ν = n+ 1
2 , ζ = 1/(νz), A0(µ, z) = 1,

A1(µ, z) =
t(5t2 − 3)

24
− µt2(z + 1)

4
+
µ2(tz − 1)

4
, (4.2)

and

t =
1√

1 + z2
, η =

√

1 + z2 + log
z

1 +
√

1 + z2
. (4.3)
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For µ = 0 the coefficients Ak(µ, z) reduce to those in the expansion in
(7.1), that is, Ak(0, z) = (−1)kuk(t), and

Y 0
n (ζ) =

√

2νz

π
eνzKν(νz) ∼

√
z

(1 + z2)
1

4

eνz−νη
∞
∑

k=0

(−1)kuk(t)

νk
, (4.4)

which indeed gives the expansion in (7.1)
For ζ = 0 all Bessel polynomials Y µ

n (ζ) reduce to unity. We have as
ζ → 0:

z → ∞, t→ 0, zt→ 1, z − η → 0, . (4.5)

As a consequence, A1(µ, z) → 0 as ζ → 0. In fact all coefficients Ak(µ, z)
with k ≥ 1 vanish as ζ → 0, and both sides of (4.1) reduce to unity.

Recall that the simple expansion in §3 is no longer valid when the argu-
ment of the Bessel polynomials approaches the origin.

4.2 Expansions holding for |ph(−z)| <
1

2
π

In this case we write (see (2.12) and (2.13))

Y µ
n (−1/z) = Fµn (1/z) + Uµn (1/z). (4.6)

We have the following results.

Theorem 3 For large values of n we have the expansions

Uµn (ζ) ∼ (−1)n

(

1 + z +
√

1 + z2
)µ√

z

(1 + z2)
1

4

e−νz−νη
∞
∑

k=0

Bk(µ, z)

νk
, (4.7)

Fµn (ζ) ∼

(

1 + z −
√

1 + z2
)µ√

z

(1 + z2)1/4
e−νz+νη

∞
∑

k=0

Ck(µ, z)

νk
, (4.8)

and the expansions hold uniformly inside the sector |ph z| ≤ 1
2π − δ. Here,

B0(µ, z) = 1, C0(µ, z) = 1,

B1(µ, z) =
t(5t2 − 3)

24
+
µt2(z − 1)

4
− µ2(zt+ 1)

4
, (4.9)

and

C1(µ, ζ) = − t(5t
2 − 3)

24
+
µt2(z − 1)

4
+
µ2(zt− 1)

4
. (4.10)

The quantities t, ζ, ν and η are as in Theorem 2.

For µ = 0 the expansions reduce to those for the modified Bessel func-
tions mentioned in (2.14).
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4.3 Integral representations

For deriving the asymptotic expansions we introduce the integrals

Pµν (z) =

∫ ∞

0
pµ(s)e

−νφ(s) ds,

Qµν (z) =
1

2πi

∫

L
qµ(s)e

νφ(s) ds,

(4.11)

where ν > 0 and
φ(s) = 2zs − ln s− ln(1 + s). (4.12)

When z > 0 the contour L is a vertical line with ℜs > 0; when z is complex
we can deform the contour in order to keep convergence. For the same
purpose we can rotate the path of integration for Pµν (z) in (4.11).

For certain choices of pµ(s) and qµ(s) these integrals give representations
of the functions Y µ

n (z), Fµn (z), and Uµn (z). We have

Y µ
n (ζ) =

(2νz)n+µ+1

Γ(n+ µ+ 1)
Pµν (z), pµ(s) =

sµ
√

s(1 + s)
, (4.13)

Uµn (ζ) =
(−1)n(2νz)n+µ+1e−2νz

Γ(n+ µ+ 1)
Pµν (z), pµ(s) =

(1 + s)µ
√

s(1 + s)
, (4.14)

Fµn (ζ) =
n!

(2νz)n
Qµν (z), qµ(s) =

(1 + s)−µ
√

s(1 + s)
. (4.15)

The multi-valued functions in φ(s), pµ(s), and qµ(s) have there principal
branches and are real for s > 0.

The representations in (4.13) and (4.14) follow from the well-known in-
tegral

U(a, c, z) =
1

Γ(a)

∫ ∞

0
ta−1(1 + t)c−a−1e−zt dt, ℜ a, z > 0, (4.16)

the first line in (2.11), and the second line in (2.13). For (4.15) we refer to
the first line in (2.13) and the integral representation (see [10, p. 46])

1

Γ(c)
1F1(a; c; z) =

z1−c−ez

2πi

∫

L
ezs(1 + s)a−cs−a ds, (4.17)

where L is a vertical line with ℜs > 0.
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4.4 Construction of the expansions

We use the saddle point method for obtaining asymptotic expansions of the
integrals in (4.11). The saddle points follow from the equation φ′(s) = 0,
where

φ′(s) =
2zs2 + 2(z − 1)s− 1

s(1 + s)
, (4.18)

and are given by

s+ =
1 − z +

√
1 + z2

2z
, s− =

1 − z −
√

1 + z2

2z
. (4.19)

When z > 0 the saddle points are well-separated, with −1 < s− < −1
2 and

s+ > 0. We have the following limits: limz→0 s+ = +∞ and limz→∞ s+ = 0.
Also,

s+(1 + s+) =
1 +

√
1 + z2

2z2
, (4.20)

and

φ(s+) = 1 − z + ln(2z) + η, φ′′(s+) =
4z2

√
1 + z2

1 +
√

1 + z2
, (4.21)

with η defined in (4.3).
We use Laplace’s method with the transformation

φ(s) − φ(s+) = 1
2
φ′′(s+)w2, sign(w) = sign(s− s+). (4.22)

We have s = w + O(w2) as w → 0. The integrals in (4.11) become

Pµν (z) = e−νφ(s+)

∫ ∞

−∞
f(w) e

−1
2 νφ

′′(s+)w2

dw, f(w) = pµ(s)
ds

dw
,

Qµν (z) =
eνφ(s+)

2πi

∫ i∞

−i∞
g(w) e

1
2 νφ

′′(s+)w2

dw, g(w) = qµ(s)
ds

dw
.

(4.23)

By expanding f(w) =
∑∞

k=0 fkw
k and g(w) =

∑∞
k=0 gkw

k we obtain the
asymptotic expansions

Pµν (z) ∼ f0e
−νφ(s+)

√

2π

νφ′′(s+)

∞
∑

k=0

Fk(µ, z)

νk
,

Qµν (z) ∼ g0
eνφ(s+)

2π

√

2π

νφ′′(s+)

∞
∑

k=0

(−1)k
Gk(µ, z)

νk
,

(4.24)
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where (see also (4.20))

Fk(µ, z) =
(1
2 )k2

k

(φ′′(s+))k
f2k

f0
, f0 = pµ(s+),

Gk(µ, z) =
(1
2 )k2

k

(φ′′(s+))k
g2k
g0
, g0 = qµ(s+),

(4.25)

because ds/dw = 1 at w = 0.
By using (4.19)–(4.21) and (4.14)–(4.15) it follows that

Y µ
n (ζ) ∼

(

1 − z +
√

1 + z2
)µ√

z

(1 + z2)
1

4

eνz−νη

Γ∗(ν + µ+ 1
2)

∞
∑

k=0

F
(1)
k (µ, z)

νk
, (4.26)

Uµn (ζ) ∼ (−1)n

(

1 + z +
√

1 + z2
)µ√

z

(1 + z2)
1

4

e−νz−νη

Γ∗(ν + µ+ 1
2 )

∞
∑

k=0

F
(2)
k (µ, z)

νk
,

(4.27)

Fµn (ζ) ∼ Γ∗
(

ν + 1
2

)

(

1 + z −
√

1 + z2
)µ√

z

(1 + z2)1/4
e−νz+νη

∞
∑

k=0

(−1)k
Gk(µ, z)

νk
.

(4.28)

The coefficients F
(1)
k (µ, z) are obtained from (4.25) and the function f(w) of

(4.23) with the function pµ(s) as given in (4.13), and F
(2)
k (µ, z) follow from

taking the function pµ(s) as given in (4.14). The function Γ∗ is the slowly
varying part of the corresponding gamma function. That is,

Γ∗(ν + α) =
Γ(ν + α)

√
2π νν+α−

1

2 e−ν
∼

∞
∑

k=0

γk(α)

νk
, γ0(α) = 1, ν → ∞. (4.29)

The coefficients γk(α) follow from standard methods for the gamma function;
see §4.5.

The final form of the expansion of Y µ
n (ζ) given in (4.1) in Theorem 2

can be obtained by dividing the expansion in (4.26) by the expansion of
Γ∗(ν + µ + 1

2) given in (4.29), and similar for the other expansions. This
gives for k = 0, 1, 2, . . .

Ak(µ, z) = F
(1)
k (µ, z) −

k−1
∑

j=0

Aj(µ, z)γk−j
(

µ+ 1
2

)

, (4.30)

Bk(µ, z) = F
(2)
k (µ, z) −

k−1
∑

j=0

Bj(µ, z)γk−j
(

µ+ 1
2

)

, (4.31)
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Ck(µ, z) =
k
∑

j=0

(−1)jGj(µ, z)γk−j
(

1
2

)

. (4.32)

4.5 Computation of the coefficients

To compute the coefficients Fk(µ, z) and Ak(µ, z) we need the coefficients in
the expansion

s = s+ +

∞
∑

k=1

skw
k, (4.33)

which follow from (4.22). We write, as in (7.3),

t =
1√

1 + z2
(4.34)

and obtain

s1 = 1, s2 =
2 − t

6
, s3 =

(1 − t)(5t3 − 6t2 + 2)

18t2
,

s4 = −z(1 − t)(40t4 − 65t3 + 24t2 − 2t+ 4)

135t2
.

(4.35)

With these coefficients we can compute the coefficients f(w) and g(w) of
(4.23) by choosing the appropriate pµ(s) and qµ(s).

To obtain the coefficients in (4.30)–(4.32) we first compute γk(µ + 1
2)

that appear in (4.29). We have

γ0(µ+ 1
2
) = 1, γ1(µ+ 1

2
) = 1

24

(

−1 + 12µ2
)

,

γ2 = 1
1152

(

1 + 48µ− 24µ2 − 192µ3 + 144µ4
)

,

γ3 = 1
414720

(

1003 − 720µ− 17100µ2 + 11520µ3 + 32400µ4−

34560µ5 + 8640µ6
)

,

γ4 = 1
39813120

(

−4027 − 288864µ + 151824µ2 + 1618560µ3−

1239840µ4 − 1645056µ5 + 2177280µ6 − 829440µ7 + 103680µ8
)

.

(4.36)
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Figure 1: Saddle point contours of the first integral in (4.11) for z = eiθ, θ = kπ/10,
k = 1, 2, 3, 4, 5.

1 2−1

−1

θ = π/10

θ = 2π/10θ = 3π/10
θ= 4π/10

θ= 5π/10

4.6 Extending the result to complex values of z

From [8, p. 378] it follows that the expansions in (7.1) and (4.4) hold for large
values of ν and are uniformly valid for complex values of z inside the sector
|ph z| ≤ 1

2π − δ with δ a small positive number. As can be seen from the
front factor and the coefficients, it becomes invalid when z approaches ±i.
In that case the singularities of the functions f and g in (4.23) approach the
origin.

The singularities come from those of the mapping in (4.22). This map-
ping does not depend on µ and, hence, Laplace’s method remains applicable
for all fixed values of µ, and also (4.1) is uniformly valid for complex values
of z inside the sector |ph z| ≤ 1

2π − δ.
For complex z inside the sector |ph z| < 1

2π the saddle points given in
(4.19) move into the complex plane, and it is for all these values of z possible
to find a single saddle point contour from 0 through s+ such that ph(zs) = 0
at infinity. If |ph z| ≤ 1

2π − δ the singular points of the mapping in (4.22)
and of the function f and g in (4.23) stay away from the origin.

In Figure 1 we show the saddle points s+ (black balls) and the corre-
sponding saddle point contours of the first integral in (4.11) for z = eiθ,
θ = kπ/10, k = 1, 2, 3, 4, 5. The black balls at the left are the saddle points
s−. When z = i the saddle points s+ and s− coincide at s = −1

2(1 + i).
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The saddle point contours of the second integral in (4.11) are the paths of
steepest ascent of the first integral.

4.7 Comparison with earlier expansions

In [2] the expansions of Y µ
n (z) are given for large n with possibly large values

of µ as well. This makes comparison with our expansions rather complicated.
In fact in Dunster’s expansions given in [2, §§6-7] the expansions can be
re-expanded for small values of a parameter α corresponding with (in our
notation) µ/ν, and in this way our results of the present section may be
obtained. Dunster has used Olver’s theory [8] for linear differential equations
of second order, with bounds for the remainders in the expansions and a
recursion formula for the coefficients.

Starting from an integral we show how to include µ as a second large
parameter, leaving out the details. Let µ = αν and write (5.4) in the form

Y µ
n (ζ) =

(2νz)n+µ+1

Γ(n+ µ+ 1)

∫ ∞

0

e−νψ(s)

√

s(1 + s)
ds, (4.37)

where ζ = 1/(νz), ν = n+ 1
2 , and

ψ(s) = 2zs− (1 + α) ln s− ln(1 + s). (4.38)

Then the saddle point analysis for the result of §4.1 can be repeated, giving
an expansion that holds again in the sector |ph z| ≤ 1

2π− δ and α ≥ −1+ ε,
with δ, ε small positive numbers. In a similar way the expansions of §4.2 can
be modified.

With respect to the results in terms of elementary functions given in [13]
we observe the following points.

• A remarkable point is that for Y µ
n (z) the point z = 0 excluded, whereas

in our results this point is accepted as long we approach it inside the
sectors |ph(±z)| ≤ 1

2π − δ. In fact the results are essentially the same
as our results, although the notation and scaling of the parameters is
different. For example, the factor e−1/z at the left-hand side of [13,
(2.26)] can be combined with e(n+1)f(ζ+,α) to give a regular expression
as z → 0. Also, the domains of validity are different and are simpler
in our case (just the sectors |ph(±z)| ≤ 1

2π − δ).

• The expansions are derived from the integral representation (2.5), after
a transformation. A detailed discussion is given about the location of
saddle points and paths of steepest descent and the domains for the
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expansions to be derived. Our start is from two integrals related to
those for the Kummer functions.

• The reader has to become familiar with several aspects of the detailed
description of the paths of integration, the domains of validity and the
proper choices of the branches of some multi-valued quantities. In this
sense, our approach is more accessible for the reader who wants to use
the results and to construct more terms.

• Complex quantities arise in the coefficients and front factors (which,
of course for real z will provide real expansions). Our expansions show
quantities that are real for real z.

• It is not indicated how the results reduce to the well-known expansions
of the modified Bessel functions; relations with the Kummer functions
are not given.

5 Expansions in terms of modified Bessel func-

tions

The expansions for Y µ
n (1/(νz)) in the previous section §4 become invalid

when z approaches the points ±i, because in that case the saddle points co-
incide. As shown in [2] and [13] it is possible to derive uniform expansions in
terms of Airy functions, and these expansions are valid in large z−domains.

For the modified Bessel functions Iν(νz) and Kν(νz) similar asymptotic
phenomena arise when z approaches the points ±i, and the expansion in
terms of Airy functions is available in the literature. In fact expansions for
the Hankel functions and the ordinary Bessel functions can be used. See [9,
] and [8, Chapter 11].

Because the asymptotic phenomena of the generalized Bessel polynomi-
als Y µ

n (z) for large n and fixed µ are the same as those of the polynomial
Y 0
n (z), we approach the problem for obtaining uniform expansions by ex-

panding the generalized polynomials in terms of the modified Bessel func-
tions Kν(z) (with ν = n + 1

2), which are the same as the reduced Bessel
polynomials Y 0

n (z) (see (2.1)). By using the existing results for the Bessel
functions a complete description is available in this way.

We summarize the results of this section as follows.
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Theorem 4 For n→ ∞ we have the asymptotic expansion

Y µ
n (ζ) ∼ (2νz)µn! eνz

Γ(n+ µ+ 1)

√

2νz

π

(

Kν(νz)
∞
∑

k=0

Ck
νk

+K ′
ν(νz)

∞
∑

k=0

Dk

νk

)

, (5.1)

and the expansion holds uniformly with respect to all z. Here, ζ = 1/(νz),
ν = n+ 1

2 ,

C0 =
(

2−
1

2 e−
3

4
πi
)µ
, C1 = 1

24
(1 − i)µ(µ− 1)(−2µ+ 1 + 3i)C0, (5.2)

and

D0 = 1
2
(1 − i)µC0, D1 = − 1

24
iµ2(µ− 1)(−µ+ 2 + 3i)C0. (5.3)

5.1 The construction of the expansion

To start the construction of the expansion we write (2.4) in the form

Y µ
n (ζ) =

(2νz)n+µ+1

Γ(n+ µ+ 1)

∫ ∞

0

sµ
√

s(1 + s)
e−νφ(s) ds, (5.4)

where again

ζ =
1

νz
, ν = n+ 1

2
, φ(s) = 2zs − ln s− ln(1 + s). (5.5)

We write
f0(s) = sµ = A0 +B0s+ φ′(s)g0(s), (5.6)

and substitute s = s+ and s = s− to obtain

A0 =
s+f0(s−) − s−f0(s+)

s+ − s−
, B0 =

f0(s+) − f0(s−)

s+ − s−
. (5.7)

Putting (5.6) into (5.4) we obtain

Y µ
n (ζ) = A0Φ0 +B0Φ1 +

(2νz)n+µ+1

Γ(n+ µ+ 1)

∫ ∞

0

φ′(s)g0(s)
√

s(1 + s)
e−νφ(s) ds, (5.8)

where

Φ0 =
(2νz)µn!

Γ(n+ µ+ 1)
Y 0
n (ζ), Φ1 =

(2νz)µ−1(n+ 1)!

Γ(n+ µ+ 1)
Y 1
n (ζ). (5.9)
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By using (2.1) and (2.10) it follows that

Φ0 =
(2νz)µn!

Γ(n+ µ+ 1)

√

2νz

π
eνzKν(νz),

Φ1 =
(2νz)µn!

2Γ(n+ µ+ 1)

√

2νz

π
eνz
(

(1/z − 1)Kν(νz) −K ′
ν(νz)

)

.

(5.10)

In the second line we can also write [11, p. 234]

(1/z − 1)Kν(νz) −K ′
ν(νz) = Kν+1(νz) −Kν(νz), (5.11)

but we prefer the notation with the derivative, because the asymptotic ex-
pansions of Kν(νz) and K ′

ν(νz) are quite related and usually presented to-
gether.

The next step is to use integration by parts in (5.8), and this gives

Y µ
n (ζ) = A0Φ0 +B0Φ1 +

(2νz)n+µ+1

νΓ(n+ µ+ 1)

∫ ∞

0

f1(s)
√

s(1 + s)
e−νφ(s) ds, (5.12)

where

f1(s) =
√

s(1 + s)
d

ds

g0(s)
√

s(1 + s)
. (5.13)

Repeating this procedure by writing for k ≥ 0

fk(s) = Ak +Bks+ φ′(s)gk(s), f0(s) = sµ, (5.14)

Ak =
s+fk(s−) − s−fk(s+)

s+ − s−
, Bk =

fk(s+) − fk(s−)

s+ − s−
, (5.15)

fk+1(s) =
√

s(1 + s)
d

ds

gk(s)
√

s(1 + s)
= g′k(s) −

2s+ 1

2s(s + 1)
gk(s), (5.16)

we obtain for K ≥ 0

Y µ
n (ζ) = Φ0

K−1
∑

k=0

Ak
νk

+ Φ1

K−1
∑

k=0

Bk
νk

+

(2νz)n+µ+1

νMΓ(n+ µ+ 1)

∫ ∞

0

fK(s)
√

s(1 + s)
e−νφ(s) ds.

(5.17)

We rearrange the expansion by using (5.10) and writing

Ck = Ak +
1 − z

2z
Bk, Dk = −1

2
Bk, k = 0, 1, 2, . . . (5.18)

to obtain the expansion given in Theorem 4.
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Remark 5 To compute the coefficients Ak, Bk defined in (5.15) and the
functions fk(s), say, by using a computer algebra package, it is convenient
to write the functions fk(s) in the form of two-point Taylor expansions at
the saddle points s+ and s−. More details on this method can be found in
[5], [6], [12].

Remark 6 For integer values of µ we have the following simple cases.

1. For µ = 0, 1, 2, . . . the expansion in (5.17) has a finite number of terms
which can also be obtained from the recursion in (2.9).

2. For µ = −1,−2,−3, . . . we can also obtain an exact result. When
µ = −1 we have

Ck =
z − 1

2k
, Dk = − z

2k
, k = 0, 1, 2, . . . , (5.19)

and we can sum the convergent series when 2ν = 2n + 1 > 1. This
gives a result that corresponds to the relation in (2.9) with µ = −1.

6 Concluding remarks

In §3 we have given a new simple expansion of Y µ
n (z) that is valid outside

a compact neighborhood of the origin in the z−plane and new forms of
expansions in terms of elementary functions valid in the sectors |ph(±z)| ≤
1
2π − δ not containing the turning points z = ±i/n. To avoid mappings for
obtaining expansions in terms of Airy functions we have given expansions in
terms of modified Bessel functions. For these functions very detailed Airy-
type expansions are available, which can be used to obtain similar expansions
of Y µ

n (z).

7 Appendix: Expansions of the modified Bessel

functions

Because we compare the expansions for the Bessel polynomials to those of
the modified Bessel functions, we summarize a few details about the uniform
expansions of the K− and I−Bessel functions.

We have [9]2, [8, p. 378]

Kν(νz) ∼
√

π

2ν

e−νη

(1 + z2)1/4

∞
∑

k=0

(−1)k
uk(t)

νk
, (7.1)

2http://dlmf.nist.gov/10.41
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Iν(νz) ∼
1√
2πν

eνη

(1 + z2)1/4

∞
∑

k=0

uk(t)

νk
, (7.2)

which hold when ν → ∞, uniformly with respect to z such that |ph z| ≤
1
2π − δ, δ being an arbitrary positive number in (0, 1

2π). Here,

t =
1√

1 + z2
, η =

√

1 + z2 + log
z

1 +
√

1 + z2
. (7.3)

The first coefficients uk(t) are

u0(t) = 1, u1(t) =
3t− 5t3

24
, u2(t) =

81t2 − 462t4 + 385t6

1152
, (7.4)

and other coefficients can be obtained by applying the formula

uk+1(t) = 1
2
t2(1 − t2)u′k(t) + 1

8

∫ t

0
(1 − 5s2)uk(s)ds, k = 0, 1, 2, . . . . (7.5)

For the derivatives we have

K ′
ν(νz) ∼ −

√

π

2ν

(1 + z2)1/4

z
e−νη

∞
∑

k=0

(−1)k
vk(t)

νk
, (7.6)

I ′ν(νz) ∼
1√
2πν

(1 + z2)1/4

z
eνη

∞
∑

k=0

uk(t)

νk
, (7.7)

where

v0(t) = 1, v1(t) =
−9t+ 7t3

24
, v2(t) =

−135t2 + 594t4 − 455t6

1152
,

(7.8)
and other coefficients can be obtained by applying the formula

vk(t) = uk(t) + t(t2 − 1)
(

1
2
uk−1(t) + tu′k−1(t)

)

, k = 0, 1, 2, . . . . (7.9)

The expansions in (7.1) and (7.2) become invalid when z approaches the
turning points ±i. In that case expansions are available in terms of Airy
functions. First the functions Iν(z) and Kν(z) should be written in terms
of ordinary Bessel functions, and then the results for these functions can be
used; see [8, p. 419–426].
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