
Universal sequencing on a single machine

Leah Epstein∗ Asaf Levin† Alberto Marchetti-Spaccamela‡ Nicole Megow§

Julián Mestre§ Martin Skutella¶ Leen Stougie‖

June 20, 2010

Abstract

We consider scheduling on an unreliable machine that may experience unexpected changes
in processing speed or even full breakdowns. We aim for a universal solution that performs well
without adaptation for any possible machine behavior. For the objective of minimizing the to-
tal weighted completion time, we design a polynomial time deterministic algorithm that finds a
universal scheduling sequence with a solution value within 4 times the value of an optimal clair-
voyant algorithm that knows the disruptions in advance. A randomized version of this algorithm
attains in expectation a ratio of e. We also show that both results are best possible among all
universal solutions. As a direct consequence of our results, we answer affirmatively the question
of whether a constant approximation algorithm exists for the offline version of the problem when
machine unavailability periods are known in advance.

When jobs have individual release dates, the situation changes drastically. Even if all weights
are equal, there are instances for which any universal solution is a factor of Ω(log n/ log log n)
worse than an optimal sequence. Motivated by this hardness, we study the special case when the
processing time of each job is proportional to its weight. We present a non-trivial algorithm with
a small constant performance guarantee.

Keywords: scheduling, single machine, unreliable machine behavior, universal solution, worst
case guarantees

1 Introduction

Traditional scheduling theory assumes in their standard models that jobs are processed on ideal ma-
chines that provide the same constant performance throughout time. While in some settings this is a
good enough approximation of real life machine behavior, in other situations this assumption is decid-
edly unreasonable. A machine, for example, can be a server shared by multiple users; if other users
suddenly increase their workload, this can cause a general slowdown; or even worse, the machine
∗Department of Mathematics, University of Haifa, Israel. Email: lea@math.haifa.ac.il
†Chaya fellow. Faculty of Industrial Engineering and Management, The Technion, Haifa, Israel. Email:

levinas@ie.technion.ac.il
‡Department of Computer and System Sciences, Sapienza University of Rome, Italy. Email:

alberto.marchetti@dis.uniroma1.it. Supported by EU project 215270 FRONTS.
§Max-Planck-Institut für Informatik, Saarbrücken, Germany. Email: {nmegow,jmestre}@mpi-inf.mpg.de
¶Department of Mathematics, Technische Universität Berlin, Germany. Email: skutella@math.tu-berlin.de.

Supported by DFG research center MATHEON in Berlin.
‖Department of Econometrics and Operations Research, Vrije Universiteit Amsterdam & CWI, Amsterdam, The Nether-

lands. Email: stougie@cwi.nl. Supported by the Dutch BSIK-BRIKS project.

may become unavailable for a given user due to priority issues. In other cases, our machine may be
a production unit that can break down altogether and remain offline for some time until it is repaired.
In these cases, it is crucial to have schedules that take such unreliable machine behavior into account.

Different machine behaviors will typically lead to very different optimal schedules. This creates
a burden on the scheduler who would have to periodically recompute the schedule from scratch. In
some situations, recomputing the schedule may not even be feasible: when submitting a set of jobs
to a server, a user can choose the order in which it presents these jobs, but cannot alter this ordering
later on. Therefore, it is desirable in general to have a fixed master schedule that will perform well
regardless of the actual machine behavior. In other words, we aim for a universal schedule that, for
any given machine behavior, has cost close to that of an optimal clairvoyant algorithm.

In this paper we initiate the study of universal scheduling by considering the problem of sequenc-
ing jobs on a single machine to minimize average completion times. Our main result is an algorithm
for computing a universal sequence that is always a constant factor away from an optimal clairvoyant
algorithm. We complement this by showing that our upper bound is best possible among universal
schedules. We also consider the case when jobs have release dates. Here we provide an almost loga-
rithmic lower bound on the performance of universal schedules, thus showing a drastic difference with
respect to the setting without release dates. Finally, we design an algorithm with constant performance
for the interesting case of scheduling jobs with release dates and proportional weights.

Our hope is that these results stimulate the study of universal solutions for other scheduling prob-
lems, and, more broadly, the study of more realistic scheduling models. In the rest of this section we
introduce our model formally, discuss related work, and explain our contributions in detail.

The model. We are given a job set J with processing times pj ∈ Q+ and weights wj ∈ Q+ for
each job j ∈ J . Using a standard scaling argument, we can assume w.l.o.g. that wj ≥ 1 for j ∈ J .
The problem is to find a sequence π of jobs to be scheduled on a single machine that minimizes the
total sum of weighted completion times. The jobs are processed in the prefixed order π no matter
how the machine may change its processing speed or whether it becomes unavailable. In case of a
machine breakdown the currently running job is preempted and will be resumed processing at any
later moment when the machine becomes available again. We analyze the worst case performance by
comparing the solution value provided by an algorithm with that of an optimal clairvoyant algorithm
that knows the machine behavior in advance, and that is even allowed to preempt jobs at any time.

We also consider the more general problem in which each job j ∈ J has its individual release
date rj ≥ 0, which is the earliest point in time when it can start processing. In this model, it is
necessary to allow job preemption, otherwise no constant performance guarantee is possible as simple
examples show; see Example 2 in Section 4. We allow preemption in the actual scheduling procedure,
however, as in the case without release dates, we aim for non-adaptive universal solutions. That is, our
solution will still be a total ordering of jobs that we interpret as a priority order. At any point in time
we work on the highest priority job that has not finished yet and that has already been released. This
procedure is called preemptive list scheduling [11, 34]. Note that a newly released job will preempt
the job that is currently running if it comes earlier than the current job in the ordering.

Related work. The concept of universal solutions, that perform well for every single input of a
superset of possible inputs, has been used already decades ago in different contexts, as e.g. in hash-
ing [4] and routing [38]. The latter is also known as oblivious routing and has been studied exten-
sively; see [32] for a state-of-the-art overview. Jia et al. [14] considered universal approximations
for TSP, Steiner Tree, and Set Cover Problems. All this research falls broadly into the field of robust

2

optimization [3]. The term robust is not used consistently in the literature. In particular, the term ro-
bust scheduling refers mainly to robustness against uncertain processing times; see e.g. [22, chap. 7]
and [29]. Here, quite strong restrictions on the input or weakened notions of robustness are necessary
to guarantee meaningful worst case solutions. We emphasize, that our results in this paper are robust
in the most conservative, classical notion of robustness originating by Soyster [36], also called strict
robustness [28], and in this regard, we follow the terminology of universal solutions.

Scheduling with limited machine availability is a subfield of machine scheduling that has been
studied for more than twenty years; see, e.g., the surveys [7, 25, 33]. Different objective functions,
stochastic breakdowns, as well as the offline problem with known machine availability periods have
been investigated. Nevertheless, only few results are known on the problem of scheduling to minimize
the total weighted completion time, and none of these deal with release dates. If all jobs have equal
weights, a simple interchange argument shows that sequencing jobs in non-increasing order of pro-
cessing times is optimal as it is in the setting with continuous machine availability [35]. Obviously,
this result immediately transfers to the universal setting in which machine breakdowns or changes
in processing speeds are not known beforehand. The natural generalization to the weighted setting,
that is, scheduling jobs in non-increasing order of ratios weight over processing time, also known as
Smith’s Rule [35], does not yield a constant performance guarantee. This is true even if there is just
a single machine breakdown as is shown e.g. in [24]. In fact, this special problem is weakly NP-hard
in both, the preemptive [24] and the non-preemptive variant [1, 26], and has stimulated a major line
of research. Several approximation results have been derived, see [16, 19, 24, 26, 30, 39], which were
recently complemented by fully polynomial-time approximation schemes, see [8, 17, 20].

The special class of instances, in which the processing time of each job is proportional to its
weight, has been studied in [39]. The authors showed that scheduling in non-increasing order of
processing times (or weights) yields a 2-approximation for preemptive scheduling. However, for
the general problem with arbitrary job weights, it remained an open question [39] if a polynomial
time algorithm with constant approximation ratio exists, even without release dates. In this case, the
problem is strongly NP-hard [39].

Our results. Our main results are algorithms that compute deterministic and randomized universal
sequences for jobs without release dates. These algorithms run in polynomial time and output a
permutation of the jobs such that scheduling the jobs in this order will always yield a solution that
remains within multiplicative factor 4 and within multiplicative factor e in expectation from any given
schedule. Furthermore, we show that our algorithms can be adapted to solve more general problem
instances with certain types of precedence constraints without losing performance quality. We also
show that our upper bounds are best possible for universal sequencing. This is done by establishing
an interesting connection between our problem and a certain online bidding problem [5].

It may seem rather surprising that universal sequences with constant performance guarantee should
always exist. In fact, our results immediately answer affirmatively an open question in the area of of-
fline scheduling with limited machine availability: whether there exists a constant factor approxima-
tion algorithm for scheduling jobs on a machine having multiple unavailable periods that are known
in advance.

To derive our results, we study the objective of minimizing the total weight of uncompleted jobs
at any point in time. First, we show that the performance guarantee is given directly by a bound on the
ratio between the remaining weight of our algorithm and that of an optimal clairvoyant algorithm at
every point in time on an ideal machine that is continuously processing at unit speed. Then, we devise
an algorithm that computes the job sequence iteratively backwards: in each iteration we find a subset

3

of jobs with largest total processing time subject to a bound on their total weight. The bound is doubled
in each iteration. Our approach is related to, but not equivalent to, an algorithm of Hall et al. [11]
for online scheduling on ideal machines—the doubling there happens in the time horizon. Indeed,
this type of doubling strategy has been applied successfully in the design of algorithms for various
problems; the interested reader is referred to the excellent survey of Chrobak and Kenyon-Mathieu [6]
for a collection of such examples.

The problem of minimizing the total weight of uncompleted jobs at any time was previously
considered by Becchetti et al. [2] in the context of on-line scheduling to minimize flow time on a
single machine; there, a constant approximation algorithm is presented with a worst case bound of 24.
Our results imply an improved deterministic, best possible (4 + ε)-approximation for this problem,
complemented by a randomized (e+ε)-approximation. Furthermore, we show that the same guarantee
holds for the setting with release dates; unfortunately, unlike in the case without release dates, this does
not translate into the same performance guarantee for universal solutions for an unreliable machine.
In fact, when jobs have individual release dates, the problem changes drastically.

In Section 4 we show that in the presence of release dates, even if all weights are equal, there
are instances for which the ratio between the value of any universal solution and that of an optimal
schedule is Ω(log n/ log log n). Our proof relies on the classical theorem of Erdős and Szekeres [9] on
the existence of long increasing/decreasing subsequences of a given sequence of numbers. Motivated
by this hardness, we study the class of instances where where the processing time of each job is
proportional to its weight. We present a non-trivial algorithm and prove a performance guarantee of 5.
This algorithm yields directly anO(maxk∈J

wk
pk
/mink∈J

wk
pk

)-approximation when applied to general
problem instances. Additionally, we give a lower bound of 3 for all universal solutions in the special
case.

2 Preliminaries and key observations

Given a single machine that runs continuously at unit speed (ideal machine), the completion time Cπj
of job j when applying preemptive list scheduling to sequence π is uniquely defined. For some point
in time t ≥ 0 let W π(t) denote the total weight of jobs that are not yet completed by time t according
to sequence π, that is, W π(t) :=

∑
j:Cπj >t

wj . Then,∑
j∈J

wjC
π
j =

∫ ∞
0

W π(t)dt. (1)

Clearly, breaks or fluctuations in the speed of the machine delay the completion times. To describe
a particular machine behavior, let f : R+ → R+ be a non-decreasing continuous function, with f(t)
being the aggregated amount of processing time available on the machine up to time t. We refer to f
as the machine capacity function. If the derivative of f at time t exists, it can be interpreted as the
speed of the machine at that point in time. An ideal machine that is processing continuously at unit
speed has a machine capacity function f(t) = t, t ≥ 0.

For a given capacity function f , let S(π, f) denote the single machine schedule when applying
preemptive list scheduling to permutation π, and let CS(π,f)j denote the completion time of job j in
this particular schedule. For some point in time t ≥ 0, let WS(π,f)(t) denote the total weight of jobs
that are not yet completed by time t in schedule S(π, f). Then,∑

j∈J
wjC

S(π,f)
j =

∫ ∞
0

WS(π,f)(t)dt .

4

For t ≥ 0 let WS∗(f)(t) := minπW
S(π,f)(t).

Observation 1. For a given machine capacity function f ,∫ ∞
0

WS∗(f)(t)dt (2)

is a lower bound on the objective function of any schedule.

We aim for a universal sequence of jobs π such that, no matter how the single machine behaves,
the objective value of the corresponding schedule S(π, f) is within a constant factor of the optimum.

Lemma 1. Let π be a sequence of jobs with arbitrary release dates, let f be a machine capacity
function, and let c > 0. Then, the objective value

∑
j∈J wjC

S(π,f)
j is at most c times the optimum

value if and only if

WS(π,f)(t) ≤ cWS∗(f)(t) for all t ≥ 0.

Proof. The “if” part is clear, since by Observation 1∑
j∈J

wjC
S(π,f)
j =

∫ ∞
0

WS(π,f)(t)dt ≤ c
∫ ∞
0

WS∗(f)(t)dt.

We prove the “only if” part by contradiction. Assume that WS(π,f)(t0) > cWS∗(f)(t0) for some t0
and f . For any t1 > t0 consider the following machine capacity function

f ′(t) =


f(t) if t ≤ t0,
f(t0) if t0 < t ≤ t1,
f(t− t1 + t0) if t > t1

which equals f up to time t0 and then remains constant at value f ′(t) = f(t0) for the time inter-
val [t0, t1]. Hence, ∑

j∈J
wjC

S(π,f ′)
j =

∑
j∈J

wjC
S(π,f ′)
j + (t1 − t0)WS(π,f ′)(t0). (3)

On the other hand, let π∗ be a sequence of jobs with WS(π∗,f ′)(t0) = WS∗(f ′)(t0). Then,∑
j∈J

wjC
S(π∗,f ′)
j =

∑
j∈J

wjC
S(π∗,f ′)
j + (t1 − t0)WS∗(f ′)(t0). (4)

As t1 tends to infinity, the ratio of (3) and (4) tends to WS(π,f ′)(t0)/W
S∗(f ′)(t0) > c, a contradiction.

In case that all release dates are equal, approximating the sum of weighted completion times on a
machine with unknown processing behavior is equivalent to approximating the total remaining weight
at any point in time on an ideal machine with f(t) = t, t ≥ 0. Scheduling according to sequence π
on such a machine yields for each j,

Cπj :=
∑

k:π(k)≤π(j)

pk .

The completion time under machine capacity function f is

C
S(π,f)
j = min{t | f(t) ≥ Cπj }.

5

Observation 2. For any machine capacity function f and any sequence π of jobs without release
dates,

WS(π,f)(t) = W π(f(t)) for all t ≥ 0.

For f(t) = t let W ∗(t) := WS∗(f)(t). With Observation 2 we can significantly strengthen the
statement of Lemma 1.

Lemma 2. Let π be a sequence of jobs with equal release dates, and let c > 0. Then, the objective
value

∑
j∈J wjC

S(π,f)
j is at most c times the optimum for all machine capacity functions f if and only

if

W π(t) ≤ cW ∗(t) for all t ≥ 0.

Notice that it is crucial for Lemma 2 that all release dates are equal, otherwise Observation 2 is
simply not true. We illustrate this fact by a small example.

Example 1. At time 0 we release n − 1 jobs with pj = 1 and wj = 1, for j = 1, . . . , n − 1. At
time n− 1 we release job n with pn = 1 and wn = 2n. Consider the sequence π = 1, 2, . . . , n− 1, n
and time t = n. It is easy to check that W π(t) = W ∗(t), for any t. In particular, for t̂ = n − 1 we
have W π(t̂) = W ∗(t̂) = wn.

However, when considering an unreliable machine with machine capacity function f and the
corresponding schedule S(π, f), then the situation changes drastically. Let f be such that there is
a full breakdown at [(n − 2), (n − 1)] followed by a second long breakdown beginning at time n.
At time t = n, our solution π has remaining weight WS(π,f)(t) = wn, which equals W π(f(t))
with f(t) = t̂. However, an optimal solution executes job n in [n − 1, n), instead of job n − 1, and
has remaining weight WS∗(f)(t) = 1 6= W ∗(f(t)). Obviously, Observation 2 does not hold if jobs
have arbitrary release dates.

3 Universal scheduling without release dates

3.1 Upper bounds

In the sequel we use for a subset of jobs J ′ ⊆ J the notation p(J ′) :=
∑

j∈J ′ pj and w(J ′) :=∑
j∈J ′ wj . Based on key Lemma 2, we aim at approximating the minimum total weight of uncom-

pleted jobs at any point in time on an ideal machine, that is, we approximate the value of W ∗(t) for
all values of t ≤ p(J) for a machine with capacity function f(t) = t, t ≥ 0. In our algorithm we
do so by solving the problem to find the set of jobs that has maximum total processing time and total
weight within a given bound. By sequentially doubling the weight bound, a sequence of job sets is
obtained. Jobs in job sets corresponding to smaller weight bounds are to come later in the schedule,
breaking ties arbitrarily.

Algorithm DOUBLE:

1. For i ∈ {0, 1, . . . , dlogw(J)e}, find a subset J∗i of jobs of total weight w(J∗i) ≤ 2i and
maximum total processing time p(J∗i). Notice that J∗dlogw(J)e = J .

2. Construct a permutation π as follows. Start with an empty sequence of jobs. For i = dlogw(J)e
down to 0, append the jobs in J∗i \

⋃i−1
k=0 J

∗
k in any order at the end of the sequence.

6

Theorem 1. For every scheduling instance, DOUBLE produces a permutation π such that the objec-
tive value

∑
j∈J wjC

S(π,f)
j is less than 4 times the optimum for all machine capacity functions f .

Proof. Using Lemma 2 it is sufficient to show that W π(t) < 4W ∗(t) for all t ≥ 0. Let t ≥ 0 and
let i be minimal such that p(J∗i) ≥ p(J) − t. By construction of π, only jobs j in

⋃i
k=0 J

∗
k have a

completion time Cπj > t. Thus,

W π(t) ≤
i∑

k=0

w(J∗k) ≤
i∑

k=0

2k = 2i+1 − 1. (5)

In case i = 0, the claim is trivially true since wj ≥ 1 for any j ∈ J , and thus, W ∗(t) = W π(t). Sup-
pose i ≥ 1, then by our choice of i, it holds that p(J∗i−1) < p(J)− t. Therefore, in any sequence π′,
the total weight of jobs completing after time t is larger than 2i−1, because otherwise we get a con-
tradiction to the maximality of p(J∗i−1). That is, W ∗(t) > 2i−1. Together with (5) this concludes the
proof.

Notice that the algorithm takes exponential time since finding the subsets of jobs J∗i is a KNAP-
SACK problem and, thus, NP-hard [18]. On the other hand, job sets J∗i can be found in pseudo-
polynomial time by straightforward dynamic programming. We can reduce the running time to poly-
nomial time at the cost of slightly increasing the performance bound.

We adapt the algorithm by, instead of J∗i , computing a subset of jobs Ji of total weight w(Ji) ≤
(1 + ε)2i and processing time

p(Ji) ≥ max{p(J ′) | J ′ ⊆ J and w(J ′) ≤ 2i}.

This can be done in time polynomial in the input size and 1/ε adapting, e.g., the FPTAS by Ibarra and
Kim [13] for KNAPSACK in the following way. In iteration i, letB := 2i denote the bound on the total
weight. For a given ε > 0, fix a scaling parameter K = εB/n and round job weights as well as the
weight bound such thatw′j = bwj/Kc, for any j ∈ J , andB′ = bB/Kc. Notice thatw′j > wj/K−1.
Now, we apply a standard dynamic program for KNAPSACK on the modified instance that computes a
solution set J ′ ⊆ J in running time O(nB′) = O(n2/ε). The total weight of J ′ is∑

j∈J ′
wj <

∑
j∈J ′

K(w′j + 1) ≤ KB′ +Kn ≤ B + εB .

The optimal solution of the scaled instance has total processing time p(J ′) ≥ p(J∗i) since the scaling
only weakened the capacity constraint.

The subsets Ji obtained in this way are turned into a sequence π′ as in Algorithm DOUBLE.

Theorem 2. Let ε > 0. For every scheduling instance, we can construct a permutation π in time
polynomial in the input size and 1/ε such that the objective value

∑
j∈J wjC

S(π,f)
j is less than 4 + ε

times the optimum for all machine capacity functions f .

Proof. Again, by Lemma 2 it is sufficient to prove that W π(t) < (4 + ε)W ∗(t) for all t ≥ 0. Instead
of inequality (5) we get the slightly weaker bound

W π′(t) ≤
i∑

k=0

w(Jk) ≤
i∑

k=0

(1 + ε/4)2k = (1 + ε/4)(2i+1 − 1) < (4 + ε) 2i−1.

Moreover, the lower bound W ∗(t) > 2i−1 still holds.

7

We can improve Theorem 1 by adding randomization to our algorithm in a quite standard fashion.
Instead of the fixed bound of 2i on the total weight of job set J∗i in iteration i ∈ {0, 1, . . . , dlogw(J)e}
we use the randomly chosen bound Xei where X = eY and Y is picked uniformly at random
from [0, 1] before the first iteration.

Notice that the same arguments as in Lemma 2 hold for randomized algorithms and their expected
values of remaining weight and total weighted completion time.

Corollary 1. Let π be a random sequence of jobs and c > 0. Then, the expected objective value
E
[∑

j∈J wjC
S(π,f)
j

]
is at most c times the optimum value for all machine capacity functions f if

and only if E [W π(t)] ≤ cW ∗(t) for all t ≥ 0.

Theorem 3. For every scheduling instance, the randomized algorithm produces a random permuta-
tion π(X) such that E

[
W π(X)(t)

]
< eW ∗(t)− 1 for all t ≥ 0.

Proof. Given X and t, let i ∈ N be minimal such that p(J∗i) ≥ p(J) − t. For i = 0 the claim is
trivially true. Consider the case i ≥ 1. By the same arguments as in the proof of Theorem 1, we
have W ∗(t) > Xei−1, and therefore i < dln(W ∗(t)/X)e. Similar to (5) we have for any t,

E
[
W π(X)(t)

]
≤ E

[
i∑

k=0

Xei

]
= E

[
X
ei+1 − 1

e− 1

]
< E

[
X
edln(W

∗(t)/X)e+1 − 1

e− 1

]
=

e

e− 1
W ∗(t)E

[
edln(W

∗(t)/X)e−ln(W ∗(t)/X)
]
− 1 .

Let Z := dlnW ∗(t) − Y e − (lnW ∗(t) − Y) which is 1 minus the fractional part of Z. Then Z is
a random variable distributed like Y uniformly in [0, 1]. Thus, E

[
eZ
]

= E [X] = e − 1, which
concludes the proof by Corollary 1.

The algorithm can be adapted in the same way as the deterministic algorithm to run in polynomial
time, see the proof of Theorem 2. This gives the following improved result.

Theorem 4. Let ε > 0. For every scheduling instance, randomized DOUBLE constructs a permuta-
tion π in time that is polynomial in the input size and 1/ε such that the objective value

∑
j∈J wjC

S(π,f)
j

is in expectation less than e+ ε times the optimum value for all machine capacity functions f .

3.2 Lower bounds

In this section we show a connection between the performance guarantee for sequencing jobs on a
single machine without release dates and an online bidding problem investigated by Chrobak et al. [5].
This allows us to prove tight lower bounds for our problem.

In online bidding, we are given a universe U = {1, . . . , n}. A bid set is just a subset of U . A
given bid set B is said to be α-competitive if∑

b∈B : b<T

b + min
b∈B : b≥T

b ≤ αT for all T ∈ U . (6)

Chrobak et al. [5] gave lower bounds of 4 − ε and e − ε, for any ε > 0, for deterministic and
randomized algorithms, respectively.

Theorem 5. For any ε > 0, there exists an instance of the universal scheduling problem without
release dates on which the performance ratio of any deterministic schedule is at least 4 − ε. The
performance ratio of any randomized schedule is at least e− ε with respect to an oblivious adversary.

8

Proof. Take an instance of the online bidding problem and create the following instance of the
scheduling problem: For each j ∈ U create job j with weight wj = j and processing time pj = jj .
Consider any permutation π of the jobs U . For any j ∈ U , let k(j) be the largest index such
that πk(j) ≥ j. Since pj >

∑j−1
i=1 pj , at time t = p(U) − pj we have W π(t) =

∑n
k=k(j)wπk ,

while W ∗(t) = wj . If sequence π yields a performance ratio of α then, it holds by Lemma 2

n∑
k=k(j)

πk ≤ α j for all j ∈ U . (7)

From sequence π we extract another sequence of jobs:

W1 = πn,

Wk = argmaxi∈U
{
π−1(i) | i >Wk−1

}
.

In this wayWi+1 >Wi, and all j with π−1(Wi+1) < π−1(j) < π−1(Wi) have weight less thanWi.
Therefore, for all j ∈ U we have {i ∈ W | i < j} ∪min {i ∈ W | i ≥ j} ⊂ {πk(j), . . . , πn}. Hence,
if π achieves a performance ratio of α then

∑
i∈W : i<j

i + min
i∈W : i≥j

i ≤
n∑

k=k(j)

πk ≤ α j for all j ∈ U , (8)

that is, the bid setW induced by the sequence π must be α-competitive. Since there is a lower bound
of 4− ε for the competitiveness of deterministic strategies for online bidding, the same bound follows
for the performance ratio of deterministic universal schedules.

The same approach yields the lower bound for randomized strategies. In this case, for online
bidding, B is a probability distribution over all subsets of U . Analogous to (6), B is said to be α-
competitive if

E

[∑
b∈B : b<T

b+ min
b∈B : b≥T

b

]
≤ αT for all T ∈ U . (9)

In the scheduling setting, analogous to (7), if the random permutation π yields performance ratio α
then

E

 n∑
k=k(j)

πk

 ≤ α j for all j ∈ U . (10)

In the same way a single schedule induces a single bid set, a random sequence of jobs π induces a
probability distributionW over bid sets and if π has performance guarantee α then

E

 ∑
i∈W : i<j

i+ min
i∈W : i≥j

i

 ≤ E

 n∑
k=k(j)

πk

 ≤ α j for all j ∈ U . (11)

The lower bound of e− ε for randomized strategies for online bidding, implies the same lower bound
for the performance guarantee of randomized universal schedules.

9

3.3 Universal scheduling with precedence constraints

A natural generalization of the universal sequencing problem requires that jobs must be sequenced in
compliance with given precedence constraints. These constraints define a partial order (J,≺) on the
set of jobs J .

Clearly, the lower bounds above hold also in the more general setting. Furthermore, we can adapt
our algorithm to a certain extent. To handle precedence constraints we need to adapt the knapsack
related subroutine of our algorithm to the problem with a given partial order of jobs. This subproblem
coincides with the partially ordered knapsack problem (POK) which is strongly NP-hard [15] and
also hard to approximate [10]. On the positive side, FPTASes exist for several POK problems with
special partial orders, among which directed out-trees, two dimensional orders, and the complement
of chordal bipartite orders [15, 21].

Theorem 6. Let ε > 0. Consider the universal sequencing problem with precedence constraints (J,≺).
If there is an FPTAS for the partially ordered knapsack problem for partial orders of the same type,
then for any ε > 0 we can construct a permutation π respecting (J,≺) in time polynomial in the input
size and 1/ε such that the objective value

∑
j∈J wjC

S(π,f)
j is less than 4 + ε times the optimum for

all machine capacity functions f . A randomized algorithm finds a sequence with expected objective
value bounded by e+ ε times the optimum value in the same running time.

Proof. We make use of the following trivial observation: Let (N,≺) be a partial order and (N,≺′)
be the reverse partial order. Then, given a linear extension of (N,≺), the reverse of this ordering is a
feasible linear extension of (N,≺′).

Now consider the universal sequencing problem with a given partial order (J,≺) and its reverse
order (J,≺′). We apply a slightly modified version of DOUBLE. To compute subsets J∗i with bounded
total weight and maximal processing time, we use the FPTAS for the corresponding special case of
POK for (J,≺′). Obviously, the sequence of sets 0, 1, 2 . . . respects the given partial order (J,≺′).
The algorithm appends the sets in the reverse order, and therefore, the final sequence is a linear
extension of (J,≺) if the jobs of each set are appended accordingly.

4 Universal scheduling with release dates

In this section we study the universal scheduling problem for jobs with arbitrary release dates. As
mentioned in the introduction, we cannot hope for a universal sequence of jobs that, when processed
non-preemptively in exactly this order, yields a constant performance guarantee. We visualize this by
the following simple example.

Example 2. The instance has two jobs: a long job with r1 = 0, p1 = L, and w1 = ε and a short
job with r2 = ε and w2 = p2 = 1. By Lemma 1, any algorithm must start working on the first job
immediately at time 0, for otherwise the jobs cannot be completed by time L+ 1. On the other hand,
if we start working on the first job at time 0 and there is no machine breakdown, the solution has
cost L(1 + ε) + 1 whereas the optimal cost is Lε + 1 + ε. Letting ε be 1/L we find that the ratio of
the cost of these two alternatives is roughly L, which can be made arbitrarily large.

Therefore, we allow preemption in the actual scheduling procedure, although, as in the case with-
out release dates, we aim for non-adaptive universal solutions. Thus, our universal sequence specifies
a priority order of jobs which is executed by a preemptive list scheduling procedure: At any point in
time we work on the job of highest priority that has not finished yet and that has already been released.

10

Algorithm DOUBLE, which aims at minimizing the total remaining weight, can be adapted to the
setting with release dates, as we show in Section 4.1. Unfortunately, this is only meaningful for an
ideal machine. In the presence of release dates approximation ratios on an ideal machine do not trans-
late directly to a performance guarantee of the universal sequencing strategy for an unreliable machine,
see Section 2. In fact, universal scheduling with release dates cannot be approximated within a con-
stant ratio as we show in Section 4.2. In Section 4.3, we consider the special case in which jobs have
proportional weights. We provide a non-trivial algorithm with small constant performance guarantee
accompanied with lower bounds. This algorithm yields an O(maxk∈J

wk
pk
/mink∈J

wk
pk

)-approximate
universal solution when applied to the general scheduling problem with arbitrary weights.

4.1 Minimizing remaining weight on an ideal machine

Consider scheduling on an ideal single machine with the objective to minimize the total remaining
weight at any time. The following algorithm is an adaptation of Algorithm DOUBLE to the setting
with release dates and preemptive list scheduling.

Algorithm DOUBLE-R:

1. Compute the earliest possible completion time T .

2. For i ∈ {0, 1, . . . , dlogw(J)e}, find a feasible schedule Si for J and a maximum value ∆i

such that the total weight of late jobs, J∗i = {j ∈ J |CSij > T − ∆i}, completing after due
date T −∆i, satisfies w(J∗i) ≤ 2i. Notice that J∗dlogw(J)e = J .

3. Construct a permutation π as follows. Start with an empty sequence of jobs. For i = dlogw(J)e
down to 0, append the jobs in J∗i \

⋃i−1
k=0 J

∗
k in any order at the end of the sequence.

Lawler [23] provides a pseudo-polynomial time algorithm for preemptively scheduling jobs with
release dates and due dates on a single machine to minimize the total weight of late jobs. Hence, we
can solve Step 2 in DOUBLE-R by binary search over the parameter ∆i ∈ [0,∆i−1] using Lawler’s
algorithm.

Theorem 7. For every scheduling instance DOUBLE-R produces a sequence π such that W π(t) <
4W ∗(t)− 1 for all t ≥ 0 on an ideal machine.

Proof. Given a schedule S obtained by preemptive list scheduling of sequence π and some t ≥ 0,
let i be minimal such that T − ∆i ≤ t. By construction, only jobs j in

⋃i
k=0 J

∗
k have a completion

time CSj > t. To see that, consider a job j ∈ J \
⋃i
k=0 J

∗
k . By definition, there exists a feasible

schedule Si such that for all k ∈ J \ J∗i (including j) holds CSik ≤ T − ∆i. Applying preemptive
list scheduling allows only jobs in J \

⋃i
k=0 J

∗
k to be considered earlier than j. Since there exists a

feasible schedule such that all those jobs can be completed by T −∆, preemptive list scheduling will
also find such a schedule.

Therefore,

WS(t) ≤
i∑

k=0

w(J∗k) ≤
i∑

k=0

2k = 2i+1 − 1.

In case i = 0, the claim is trivially true since wj ≥ 1 for any j ∈ J , and thus, W ∗(t) = WS(t).
Suppose i ≥ 1, then by our choice of i, it holds that T − ∆i−1 > t. In any schedule S′, the total

11

weight of jobs completing after time t is larger than 2i−1, because otherwise we get a contradiction to
the maximality of ∆i−1. Hence, W ∗(t) > 2i−1. Together with (5) this concludes the proof.

As in Section 3, randomization on the choice of weight bounds improves the performance.

Corollary 2. For every scheduling instance, the randomized version of DOUBLE-R produces a ran-
dom sequence π(X) such that E

[
W π(X)(t)

]
< eW ∗(t)− 1 for all t ≥ 0 on an ideal machine.

Lawler’s algorithm used in Step 2 runs in pseudopolynomial time. However, Pruhs and Woegin-
ger [31] turned it into an FPTAS. Using this algorithm we get a running time polynomial in the input
size and 1/ε and slightly increased cost.

Theorem 8. Let 0 < ε. For every scheduling instance with release dates, DOUBLE-R constructs a
permutation π in time that is polynomial in the input size and 1/ε such that W π(t) < (4 + ε)W ∗(t)
for all t ≥ 0 on an ideal machine. A randomized variant yields a random permutation π(X) with
E
[
W π(X)(t)

]
< (e+ ε)W ∗(t) for all t ≥ 0.

4.2 Lower bound

We give a lower bound on the performance guarantee of universal schedules for jobs with arbitrary
release dates.

Theorem 9. There exists an instance with n jobs with release dates, where the performance guarantee
of any universal schedule is Ω(log n/ log logn), even if all weights are equal.

In our lower bound instance each job j has weight wj = 1, j = 0, 1, . . . , n − 1. The processing
times of the jobs form a geometric series pj = 2j , j = 0, 1, . . . , n − 1, and they are released in
reversed order rj =

∑n
i>j 2i =

∑
i>j pi, j = 0, 1, . . . , n− 1. On an ideal machine, each job can start

running at its release date and it will have finished processing by the release time of the next job.
To get some intuition, consider the universal job sequence n − 1, . . . , 1, 0. If the machine breaks

down until time 2n, when all jobs have been released, we arrive in a setting without release dates.
If the machine works at full speed after time 2n, then at time 2n + 2n−1 − 1 the universal schedule
has still n uncompleted jobs, whereas an optimal solution has completed 1, 2, . . . , n− 1, yielding by
Lemma 1 a performance guarantee of Ω(n).

On the other hand the universal sequence 0, 1, . . . , n−1 sees breakdowns at the intervals [rj , rj +
ε], j = 0, 1, . . . , n−1, resulting in n uncompleted jobs at time 2n−1, whereas the schedule following
the sequence 0, 1, . . . , n has job 0 as the only uncompleted job. Hence a long breakdown of the
machine starting at this time yields again a performance guarantee Ω(n).

To show that there is no way to “interpolate” between these two extremes, we rely on a classic
theorem of Erdős and Szekeres [9] or, more precisely, on Hammersley’s proof [12] of this result.

Lemma 3 (Hammersley [12]). Given a sequence of n distinct numbers x1, x2, . . . , xn, we can de-
compose this set into k increasing subsequences `1, `2, . . . , `k such that:

• There is a decreasing subsequence of length k.

• If xi belongs to `a then for all j > i if xj < xi then xj belongs to `b and b > a.

The idea is now to view a universal sequence as a permutation of {0, 1, . . . , n − 1} and use
Lemma 3 to decompose the sequence into k increasing subsequences. Figure 1 provides a two-
dimensional visualization. This decomposition is then used to design a breakdown pattern that will
yield Theorem 9. The following two lemmas outline two kinds of breakdown patterns, similar to the
ones in the two extreme cases above, that apply to the two possibilities offered by Lemma 3.

12

priority

jo
b

in
de

x

priority

jo
b

in
de

x

Figure 1: Two-dimensional visualization of a universal sequence. On the left: Each point represents
one job; x-coordinates correspond to positions in the sequence and y-coordinates correspond to job
indices. On the right: The points have been decomposed into four increasing subsequences.

Lemma 4. The performance guarantee of a universal schedule that has ` as a decreasing subsequence
is at least |`|.

Proof. Let j be the first job in `, that is, the job with highest priority and smallest release date in `.
The machine has breakdowns [rj , r0] and [r0 + 2j−1, L] for large L. By time r0 all jobs are released.
Then, 2j−1 time units later, at the start of the second breakdown, all jobs in ` belong to the set of jobs
uncompleted by the universal schedule, whereas an optimal solution can complete all jobs except j.
Choosing L large enough implies the lemma.

Lemma 5. Let `1, `2, . . . , `k be the decomposition described in Lemma 3 when applied to a universal
schedule. Then for all i = 1, . . . , k the performance guarantee is at least |`i|+|`i+1|+···+|`k|

1+|`i+1|+···+|`k| .

Proof. For each job j in `i there is a breakdown [rj , rj + ε]. For each job j in `i+1, . . . , `k there is
a breakdown [rj , rj + pj] = [rj , rj + 2j]. As a consequence, at time 2n − 1 the universal schedule
has all jobs in `i and all jobs in `i+1, . . . , `k uncompleted, whereas, a schedule exists that leaves the
last job of `i and all jobs in `i+1, . . . , `k uncompleted. Therefore, a breakdown [2n− 1, L] for L large
enough implies the lemma.

Proof of Theorem 9. Consider an arbitrary universal scheduling solution and its decomposition into
increasing subsequences `1, . . . , `k as in Lemma 3 and let α be its performance guarantee.

Using Lemma 5, one can easily prove by induction that |`i| ≤ αk−i+1. Since `1, . . . , `k is a
partition of all jobs, we have

n =
k∑
i=1

|`i| ≤
k∑
i=1

αk−i+1 ≤ αk+1.

By Lemma 4, it follows that k ≤ α. Therefore log n = O(α logα) and α = Ω
(

logn
log logn

)
.

4.3 Jobs with proportional weights

Motivated by the negative result in the previous section, we turn our attention to the special case where
jobs have weights that are proportional to their processing times, that is, there exists a fixed γ ∈ Q+

such thatwj = γpj , for all j ∈ J . Using a standard scaling argument we can assume w.l.o.g. that pj =

13

wj , for all j. We provide an algorithm with performance guarantee 5, and prove a lower bound
of 3 on the performance guarantee of any universal scheduling algorithm. This algorithm applied
to the unconstrained problem version yields an O(maxk∈J

wk
pk
/mink∈J

wk
pk

)-approximate universal
solution. In this case, we ignore the actual weights and assume them to equal processing times.

4.3.1 Upper bounds

Algorithm SORTCLASS:

1. Partition the set of jobs into z := dlog maxj∈J wje classes, such that j belongs to class Ji,
for i ∈ 1, 2, . . . , z, if and only if pj ∈ (2i−1, 2i].

2. Construct a permutation π as follows. Start with an empty sequence of jobs. For i = z down
to 1, append the jobs of class Ji in non-decreasing order of release dates at the end of π.

Theorem 10. The performance guarantee of SORTCLASS for universal scheduling of jobs with
proportional weights and release dates is exactly 5.

Proof. Let π be the job sequence computed by SORTCLASS. By Lemma 1, it is sufficient to prove

WS(π,f)(t) ≤ 5WS∗(f)(t) for all t > 0. (12)

Take any time t and any machine capacity function f . Let j ∈ Ji be the job being processed at time t
according to the schedule S(π, f). We say that a job other than job j is in the stack at time t if it
was processed for a positive amount of time before t. The algorithm needs to complete all jobs in the
stack, job j, and jobs that did not start before t, which have a total weight of at most p(J)− f(t), the
amount of remaining processing time at time t to be done by the algorithm.

Since jobs within a class are ordered by release times, there is at most one job per class in the
stack at any point in time. Since jobs in higher classes have higher priority and job j ∈ Ji is processed
at time t, there are no jobs in Ji+1, . . . , Jz in the stack at time t. Thus the weight of the jobs in the
stack together with the weight of job j is at most

∑i
k=1 2k = 2i+1 − 1. Hence,

WS(π,f)(t) < 2i+1 + p(J)− f(t) . (13)

A first obvious lower bound on the remaining weight of any schedule at time t is

WS∗(f)(t) ≥ p(J)− f(t) . (14)

For another lower bound, let t′ be the last time before t in which the machine is available but it is
either idle or a job of a class Ji′ with i′ < i is being processed. Note that t′ is well-defined. By
definition, all jobs processed during the time interval [t′, t] are in classes with index at least i, but also,
they are released in the interval [t′, t] since at t′ a job of a lower class was processed or the machine
was idle. Since at time t at least one of these jobs is unfinished in S(π, f), even though the machine
continuously processed only those jobs, no algorithm can complete all these jobs. Thus, at time t, an
optimal schedule also still needs to complete at least one job with weight at least 2i−1:

WS∗(f)(t) ≥ 2i−1 . (15)

Combining (13), (14), and (15) yields (12) and thus the upper bound of the theorem.

14

To see that the analysis is tight, consider the following instance with k + 3 jobs. We have k
main jobs of geometrically increasing weights and processing times wj = pj = 2j−1 and release
dates rj =

∑
i<j pi, for j = 1, . . . , k. We have three additional jobs a, b and c with wa = pa =

2k−1 + kε, wb = pb = 2k, and wc = pc = 2k−1 − ε and release dates ra =
∑

i≤k pk, rb = ra + ε,
and rc = rb + ε, for some 0 < ε < 1.

SORTCLASS transforms the sequence π = 1, 2, . . . , k − 1, k, a, b, c of release date order into
a, b, k, c, k − 1, k − 2, . . . , 2, 1. To show the lower bound, we give a break of length ε at each release
date rj for j = 1, 2, . . . , k. Thus, the jobs j = 1, . . . , k start processing one after another but get
preempted an ε time unit before finishing because of the release of a higher priority job. At time ra,
job a starts processing and finishes without interruption; it is followed by job b, which gets interrupted
at time t = ra + pa + pb − ε by a huge breakdown. At this time, the only job that has completed in
this schedule is job a. Thus, the remaining weight of unfinished jobs at time t is 5 · 2k−1 − 1 − ε.
In contrast, scheduling the sequence 1, 2, . . . , k − 1, k, b, c, a under such machine breakdowns leaves
only job a with weight 2k−1+kε unfinished at time t. The lower bound of 5 follows immediately.

We may apply Algorithm SORTCLASS also to general instances with arbitrary job weights: we
simply ignore the actual weights and assume them to equal processing times. In the case that wj ≥ pj
for all j ∈ J , we underestimate the cost of a schedule by at most a factor of maxk∈J

wk
pk

. In the
case that wj < pj for some j ∈ J , we first multiply all weights by the factor maxk∈J

pk
wk

=
1/mink∈J

wk
pk

to guarantee that wj ≥ pj for all j ∈ J . Then we lose in total a factor of at
most maxk∈J

wk
pk
/mink∈J

wk
pk

. Thus, Theorem 10 gives directly the following guarantee.

Corollary 3. The performance guarantee of SORTCLASS for universal scheduling isO(maxk∈J wk/pk
mink∈J wk/pk

).

4.3.2 Lower bound

We complement this result by a lower bound of 3 on the performance guarantee of any universal
scheduling algorithm for the proportional weight case.

Theorem 11. There exists an instance with n jobs with release dates and wj = pj , for all j ∈ J ,
where the performance guarantee of any universal sequence is at least 3.

Proof. Assume by contradiction that there is an algorithm that finds a universal sequence with perfor-
mance guarantee strictly smaller than R such that R < 3. We define the following sequence: a1 = 1,
a2 = R and for i ≥ 3, ai = (R + 1)(ai−1 − ai−2). Let Si =

∑i
j=1 aj . Note that an alternative

definition for ai, i ≥ 3, is ai = R · ai−1 − Si−2. Indeed, using the definition of the sequence, yields

ai + Si−1 − (R+ 1) = Si − (R+ 1) = Si − a1 − a2 =
i∑

j=3

aj =
i∑

j=3

(R+ 1)(aj−1 − aj−2)

= (R+ 1)
i−1∑
j=2

aj − (R+ 1)
i−2∑
j=1

aj = (R+ 1)(ai−1 − a1)

= (R+ 1)(ai−1 − 1),

which gives ai = (R + 1)ai−1 − Si−1 = Rai−1 − Si−2. When S0 = 0, the alternative definition
holds for i = 2 as well.

Note that by letting C = R + 1, we get exactly the well known sequence defined by the re-
currence bi = C(bi−1 − bi−2); see, e.g., [5]. For this sequence, it is known that since C < 4, no

15

matter what the initial conditions are exactly (but 0 < b1 < b2), there exists an integer n such that
b1 < b2 < · · · < bn, while 0 < bn+1 ≤ bn. Therefore, this property holds for the sequence ai, and
we use this value of n in our proof.

We consider a set of n jobs as follows. For job j, pj = wj = aj . The release time of job j is
rj = Sj−1 − (j − 1)ε, where ε < 1

n . Let T = Sn, which is the total size of all jobs.
By our assumption, the performance guarantee of the algorithm is smaller than R and we next

characterize the permutation which the algorithm must use.
Consider the time T − ε. If the machine works continuously till this time, and since an optimal

solution can run the jobs as follows: job 1 during the time [0, S1 − ε], and [T − ε, T], and job k > 1
during the time [Sk−1 − ε, Sk − ε], then it must be the case that the total size of the jobs which the
algorithm did not complete until time T − ε is less than Ra1. Since R = a2 < a3 < · · · < an,
the only such job can be job 1. We next prove by induction that if the last jobs in the permutation
are jobs k − 1, k − 2, . . . , 1, then the job before k − 1 must be job k (for any 2 ≤ k ≤ n − 1).
Consider the time T − kε, and an optimal schedule which runs job j, where j < k during the time
slot [Sj−1, Sj], the job k during the time slots [Sk−1, Sk − kε] and [T − kε, T], and any job j > k
during the time slot [Sj−1 − kε, Sj − kε]. Since the jobs 1, 2, . . . , k − 1 have a lower priority than
jobs k, k + 1, . . . , n, and among the set {1, 2, . . . , k − 1}, jobs of lower indices have a lower priority,
job j − 1 is preempted upon the release of job j, for j = 2, 3, . . . , k − 1, leaving a part of length ε
of each such job incomplete. This gives a total of (k − 1)ε, which means that there is an additional
incomplete job. However, the total size of the incomplete jobs at time T − kε must be smaller than
R · ak. Therefore, since ak+1 + Sk−1 = R · ak and ak+1 = min{ak+1, ak+2, . . . , an}, the only
additional incomplete job must be job k.

Since the n − 1 last jobs in the permutation must be n − 1, n − 2, . . . , 1, the first job in the
permutation is job n.

Consider now the time T − nε. An optimal solution can run each job j during the time slot
[Sj−1, Sj], and thus at time Sn − nε > Sn−1, it runs job n. However, the algorithm preempts each
job in favor of the newly released job, and hence none of the jobs is completed by this time. This
gives a ratio of Sn

an
. Since an+1 < an, we have an+1 = (R + 1)(an − an−1) ≤ an or R · an ≤

(R + 1)an−1. Moreover, an = Ran−1 − Sn−2, so Sn
an

= an+an−1+Sn−2

an
= (R+1)an−1

an
≥ R, which is

a contradiction.

5 Further remarks

In Section 4 we have shown that the performance of universal scheduling algorithms may deteriorate
drastically when generalizing the universal scheduling problem slightly. Other generalizations do
not admit any (exponential time) algorithm with bounded performance guarantee. If a non-adaptive
algorithm cannot guarantee to finish within the minimum makespan, then an adversary creates an
arbitrarily long breakdown at the moment that an optimal schedule has completed all jobs. Examples
of such variations are the problem with two or more machines instead of a single machine, or the
problem in which preempting or resuming a job requires (even the slightest amount of) extra work.

To the best of our knowledge, the approximation results we give for universal scheduling are
also the best currently known results for the offline version of our problem. Notice, that any offline
variant (even without release dates) in which preemption is not allowed or causes extra work is not
approximable in polynomial time; a reduction from the 2-PARTITION problem shows that the problem
with two or more non-available periods is not approximable, unless P=NP, even if all jobs have equal
weight. A reduction in that spirit has been used in [40] for a scheduling problem with some jobs

16

having a fixed position in the schedule. Similarly, we can rule out constant approximation factors for
any preemptive version of the problem in which the makespan of the jobs cannot be computed exactly
in polynomial time. This is shown by simple reductions from the corresponding decision version of
the makespan minimization problem. Such variations of our problem are scheduling with general
precedence constraints (even if all jobs have unit processing times) [37] and scheduling with in-tree
precedence constraints and release dates [27].

References

[1] I. Adiri, J. Bruno, E. Frostig, and A. Rinnooy Kan. Single machine flow-time scheduling with a
single breakdown. Acta Informatica, 26(7):679–696, 1989.

[2] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Online weighted flow time
and deadline scheduling. Journal of Discrete Algorithms, 4(3):339–352, 2006.

[3] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contaminated
with uncertain data. Mathematical Programming, 88:411–424, 2000.

[4] J. Carter and M. Wegman. Universal classes of hash functions. Journal of Computer and System
Sciences, 18:143–154, 1979.

[5] M. Chrobak, C. Kenyon, J. Noga, and N. E. Young. Incremental medians via online bidding.
Algorithmica, 50(4):455–478, 2008.

[6] M. Chrobak and C. Kenyon-Mathieu. Sigact news online algorithms column 10: Competitive-
ness via doubling. SIGACT News, 37(4):115–126, 2006.

[7] F. Diedrich, K. Jansen, U. M. Schwarz, and D. Trystram. A survey on approximation algorithms
for scheduling with machine unavailability. In Algorithmics of Large and Complex Networks:
Design, Analysis, and Simulation, pages 50–64. Springer, 2009.

[8] L. Epstein, A. Levin, A. Marchetti-Spaccamela, N. Megow, J. Mestre, M. Skutella, and
L. Stougie. Universal sequencing on a single machine. In Proceedings of the 14th Confer-
ence on Integer Programming and Combinatorial Optimization (IPCO 2010), volume 6080 of
Lecture Notes in Computer Science, pages 230–243. Springer Heidelberg, 2010.

[9] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica,
2:463–470, 1935.

[10] M. Hajiaghayi, K. Jain, L. Lau, I. Mandoiu, A. Russell, and V. Vazirani. Minimum multicol-
ored subgraph problem in multiplex PCR primer set selection and population haplotyping. In
Proceedings of Second IWBRA, volume 3992 of LNCS, pages 758–766. Springer, 2006.

[11] L. Hall, A. S. Schulz, D. Shmoys, and J. Wein. Scheduling to minimize average completion time:
off-line and on-line approximation algorithms. Mathematics of Operations Research, 22:513–
544, 1997.

[12] J. Hammersley. A few seedlings of research. In Proceedings Sixth Berkeley Symposium on
Mathematical Statistics and Probability, volume 1 of University of California Press, pages 345–
394, 1972.

17

[13] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of subset
problems. Journal of the ACM, 22(4):463–468, 1975.

[14] L. Jia, G. Lin, G. Noubir, R. Rajaraman, and R. Sundaram. Universal approximations for TSP,
Steiner tree, and set cover. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing (STOC’05), pages 386–395, 2005.

[15] D. S. Johnson and K. A. Niemi. On knapsacks, partitions, and a new dynamic programming
technique for trees. Mathematics of Operations Research, 8(1):1–14, 1983.

[16] I. Kacem. Approximation algorithm for the weighted flow-time minimization on a single ma-
chine with a fixed non-availability interval. Computers & Industrial Engineering, 54(3):401–
410, 2008.

[17] I. Kacem and A. R. Mahjoub. Fully polynomial time approximation scheme for the weighted
flow-time minimization on a single machine with a fixed non-availability interval. Computers &
Industrial Engineering, 56(4):1708–1712, 2009.

[18] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer computa-
tions (Proc. Sympos., IBM Thomas J. Watson Res. Center), pages 85–103. Plenum, 1972.

[19] H. Kellerer, M. A. Kubzin, and V. A. Strusevich. Two simple constant ratio approximation
algorithms for minimizing the total weighted completion time on a single machine with a fixed
non-availability interval. European Journal of Operational Research, 199(1):111–116, 2009.

[20] H. Kellerer and V. A. Strusevich. Fully polynomial approximation schemes for a symmet-
ric quadratic knapsack problem and its scheduling applications. Algorithmica, 57(4):769–795,
2010.

[21] S. G. Kolliopoulos and G. Steiner. Partially ordered knapsack and applications to scheduling.
Discrete Applied Mathematics, 155(8):889–897, 2007.

[22] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Springer, 1997.

[23] E. L. Lawler. A dynamic programming algorithm for preemptive scheduling of a single machine
to minimize the number of late jobs. Annals of Operations Research, 26:125–133, 1990.

[24] C.-Y. Lee. Machine scheduling with an availability constraint. Journal of Global Optimimiza-
tion, 9:395–416, 1996.

[25] C.-Y. Lee. Machine scheduling with availability constraints. In J. Y.-T. Leung, editor, Handbook
of scheduling. CRC Press, 2004.

[26] C.-Y. Lee and S. D. Liman. Single machine flow-time scheduling with scheduled maintenance.
Acta Informatica, 29(4):375–382, 1992.

[27] J. K. Lenstra. Unpublished. Cited by P. Brucker and S. Knust in Com-
plexity results for scheduling problems at http://www.mathematik.
uni-osnabrueck.de/research/OR/class.

18

[28] C. Liebchen, M. E. Lübbecke, R. H. Möhring, and S. Stiller. The concept of recoverable ro-
bustness, linear programming recovery, and railway applications. In R. Ahuja, R. Möhring, and
C. Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of Lecture
Notes in Computer Science, pages 1–27. Springer-Verlag, Berlin, 2009.

[29] M. Mastrolilli, N. Mutsanas, and O. Svensson. Approximating single machine scheduling with
scenarios. In Proceedings of the 11th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX 2008), volume 5171 of LNCS, pages 153–164,
2008.

[30] N. Megow and J. Verschae. Note on scheduling on a single machine with one non-availability
period. Unpublished manuscript, 2008.

[31] K. Pruhs and G. J. Woeginger. Approximation schemes for a class of subset selection problems.
Theoretical Computer Science, 382(2):151–156, 2007.

[32] H. Räcke. Survey on oblivious routing strategies. In K. Ambos-Spies, B. Löwe, and W. Merkle,
editors, Mathematical Theory and Computational Practice, Proceedings of 5th Conference on
Computability in Europe (CiE), volume 5635 of LNCS, pages 419–429. Springer, 2009.

[33] G. Schmidt. Scheduling with limited machine availability. European Journal of Operational
Research, 121(1):1–15, 2000.

[34] A. S. Schulz and M. Skutella. The power of α-points in preemptive single machine scheduling.
Journal of Scheduling, 5:121–133, 2002.

[35] W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics Quar-
terly, 3:59–66, 1956.

[36] A. Soyster. Convex programming with set-inclusive constraints and applications to inexact linear
programming. Operations Research, 21(4):1154–1157, 1973.

[37] J. Ullman. Complexity of sequencing problems. In J. Bruno, J. E.G. Coffman, R. Graham,
W. Kohler, R. Sethi, K. Steiglitz, and J. Ullman, editors, Computer and Job/Shop Scheduling
Theory, pages 139–164. John Wiley & Sons Inc., New York, 1976.

[38] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In Proceedings
of the 13th Annual ACM Symposium on Theory of Computation (STOC’81), pages 263–277,
1981.

[39] G. Wang, H. Sun, and C. Chu. Preemptive scheduling with availability constraints to minimize
total weighted completion times. Annals of Operations Research, 133:183–192, 2005.

[40] J. Yuan, Y. Lin, C. Ng, and T. Cheng. Approximability of single machine scheduling with fixed
jobs to minimize total completion time. European Journal of Operational Research, 178(1):46–
56, 2007.

19

