
Abstract Delta Modeling ∗

Dave Clarke
IBBT-DistriNet, Katholieke Universiteit

Leuven, Belgium
dave.clarke@cs.kuleuven.be

Michiel Helvensteijn
CWI, Amsterdam LIACS, Leiden

University, The Netherlands
michiel.helvensteijn@cwi.nl

Ina Schaefer †

Chalmers University of Technology,
Gothenburg, Sweden
schaefer@chalmers.se

Abstract
Delta modeling is an approach to facilitate automated product
derivation for software product lines. It is based on a set of deltas
specifying modifications that are incrementally applied to a core
product. The applicability of deltas depends on feature-dependent
conditions. This paper presents abstract delta modeling, which
explores delta modeling from an abstract, algebraic perspective.
Compared to previous work, we take a more flexible approach with
respect to conflicts between modifications and introduce the notion
of conflict-resolving deltas. We present conditions on the structure
of deltas to ensure unambiguous product generation.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.13 [Software Engineer-
ing]: Reusable Software

General Terms Design, Languages, Theory.

Keywords Software Product Lines; Automated Product Deriva-
tion; Delta Modeling; Conflict Resolution.

1. Introduction
A software product line (SPL) is a set of software systems, called
products, with well-defined commonalities and variabilities [12,
35]. Software product line engineering aims at developing this set
of systems by reuse in order to reduce time to market and to in-
crease product quality. Automated product derivation (or software
mass customization [25]) is an approach to generating individual
products without the need for manual intervention during applica-
tion engineering, which can be tedious and error-prone [14].

Currently, product line variability is mostly represented by
feature models [20, 43]. Features are designated product charac-
teristics or increments of product functionality [7]. A product is
uniquely identified by a valid feature configuration, i.e., a legal
combination of features from the feature model. On the feature
model level, features are merely labels [13]. In order to be able to

∗ This research is partly funded by the EU project FP7-231620 HATS:
Highly Adaptable and Trustworthy Software using Formal Methods
(http://www.hats-project.eu)
† This author is supported by the German Science Foundation (DFG).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’10, October 10–13, 2010, Eindhoven, The Netherlands.
Copyright c© 2010 ACM 978-1-4503-0154-1/10/10. . . $10.00

automatically derive a product for a particular feature configura-
tion, a correspondence between the features on the feature mod-
eling level and the reusable product line artifacts has to be intro-
duced. Additionally, the product line artifacts have to be organized
in such a way that they can be assembled automatically to generate
a uniquely determined product.

Feature-oriented programming [7] is a prominent approach for
implementing SPLs by composition of feature modules that di-
rectly correspond to product features. Delta modeling [38–40]
extends feature-oriented programming. In the delta modeling ap-
proach, a product line is represented by a core product and a set
of product deltas. Product deltas specify modifications to the core
product to generate further products of the product line. Each delta
has an application condition specifying for which feature configu-
rations the modifications have to be carried out, connecting features
on the feature modeling level with product line artifacts. A product
for a feature configuration can be obtained by applying those prod-
uct deltas with a valid application condition to the core product.

In this paper, we generalize the existing delta modeling ap-
proaches [38–40] and present an abstract, algebraic formalization
of the delta modeling concepts. The presented abstract delta mod-
eling approach goes beyond existing work with its novel treatment
of conflicts between deltas. A conflict between deltas arises if their
specified modifications do not commute. This means that applying
them in different orders results in different (composed) modifica-
tions. In previous work, deltas were either incomparable [38, 40],
which required writing additional deltas for every conflicting com-
bination, or they had to be ordered in a very restrictive way [39]
to avoid conflicts explicitly. As a main contribution of this paper,
we introduce the notion of conflict-resolving deltas that relax these
restrictions and make delta modeling of product lines more flexi-
ble. A conflict-resolving delta, which is applied after two conflict-
ing deltas, eliminates differences between the (composed) modi-
fications. If for every pair of conflicting deltas a conflict-resolving
delta exists, all possible sequences of deltas produce the same mod-
ification and generate a uniquely defined product. In order to ensure
this result for every valid feature configuration, we provide efficient
conditions requiring only the inspection of the product line directly,
without having to generate and check all products.

The concepts of abstract delta modeling can be instantiated for
different kinds of development artifacts, such as documentation,
models or code. We demonstrate the feasibility of the approach by
presenting an instantiation of abstract delta modeling for object-
oriented implementations of software product lines and extend
this with method wrapping. Furthermore, we show that existing
formalizations of compositional product line implementations can
be seen as instantiations of abstract delta modeling.

The abstract delta modeling formalism consists of a number of
ingredients, which are depicted in Figure 1, along with the opera-
tions between them. At the top is (a model of) the software product
line that is defined by the feature model, the core product, the prod-

13

Product Line: PL = (Φ, c,D,≺, γ) (Def. 15)

Delta Model: (D,≺) (Def. 2)

Composite Delta: x = xn · . . . ·x1 (Def. 1)

Product→ Product: f Product (Def. 16)

feature configuration: PL�F (Def. 16)

derivation: derv(D,≺) (Def. 3)

partial delta application:
x(−) (Defs. 10,11)

delta application to core:
x(c) (Defs. 10,11)

application to
core: f(c)

Figure 1. Relationship between artefacts. Relevant definition
numbers are indicated in parentheses.

uct deltas specifying modifications of the core product, a partial
ordering on the deltas restricting their application and the applica-
tion conditions for the deltas. By specifying a feature configuration,
one can produce a delta model, consisting of an ordered collection
of modifications necessary to generate the respective product. The
process of derivation applied to a delta model puts the specified
modifications in a linear order that is compatible with the partial
ordering in order to obtain a valid, ideally unique, composed mod-
ification. The partial delta application operation applied to a delta
returns a function that takes a product and produces a new product.
This function can then be applied to the core product to produce the
target product for a given feature configuration.

This paper is organized as follows. Section 2 presents delta
models and criteria for their unambiguity. Sections 3 and 4 rein-
troduce products and incorporate deltas into product lines, trans-
ferring the unambiguity properties. Section 5 presents a concrete
class of deltas and illustrates our approach using an example. Sec-
tion 6 compares our approach with existing algebraic approaches
from the literature. Finally, Sections 7 and 8 present related work
and conclusions. Additional material including full proofs appears
in a companion technical report [11].

2. Abstract Delta Modeling
This section presents our approach of abstract delta modeling. We
introduce product modifications and their composition as a monoid,
called a deltoid. Delta models are built on top of this monoid as
partially ordered collections of modifications, where the ordering
constrains the possible ways such modifications can be applied. It
is important that a delta model defines unambiguous modifications
as these are used later to obtain distinct products. Thus, we define
the notions of conflict, leading to ambiguous modifications, and
conflict-resolving deltas eliminating these. We develop conditions
to ensure that a delta model is unambiguous.

2.1 Delta Models
In existing compositional approaches for implementing software
product lines, such as feature-oriented programming [7] or delta-
oriented programming [39], a member product of an SPL is ob-
tained by the application of a number of modifications (deltas)
x1, . . . , xn to a core product c, as follows:

xn(· · ·x1(c) · · ·).
In feature-oriented programming the core product is determined by
one or more base modules. The modifications are feature modules

extending and refining the core product. In delta-oriented program-
ming the core product can be any valid product of the product line.

As both approaches treat the core product as a constant element
for all products in the product line, it is useful to focus on the
modifications. In this setting, the above modification would be
equivalently written as follows, where · refers to the composition
of modifications:

(xn · . . . ·x1)(c).

Thus, we will focus exclusively on sequences of modifications such
as xn · . . . ·x1.

It may still be possible to reason about the core product if we
choose to see it as a modification xc applied to the empty product
0, i.e. c = xc(0). Thus:

(xn · . . . ·x1)(c) = (xn · . . . ·x1 ·xc)(0),

so nothing is lost by restricting our attention to modifications.
In abstract delta modeling the main object of interest is a del-

toid. A deltoid consists of a set of modifications, called deltas,
along with the operation for composing them sequentially. A del-
toid can contain different kinds of deltas for different kinds of de-
velopment artefacts (e.g., documentation, models or code) and for
different levels of abstraction (e.g., when working on component
level or working on class level). The concrete nature of the modifi-
cations specified in the deltas depends on the capabilities of the un-
derlying modeling or programming languages. Deltas may be func-
tions performing the changes directly or some other structure rep-
resenting those changes. We abstract away from the internal details
of modifications, since many different instantiations are possible.

We define the notions of deltoids and deltas as follows.

Definition 1 (Deltoid). A deltoid is a monoid (D, ·, ε), where D
is a set of modifications (referred to as deltas), and the operation
· : D ×D → D corresponds to their sequential composition. y ·x
denotes the modification applying first x and then y. The neutral
element ε of the monoid corresponds to modifying nothing.

The operation · is associative but not inherently commutative,
as the ordering between two deltas may be significant. We call two
deltas x, y ∈ D incompatible if y ·x 6= x · y.

A delta model describes the collection of deltas required to build
a specific product, along with a strict partial ordering on those
deltas restricting the order in which they can be applied. Recall
that a strict partial order is irreflexive, asymmetric and transitive.

Definition 2 (Delta Model). A delta model is a tuple (D,≺), where
D ⊆ D is a finite set of deltas and ≺ ⊆ D ×D is a strict partial
order on D. x ≺ y states that x should be applied before, though
not necessarily directly before, y.

The partial order between deltas represents the intuition that a
subsequent delta has full knowledge of (and access to) earlier deltas
and more authority over modifications to the product. This is real-
ized by applying the deltas in a linear extension of the partial order,
as shown in the following definition. A derivation is a sequential
composition of all deltas in a model to generate a desired product.

Definition 3 (Derivation). Given a delta model P = (D,≺), its
derivations are defined to be

derv(P)
def
=

xn · . . . ·x1 |

x1, . . . , xn is a linear extension
of ≺ where {x1, . . . , xn} = D

ff
.

Note that derv(P) may potentially generate more than one dis-
tinct derivation as incompatible deltas may be applied in different
orderings. However, it is desirable that all possible derivations of a
delta model have the same effect, as this corresponds to deriving a
unique product. This motivates the following definition.

14

Definition 4 (Unique Derivation). A delta model P = (D,≺) is
said to have a unique derivation iff xn · . . . ·x1 = x′n · . . . ·x′1 for
all pairs of linear extensions (x1, . . . , xn) and (x′1, . . . , x

′
n) of ≺.

Or, equivalently, iff |derv(P)| = 1.

2.2 Unambiguity of Delta Models
The property that a delta model has a unique derivation can be
checked by brute force. This means generating all possible deriva-
tions (in the worst case, n! for n deltas), and then checking that they
all correspond. In order to allow for a more efficient way to estab-
lish this property, we introduce unambiguous delta models which
rely on the notion of conflicting deltas and conflict resolving deltas.

Two deltas are in conflict if they are incompatible and no order-
ing is placed upon them. Intuitively, the two conflicting deltas are
independently modifying the same part of the product in different
ways, meaning that multiple distinct derivations may be possible.

Definition 5 (Conflict). Given a delta model P = (D,≺),
x, y ∈ D are said to be in conflict iff the following condition holds:

x E y
def
= y ·x 6= x · y ∧ x 6≺ y ∧ y 6≺ x.

One way to ensure a unique derivation is to avoid conflicts by
always enforcing an ordering between incompatible deltas [39].
However, features with conflicting implementations are often in-
dependent in concept. Kästner et al. [24] call the issue of how to
model such situations the optional feature problem. Imposing an
ordering on the deltas of conceptually orthogonal features is of-
ten inappropriate. Some (unrelated) functionality may be inadver-
tently and silently overwritten. Furthermore, sometimes neither of
the original choices in functionality is exactly what we need, and
some combination of them should be used.

The alternative is to allow conflicts but to provide additional,
subsequently applied, deltas to resolve them.

Notation 1. IfD ⊆ D, thenD∗ andD+ denote the sequences and
non-empty sequences of compositions of deltas from D.

Definition 6 (Conflict-Resolving Delta). Given a delta model P =
(D,≺) and x, y ∈ D which are in conflict, we say that a delta
z ∈ D resolves their conflict iff the following property holds:

(x, y) C z
def
=

x ≺ z ∧ y ≺ z ∧
∀d ∈ D∗ : z · d · y ·x = z · d ·x · y.

An unambiguous delta model is now a delta model contain-
ing a conflict-resolving delta for every conflicting pair of deltas.
Conflict-resolving deltas take the role of derivative modules [24]
or lifters [36]. They contain only the functionality necessary when
several interacting features are selected together.

Definition 7 (Unambiguous Delta Model). Given a delta model
(D,≺), we say that the model is unambiguous iff

∀x, y ∈ D : x E y ⇒ ∃z ∈ D : (x, y) C z.

If a delta model is unambiguous, we can show that it has a
unique derivation. In order to prove this, we need some interme-
diate results. Lemma 1 states that in an unambiguous delta model,
any two deltas in a derivation are either ordered or commutative.

Lemma 1. Given an unambiguous delta model P = (D,≺) and
d2 · y ·x · d1 ∈ derv(P), where x, y ∈ D and d1, d2 ∈ D∗. Then
either x ≺ y or d2 · y ·x · d1 = d2 ·x · y · d1.

Lemma 2 states that removing a minimal element with respect
to the partial order preserves unambiguity of delta models.

Lemma 2. If P = (D,≺) is an unambiguous delta model and w
is minimal in ≺, then (D \ {w} ,≺′), where ≺′ is ≺ restricted to
D \ {w}, is also an unambiguous delta model.

Lemma 3 formulates that a minimal element in the partial order
can be moved to the front of any derivation from an unambiguous
delta model without changing the meaning of that derivation.

Lemma 3. Given an unambiguous delta model P = (D,≺). Let
xn · . . . ·x1 ∈ derv(P), where {x1, . . . , xn} = D, with xi mini-
mal in ≺. Then xn · . . . ·x1 = xn · . . . ·xi+1 ·xi−1 · . . . ·x1 ·xi.

The following theorem states that every unambiguous delta
model has a unique derivation. This reduces the effort of checking
that all possible derivations of a delta model have the same effect
to checking that all conflicts between pairs of deltas are eliminated
by conflict resolving deltas. The proof is by induction over the size
of the delta model.

Theorem 1. An unambiguous delta model has a unique derivation.

2.3 Consistent Conflict Resolution
Although the notion of unambiguous delta model alleviates the
task of establishing that a delta model has a unique derivation,
unambiguity is still quite complex to check. The reason is that the
definition of a conflict resolving delta (Definition 6) quantifies over
all elements ofD∗. Hence, in order to check that a delta is indeed a
conflict resolver, all these sequences of deltas have to be inspected.
However, for interesting classes of deltoids, a simpler criterion
exists to make checking ambiguity more feasible. The consistent
conflict resolution property states that if a delta z resolves an (x, y)-
conflict when it is applied directly after x and y, it also resolves the
conflict after the application of any sequence of intermediate deltas.

Definition 8 (Consistent Conflict Resolution). A deltoid (D, ·, ε)
is said to exhibit consistent conflict resolution iff the following
condition holds:
∀x, y, z ∈ D :

z · y ·x = z ·x · y ⇒ ∀d ∈ D : z · d · y ·x = z · d ·x · y.

If a deltoid (D, ·, ε) exhibits consistent conflict resolution, then a
delta model (D,≺) withD ⊆ D is also said to exhibit the property.

Note that the consistent conflict resolution property is checked
at the level of the underlying deltoid, rather than for any specific
delta model. Hence, it has to be established only once for a given
deltoid and then holds for all delta models based on that deltoid.

To establish the unambiguity of a delta model exhibiting con-
sistent conflict resolution, it is sufficient to check that for each pair
of conflicting deltas x and y there exists a conflict-resolving delta
z, such that x ≺ z ∧ y ≺ z ∧ z · y ·x = z ·x · y. We need not
quantify over all possible intermediate sequences of deltas. Con-
sequently, unambiguity of delta models can be established much
more efficiently. This is formalized in the next theorem.

Theorem 2. Given delta model P = (D,≺) exhibiting consis-
tent conflict resolution, for all deltas x, y, z ∈ D, it is true that
x ≺ z ∧ y ≺ z ∧ z · y ·x = z ·x · y =⇒ (x, y) C z.

3. Reintroducing Products
Thus far, only modifications have been considered, without consid-
ering the products that we modify. Products can be reintroduced,
by defining the notion of application of a delta to a product. Firstly,
we select a set of products.

Definition 9 (Products). Let P denote a set of possible products.

Applying a delta to a product results in another product. This is
captured by the notion of delta application.

Definition 10 (Delta Application). Delta application is an opera-
tion −(−) : D × P → P . If d ∈ D and p ∈ P , then d(p) ∈ P is
the product resulting from applying delta d to product p.

15

This definition implies that one generates a product from a
sequence of deltas by first composing the deltas and then applying
the result to the core product. A much stronger version of delta
application is possible, borrowing the notion of monoid action.

Definition 11 (Delta Action). A delta application operation−(−) :
D × P → P is called a delta action if it satisfies the conditions
(y ·x)(p) = y(x(p)) and ε(p) = p, for all x, y ∈ D and p ∈ P .

This generalises the case when · is function composition and
−(−) is function application.

4. Product Lines
Using the introduced concepts of delta models, products and delta
application we can now abstractly define product lines, thus provid-
ing a link from feature configurations on the feature modeling level
to product representations. We will extend the concept of unambi-
guity to the level of product lines and provide an efficient condition
to check unambiguity.

4.1 Defining Product Lines
Product line variability is predominantly captured by features
where a feature captures a designated product characteristic or an
increment to product functionality. At the level of the feature model
features are merely labels without inherent semantic meaning. A
product can be characterized by the set of features it provides.

Definition 12 (Features). Let F denote a universal set of features.

The set of products in a product line can be represented by a
feature model. Many formal descriptions [18, 20, 43] agree that a
feature model determines a set of valid feature configurations.

Definition 13 (Feature Model). A feature model Φ ⊆ P(F) is
a set of sets of features from F . Each F ∈ Φ is a set of features
corresponding to a valid feature configuration.

In order to bridge the gap between features and product line
artifacts, we introduce application conditions for deltas. An appli-
cation condition attached to a delta determines for which feature
configuration the delta has to be applied.

Definition 14 (Application Function and Condition). Let D ⊆ D
be a set of deltas. An application function γ : D → P(P(F))
gives the feature configurations each delta x ∈ D is applicable
to. Thus, F ∈ γ(x) denotes that delta x is applicable for feature
configuration F . γ(x) is called the application condition for x.

A product line is defined by its feature model, characterizing all
member products by a set of valid feature configurations, the core
product, the associated delta model, containing the modifications
used to obtain further products, and the application function, asso-
ciating features and deltas. None of these elements can be inferred
from the other elements.

Definition 15 (Product Line). A product line is a tuple (Φ, c,D,≺, γ),
where Φ is a feature model, c ∈ P is the core product, (D,≺) is a
delta model and γ is an application function with domain D.

If feature configuration F is valid according to Φ, its corre-
sponding product is defined by the delta model containing only the
deltas applicable to F . Selecting such deltas gives a delta model
whose derivations applied to the core product correspond to the de-
sired product for feature configuration F .

Definition 16 (Selected Delta Model). Given a product line PL =
(Φ, c,D,≺, γ), a selected delta model for feature configuration
F ∈ Φ, denoted PL � F , is the delta model (D′,≺′) where
D′ = { d ∈ D | F ∈ γ(d) } is the set of applicable deltas, and
≺′ is ≺ restricted to D′.

We now define the set of products generated from a product line.

Definition 17 (Generated Products). Given a product line PL =
(Φ, c,D,≺, γ), the set of generated products for feature configu-
ration F ∈ Φ is defined as follows:

prod(PL, F)
def
= {x(c) | x ∈ derv(PL�F) } .

4.2 Unambiguity of Product Lines
As argued in Section 2, unambiguity of delta models is a desired
property because it ensures unique derivation and, consequently, a
unique generated product. We now lift unambiguity to the product
line level. A product line is unambiguous if every selected delta
model is unambiguous. This means that every valid feature config-
uration yields a uniquely defined product, which is an important
condition for the applicability of automated product derivation.

Definition 18 (Unambiguous Product Line). A product line PL =
(Φ, c,D,≺, γ) is unambiguous iff

∀F ∈ Φ : PL�F is an unambiguous delta model.

The unambiguity of a product line can be checked by generat-
ing the selected delta models of all valid feature configurations and
checking unambiguity by the criteria proposed in Section 2. How-
ever, as the set of feature configurations is often exponential in the
number of features, that naive approach would be rather expensive.
Instead, we propose the notion of a globally unambiguous product
line that implies product line unambiguity.

We first introduce a shorthand notation for the set of feature
configurations for which two deltas x and y are applicable.

Notation 2. Given a product-line (Φ, c,D,≺, γ), the set of valid
feature configurations to which the deltas x, y ∈ D apply is
denoted:

Vx,y def
= Φ ∩ γ(x) ∩ γ(y).

A product line is globally unambiguous if for any two conflict-
ing deltas x and y applied together for a set of feature configu-
rations, there is a conflict-resolving delta z applicable in at least
the same set of feature configurations. Thus for any selected delta
model in which x and y appear together, the conflict is resolved
by the same delta z. Global unambiguity of a product line can be
checked by inspecting the product line only once and does not re-
quire all selected delta models to be generated.

Definition 19 (Globally Unambiguous Product Line). A product
line (Φ, c,D,≺, γ) is called globally unambiguous if and only if

∀x, y ∈ D : Vx,y = ∅
∨ x E y ⇒ ∃z ∈ D : (Vx,y ⊆ γ(z) ∧ (x, y) C z).

The following theorem states that any globally unambiguous
product line is also an unambiguous product line. Hence, it suffices
to check global unambiguity by inspecting the product line once to
ensure that all products that can be generated from the product line
are uniquely determined.

Theorem 3. A globally unambiguous product line is unambiguous.

A product line can be unambiguous, but not globally unambigu-
ous if conflicts between two deltas x and y are resolved by differ-
ent conflict-resolving deltas z for different feature configurations.
For example, take a product line PL in which the only conflicting
deltas x and y are applied together for feature configurations F and
F ′. For feature configuration F only delta z resolves the conflict,
(x, y) CPL�F z, and for feature configuration F ′ only delta z′ re-
solves the conflict, (x, y) CPL�F ′ z′, but z 6= z′. Hence, the product
line is unambiguous, because the conflict is resolved in all selected
delta models, but not globally unambiguous, because the conflict
resolving delta is not the same in each one. Here the C operator is
annotated with the delta model for which it applies.

16

5. A Deltoid for Object-Oriented Programs
We now present a concrete deltoid for object-oriented programs to
demonstrate our approach. In this section, deltas manipulate object-
oriented programs on a coarse-grained level. That is, a delta can
add, remove or modify classes. Modifications of classes include
addition, removal and replacement of fields and methods.

Notation 3. Let f : X⇀Y denote that f is a partial function
from X to Y . If f(x) is undefined for x ∈ X , we write f(x) = ⊥,
where ⊥ /∈ Y .

Notation 4. Given a set X where − /∈ X , define the notation:

X−
def
= X ∪ {−} .

5.1 Software Products
For simplicity, we abstract from a concrete programming language
as well as from the concrete implementation of methods, and focus
only on the structural aspects of object-oriented programs. First, we
introduce the notion of identifiers for classes, methods and fields.

Definition 20 (Identifiers). Define a global set of identifiers I,
used for classes, methods and fields.

Further, we fix an abstract set of method and field definitions.

Definition 21 (Method and Field Definitions). Define a global set
of method and field definitionsM.

A class is defined as a partial mapping from identifiers to
method and field definitions.

Definition 22 (Class Definitions). The collection of class defini-
tions is the set of partial functions Ψ = I⇀M. Such a class def-
inition ψ ∈ Ψ maps some identifiers to their definition. Unmapped
identifiers are not defined in the class.

As an example, consider the following class definition. Only the
explicitly mentioned identifiers are considered to be defined. As
we abstract from concrete method implementations, we use capital
letters to refer to method implementations, where different letters
represent distinct implementations.8<: f 7→ f(): void { A },

g 7→ g(): bool { B },
i 7→ i: int

9=; .

A program is a set of classes, mapping identifiers to class defi-
nitions.

Definition 23 (Programs). Equate the set of products P with the
set of programs in an object-oriented language: P = I⇀Ψ.

As an example, consider the following program definition:8>>>><>>>>:
C 7→

8<: f 7→ f(): void { A },
g 7→ g(): bool { B },
i 7→ i: int

9=; ,

D 7→

h 7→ h(x: int): int { C },
b 7→ b: bool

ff
9>>>>=>>>>; .

5.2 Software Deltas
Software deltas modify a program by adding, modifying and re-
moving classes. A class modification includes adding, replacing
and removing methods and fields, or replacing the class completely.

To ensure that composition of deltas produces a closed form,
we distinguish between updating a class and replacing it. A class
replacement completely replaces an existing class. A class update
modifies the original class at the method/field level. Modifying a
class that does not exist is treated as adding a new class. The defini-
tion of a software delta captures this set of program modifications.

Definition 24 (Software Deltas). The set of software deltas is
defined asD = I⇀({r}×(I⇀M) ∪ {u}×(I⇀M−))−. Each
delta d ∈ D is a partial function representing class modifications.
r and u represent ‘replace’ and ‘update’, respectively. Mapping an
identifier to − indicates removal from the product. ε = ∅ is the
empty delta, modifying nothing.

An example software delta is:8>><>>: C 7→ u

8<: f 7→ −,
z 7→ z(): void { D },
i 7→ i: float

9=; ,

D 7→ −

9>>=>>; .

In contrast to previous work [39], the removal of an element
in this concrete deltoid does not require that the element is already
present, nor does addition require its absence. These simplifications
ensure that every derivation of deltas is well-defined.

Now we introduce some notation required in the next few def-
initions. The first notation is used to combine two partial func-
tions into another partial function by some binary operation on their
codomain.

Notation 5. Use the following notation to lift an operator # on
two partial functions to the values in their codomain. For i ∈ I:

(a# b)(i)
def
= a(i) # b(i).

The following notation excludes method and field removals
from a class update. Since class replacements should not contain
removals, this notation is needed when a class update is sequen-
tially composed with a class replacement.

Notation 6. Given class update f : I⇀M−, define f∗ as f , but
without any method or field removals:

f∗(i)
def
=

⊥ if f(i) = −
f(i) otherwise

Now define sequential composition of software deltas.

Definition 25 (Sequential Composition of Software Deltas). The
sequential composition of software deltas · : D×D → D is defined
as

y ·x def
= y⊕C x,

where the operator⊕C , working on the level of class modifications,
with e, f : I⇀M− and g, h : I⇀M, is

⊕C ⊥ − u f r h
⊥ ⊥ − u f r h
− − − − −
u e u e r e∗ u (e⊕M f) r (e⊕M h)∗

r g r g r g r g r g

and ⊕M , working on the level of method and field definitions, with
m,n ∈M, is

⊕M ⊥ − n
⊥ ⊥ − n
− − − −
m m m m .

The options for combining methods are limited, but Section 5.4
will redefine ⊕M to allow method wrapping. The definition of
software delta composition gives concrete meaning to the notion of
incompatibility. Two deltas are incompatible if they map the same
identifier to two different definitions.

Lemma 4. Software deltas are a deltoid.

Lemma 5. Software deltas exhibit consistent conflict resolution.

Finally, we define software delta application to apply a software
delta to a program.

17

Definition 26 (Software Delta Application). Given delta y ∈ D
and product p ∈ P , software delta application is an operation
−(−) : D × P → P defined as follows:

y(p)
def
= y⊗C p,

where the operators ⊗C , with f : I⇀M− and g, h : I⇀M,
and ⊗M , with m,n ∈M, are defined as

⊗C ⊥ h
⊥ ⊥ h
− ⊥ ⊥
u f f∗ f ⊗M h
r g g g

⊗M ⊥ n
⊥ ⊥ n
− ⊥ ⊥
m m m .

Lemma 6. Software delta application is a delta action.

5.3 Example Product Line
We now show an example product line based on software deltas.
It is a product line of editor widgets to be used for integrated
development environments and other text-editing applications.

5.3.1 The Core Program
The product line is based on core program c containing one class:8>>>>><>>>>>:

Editor 7→8>>><>>>:
model 7→ model: Model,
draw 7→ draw(): void,
getModel 7→ getModel(): Model,
font 7→ font(c: int): Font { A },
onMouseOver 7→ onMouseOver(c: int): void { B }

9>>>=>>>;

9>>>>>=>>>>>;
.

The model field and the draw and getModel methods imple-
ment the basic functionality of the widget and are never modified.
The font method specifies the proper font for each character in the
editor’s text area. In the core product it may return a monospaced
black font with no decoration. The onMouseOver method is an
event handler for when the mouse cursor hovers over specific char-
acters of the content. Both methods will be modified by deltas.

5.3.2 The Feature Model
The editor product line is based on the features {Editor, SH,ERR,
TT}.Editor is the mandatory base feature of the product line, im-
plemented by the core program. SH stands for syntax highlighting
of programming language constructs. It modifies the font method.
ERR implements error detection. It underlines errors in code and
shows relevant information in a tooltip when the mouse hovers over
the error. This feature modifies the font and onMouseOver meth-
ods. TT allows the editor to show generic information in tooltips.
It modifies the onMouseOver method. The feature model Φ of the
editor product line allows any combination the three optional fea-
tures (Ed abbreviates Editor):

Φ =

8<: {Ed} , {Ed, SH} , {Ed,ERR} , {Ed, TT} ,{Ed, SH,ERR} , {Ed, SH, TT} ,
{Ed,ERR, TT} , {Ed, SH,ERR, TT}

9=; .

There are two potential conflicts. SH and ERR both modify
font. Similarly, ERR and TT both modify onMouseOver.

5.3.3 Delta Model and Application Conditions
The base code for all three optional features of the editor product
line can be developed in isolation. One delta is created for each, im-
plementing that feature as a modification to the Editor class with-
out considering potential conflicts. These deltas work as expected
if their respective feature is the only one included in the product.
They are depicted in the top row of Figure 2 as d1, d2, d3 ∈ D.

Because some feature configurations include interacting fea-
tures, conflict resolving deltas for the two potential conflicts in our

model are designed (d4, d5 ∈ D in Figure 2). Delta d4 deals with
the interaction between SH and ERR, combining the coloring of
SH with the underlining of ERR. Similarly, delta d5 handles the
interaction between ERR and TT .

Figure 2 also shows the application conditions γ(di) for each
delta di ∈ D in the form of propositional logic formulae, where the
propositions are features. The application conditions of the conflict
resolving deltas ensure that they are applied if and only if their two
conflicting deltas are applied.

5.3.4 Global Unambiguity
The editor product line is globally unambiguous. As the underlying
deltoid exhibits consistent conflict resolution (cf. Lemma 5), this
can easily be verified. There are only two pairs of deltas in conflict:
d1 E d2 and d2 E d3. For both conflicts, there is a conflict resolving
delta: (d1, d2) C d4 and (d2, d3) C d5. By the choice of γ,
the appropriate conflict-resolving delta is present in each feature
configuration in which conflicting deltas appear.

5.3.5 Generating a Product
To illustrate the process of product generation (cf. Definition 17),
we now derive the product for a given feature configuration
F = {Editor, SH,ERR} ∈ Φ. We first generate the selected
delta model PL � F = (D′,≺′), where D′ = {d1, d2, d4} and
≺′ = {(d1, d4), (d2, d4)}. Since PL is globally unambiguous, it
is sufficient to select one derivation of the delta model to generate
the uniquely defined product. We use x = d4 · d2 · d1. Applying
Definition 25, x becomes:

8<:
Editor 7→

u

font 7→ font(c: int): Font { G },
onMouseOver 7→ onMouseOver(c: int): void { E }

ff 9=;
Applying x to c (Definition 26) results in the product x(c):

8>>>>><>>>>>:

Editor 7→8>>><>>>:
model 7→ model: Model,
draw 7→ draw(): void,
getModel 7→ getModel(): Model,
font 7→ font(c: int): Font { G },
onMouseOver 7→ onMouseOver(c: int): void { E }

9>>>=>>>;

9>>>>>=>>>>>;
.

5.4 A Deltoid for Aspect Oriented Programming
Arguably, the essence of AOP is quantification (pointcuts) and
wrapping (around advice). A rudimentary semantic interpretation
of quantification is simply the set of all possible matching join-
points with the same advice. Based on this simplification, we adapt
the previous concrete deltoid (Sections 5.1 and 5.2) to include
method wrapping. We do so by modifying method bodies M in
classes and deltas to have the following (abstract) grammar:

M3 m ::= b | w[m] b ∈ B
W 3 w[] ::= e[] | w[w[]] e ∈ E .

where B is a set of basic method bodies and E is a set of primitive
wrapping methods (around advice). The notation w[] denotes a
wrapping method with a hole in it, where the hole corresponds to
where the call to the original method is made, and w[m] denotes
that body m is wrapped by w. Methods with a hole in them do not
appear in products.

Given these ingredients, only the definitions of ⊕M and ⊗M

from Definitions 25 and 26 need to change (m,n have no hole):

18

Editor

font(c: int): Font { D }

onMouseOver(c: int): void { E }

Editor

font(c: int): Font { C }

Editor

onMouseOver(c: int): void { F }

Editor

font(c: int): Font { G }

Editor

onMouseOver(c: int): void { H }

d1

SH

d2

ERR

d3

TT

d4

SH ∧ ERR

d5

ERR ∧ TT

Figure 2. A visual representation of the delta model (D,≺) from the editor product line. The dashed boxes represent the deltas
d1, . . . , d5 ∈ D. The ordering ≺ is represented by the arrows. Deltas are decorated with their application condition γ(di).

⊕M ⊥ − n v[]
⊥ ⊥ − n v[]
− − − − −
m m m m m
w[] w[] − w[n] w[v[]]

⊗M ⊥ n
⊥ ⊥ n
− ⊥ ⊥
m m m
w[] ⊥ w[n] .

6. Other Algebraic Approaches
Other algebraic approaches describing the underlying structure of
software product lines exist [4, 8]. These formalise the mechanisms
underlying AHEAD [7], GenVoca [6], and FeatureHouse [2]. The
key difference is that our approach considers the collection of mod-
ifications for an entire product line, rather than a single product at
a time. The second difference is that those approaches generally ar-
range deltas into modifications and introductions, whereas we as-
sume a unified collection of deltas. Here we compare our approach
with two recent proposals, namely, Apel et al’s Quark model [4]
and Batory and Smith’s Finite Map Spaces [8]. From an algebraic
perspective, these two proposals are quite similar, so we consider
them together. By encoding these frameworks, we demonstrate that
our formalism is sufficient to express these using simpler notions,
as well as providing an alternative foundation for tools based on
these formalisms. We also consider the formalization of patch the-
ory underlying the Darcs version control system [19], which is al-
gebraically similar.

6.1 Quarks and Finite Map Spaces
Both Apel et al. [4] and Batory and Smith [8] base the description
of a product line on the following ingredients (our notation):

• introductions: a commutative idempotent monoid (I,+, 0),
where + : I × I → I .
• modifications: a monoid (M, •, 1), where • : M ×M →M .
• an operation � : M × I → I applying modifications to

introductions, typically satisfying

M is an monoid action over I: 1� i = i and (m •n)� i =
m� (n� i) ,

Distributivity: m� (i+ j) = m� i+m� j, and

m� 0 = 0.

Introductions play a dual role. They correspond to (elements of)
products, as well as acting as one kind of delta; modifications are
the other kind. That is, an introduction i ∈ I in a delta corresponds
to introducing a new element into a product and a modificationm ∈
M corresponds to an operation modifying an existing element.

Introductions and modifications are combined to form quarks
Q, which correspond to our deltas. Different notions of quark and
quark composition (� : Q×Q→ Q) are listed below. These cap-
ture combinations of the following: local composition which ap-
plies modifications to elements (introductions) already in the prod-
uct; global composition which applies to all elements of the final
product; and modifiers of modifiers which modify modifications
rather than elements of the product. Modifiers of modifiers consist
of functions h : M → M . Batory and Smith introduce the syntac-
tic function Rh to recursively apply all higher-order modifications,
as follows, Rh(m) = h(m), for m ∈M ; Rh(i) = i for i ∈ I and
Rh(m •m′) = Rh(m) • Rh(m′) and so on. We also include the
operation image : Q → I used (sometimes implicitly) to extract
the final product from a quark.

local quark composition (Apel et al.)
• Q = I ×M — an introduction and a local modification
• 〈i2, l2〉� 〈i1, l1〉 = 〈i2 + (l2 � i1), l2 • l1〉
• image(〈i, l〉) = i

global quark composition (Apel et al.)
• Q = I ×M — an introduction and a global modification
• 〈i2, g2〉� 〈i1, g1〉 = 〈(g2 • g1)� (i2 + i1), g2 • g1〉
• image(〈i, g〉) = i

full quark composition (Apel et al.)
• Q = M × I×M — a global modification, an introduction,

and a local modification
• 〈g2, i2, l2〉� 〈g1, i1, l1〉 =

〈g2 • g1, (g2 • g1)� (i2 + (l2 � i1)), l2 • l1〉
• image(〈g, i, l〉) = i

full quark composition (Batory & Smith)
• Q = M × I×M — a global modification, an introduction,

and a local modification
• 〈g2, i2, l2〉� 〈g1, i1, l1〉 = 〈g2 • g1, i2 + (l2 � i1), l2 • l1〉
• image(〈g, i, l〉) = g � i

modifiers of modifiers (Batory & Smith)
• Q = (M → M) × M × I × M — a modifier of

modifiers, a global modification, an introduction, and a local
modification

19

• 〈h2, g2, i2, l2〉� 〈h1, g1, i1, l1〉 =
〈h2 ◦ h1, g2 • g1, i2 + (l2 � i1), l2 • l1〉

• image(〈h, g, i, l〉) = Rh(g � i)

In many cases, quark composition � forms a monoid, with
the appropriate tuple of units as the unit for �. Delta application
−(−) : Q × I → I (Definition 10) can be defined, for example,
as q(p) = image(q � 〈p, 1〉), where q ∈ Q is a quark and p ∈ P
is the core product. Note that the term 〈p, 1〉 needs to be adapted
depending on the notion of quark being used.

In the absence of other axioms, not all of the quarks above
form a deltoid, nor is delta application is always a delta action.
Global quark composition and full quark composition (Apel et al.)
are not associative, and delta application forms an action only for
local quark composition. In addition, Apel et al.s’ global quark
composition and full quark composition produces results such as
the following (for global quark composition)

(〈i3, g3〉� 〈i2, g2〉)� 〈i1, g1〉 =

〈((q3 • g2) • g1)� (((g3 • g2)� (i3 + i2)) + i1), (q3 • g2) • g1〉.
which applies modifications g3 and g2 multiple times. To get this
composition to behave, strong idempotence criteria are proposed,
but these exclude modifications such as method wrapping.

We now describe how to encode local quark composition, full
quark composition, and modifiers of modifiers more directly in
our setting, by making introductions a kind of modification and
by eliminating quarks (where possible). By ignoring the distinction
between modifications and introductions, we can focus on deltas
alone, and work in a simpler algebraic setting.

6.1.1 Encoding Local Quark Composition
Before proceeding, we note that 〈0, 1〉 is the unit of � for local
quark composition, and that apart from the monoid laws for � it
also satisfies: 〈i1,m1〉 = 〈i2,m2〉 if and only if i1 = i2 and
m1 = m2.

The following definition introduces deltoid MI consisting of
deltas that are modifications m ∈ M and introductions i ∈ I . We
show that this is equivalent to Q = I ×M with � corresponding
to local quark composition.

Definition 27. Given ((M, •, 1), (I,+, 0),�) as above. Define a
monoid MI = ((M ∪ I)∗, ·, ε), where · is concatenation with unit
the empty sequence ε, subject to the following equations (m,n ∈
M , i, j ∈ I , and µ, ν, η ∈MI):

1. ε ·µ = µ = µ · ε
2. µ ·(ν · η) = (µ · ν) · η
3. m · i = (m� i) ·m
4. i · j = i+ j = j + i = j · i

5. i · i = i+ i = i
6. m ·n = m • n
7. ε = 0 = 1.

Definition 27 forms a deltoid by taking sequences of modifica-
tions and introductions, modulo certain equations. The equations
interpret various combinations of elements of MI in terms of the
original collection of operations. The most interesting is 3, which
applies a modification m to an introduction i, via m� i, and shuf-
fles m later in the sequence to apply to subsequent introductions.
Note that equations 1 and 2 are redundant and follow from the fact
that · is concatenation and 1 = ε its unit.

Delta action is defined inductively over the elements of MI ,
applying each element ofMI to I via the appropriate function from
the original monoids.

Definition 28. The delta action −(−) : MI × I → I for MI is

ε(p) = p

m(p) = m� p
i(p) = i+ p

(µ · ν)(p) = µ(ν(p)).

where m ∈M , i ∈ I , µ, ν ∈MI and p ∈ I .

The following is a monoid homomorphism from quarks to MI .

Definition 29. Define J−K : Q→MI as

J〈i,m〉K = i ·m.
The mapping fromMI to quarks defined in the following is also

a monoid homomorphism.

Definition 30. Define 〈〈−〉〉 : MI → Q as

〈〈ε〉〉 = 〈0, 1〉
〈〈m〉〉 = 〈0,m〉
〈〈i〉〉 = 〈i, 1〉

〈〈µ · ν〉〉 = 〈〈µ〉〉� 〈〈ν〉〉.
Quarks with local quark composition are isomorphic to MI

which is stated in Theorem 4, supporting that making the distinc-
tion between introductions and modifications is unnecessary.

Theorem 4. For all q, q′ ∈ Q and µ, ν ∈MI , we have

1. 〈〈JqK〉〉 = q,
2. J〈〈µ〉〉K = µ,
3. if q = q′, then JqK = Jq′K, and
4. if µ = ν, then 〈〈µ〉〉 = 〈〈ν〉〉.

Theorem 5 shows that not only are quarks and MI isomorphic,
their notions of delta action behave the same.

Theorem 5. For all q ∈ Q and all p ∈ I ,

image(q � 〈p, 1〉) = JqK(p)

and for all µ ∈MI and all i ∈ I ,

image(〈〈µ〉〉� 〈p, 1〉) = µ(p).

6.1.2 Encoding Batory and Smith’s Full Quark Composition
Encoding full quark composition is straightforward. To do so, we
adapt the encoding above to use quarksQ = M×MI , where quark
composition is 〈m,µ〉� 〈n, ν〉 = 〈m • n, µ · ν〉 and define delta
application −(−) : Q × I → I to be 〈m,µ〉(p) = m � (µ(p)),
relying on delta application for MI .

In the absence of other assumptions, this notion of delta appli-
cation is not an action, as for example:

〈m,µ〉� 〈n, ν〉(p) = 〈m • n, µ · ν〉(p)
= (m • n)� (µ · ν(p))

= (m • n)� (µ(ν(p)))

whereas

〈m,µ〉(〈n, µ〉(p)) = m� (µ(n� (ν(p))))

If we instantiate µ and ν with m′ and n′ we have in the first case:

(m • n)�m′(n′(p)) = (m • n)� (m′ � (n� p))
= (m • n •m′ • n′)� p

and in the second case

m�m′(n� n′(p)) = m� (m′ � (n� (n′ � p)))
= (m •m′ • n • n′)� p

which are equal in general only if • is commutative.

6.1.3 Encoding Batory and Smith’s Modifiers of Modifiers
Encoding modifiers of modifiers is also straightforward. We as-
sume that such modifiers, h : M → M , are endomorphisms

20

on the monoid of modifications (this is already implicit in Batory
and Smith’s Rh function): that is, h(1) = 1 and h(m2 • m1) =
h(m2) • h(m1), for all m1,m2 ∈M .

We can extend the previous example to apply higher-order mod-
ifiers to the global modifications as follows:

• quarks:Q = (M →M)×M×MI — a modifier of modifiers,
a global modification, and a delta
• composition: 〈h2, g2, µ2〉� 〈h1, g1, µ1〉 = 〈h2, g2, µ2 ·µ1〉,

and
• delta application is 〈h, g, µ〉(p) = h(g)� (µ(p)).

To modify this definition so that h applies also to the local
modifications requires lifting h : M → M to hI : MI → MI ,
defined by the following equation:

h(m� i) = h(m)� i.

where h(i) = h(1 · i) = h(1� i) = h(1)� i = 1� i = i. In this
case the delta application becomes

〈h, g, µ〉(p) = h(g)� (h(µ)(p)).

Again delta application is not an action, for the same reason as
for full quark composition.

Apel et al. [4] give the signatures of an entire hierarchy of
modifiers of modifiers, but provide no further details.

6.2 Darcs and Patch Theory
The version control system Darcs is formalised in terms of patch
theory [19]. The underlying formalism has some similarities with
our work. Most notable is that ‘patches’ are modeled using a semi-
group with inverses. This structure is a monoid at heart, with addi-
tional properties (such as inverses) that do not entirely make sense
in our setting. The most significant similarity is that they deal with
conflictors (entities for resolving conflicts), which are similar to
our conflict resolving deltas. Conflictors have a more complex set
of properties than our conflict resolving deltas due to the added
structure of their core setting. Patch theory should nonetheless of-
fer inspiration to guide future research.

7. Related Work
In general, approaches to facilitating automated product genera-
tion for software product lines can be classified in two main di-
rections [23]. Firstly, annotative approaches, such as conditional
compilation, frames [45] or COLORED FEATHERWEIGHT JAVA
(CFJ) [21], mark a model of the complete product line with respect
to product features and remove marked product parts to obtain a
product for a particular feature configuration.

Secondly, compositional approaches, such as delta model-
ing [38–40], associate product fragments to product features, which
are assembled to implement a particular feature configuration. A
prominent example of this approach is AHEAD [7], which can
be applied on the design as well as on the implementation level.
In AHEAD, a product is built by stepwise refinement of a base
module with a sequence of feature modules. Design-level models
can also be constructed using aspect-oriented composition tech-
niques [17, 31, 44]. Apel et al. [37] apply model superposition
to compose model fragments. Perrouin et al. [34] obtain a prod-
uct model by model composition and subsequently refinement by
model transformation. In Haugen et al. [16], a set of models is
represented by a base model with associated variability and resolu-
tion models determining how modeling elements of the base model
have to be replaced for a particular product model.

On the programming language level, several program modular-
ization techniques [27], such as aspects [22], framed aspects [28],

mixins [41], hyperslices [42] or traits [9, 15], are used to im-
plement features in a compositional fashion. In addition, the
modularity concepts of recent languages, such as SCALA [32]
or NEWSPEAK [10], can be used to represent product features.
CeasarJ [30] and Aspectual Feature Modules [3] are proposed as a
combination of feature modules and aspects to modularize cross-
cutting concerns.

The notion of program deltas was introduced by Lopez-Herrejon
et al. [27] to describe the modifications of object-oriented pro-
grams. Schaefer et al. [40] introduced the concept of delta modeling
as a means to develop product line artifacts suitable for automated
product derivation and implemented with frame technology [45].
In subsequent work [38], delta modeling is extended to a seam-
less model-based development approach for SPLs where an initial
product line representation is stepwise refined until an implementa-
tion can be generated. The conceptual ideas of delta modeling have
also been instantiated on the programming language level in an ex-
tension of Java with core and delta modules allowing the automatic
generation of Java-based product implementations [39].

Originally, the delta model of a product line consisted of a sin-
gle core and a set of incomparable product deltas [38, 40]. Con-
flicts between deltas applicable for the same feature configuration
were prohibited. In order to express all possible products, an ad-
ditional delta covering the combination of the potentially conflict-
ing deltas had to be specified leading to product fragments. Sub-
sequently, a partial ordering between deltas was introduced [39].
However, it was required that all conflicts were manually resolved
by specifying an appropriate ordering. In contrast, in this paper, a
more flexible notion of conflicts and conflict resolution is proposed
that allows intermediate conflicts between deltas as long as they
are eliminated later in a derivation by a conflict-resolving delta.
The notion of conflict-resolving deltas is similar to lifters [36] or
derivatives [26] in feature-oriented programming which are used to
facilitate the correct interaction between different feature modules.

The definition of a conflict as a lack of commutativity between
modifications is also discussed in the context of program refactor-
ing [29]. The underlying formalisation uses graph transformation
systems and critical pair analysis. Oldevik et al. [33] define a con-
flict in a sequence of model transformations to occur if two trans-
formations do not commute. A similar notion of conflict related to
non-commutativity is observed by Apel et. al. [5] when two aspects
advise shared join points.

8. Conclusion
Delta modeling is an approach to facilitating automated product
derivation for software product lines. In this paper, we generalized
the conceptual ideas of delta modeling in an abstract, algebraic
setting. The main contribution of this work is the novel treatment
of conflicts between deltas by explicit conflict-resolving deltas. In
order to ensure that for every valid feature configuration a unique
product is generated, a conflict-resolving delta has to exist for
every pair of conflicting deltas in the model. We presented efficient
conditions that allow checking the unambiguity of a product line
without requiring to generate all products.

For future work, we will be using the ideas of abstract delta
modeling for the implementation of variability within the HATS
ABS language [1]. In addition, we are planning to extend abstract
delta modeling with a concept of hierarchy so that a delta can itself
be a delta model. This will give rise to a more modular development
technique for product lines based on nested delta models. Finally,
variants of abstract delta modeling, such as basing the framework
on partial monoids with a partial composition operation, will be
investigated.

21

References
[1] Highly Adaptable and Trustworthy Software using Formal Methods

(HATS), March 2009. http://www.hats-project.eu.

[2] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-
independent, automated software composition. In ICSE, pages 221–
231, 2009.

[3] S. Apel, T. Leich, and G. Saake. Aspectual feature modules. IEEE
Trans. Software Eng., 34(2):162–180, 2008.

[4] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An algebraic founda-
tion for automatic feature-based program synthesis. Science of Com-
puter Programming (SCP), 2010. To appear.

[5] S. Apel, C. Kästner, and D.S. Batory. Program refactoring using
functional aspects. In GPCE, pages 161–170, 2008.

[6] D.S. Batory and S.W. O’Malley. The design and implementation of
hierarchical software systems with reusable components. ACM Trans.
Softw. Eng. Methodol., 1(4):355–398, 1992.

[7] D.S. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Trans. Software Eng., 30(6), 2004.

[8] D.S. Batory and D. Smith. Finite map spaces and quarks: Algebras of
program structure. Technical Report TR-07-66, University of Texas at
Austin, Dept. of Computer Sciences, 2007.

[9] L. Bettini, F. Damiani, and I. Schaefer. Implementing Software Prod-
uct Lines using Traits. In Proc. of Object-Oriented Programming Lan-
guages and Systems (OOPS), Track of ACM SAC, 2010.

[10] G. Bracha. Executable Grammars in Newspeak. ENTCS, 193:3–18,
2007.

[11] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract delta model-
ing. Technical Report CW592, Dept. Computer Sciences, Katholieke
Universiteit Leuven, August 2010.

[12] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison Wesley Longman, 2001.

[13] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A
Template Approach Based on Superimposed Variants. In Conf. on
Generative Programming and Component Engineering(GPCE), 2005.

[14] S. Deelstra, M. Sinnema, and J. Bosch. Product Derivation in Software
Product Families: A Case Study. Journal of Systems and Software,
74(2):173–194, 2005.

[15] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits:
A mechanism for fine-grained reuse. ACM TOPLAS, 28(2), 2006.

[16] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. Olsen, and A. Svend-
sen. Adding Standardized Variability to Domain Specific Languages.
In SPLC, 2008.

[17] F. Heidenreich and C. Wende. Bridging the Gap Between Features and
Models. In Aspect-Oriented Product Line Engineering (AOPLE’07),
2007.

[18] P. Heymans, P.Y. Schobbens, J.C. Trigaux, Y. Bontemps, R. Matulevi-
cius, and A. Classen. Evaluating formal properties of feature diagram
languages. Software, IET, 2(3):281–302, 2008.

[19] J. Jacobson. A formalization of Darcs patch theory using inverse
semigroups. Technical Report CAM report 09-83, UCLA, 2009.

[20] K.C. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-
Oriented domain analysis (FODA) feasibility study. Technical Re-
port CMU/SEI-90-TR-021, Carnegie Mellon University Software En-
gineering Institute, 1990.

[21] C. Kästner and S. Apel. Type-Checking Software Product Lines - A
Formal Approach. In ASE, pages 258–267. IEEE, 2008.

[22] C. Kästner, S. Apel, and D.S. Batory. A Case Study Implementing
Features Using AspectJ. In SPLC, pages 223–232. IEEE, 2007.

[23] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in software
product lines. In ICSE, pages 311–320, 2008.

[24] C. Kästner, S. Apel, S.S. ur Rahman, M. Rosenmüller, D.S. Batory,
and G. Saake. On the impact of the optional feature problem: Analysis
and case studies. In Proc. Int’l Software Product Line Conference
(SPLC). SEI, 2009.

[25] C.W. Krueger. New Methods in Software Product Line Development.
In SPLC, pages 95–102, 2006.

[26] J. Liu, D.S. Batory, and C. Lengauer. Feature oriented refactoring of
legacy applications. In ICSE, pages 112–121, 2006.

[27] R.E. Lopez-Herrejon, D.S. Batory, and W.R. Cook. Evaluating Sup-
port for Features in Advanced Modularization Technologies. In
ECOOP, volume 3586 of LNCS, pages 169–194. Springer, 2005.

[28] N. Loughran and A. Rashid. Framed aspects: Supporting variability
and configurability for AOP. In ICSR, volume 3107 of LNCS, pages
127–140. Springer, 2004.

[29] T. Mens, G. Taentzer, and O. Runge. Detecting structural refactoring
conflicts using critical pair analysis. Electr. Notes Theor. Comput. Sci.,
127(3):113–128, 2005.

[30] M. Mezini and K. Ostermann. Variability management with feature-
oriented programming and aspects. In SIGSOFT FSE, pages 127–136.
ACM, 2004.

[31] N. Noda and T. Kishi. Aspect-Oriented Modeling for Variability
Management. In SPLC, 2008.

[32] M. Odersky. The Scala Language Specification, version 2.4. Technical
report, Programming Methods Laboratory, EPFL, 2007.

[33] J. Oldevik, Ø. Haugen, and B. Møller-Pedersen. Confluence in
domain-independent product line transformations. In FASE, pages 34–
48, 2009.

[34] G. Perrouin, J. Klein, N. Guelfi, and J.-M. Jézéquel. Reconciling
Automation and Flexibility in Product Derivation. In SPLC, 2008.

[35] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer, Hei-
delberg, 2005.

[36] C. Prehofer. Feature-oriented programming: A fresh look at objects.
In ECOOP, volume 1241 of LNCS, pages 419–443. Springer, 1997.

[37] S. Trujillo S. Apel, F. Janda and C. Kästner. Model Superimposition
in Software Product Lines. In International Conference on Model
Transformation (ICMT), 2009.

[38] I. Schaefer. Variability Modelling for Model-Driven Development of
Software Product Lines. In Intl. Workshop on Variability Modelling of
Software-intensive Systems (VaMoS 2010), 2010.

[39] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-
oriented programming of software product lines. In Proceedings,
14th International Software Product Line Conference, Lecture Notes
in Computer Science, Jeju, South Korea, 2010. Springer.

[40] I. Schaefer, A. Worret, and A. Poetzsch-Heffter. A Model-Based
Framework for Automated Product Derivation. In Proc. of Workshop
in Model-based Approaches for Product Line Engineering (MAPLE
2009), 2009.

[41] Y. Smaragdakis and D.S. Batory. Mixin layers: an object-oriented im-
plementation technique for refinements and collaboration-based de-
signs. ACM Trans. Softw. Eng. Methodol., 11(2):215–255, 2002.

[42] P. Tarr, H. Ossher, W. Harrison, and S.M Sutton Jr. N degrees of
separation: multi-dimensional separation of concerns. In ICSE, pages
107–119, 1999.

[43] A. van Deursen and P. Klint. Domain-specific language design re-
quires feature descriptions. Journal of Computing and Information
Technology, 10(1):1–18, 2002.

[44] M. Völter and I. Groher. Product Line Implementation using Aspect-
Oriented and Model-Driven Software Development. In SPLC, pages
233–242, 2007.

[45] H. Zhang and S. Jarzabek. An XVCL-based Approach to Software
Product Line Development. In Software Engineering and Knowledge
Engineering, pages 267–275, 2003.

22

