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Abstract: A central limit theorem for linear combinations of a function of generalized order 
statistics with unbounded scores is established. The result supplements previous work of Silver
man (1983), Serfling (1984) and Akritas (1986) concerning the asymptotic normality of generalized 
L-statistics. Our proof is patterned after the well-known Chernoff-Savage approach. A linear 
bound for the empirical distribution function of U-statistic structure is also derived and subse
quently applied in the treatment of certain remainder terms. 
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1. Introduction 

For each n EN let e I• ••• 'en be independent and identically distributed (i.i.d) ran
dom elements with values in some measurable space X and let, for a fixed but ar
bitrary m e N, h: xm--> IR be a measurable mapping. For each of the 
n(m) = n. (n -1) ... (n - m + 1) ordered m-tuples (j(l), ... ,j(m)) of m distinct in
tegers taken from {l, ... ,n} we form the random variable (r.v.) h(i;J(rp· .. ,eJ<m»· 
Let X 1, ••• ,Xn(m) be an enumeration of these r.v.'s and note that, although depen
dent in general, these r. v. 's are still identically distributed with common distribution 
function (d.f.) H, say. It will be assumed throughout that 

H is continuous on IR, (1.1) 

so that for i= l, ... ,n(m) the transformed r.v. 

H(Xi) has the uniform (0, 1) distribution. (1.2) 
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The empirical d. f. of H(X1), •• ., H(Xn(m)) is as usual defined by 

t E [0, 1]. (1.3) 

H• is called the empirical df of U-statistic structure (cf. Serfling (1984)). Let 
n{m) • • d' t 

X < ... < x denote the (generalized) order stat1st1cs correspon mg o 
I : n(m) - - n(m): n(m) bl IR 

X X For J · [O I]->IR with c < l ·=f (iln(m)), and measura e P: IR-> !,. . ., n(m)· n· , nm,1 n • • 

with 'PH= P(H- 1) let us consider the linear combination of the function 'P applied 

to the X;: n(m» given by 

1 n(m) 

Tn=-( ) L Cn(m),;'P(X;:n(m)) 
nm i=l 

'l 

= I ln(Hn(m)(t)) IJIH(t) dHn(m)(t) a.s. 
.,Q 

(1.4) 

For the special choice 'PH= H- 1 this class has been introduced by Serfling (1984) as 
the class of generalized L-statistics, and asymptotic normality has been established 
in Silverman (1983) and Serfling (1984) for bounded scores cn(m),;. A strong law 
for statistics of the general form (1.4), implying almost sure convergence of Tn to 
its natural limit µ(H) = J~ J(t) lff H(t) dt for some limiting score function J, is con
tained in Corollary 3.1 of Helmers et al. (1985). We also refer to Janssen et al. 
(1984) for the asymptotic normality of a general class of statistical functions. In
cluded are, e.g., certain measures of spread as well as generalized L-functionals con
sidered by Serfling (1984). 

In this note we will prove asymptotic normality for a class of functions PH and 
for non necessary bounded scores. One of the important tools in the study of un
bounded scores is that the empirical d.f. lies, with high probability, above a line 
through the origin on an interval [v, I] with v>O, so that the random argument of 
the score function may be replaced by a non-random one. The present Theorem 2 
provides a result of this kind without any structural condition on the kernel h and 
with v = Vn = c(log n)ln for some c E (0, oo ). The largest possible interval where 
the above mentioned property may hold true is, of course, obtained for v = 
H(Xi : 11(111)). 

Specializing Theorem 2 to the i.i.d. case m =I leads to a result that implies similar 
statements for the interval [H(X1 :n(l)), I], because H(X1 : n(li) > vn with high prob
ability. For m = 1, Theorem 2 is good enough to yield the almost optimal order of 
magnitude O(n(l)a) for the scores. For m >I, however, the order of magnitude 
that we obtain is 0(n(m)a1m). This would again be almost optimal if also form> I, 
H(Xi :n(m)) the smallest order statistic were bounded below by vn with high prob
ability. It is likely, however, that H(Xi:n(m)) is of smaller order, depending on mo
ment properties of the kernel h. The behavior of X 1 : n(m) seems an interesting open 
problem. For some information about this point see Aerts et al. (1986). 

Our representation in (1.4) is the natural starting point for the Chernoff-Savage 
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approach which is also employed in e.g. Moore (1968), Ruymgaart and van Zuijlen 

(1977) and Beirlant et al. (1982). From a theoretical point of view this method is not 

so attractive since it doesn't seem to yield theoretically refined results like e.g. the 

one in Mason (1981). On the other hand the method automatically leads to simple 

centering constants and the method is of indirect theoretical importance as it hinges 

on some interesting properties of the empirical d.f. involved. The two properties 

that we need, one of which seems to be new, are presented in Section 2. In Section 
3 we return to the asymptotic normality of the statistics in (1.4). 

Results related to our Theorems 2 and 3 were very recently obtained by Akritas 

(1986). However, rather then considering the empirical d.f. Hn(m) of U-statistic 

structure and GL-statistics Tn = Tn(Hn<mi> of the form (1.4), Akritas investigated 

the closely related empirical d.f. V,,(m) of von Mises structure (see Serfling (1980), 

p. 174) and modified GL-statistics Tn = Tn(Vn(m)). His purpose is to deal with such 

statistics in the multi-sample case in the presence of random censoring. An impor

tant drawback of Akritas results is that he requires, using a different method of proof, 

a rather restrictive condition on the kernel function h which we are able to avoid. 

On the other hand, as in our Theorem 3, unbounded scores are permitted. Inequali

ty (A.7) of Theorem A.2 of Akritas (1986), a version of our Theorem 2 for the em

pirical d. f. V,,(ml of von Mises structure, is stated for v = H(X1 : n(m)), under a 
restrictive regularity condition on the kernel h. 

2. Properties of the empirical d.f. of U-statistic structure 

Throughout this section we can and will assume without loss of generality that 

n = m · v for some v E fN, although we will write n-> oo rather than v-> oo. Let in(n) 

denote the set of all permutations (r(l ), ... , r(n)) of the numbers (1, ... , n) and take 

rEin(n). As in Silverman (1983) we define Bv,r to be the empirical d.f. of the v 

r. v. 's. H(h (~r(mJ+ I)> ~r(mj + 2), ••• , ~r(mJ+ m))) for J = 0, .. ., v- 1. Note that this subset 
of v r. v. 's consists of i.i.d. elements so that for the corresponding empirical process 

112 -Uv, ,.(t) = v (Hv, ,.(t)- t}, t E (0, 1], (2.1) 

the usual properties hold true. The empirical process Un of U-statistic structure 

based on all the XI> ... , Xn(m) is related to the i.i.d. empirical processes in (2.1) ac

cording to 
1/2 

112 - m " Un(t) = n (Hn(m)(t) - t) = - 1- L.J Uv, ,.(!), 
n. reiYl(n) 

For arbitrary o E (0, +) let 

q0(t)=[t(1-t)] 112 -'5, tE(O, 1). 

t E [O, l]. (2.2) 

(2.3) 

The first property that we need is implied by Silverman (1983, Theorem A) and says 

that 
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sup IUnU)l!q0(t)==Op(l) as n-"o:i. 
te(O, 1) 

(2.4) 

In order to prepare for the second property we need the following probability ine

quality for the i.i.d. empirical processes in (2.1); a proof (for arbitrary dimension) 

can be found in Einmahl (1987). Let Osa<bs 1 be arbitrary but fixed and let 

as.s<ts.b. Then we have 

( ) (
-(1-e),l.2) 

P sup -( Uv,At)- Uv, ,(s))::::). SC exp b , ). :::: 0, (2.5) 
as.s<tsb 2( -a) 

for each e>O with C==C(e)e(O, oo). Note that we consider -(Uv,,(t)- Uv,,(s)) 

rather than I Uv, ,(t) - Uv, ,(s)\ since this suffices for our purposes. For this tail the 

bound appears to be smaller and easier to handle. Using a moment generating func

tion technique to be found in Serfling (1980, Section 5.6), see also Helmers et al. 

(1985), it will be shown that an analogous inequality holds true for the processes 

Un in (2.2). Throughout the remainder of this section the symbols A and C will be 

used as generic constants in (0, oo) that are independent of all the relevant 

parameters (n, )., a and b). 

Theorem 1. Fix arbitrary 0 s. a< b s. 1. Then we have 

P( sup -(Un(t)-Un(s))::::,l.)scexp(-(l-e),l.2
), ).::::0. (2.6) 

as.s<tsb 2m(b-a) 

Proof. For each x>O the probability in (2.6) is bounded above by 

exp( - }cx)E exp(x sup - ( Un(t)- Un(s))) 
ass<tsb 

( xm1 12 ) 
s. exp( -A.x)E exp -- :E sup - ( U,., ,(t)- Uv, ,(s)) 

n ! xe IR(n) ass< rs b 

j'00 
( log u) 

$.exp( -A.x) P sup - ( Uv, ,(t) - Uv, ,(s));;:: ---uz du 
o ass<tsb xm 

J·
00 (-(1 -e)(log u)2 ) 

sexp(- ,l.x)C exp 2 du 
o x m(b-a) 

=Cexp(-h) f"' exp(u- ;1-e)u2 )du 
Loo x m(b-a) 

-C ( , x 2m(b-a))(n:x2m(b-a))112 
- exp - 11.x + ). > O 

4(1 - e) 1 - e ' - · (2.7) 

Minimizing the exponential factor as a function of x and taking into account the 

square root, we arrive at the exponential bound in (2.6). D 

Following the method of the proof in Ruymgaart and Wellner (1982, Corollary 
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2.4) it is easy to see that with the aid of (2.6) we arrive at the global version 

P(sup -~;?) ?!A.)::sclog(l/v)exp(-AA.2), ve(O, l),A.?::.0; (2.8) 
12' v t 

see also Einmahl and Mason (1985, Inequality 1). This inequality entails at once 

( - Un(t) ) 
P sup ?!A. ::sClog(l/v)exp(-AvA.2), ve(O, l),A.?!0. (2.9) 

12' v t 

We may now formulate the second property of the empirical df of U-statistic 
structure. 

Theorem 2. Let us choose vn = c(log n)ln for some ce (0, oo) and f3 e (0, 1) arbitrary 
but fixed. For any choice of c E (0, oo) we have 

P(Hncm/t)?:::./Jt Vte [vm l])-+ 1 as n-+ oo. (2.10) 

For c sufficiently large we even have that {Hn(m)(t)?:::./3t for all te [vm l]} occurs 
eventually w.p. 1. 

Proof. The complement of the event in (2.10) has probability 

P( inf Hn(m)(t)lt::s/3) = P( sup (t-fin(m)(t)lt) ?! l - /3) 
!2:Vn t;::vn 

=P(sup - Un(t)/t?:::. n112(1-/3)). (2.11) 
12:Vn 

Both results now follow immediately from (2.9). D 

In the i.i.d. case (m = 1) relation (2.10) is known to remain true with vn replaced 
by H(X1 :n(mi); see e.g. Shorack (1972) and, for a.s. results, Shorack and Wellner 
(1978). Whether this is also the case for arbitrary m is an open question and the 
answer might depend on the structure of the kernel h; see also Aerts et al. (1986). 
In the i.i.d. case (m = 1) almost sure results for non-random vn can be found in 
Wellner (1978). 

3. Application to GL-statistics 

Let us first formulate sufficient conditions on the functions Jn and 'PH in (1.4). 
It is convenient to first introduce the linear function 

(3.1) 

for some ce (0, oo). The functions In will be derived from a fixed function 
J: (0, 1)--+ IR according to 

Jn(t) = J(ln(t)), t E [O, 1]. (3.2) 
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It will be assumed that 

\ J is. continuously differentiable on (0, 1) with (3 _3) 
U f 1>(t)I ::s; C[t(l - t)]-a-z, t E (0, 1), a E (0, 1), i E {O, 1 }, 

where f 0> = J, and that 

\PH is of bounded variation on (e, 1 - e) for any e > 0, (3.4) 
lllf'H(t)j::s;C[t(l-t)]-P, tE(O, 1), /JE(O, 1). 

We finally assume that 

a+ /J<t. (3 .5) 

Theorem 3. Let the conditions described in (3.1)-(3.5) be fulfilled. Then a 2(H) > 0 
implies 

d 
n 112(T,,-µ(H))---> N (0, a 2(H)) as n-+ oo, (3.6) 

where Tn is defined in (1.4), and µ(H) = j~ J(t) lf'H(t) dt, 

a 2(H) = m2 r 1 r 1 (min(s, t)-st) J(s) J(t) d l/IH(t) dlflH(s). 
Jo Jo 

(3.7) 

Proof. We may in principle follow the pattern of proof in Beirlant et al. (1982, pp. 
427-430) or Ruymgaart and van Zuijlen (1977). Writing 

'I 

Z1;= \ Oro,11(H(X;))-t)J,PlU)PH(t)dt, 
,, 0 

we shall first consider 

2 

An= L A;n 
i=O 

where 

and 

1 n(m) 
Aon=n112 __ L (Zo;-EZo;), 

n(m) i=I 

1 n(m) 
A1n=n112 __ L Zu 

n(m) i= 1 

(3.8) 

(3.9) 

(3.10) 

(3 .11) 

(3.12) 

(3.13) 

with µ(H) as in (3. 7). Note that EAon =EA In= 0 and that A 2n is non-random. Par
tial integration directly yields that 
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l n(m) j' 
Aon+A1n= -n 112 -( ) L (I[O,r](H(X;))-t)l11 (t)dl/fH(t) 

nm ;~1 0 

a U-statistic of degree m with a varying kernel 
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(3.14) 

depending on n. Let Un denote the U-statistic of degree m, with fixed kernel, which 
is obtained from (3.14) by replacing ln by J. 

To establish the asymptotic normality of An (cf. (3.10)) we first note that the 
central limit theorem for U-statistics (see Serfling (1980), p. 192) directly yields that 

d 
Un--+N(O,a2(H)) asn-+oo, (3.16) 

with a 2(H) as in (3. 7). In addition we shall prove that 

A 011 +A1n- Un Lo as n-+oo 

and also that 

(3 .17) 

(3 .18) 

Together (3.16)-(3.18), combined with (3.10), gives the desired result: A11 ~ 
N(O, a 2(H)) as n-+oo. To verify (3.17) we first apply Chebychev's inequality and 
the elementary inequality a 2(X + Y) ::S 2a 2(X) + 2a2( Y) to find that it suffices 
clearly to show that both 

(3.19) 

and 

a2 ( n 112 n(m)- 1 ~~) J~ Uto. tJ(H(X; ))- t)(J~ 1 )(t)-J< 1 l(t))l/fH(t) dt) (3.20) 

tend to zero, as n-+ oo. With the aid of Lemma A on page 183 of Serfling (1980) 
we easily check that the variances in (3 .19) and (3 .20) are respectively of the order 

(3.21) 

and 

o(j~ I~ (min(s, t)-st)]J~ 1 l(s)-J(l)(s)] ]J~ 1 )(t)-J(l)(t)] ]1f!g(t)] ]l/fH(s)]dsdt) (3.22) 

as n-+oo. In view of the assumptions (3.1)-(3.5) one directly verifies that the in
tegrals appearing in (3.21) and (3.22) both tend to zero as n-+ oo, and (3.17) follows. 

It remains to check (3.18). The same argument involving the assumptions 
(3.1)-(3.5) also yields that 



50 R. Helmers, P.H. Ruymgaart I Generalized L-statistics 

n 112 J~ (Jn(t)-J(l))l/fH(t)dt-'>O as n-'>oo. 

Thus (3.18) indeed holds and the asymptotic normality of An is proved. It remains 

to show that 

Bn = n 112(Tn - µ(H))-An 

1/2 A A J
I 

= n 0 Un<Hn(m)(t))-ln(t)} 'PH(t) dHn(m)-Aln 

asn-'>oo. 

Let us briefly write 

Bn=n 112 J~ ( ···) dHn(m)-n 112 t { ···) dt. 

To prove {3.23) is suffices to prove that each of the integrals 

1/2 -)
'v 

B1n=n 0 (···)dHn(m)' 

rv 
B3n=nl/2 Jo ( ···) dt, 

1/2 ii -B2n = n ( · · ·) dHn(m)' 
1-v 

B4n=n 112 11 (···)dt 
J1-v 

converges to 0 in probability as both vlo and n-'>oo, along with 

rl-v 11-v p 
n112 Jv (···)dHncm>-n 112 Jv {···)dt--->O as n.....,,oo, 

for each v e (0, t ). 

(3.23) 

{3.24) 

(3.25) 

{3.26) 

{3.27) 

In order to illustrate the use of the properties (2.4) and (2.10) let us by way of 
an example consider B3n- For any ve(O, I) we apply the mean value theorem to the 
factor within the brackets of the integral and find that 

(3.28) 

where tn is a random point between t and Hn(m)(t) and where ln is defined in (3.1). 
By assumption (3.3) it is clear that 

IJ(l)(ln(tn))l:SC[vn(l-vn)l-a-l:SC[t(l-t)]-a-I for O<t:Svn. {3.29) 

Using Casa generic constant, the same assumption jointly with Theorem 2 yields 
that, for arbitrary fixed f3 e (0, I), 

ll(l)(ln(tn))I :S C[/3!(1-/3!)]-a- I :S C[t(l -t)]-a-l for Vn :S t:S V, {3.30) 

with arbitrarily high probability for n sufficiently large. Property (2.4) entails that, 
with C generic again, 

n111(HncmiU)-t)sC[t(1-t)] 111 - 0 for te(O, 1) and nerN, (3.31) 

with arbitrarily high probability. 
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Combining (3.28)-(3.31) and using assumption (3.4) it follows that 

IB3nl ~ C 1: [t(l - t)]-a- I [t(l - t)]-P dt 

= C 1: [t(l - t)]-112-a-P-o dt, 

with arbitrarily high probability for n sufficiently large. 
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This last integral decreases to 0 as v l 0 provided that we choose o so as to satisfy 
O < <5 < t - a - P; this can be done because of assumption (3. 5). This proves that B3n 

converges to 0 in probability as n-+oo and vlO. D 

4. An example 

In this section we discuss very briefly an specific example of an GL-statistic with 
unbounded scores. 

Let us take X=IR, m=2 and 

(4.1) 

and let the common distribution function F of the e; 's be given by 

F(x) = <P(xh), - oo <x< oo, (4.2) 

the normal distribution function with mean zero and variance r 2• 

Consider the GL-statistic Tn (cf. (1.4)) with scores Cin(2) satisfying (3.2), where 

( l+t) J(t)=2-112<P-1 -2- ' O<t<l. 

Application of Theorem 3 directly yields 

n 112(Tn-µ(H))~N(O, a 2(H)) 

where 

and 

H(x) =2'1>( ~.)-1, -oo<x< co, 

µ(H) = J~ J(t)H- 1(t) dt= r, 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

a2(H)=4r2t1~ (s!\t-st)<t>-1(1 ;s) cp-1 (1 ;')dcp-1(1 ;s)dcp-1(1 ;t) 
=2r2 (4.7) 

where we have used the formula displayed at the top of page 128 of Albers et al. 
(1976) to compute the double integral in (4.7). It follows from (4.4), (4.6) and (4.7) 
that 
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(4.8) 

Clearly T. is a weakly consistent and asymptotically normally distributed, 
estimator ~f normal scale r. Because the Cramer-Rao bound in the normal scale 
problem equals r 1r 2, we can conclude from {4.8) that Tn has asymptotic efficien
cy 0.25. Also note that it is easily inferred from Corollary 3.1 of Helmers et al. 
(1985) that Tn is not only weakly consistent, but strongly consistent as well in 
estimating r. 
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