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Predictor-corrector methods are constructed for the accurate representation of 
the eigenmodes in the solution of second-order differential equations without first 
derivatives. These methods have (algebraic) order 4 and 6, and phase errors of 
orders up to 10. For linear and weakly nonlinear problems where homogeneous 
solution components dominate, the methods proposed in this paper are con­
siderably more accurate than conventional methods. 

1. Introduction 

RECENTLY, various papers have been published dealing with increasing the 
phase-lag order of methods for the special second-order equation 

y"(t) = J(t, y(t)), y(to) =Jo, y'(to) = yb. (1.1) 

Relative to a linear test equation, one may distinguish papers which deal with 
reducing the phase lag (or phase error or dispersion) of the homogeneous 
solution component (e.g. (3, 8]) and which deal with reducing the phase lag of the 
inhomogeneous component (e.g. [1, 5, 10, 11]). 

Alternatively, one may try to improve the accuracy of the total solution, for 
instance, by increasing the algebraic order of the method (cf. [2] and the 
references given there). 

In this paper, we shall be concerned with methods that produce solutions with 
small phase lag in the homogeneous solution component. A particularly attractive 
method of this sort was proposed by Chawla & Rao [3]. Their method is explicit 
and has algebraic order 4 and phase-lag order 6. Moreover, since only three 
right-hand-side evaluations per step are involved, the interval of periodicity, 
which is given by (0, 7·56) (in the sense of Lambert & Watson [9]), is relatively 
large. 

Motivated by the result of Chawla & Rao we have looked for methods with 
both higher algebraic and phase-lag order. As starting point we have chosen a 
generalization of predictor-corrector methods. In [6], such methods were 
analysed for first-order equations; a straightforward modification of these 
methods make them applicable to second-order equations of the type (1.1) (see 
also [7]). Within the class of these predictor-corrector methods we shall construct 
numerical schemes with algebraic order 4 and 6, and with phase-lag orders up to 
10. In fact, it is possible to obtain arbitrarily high phase-lag orders by increasing 
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the number of stages (corrections) in the numerical scheme. Similarly, by starting 
with a corrector of appropriate algebraic order we can obtain any algebraic order 
we want. 

In Section 2, the phase-lag order for predictor-corrector methods is derived. In 
Sections 3 and 4, optimal two-step and four-step methods are constructed, and in 
Section 5 we present numerical experiments. 

2. Predictor-corrector methods 

In [6) a generalization of conventional predictor-corrector methods for 
first-order ODEs has been proposed; for second-order ODEs such methods are of 
the form 

y~l1 = 2: (µjly~:;fl + µj,r2j~1;ll) + AjSn (j = 1, ... , m ), (2. la) 

y~0l 1 is ~etermined by an explicit linear multistep method {p, a}') 
l=l 

Yn+l = Y~:t J~';l) := f(tn+l• y~:;{l), 

where the parameters occurring in this scheme are to be prescribed. Here, 
T := tn+l - tn is the stepsize, Yn+l approximates y(tn+1), and Sn contains the back 
values used in the corrector formula. If the corrector formula is defined by a 
linear k-step method {p, a}, then 

Sn:= [aoE.(- p(E)]Yn+l-k- r2 [boE.( - a(E)]fn+l-k> (2. lb) 

where E is the forward shift operator (El/>j = lf>j+i), with a0 and b0 denoting the 
coefficients of zk in p(z) and a(z ). In the following we will assume that a0 = 1 and 
that {p, a} is zero-stable. Further, it will be assumed that the parameters of the 
method satisfy the compatibility conditions 

(j=l, ... ,m). (2.lc) 

The various properties of the method (2.1) are determined by the iteration 
polynomial Pm(z), which is recursively defined by 

j 

lj(z) = 2: (µp + µ]1z)Pi-1(z) (j = 1, ... , m). (2.2) 
l=l 

Notice that Pm(z) satisfies the condition Pm(l/b0 ) = 1. 
Suppose that an appropriate iteration polynomial has been constructed (see 

Sections 3 and 4); then we are faced with the task of deriving a scheme of the 
form (2.1) possessing this particular iteration polynomial. We shall derive an 
easily implementable scheme with vanishing µ-parameters except for µj1 and µ;j. 
Let Pm(z) be given by 

and set 
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It follows from (2.2) that the coefficients of the iteration polynomial and the 
parameters of the method are related by 

f3· µ. - I 
m-j- f ' I 

µ.mµ.m-1 · · · µm-j+l 
(j = 1, ... , m - 1), 

' ' ' (3 µ1µ2 · · · µm = m· 

In addition, we have the compatibility condition 

µj=b0(1-µj) (j=l, ... ,m). 

(2.ld) 

(2. lc') 

If Pm(z) satisfies Pm(1/b0 ) = 1, then the relations (2.lc') and (2.ld) uniquely 
define the parameters of the method. The resulting scheme is of the simple form 

(") (0) - 2 ("-1) Yrl+1 = [µjYn+l + (1 - µi)~n] + (1- µi)bor fn'+1 (2.1') 
for j = 1, ... , m. 

Returning to the general scheme (2.la)-(2.lc), the algebraic order of this 
method and its characteristic equation can be derived in a similar way as done in 
[6] for first-order equations (a detailed derivation can be found in [7]). The results 
are given by the Theorems 2.1 and 2.2. 

THEOREM 2.1 Let the predictor {p, a} and the corrector {p, a} be of order p 
and p, respectively, and let the iteration polynomial Pm(z) have a zero of order rat 
z = 0. Then the method (2.1) is at least of order p := min{ft, p + 2r, 4 + 2p}. 0 

THEOREM 2.2 The characteristic polynomial equation of the predictor-corrector 
method (2.1 ), when applied to the test equation 

y"= -ozy, 
is given by 

C(C, zo) := [p(C) - zoa(C)]~ - (l ~:t~~~m?o) [,0(~) -z0a(C)]C1=0, (2.3) 

where z2 := ;--r2o2, _k is the n"!.mb~r of steps of the predictor method, i := 
max{O, k - k}, and l := max{O, k -k}. 0 

The two principal roots of equation (2.3) correspond to the characteristic roots 
exp{ ±i( - z0)i] of the test equation itself. In order to approximate the natural 
modes of equation (1.1) with improved accuracy, several authors have proposed 
to increase the order of the phase error introduced by the numerical scheme ( cf. 
[1, 3]). In this paper, we study what can be achieved within the class of methods 
(2.1). 

In the following, it is convenient to set (-z0)! = v 0 . Let us assume that the 
principal roots of (2.3) are of the form 

Then 

I O(vov)
0
- Vo I 1- a(v0) and 

(2.4) 

are respectively called the dissipation error and the phase lag of the method (cf. 
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[1, 3]). We shall simultaneously reduce these errors by maximizing the order q in 
the error equation 

£± := e±iun - ~±(v 0) = O(v3+ 1). (2.5) 

THEOREM 2.3 Define the functions 

<J)(v) := p(eiu) + v2a(eiu), (fi(v) := p(eiu) + v2a(eiv), 

R(v) := <J)(v)eifu;[<J)(v)eifv _ (1 + bov2)(fi(v)eilv] 
(2.6) 

and let the order conditions 

(/)( V )eiiu - (1 + bov2)cp( V )eilu"" C1 Vq', C~ ( ei", -v2) = C3Vq3, 

Pm(-v2)- R(v)"" c2vq2, qj > 0 (j = 1, 2, 3) 
(2.7) 

be satisfied. If Pm(O) =f:. 1 and q 1 + q 2 - 2q3 > 0 then the order q of the error (2.5) is 
given by q = q 1 + qz - q3 - l. D 

Proof It follows from our assumption (2.4) that we can restrict our considera­
tions to the error E+. Since C(~+• -v6) =0, we deduce from (2.5) that E+ 

satisfies the equation 

(2.8) 

In order to find the behaviour of E+ as a function of v0 as v 0 -7 0, we employ the 
Newton-Kantorovich theorem for the solution of nonlinear equations (see e.g. 
[4: Thm 5.3.1]). In the special case (2.8), where E+ satisfies a polynomial 
equation with complex coefficients, we use the Newton-Kantorovich theorem in 
the following form: 

Let e0 E C and let there exist constants f3 and 'f/ such that 

JC; 1(e;"0 - £ 0 , -v6)1 ~ /3, 
IC; 1(ei"0 - £ 0 , -v6)C(e;"0 - Eo, -v6)1 ~ 'f/· 

Define a : = f3Y'f/, where y denotes a Lipschitz constant for C, in the closure of the 
neighbourhood N(e0 , r) := {e EC: lc: - e0 J <r}, and let 

r0 : = [1 - (1 - 2a)!]! f3y. 

If a~! and r ;'3 r0 , then there is a unique zero £+ of (2.8) in the neighbourhood 
N(c:0 , r0 ). 

We apply this theorem with e0 = 0 and r = 1, and for a fixed value of v0 . From 
(2.7) it follows that C,(ei"o, -v6)=c3(v0)v(\3, where c3(v0)=f:.0 and is bounded in 
magnitude. Hence, f3 = c13 v 0q', where cfi is a bounded constant independent of 
v 0 • In order to express 'f) in terms of v0 , we first derive from (2.3) and (2.6) that 

· - .- (1 + b v 2)P (-v2) _ .-C(e1 "o -v2) = r!-.(v )e11uu _ o o m o n.( ) ,1"0· 
' o '+' o Pm( -v6) - 1 '+' Vo e ' 

using (2.6) and (2.7), we can express Pm(z) in terms of the functions (2.6), to 
obtain 

J.. (v )eilvo - ( 1 + b v2);;.. (v )eii"o 
'+' o z o o '+' o O(v6'). 

P,,,(-v 0)- 1 
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Since Pm(O) ::f= 1, it follows from (2.7) that, for sufficiently small values of v 0 , 

C(eiuo, -v6) = c0(v 0)v61+q2, where c0(v0) is bounded in magnitude. Hence, 
11 = cT/ vo' +q2-q', where c'I is a bounded constant. Finally, since C, is a polynomial 
in £, we can always choose the Lipschitz constant y independent of v0 in the 
neighbourhood N(e0 , r) = N(O, 1), so that er= rc.acT/vg 1+q2- 2q 3 and 

1 - (1 - 2yc c vg 1 +qz-Zq3)~ 
r. - f3T/ o- . 

yc13voq' 

For sufficiently small values of v0 we achieve that a'::;:;;~ and r;::. r0 = c'I vg1+q,-q,, 

so that the Newton-Kantorovich theorem yields E+ E N(s0 , r0), i.e. E+ = 
oc vo' +q2-q'). o 

As a corollary of the above theorem, we will derive a lower bound for q in the 
special case where both the predictor and the corrector are symmetric methods 
(!'or 3 definition of symmetry, see Section 3) and have equal stepnumber (i.e. 
k = k). Then it is easily shown that R(v) is an even function in v. Obviously, the 
polynomial Pm(-v2) is also an even function in v. Now, we will identify the first 
m free coefficients in the iteration polynomial Pm with the corresponding 
coefficients in the Taylor expansion of R (recall that R(v) differs from the 
polynomial Pm(-v 2) by a term of order q2 >0, so that R(v) possesses a Taylor 
expansion around v = 0), whereas the last coefficient (i.e. the one in front of v 2m) 
will be employed to satisfy the compatibility condition Pm(l/b0 ) = 1. As R itself 
satisfies the compatibility condition (cf. (2.6)), Pm(-v 2 ) - R(v) behaves as 
O(v 2m). Therefore, we can always achieve that q2 = 2m in (2.7). Further, by the 
definition of order, we have ~(v) = O(if+2) and $(v) = O(if+2), resulting in 
q1 ;::. min{ft, p} + 2. Combining these results, we are led to the following corollary 
of Theorem 2.3. 

COROLLARY 2.1 Let the order conditions of Theorem 2.3 be satisfied. Further, let 
the predictor and corrector be symmetric with k = k. Then, the order q in the error 
equation (2. 5) satisfies 

q;::. min{ft, j5} + 2m + 1 - q3 • D 

We remark that, for asymmetric methods (i.e. with R not an even function), q 
will be considerably smaller. 

Apart from a high (phase-lag) order q, the concept of dissipation is an 
important aspect when integrating oscillatory problems. Therefore, we shall only 
be interested in methods with a nonempty interval of zero-dissipation (see also [9] 
and Section 3). As symmetry is a necessary condition to obtain a nonempty 
interval of zero-dissipation, we will confine ourselves to symmetric methods. 

Suppose that we have a zero-dissipative method such that 

Js±I = c"vr 1 + O(v6+2). 

Then it is easily verified that the phase error satisfies 

I 8(vo) - Vo I= cqvg + O(vz+1). 
Vo 

We will call q the phase-lag order and cq the principal phase-lag constant. 
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COROLLARY 2.2 Let the conditions of Theorem 2. 3 be satisfied and let 

R(v) = c4 Vq4 , ~(v) = c5vfl+ 2, Pm(O) * 1. (2.9) 

If the method has zero-dissipation, then the principal phase-lag constant and the 
phase-lag order are respectively given by 

I CzCs I 
Cq = C3(Pm(O) - l)c4 ' 

with q4 ~ p - min{P, ft}. 0 

Proof. It follows from (2.8), (2.7), and (2.9), and from the identity 

that 

~(v)[Pm(-v 2) - R(v)]eiTv 

R(v)[Pm(-v 2)-1] 

From this expression and the zero-dissipativity, the assertion of the corollary 
follows. 0 

3. Construction of two-step methods with minimal phase lag 

In this section, methods are considered based on the fourth-order Numerov 
corrector 

a(C) = n(,2 +10, + 1). (3.1) 

We shall combine this corrector with a symmetric predictor formula: 

P(') = 'kp(ln) and a(')= 'ka(l/0 

( cf. [9]). Since the corrector (3.1) is also symmetric, it follows that the resulting 
predictor-corrector method itself is symmetric, and, as the principal roots of p are 
the only double roots on the unit circle, a nonempty interval of periodicity is 
obtained [9]. Thus, we have zero-dissipation for all z lying in the interval of 
periodicity. This property enables us to apply Corollary 2.2 so that the phase-lag 
order and the principal phase-lag constant can straightforwardly be calculated. 
Finally, in order to have an algebraic order at least equal to that of the corrector, 
we should have r ~ ~(ft - p) ( cf. Theorem 2.1); consequently, we will use 
m ~~(ft- p). 

3.1 Zero-Order Predictor 

Let 
a(')= o, (3.2) 
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so that 
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~(v) = (ei 11 -1)2 = ei 11(ei 11 -2 + e-iv) = 2ei 11(cos v - 1), 

~(v) = (eiv -1)2 + -f2v2(e2i11 + lOeiv + 1) 

= 2ei 11((l + nv2) cos v - 1 + [zv 2] = 2lov6eiv = 2!ov6, 

-2 
R(v) = -z[l -[zv2 - (1 + nv2) cos v] 

v 

- 4~ ( 1 2 ) 2 ·-2 1 4 

- v j~2 6(2j)! - (2j + 2)! (-v Y = z40V . 

We now define the iteration polynomial (m > 1) 

m-1 ( 1 2 ) . ? 

Pm(z):=z2 1~ 6(2j)!- (2j+l)! z1--+f3mzm, 

413 

(3.3a) 

where /3m is determined by the compatibility condition Pm(12) = 1. By induction it 

is easily verified that 

(3.3b) 

Since Pm(-v2 ) = O(v 4), we finally have 

C (eiv -v2) = 2(eiv - 1) + _Lv 2(2eiv + 10) - (l + nv2)Pm(-v2
) 2(ei" - 1) = 2iv 

1; ' 12 P,,,(-v2) _ 1 · 

We now apply Theorem 2.1 and Corollary 2.2 to obtain the following result: 

THEOREM 3.1 The predictor-corrector method generated by (3.1), (3.2), and 

(3.3), has algebraic order p = 4, phase-lag order q = 2m, and the principal 

phase-lag constant cq = 1/(2m + 2)!. 0 

Proof. Since fj = 4, j5 = 0, and r = 2, Theorem 2.1 states that p ~ 4. A closer 

inspection of the local truncation error yields p = 4 (cf. [7]). Since q 2 = 2m, 
q3 = 1, and q 4 = 4, it follows from Corollary 2.2 that q = 2m. Further, since 

Pm(O) = 0 and 

1 2 
(-lrc2 = - 6(2m)!+ (2m+2)!+/3m, 

the principal phase-lag constant is given by 

I 2!0 I 1 
c2m = 2i · ~ c2 = (2m + 2)! · O 

3. 2 Second-Order Predictor 

Let 
p(~) = (~ -1)2, (3.4) 
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then 

so that 
24 _i. 2 I 2 ] R(v) == -;j[l - 12v - (1 + nv ) cos v 
v 

- -12v2 ~ (-1- - 2 )(-v2y·-2 = _..l.v2 - f=2 6(2j)! (2j + 2)! zo . 

We define the iteration polynomial 

D ( ) - 12 ~ (-1-- 2 ) j-2 f3 m 
Cm Z - Z (;;z 6(2j)! (2j+ 2)! Z + mZ , 

(3.5a) 

where f3m is again determined by the .;ompatibility condition. By induction it can 
be shown that 

2 
f3m == (2m + 2)! (3.5b) 

Since Pm(-v 2) == O(v 2), we find that 

Ct(eiv, -v2) =2(eiv_ 1) +nv2(2eiv+ 10)- (1 ~5~~~)~ ~v2) [2(eiv_ 1) + v2] =2iv. 

Proceeding as in the previous section, the following result can be proved: 

THEOREM 3.2 The predictor-corrector method generated by (3.1), (3.4), and 
(3.5), has algebraic order p == 4, phase-lag order q = 2m + 2, and the principal 
phase-lag constant Cq == 1/(2m + 4)!. D 

A comparison with the result stated in Theorem 3.1 reveals that using the 
second-order predictor (3.4) leads to a higher phase-lag order and a smaller 
phase-lag constant as well. Therefore, we shall concentrate on the method 
described in this section. This method will be denoted by PC4. 

3.2.1 The Interval of Periodicity The characteristic equation of the method 
PC4 is given by 

y.2 2r(l+fiz)[Pm(z)-1]-(l+~z)(l-rzz)Pm(z) =O 
"' + "' (1 ..1. ) + 1 . - 12Z 

This equation has its roots on the unit circle, which are distinct and complex 
conjugate, if 

12 6+z 
-<Pm(z)<8-2-. 
z z 

(3.6) 

Remembering that all relevant values of z are real and nonpositive, the interval 
0 < - z < H~ where (3.6) is satisfied is called the interval of periodicity [9]. 

Since Pm(z) is a Taylor approximation to the function R((-z)!), and since 
R((-z)!) 'touches' the functions 12/z and 8(6 + z)/z2, respectively at the points 

(j=2, 4, ... ), (3.6') 
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the periodicity condition is easily violated in the neighbourhood of the ,.:.oints 
z1 (l = 1, 2, ... ). To check (3.6), we determined numerically the negative real 
roots of Pm(z) - 12/z and of Pm(z)- 8(6 + z)/z 2 for m = 2, ... , 11. For these 
m-values, we found that condition (3.6) is violated in neighbourhoods of the 
'critical' points (3.6'). The values of these zeros and of the resulting H~-values are 
given in Table 1. However, for some m-values we have nearly a 'double' zero 
close to the points (3.6'); or, in other words, one characteristic root s assumes 
values slightly outside the unit circle on these (small) z-intervals. In the 
right-most column of Table 1, we list the maximal value of l~I, assumed on these 
intervals. Strictly speaking, the scheme is unstable for these z-values and loses its 
property of zero-dissipation. Thus, if the natural frequencies b are such that 
z0 : = - r:2 D2 lies in these intervals, then there are two consequences. 

Firstly, on every step, rounding errors will be amplified by l"max· In actual 
computation, it is unlikely that this behaviour of ls(z)I will cause instabilities, so 
that the practical stability limit is determined for each m by the root of largest 
modulus as listed in Table 1. 

The second consequence is that the amplitude of the oscillatory solution will be 
amplified. Hence, if a strict zero-dissipative behaviour is required, then one 
should either choose the safe periodicity limit determined by the root of smallest 

m 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE 1 
Intervals of periodicity (0 , H~) 

Negative real roots of 
Pm(z)-12/z Pm(z)- 8(6 + z)/z2 

-7·571916 
-21·481210 

-9·530082 
-10·306708 
-31·702780 

-30·721458 
-9·851604 
-9·887888 

-50·348639 
-37·075118 
-46-589878 
-53·315233 

-9·869077 
-9·870132 

-67·143093 
-39·182936 
-39·801579 
-88·524508 

-9·869594 
-9·869614 

-80·367079 
-39·457971 
-39·499007 

-114· 724020 

7.57 
21-48 

9.53 1·0628 

30·72 

9·85 1·00289 

37·08 1·321 

9·87 1·0000840 

39·18 1·0249 

9·87 1·00000165 

39·46 1·00163 
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modulus or one should adapt the stepsize t' such that - -r262 moves away from the 
critical points. 

Finally, for reasons of comparison, we remark that the interval of periodicity of 
the corrector itself is given by (0, 6). 

3.2.2 A Two-Stage Method Let m = 2, then (3.5) gives 

P2(z) =±oz+ Jioz2• 

Solving all the relations (2.1) leads to the scheme 

Sn= 2yn - Yn-1 + nt'2(10J,. + fn-1), } 
(0) - 2 (1) - ~ (0) 2 ..l_ 2 (0) 

Yn+1 - 2yn - Yn-1 + r: fn, Yn+1 - sYn+1 + sSn + 3or: ln+11 

- 1= + ...L 2,(1) 
Yn+l - ':>n 12t' J n+l· 

(3.5') 

(3.7) 

This scheme is of algebraic order p = 4 and has phase-lag order q = 6; the 
principal error constant c6 is 1/40320 and the periodicity interval is (0, 7·57). 
Three right-hand-side evaluations per step are required. It can be verified that its 
characteristic equation is identical to that of the method of Chawla & Rao (3). 

3.2.3 A three-stage method Let m = 3, then (3.5) yields 

1 11 2 1 3 

P3(z) = 20z + 5040z + 20160z · (3.5") 

Solving all the relations (2.1) leads to the scheme 

Sn= 2yn - Yn-1 + fir:2(10J,. + .fn-1), } 
(0) - 2 (1) - ll (0) -1 .i. 2 (0) 

Yn+l - 2yn -yn-1 + 't'f,., Yn+l - 14Yn+l + 14Sn + 56t'Jn+l> 

(2) - ~ (0) + 21= + -1.. 2,(1) - 1= ...L 2,(2) 
Yn+1- sYn+1 S':>n 301' Jn+l> Yn+1- ':>n + 127: Jn+1· 

(3.8) 

This scheme is of algebraic order p = 4 and has phase-lag order q = 8; the 
principal error constant c8 is 1/3628800, and the periodicity interval is (0, 21·48). 
Four right-hand-side evaluations per step are required. 

4. Construction of four-step methods with minimal phase lag 

Consider the symmetric sixth-order corrector formula [9: method V with a = O] 

P<~) = c~ -1)2(~2 + 1), a(~)= tlo(n4 + 104~3 + 14~2 + 104~ + 9). (4.1) 

In this section, we restrict our discussion to methods using the fourth-order 
predictor (9: method IV with a= O] 

p(~) = (~ - 1)2(~2 + 1), a(~)= i(?S3 - 2~2 + ?C). (4.2) 

The functions$ and (j, respectively corresponding to (4.1) and (4.2), are given by 

$(v) = 2e2iv[l + tlov2 - (2 - Hv2) cos v + (1 + ic;v2) cos 2v], 

cp( v) = 2e2iu[l - gv2 - (2 - ~v2) cos v + cos 2v ]. 
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TABLE 2 
Coefficients Aj and Bj 

j 2 3 4 5 6 

0 0 -475/8! -5880/10! -46185/12! 
-36/4! -99/6! -190/8! -309/10! -456/12! 

Substitution into the expression for R(v) and writing -v 2 = z yields 

where 

We now define 

with 

/30 = 0, 

A 1 .': (2{) psc2'H .- 1 J - c 9 . 2'1-' + B)i(2i - 1 l J, } 

Bi.- (2j)1[6- 7;(2; -1)]. 

m-1 

Pm(z) = 2, {3izi + f3mzm, 
j=l 

(j=l, . .. ,m-1) 

417 

(4.3a) 

(4.3b) 

(4.3c) 

and with f3m such that Pm(~)= 1. The first few coefficients Ai and Bi are given in 
Table 2. 

The methods defined above will be denoted by PC6. For these methods, the 
following theorem holds. 

THEOREM 4.1. The PC6 method generated by (4.1), (4.2), and (4.3) has algebraic 
order p = 6 and phase-lag order q = 2m + 4. 0 

4. 1 The Interval of Periodicity 

In the case of this quartic characteristic equation, we determined numerically 
the length of the periodicity interval, using an extremely fine mesh on the z-axis. 
The values of H6 are given in Table 3. 

However, similar to the situation encountered with the two-step methods, we 
again found some values of -z, within the interval (0, H6), for which two roots 

TABLE 3 
Intervals of near-periodicity (0, H~) 

m 2 3 4 5 6 7 8 9 10 11 

H~ 7·17 12·93 15·57 15·30 15·60 15·81 15·99 16·13 16·26 16·36 
l'lmax - 1 0 ·5310 - 2 ·3110 - 9 ·2010- 3 ·5910 - 4 ·1910 -4 ·6310 - 5 ·2110 - 5 ·1110-6 ·1610-6 
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'(z) of the characteristic equation were slightly larger than one in modulus. For 
m = 3, these z-values were situated in the interval (-2·58, -2·51) and, for all 
m ~4, these points are in a close neighbourhood of z = -2·544. The maximum 
values of I 'I - 1 assumed on these intervals, are given in Table 3. For a discussion 
of the consequences of this behaviour of ltl we refer to Section 3.2.l. 

We mention that the characteristic equation of this four-step method is of the 
form 

C4 + C1(zo)C3 + Ci(zo)C2 + C1(zo)S + 1=0, 

which can be written as 

[~2 + D1(zo>C + a(zo)][C2 + D2(zo)C + a- 1(zo)] = 0, 

where one factor determines the principal roots and the other factor determines 
the spurious roots. 

As long as we are in the interval of periodicity (i.e. -z0 E (0, Hf,)), we have 
a(z0) = 1 and jD;(z0)j <2 (i = 1, 2). Consequently, both principal and spurious 
roots are on the unit circle and both form a complex conjugate pair. It should be 
observed, however, that only the phase of the principal roots approximates the 
phase of the true solution. Now, if - Zo becomes larger than H5, we have 
a(z0) =F l, resulting in one pair of roots moving outside the unit circle, while the 
other pair moves inwards, where the members of each pair still are complex 
conjugate. (We remark that, if the roots have nonzero imaginary parts, then, if 
one root leaves the unit circle, they all have to leave, because, if t is a root, then 
t 1n, and l(f; are also roots.) 

It is of interest to observe that (i) the value of m has only a slight influence on 
the value of H5 and (ii) the sixth-order methods possess a considerably smaller 
interval of periodicity than the fourth-order methods. 

Finally, we mention that the corrector formula (4.1), when iterated to 
convergence, possesses the periodicity interval (0, ff). 

4.2 A Two-Stage Method 

For m = 2 we have the iteration polynomial 

1 (95 751 ) 
Pz(z) = 756z 3+ 400z · 

Using all the relations (2.1), the scheme takes the form 

Sn= 2yn - 2Yn-1 + 2Yn-2 - Yn-3 + ffot.2(104j,, + l4fn-1 + l04fn-2 + 9fn_3), 

Y~0i1 = 2yn - 2Yn-1 + 2Yn-2 - Yn-3 + h 2(7.f,. - 2fn-1 + 7.f,._z), 

(1) - 1 ( (0) f: 751 2 (0) Yn+I - 1701 950Yn+1 + 751~n) + 22680 r: 'fn+1' 

Yn+l =Sn+ -for:2J~1).l. 

(4.4) 

(4.5) 

This scheme has algebraic order p = 6, phase lag order q = 8, and periodicity 
interval (0, 7· 17); it requires three !-evaluations per step. 
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4.3 A Three-Stage Method 

For m = 3 we have the iteration polynomial 

p 1 ( 523 1529 2) 
3(z) = 22682 95 + 120z + 16000z ' 

and the corresponding scheme reads 

Sn= 2yn - 2Yn-1 + 2Yn-2 - Yn-3 + 1ior2(104J,, + 14/,,-1+104.fn-2+9.fn-3), 

Y~0li = 2yn - 2Yn-I + 2Yn-2 - Yn-3 + h 2(7fn - 2.fn-1+7/,,-2), 

(1) - 1 ( (0) !: ) 1529 2 (0) 
Yn+l - 6759 5230Yn+l+1529'.:>n + 90120rfn+l> 

(2) - 1 ( (0) 751 2 (1) 
Yn+t - 1701 950y,.+1+751s,.) + 22680r/n+1' 

Yn+l =Sn+ ror2/fJ1. 
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(4.6) 

(4.7) 

This sixth-order three-stage method requires four /-evaluations per step; its phase 
error, however, is of order 10. 

It may be remarked that in the construction of methods of still higher-order 
phase lag, only the coefficients in the first stage have to be calculated: in an 
m-stage scheme the last m - 1 stages are identical to the stages in an 
(m - I)-stage scheme. 

5. Numerical illustrations 

In testing the PC methods we will place emphasis on the phase errors in the 
numerical solution. To measure the global phase lag we define 

acd:= -log10 lthe numerical solution at t= TI, (5.1) 

where T is a zero of the exact solution. If the numerical solution is small at t = T, 
then the value of acct is an adequate measure for the phase lag. 

We will test the PC methods defined in Sections 3.2 and 4 for various values of 
m (recall that an m-stage method requires m + 1 right-hand-side evaluations). In 
the tables of results these methods are denoted by PCpq, where p and q indicate 
the algebraic and phase-lag order, respectively. 

For reasons of comparison, we also applied two other explicit methods. Firstly, 
we selected the celebrated fourth-order Runge-Kutta-Nystrom method, because 
it is a widely used method for solving second-order differential equations. Note 
however, that this method has an empty interval of periodicity. 

Secondly, we implemented the fourth-order method of Chawla & Rao [3] 
already mentioned in the introduction. This method is designed for the same class 
of problems as the PC methods are; it possesses a relatively large periodicity 
interval and is quite efficient. Both methods require three right-hand-side 
evaluations per step. 

In the subsequent experiments, these methods are referred to as RKN44 and 
CR46, respectively. 
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5.1 Linear Inhomogeneous Perturbation 

As a first example we consider the linear equation 

[ 12S 7SJ [123 sin t + 75 cost] 
2Y"(t) + 7S 12S y(t) = 7S sin t + 123 cost 

(0:::;;; t:::;;; 403t). (S.2a) 

By specifying the initial conditions y(O) = [O, l]T and y'(O) = [16, S]T, we have the 
solution 

t = [sin t] + [ s~n St+ s~n lOtJ =: i(t) + h(t). 
y( ) cost -sm St + sm lOt 

(5.2b) 

This equation differs slightly from the model equation because it includes an 
inhomogeneous term. The exact solution consists of a slowly oscillating com­
ponent (the inhomogeneous solution i), and a rapidly oscillating component (the 
homogeneous solution h ). In order to approximate the slowly oscillating 
component, relatively large time steps can be used and no special properties of 
the ODE solver are required. However, in order to approximate the rapidly 
oscillating component, either small steps are required or one should use a method 
that has small phase errors with respect to homogeneous solution components 
and, in addition, to make large steps possible, a method possessing a substantial 
interval of periodicity. Therefore, since the homogeneous component is the more 
difficult part in the solution of problem (S.2), we may expect that the PC and CR 
methods will perform much better than the conventional RKN method. 

In Table 4 we have listed the accuracies produced by the various schemes; 
here, N denotes the number of steps performed in the integration interval [O , T]. 
The value of N is such that the results in each column required the same number 
of /-evaluations. 

It may be concluded from this table that, for the linear problem (S.2), all methods 
show their phase-Jag order q rather than their algebraic order p (note that the 
CR46 method and the PC46 method yield identical results because of their 
identical characteristic polynomials). In general, the efficiency of the methods 

TABLE 4 
The acd·values for the first solution component of problem (5.2) at 

T=40:rt 

Method N acd N acd 

RKN44 1600 0·25 3200 1·03 6400 2·22 
CR46 1600 2·09 3200 3.93 6400 5.74 

PC46 1600 2·09 3200 3.93 6400 5.74 
PC48 1200 3·22 2400 5·69 4800 8·12 
PC412 800 5·30 1600 9·10 
PC424 400 1-53 800 10·22 

PC68 1600 2·55 3200 5·09 6400 7·56 
PC610 1200 3·25 2400 6·52 4800 9·44 
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TABLE 5 
acd-values for problem (5.3) 

Method N acd N acd N acd 

RKN44 4000 2·30 8000 1·67 16000 2·85 
CR46 4000 2·71 8000 4·55 16000 6·38 

PC46 4000 2·71 8000 4.55 16000 6·38 
PC48 3000 3·83 6000 5·85 12000 7.13 
PC412 2000 5·26 4000 5·51 8000 6·48 
PC424 1000 1-14 2000 5.37 4000 5·51 

PC68 4000 3·17 8000 5·71 16000 8·17 
PC610 3000 3·87 6000 6·70 12000 8·79 
---~-

increases if the phase-lag order increases, provided that the step is sufficiently 
small to make the higher orders effective (cf. PC424 with N = 400). 

5.2 Nonlinear Inhomogeneous Perturbation 

Our second example is provided by 

y"(t) + lOOy(t) =sin y(t) (0 ~ t ~ T), y(O) = 0, y'(O) = 1. (5.3) 

Because of the nonlinear perturbation, the exact solution of this problem is not 
available; however, the solution is clearly oscillating. The endpoint of the 
integration interval was chosen at the thousandth zero and was found to occur at 
T = 314· 161229484 .... 

The results for various steps can be found in Table 5. For large steps, it is the 
value of q that dictates the order behaviour, and, consequently, large q-values 
result in efficient schemes. Note, however, that the step should be small enough 
to present the solution adequately; for example, in the first experiment with the 
PC424 method, the stepsize r = -forr; is obviously too large for representing a 
solution which has a period of approximately !n. 

On the other hand, when the stepsize decreases, it is the algebraic order that 
mainly determines the accuracy of the numerical solution. This is most clearly 
illustrated by the results furnished by the methods PC412 and PC424: for the 
same stepsize r = T /4000, equal accuracies are obtained, irrespective of their 
different phase-lag orders. Obviously, for these extreme q-values, it is the 
algebraic order that completely determines the error. 

Although less obviously so, it is also true that, for more realistic q-values (i.e., 
q - p < 5, say), the influence of the algebraic order becomes more significant as 
the stepsize tends to zero. 

Therefore, in general, we cannot fully benefit from a high phase-lag order when 
integrating nonmodel problems with very small stepsizes. 

Nevertheless, when compared with the RKN44 method, all schemes show a 
substantial gain in efficiency (higher accuracy at the same costs). 
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