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1 IntroductionSuppose there are n items denoted by 1; 2; :::; n which are permanently located in auxiliarystorage. In addition, m � n items may also be in main storage. If an item is required, �rst themain storage is inspected. If it is not present there, it is copied from auxiliary storage into mainstorage. If the main storage is already full, an item is removed according to some replacementalgorithm. This situation arises in many contexts, such as processor caches [15], paged virtualmemory systems [7], database bu�ers [13], etc...Many replacement algorithms have been studied in the past for such systems. Two of themost widely studied algorithms include the Least Recently Used (LRU) and First-In-First-Out (FIFO) algorithms. There is a large amount of literature concerned with analyzing theperformance of these policies. The reader is referred to [1, chapters 4,5]. for a thoroughtreatment of this subject.An important performance metric is the miss ratio, which is de�ned as the steady-stateprobability that the item currently required is not in main storage (in computer storage terms,this is the frequency of page faults). Much of the work in the area of 2-level storage systemsis concerned with predicting this metric, designing practical algortihms for minimizing thismetric, or choosing the size of the main storage so as to minimize the miss ratio subject tocost constraints. Unfortunately these tasks are made di�cult due to the absence of simple tocompute closed form expressions for this metric, even under the simplest assumptions. Forexample, the simplest model is one where each item has a �xed reference probability andwhere the references are mutually independent. In other words, the string of page references ismodeled as a sequence of i.i.d. random variables. This is known as the independent referencemodel (IRM). In the literature explicit formulas for the miss ratio in terms of the referenceprobabilities and the size of main storage are given (see [12, 8] for examples). However, theyinvolve a summation in which the number of terms grows exponentially as a function of m, andare therefore not very tractable. A number of papers have focussed on developing bounds (see[10, 2] for examples) or developing approximate models, [6], for predicting the miss ratio.In this paper we derive several properties for the miss ratio under the LRU and FIFO policiesfor the IRM. These include,� The miss ratio is a convex function of m under LRU,� The following function of the miss ratio, (1�miss ratio)=m, is non-increasing in m underFIFO, 2



� The miss ratio is a Schur-convex function of the reference probabilities under FIFO.In addition, we construct a counterexample to some claims made regarding the Schur-convexityof the miss ratio under LRU in [1].The above properties are of interest for several reasons. First, they can be used by analyststo develop accurate approximate models for predicting the miss ratio of LRU and FIFO, i.e.,these approximate models should satisfy the above properties. Second, a number of studies,[16, 6], have studied the problem of partitioning a main storage operating under LRU amongseveral classes of items in order to minimize the miss ratio. In all of these studies, the approachesrequire that the miss ratio be a convex function of m in order to guarantee that the optimalsolution be found. Our result provides evidence that this is so.Last, although our results are for the IRM, they are of practical interest because there isevidence that the IRM is appropriate for database systems, [11], and this has formed the basisof a number of analytical models of such systems operating under LRU, [4, 5].2 Formal statement of resultsConsider the IRM model described in section 1. Let n denote the number of items, p =(p1; p2; :::; pn) their reference probabilities, and m the size of main storage. The miss ratio,introduced before, depends on p, m and the replacement algorithm A, and is denoted byFm(A;p). Often, when the context is clear, we will omit one or more of the parameters.Let fxkg1k=0 be a sequence of independent and identically distributed random variables withpj = P (x0 = j); j = 1; 2; : : : ; n; (1)where x0 can be regarded as the item currently being referenced and xk the k-th item previouslyreferenced, k = 1; 2; : : :. It is not di�cult to see (see e.g. Aven, Co�man and Kogan [1, chapter4]) that for LRU the miss ratio, de�ned in the introduction, is equal to:Fm(LRU) = P (x0 is not equal to one of the �rst m distinct valuesin the sequence x1; x2; : : :): (2)Using this equality, the miss ratio can also be expressed more explicitly in terms of the pi's andm (see [12, 8]). We will �nd (2) suitable for our purpose.3



As to FIFO, it has been shown by King [12] and Aven and Sokolov [3] that, for m � n,Fm(FIFO) = P(i1;:::;im)2�m;n pi1pi2 : : : pim(1� pi1 � pi2 : : :� pim)P(i1;:::;im)2�m;n pi1pi2 : : : pim ; (3)where the sum is over the set �m;n of all sequences of m distinct elements taken from the setof integers f1; 2; : : : ; ng (see also [1, section 4.6]). If m > n then, of course, Fm is 0. It is easilyseen that (3) can also be written as follows:Fm(FIFO) = P (x0; x1; : : : ; xm are distinct)P (x1; : : : ; xm are distinct) ; (4)and this is the expression used in the remainder of this paper.We will prove the following two results:Theorem 1 The miss ratio for LRU is a convex function of the size of main storage, i.e. for�xed p, Fm(LRU)� Fm+1(LRU) is non-increasing in m.Theorem 2 Under FIFO, the miss ratio exhibits the following properties:a) For a �xed p, (1� Fm(FIFO))=m is non-increasing in m.b) The miss ratio for FIFO is a Schur-convex function of the reference probability vector p.As a consequence of theorem 2 b), we have the following corollary.Corollary 1 Let V � f1; : : : ; ng and 0 � � � 1. Then, subject to the constraint Pi2V pi = �,maxp Fm(FIFO;p) is achieved for pi = �jV j , i 2 V and pi = 1��n�jV j , i =2 V .Remark. The following special case of theorem 2 b) has been stated in [1, sec. 4.7]. Ifp = (p1; : : : ; pn) and p0 = (p01; : : : ; p0n) are two memory reference probability distributions suchthat p1 � p2 � � � � � pn, p01 � p02 � � � � � p0n, pi = p0i, i = 3; : : : ; n, p1+p2 = p01+p02, and p01 � p1,then Fm(FIFO;p) � Fm(FIFO;p0). As a consequence they have obtained the above corollaryunder the additional restriction that for any i 2 V and j =2 V pi � pj . They claim that theirresults hold for a large class of algorithms, including LRU and then develop upper bounds onthe miss ratio of LRU based on this claim. However, we have constructed a counter-examplefor LRU (see section 5).In section 3 we prove theorem 1. In section 4 we prove theorem 2. The corollary abovefollows straightforwardly from the second property of theorem 2 and we omit its proof. Insection 5 we construct a counter-example to some results claimed in [1].4



3 Convexity of LRUSince this section deals with LRU only, we omit this argument in the mathematical expressions.Let g(p; m) = Fm�1(p)� Fm(p). From (2) it follows:g(p; m) = P (x0 is equal to the m-th di�erent valuein the sequence x1; x2; : : :): (5)It su�ces to prove that g(p; m) is a non-increasing function of m, m = 1; 2; : : :. We prove thisusing induction.Consider m = 1 as the basis step. Note thatg(p; 1) = P (x0 = x1) = nXi=1 pi2 (6)and g(p; 2) = P (x0 is equal to the second di�erent value in the sequencex1; x2; : : :)= nXi=1 nXj=1;j 6=i P (x0 = i; x1 = j; the �rst value in the sequencex2; x3; : : : di�erent from j equals i)= nXi=10@ nXj=1;j 6=i pipj pi1� pj1A : (7)Now de�ne, for 1 � i � n, fi = pi and hi =Pnj=1;j 6=i pj1�pj .Equation (7) can then be written asg(p; 2) = nXi=1 pifihi: (8)It is easy to check that for any i and j, 1 � i; j � n,fi � fj () hi � hj : (9)A degenerate case of the FKG inequality (Fortuin, Kasteleyn and Ginibre [9]) states that(9) implies 5



nXi=1 pifihi � ( nXi=1 pifi)( nXi=1 pihi): (10)Remark: We speak of a degenerate case of the FKG inequality because (9) involves a totalorder, while the general FKG inequality holds, under certain conditions, for partial orders aswell. The proof of the special case above is easy (see the introduction of [9]).From (8), (10) and the de�nition of fi and gi we getg(p; 2) � ( nXi=1 pifi)( nXi=1 pihi)= ( nXi=1 pi2)( nXi=1 pi nXj=1;j 6=i pj1� pj )= g(p; 1) nXj=1 pj1� pj nXi=1;i6=j pi= g(p; 1) nXj=1 pj1� pj (1� pj)= g(p; 1): (11)This completes the proof for m = 1.Now let m � 2 and assume the result holds for m� 1. We haveg(p; m) = P (x0 is the m-th di�erent value in x1; x2; : : :);= nXj=1P (x1 = j; x0 6= j; x0 is the (m� 1)-th di�erent value inx1(j); x2(j); : : :) (12)where x1(j); x2(j); : : : is the sequence obtained from x1; x2; : : : by removing all elements withvalue j. It follows from standard arguments that, given x1 = j and x0 6= j, the sequencex0; x1(j); x2(j); : : : is a sequence of i.i.d. random variables with probability distribution given bythe vector p(j) � ( p11� pj ; p21� pj ; : : : ; pj�11� pj ; pj+11� pj ; : : : ; pn1� pj ): (13)6



Hence, (12) can be rewritten as follows:g(p; m) = nXj=1 pj(1� pj)g(p(j); m� 1): (14)Of course g(p; m+ 1) can be written in a similar way, the only di�erence being that the m� 1in the r.h.s. of (14) is replaced by m. Now apply the induction hypothesis.4 Properties of FIFO4.1 Notation and a preliminary resultSince this section deals with FIFO only, we omit that argument in the mathematical expressions.First we need some additional notation. Let the sequence x0; x1; : : : be as in section 2. De�ne,for k = 1; 2; : : :, Gk(p) = P (x1; : : : ; xk are distinct): (15)Moreover, de�ne, for V � f1; : : : ; ng,GVk (p) = P (x1; : : : ; xk are distinct and not in V ): (16)We will often omit the parameter p when it does not introduce any confusion. If k � 0, wede�ne GVk = 1. Clearly, if V = ;, then GVk = Gk. Also note that, if i 62 V and k � 0, thenGVk = P (x1; : : : ; xk are distinct and not in V )= P (x1; : : : ; xk are distinct and not in V [ fig)+ P (x1; : : : ; xk are distinct and not in V; andexactly one of them equals i)= GV[figk + kpiGV [figk�1 : (17)We require the following lemma.Lemma 1 Let 1 � k � l and V � f1; : : : ; ng. ThenGVk GVl � GVk�1GVl+1: (18)7



Proof. If GVl+1 = 0, (18) is clearly true. If GVl+1 6= 0 then GVi 6= 0 for all i � l+ 1 and (18) canbe written as GVk =GVk�1 � GVl+1=GVl so that it is su�cient to handle the case k = l. So we arerequired to prove (GVk )2 � GVk�1GVk+1 � 0: (19)This can be done by induction as follows. The case k � 1 is trivial. Now let k > 1 and assumethat the inequality holds for k � 1. We have(GVk )2 � GVk�1GVk+1 = P (x1; : : : ; xk are distinct and not in V;xk+1; : : :x2k are distinct and not in V)� P (x1; : : : ; xk�1 are distinct and not in V;xk ; : : : ; x2k are distinct and not in V ):Since for any two events B and C we have P (B) � P (C) = P (B \ Cc) � P (C \ Bc), theabove can be rewritten as(GVk )2 �GVk�1GVk+1 =P (x1; : : : ; xk are distinct and not in V; xk+1; : : : ; x2k are distinctand not in V; xk; : : : ; x2k are not distinct)� P (x1; : : : ; xk�1 are distinct and not in V; xk; : : : ; x2k are distinctand not in V; x1; : : : ; xk are not distinct): (20)The �rst event occurs if and only if, for some i 2 f1; : : : ; ng � V , and l 2 fk + 1; : : : ; 2kg,x1; : : :xk�1 are not in V [ fig, xk = xl = i and xk+1; : : : ; xl�1; xl+1; : : : ; x2k are distinct andnot in V [ fig. This occurs with probabilityXi2f1;:::;ng\V c kpi2(GV[figk�1 )2:Similarly, the second event has probabilityXi2f1;:::;ng\V c(k � 1)pi2GV[figk�2 GV[figk :We have(GVk )2 � GVk�1GVk+1 = Xi2f1;:::;ng\V c hkpi2(GV[figk�1 )2 � (k � 1)pi2GV[figk�2 GV[figk i8



� Xi2f1;:::;ng\V c(k � 1) hpi2(GV[figk�1 )2 � pi2GV[figk�2 GV[figk i� 0:This last inequality is a consequence of the induction hypothesis.4.2 Proof of theorem 2aWe have to prove (1� Fm)=m � (1� Fm+1)=(m+ 1). If m + 1 > n, then Fm and Fm+1 are 0and the inequality is obviously true. So we may assume m+ 1 � n. From (4) it follows that1� Fmm = 1m � P (x1; : : :xm are distinct and one of them equals x0)P (x1; : : : ; xm are distinct) ;= P (x0 = x1 and x1; : : :xm are distinct)P (x1; : : : ; xm are distinct) :and, similarly, 1� Fm+1m+ 1 = P (x0 = x1 and x1; : : :xm+1 are distinct)P (x1; : : : ; xm+1 are distinct) :Hence, we have to proveP (x0 = x1 and x1; : : : ; xm are distinct)�P (x1; : : : ; xm+1 are distinct)� P (x0 = x1 and x1; : : : ; xm+1are distinct)�P (x1; : : : ; xm are distinct): (21)By summing over all possible values of x1, the �rst factor in the l.h.s. of (21) equalsnXi=1 P (x0 = x1 = i)P (x2; : : : ; xm are distinct and di�erent from i) =nXi=1 p2iGfigm�1; 9



while the second factor equalsnXj=1P (x1 = j)P (x2; : : : ; xm+1 are distinct and di�erent from j) =nXj=1 pjGfjgm :The two factors in the r.h.s. can be rewritten similarly and we conclude that (21) is equi-valent to X1�i;j�n p2i pjGfigm�1Gfjgm � X1�i;j�n p2i pjGfigm Gfjgm�1or X1�i<j�n(pi � pj)pipj hGfigm�1Gfjgm � Gfjgm�1Gfigm i � 0:This last inequality is certainly true if, for any pair i; j 2 f1; : : : ; ng,pi � pj () Gfigm�1Gfjgm �Gfjgm�1Gfigm � 0: (22)In order to see that (22) is true, note that, if i 6= j, by (17),Gfigm�1Gfjgm = (Gfi;jgm�1 + (m� 1)pjGfi;jgm�2)(Gfi;jgm +mpiGfi;jgm�1);and the expression for Gfjgm�1Gfigm is obtained by exchanging i and j. Hence,Gfigm�1Gfjgm �Gfjgm�1Gfigm =m(pi � pj) �Gfi;jgm�1�2 � (m� 1)(pi � pj)Gfi;jgm�2Gfi;jgm :According to lemma 1 this is non-negative i� pi � pj , so that (22) is indeed true.4.3 Proof of theorem 2bWe begin this section with the de�nition of a Schur-convex function.10



De�nition 1 Vector X = (X1; � � � ; Xk) is said to majorize vector Y = (Y1; � � � ; Yk) (writtenY � X) i� jXi=1 Ŷi � jXi=1 X̂i; j = 1; � � � ; k� 1kXi=1 Ŷi = kXi=1 X̂iwhere the notation X̂i (resp. Ŷi) is taken to be the i-th largest element of X (resp. X).De�nition 2 A real valued function f de�ned on IRk is said to be Schur-convex ifx � y ) f(x) � f(y); 8x;y 2 IRkWe �nd the following result useful in our proof.Lemma 2 (Marshall and Olkin [14, section 3.A.2.b]) A function f is Schur-convex i� fis symmetric and f(�q; (1��)q; y3; y4; : : : ; yk) is a non-decreasing function of � for � 2 (0; 1=2].In our problem, Fm is clearly a symmetric function of p. Hence it su�ces to �x p3; : : : ; pn,de�ne p1 = �q and p2 = (1� �)q for some � 2 (0; 1) where q = 1 � (p3 + : : :+ pn) and showthat Fm is non-decreasing in � for � 2 (0; 1=2]. To avoid trivialities we assume that 1 � m < n.Note that, by (4) and (15), Fm = Gm+1=Gm: (23)Further, by the same arguments used in the derivation of (17),Gm = Gf1;2gm +mqGf1;2gm�1 +m(m� 1)q2�(1� �)Gf1;2gm�2 : (24)Hence, dd�Gm = (1� 2�)q2m(m� 1)Gf1;2gm�2 : (25)Of course, Gm+1 and dd�Gm+1 are obtained from the above expressions by replacingm bym+1.We have to prove that dd� Gm+1Gm � 0;11



which is equivalent to Gm dd�Gm+1 � Gm+1 dd�Gm;which, by (24) and (25) and the fact that � 2 (0; 1=2], is equivalent to(Gf1;2gm +mqGf1;2gm�1 +m(m� 1)q2�(1� �)Gf1;2gm�2)� (m+ 1)Gf1;2gm�1�(Gf1;2gm+1 + (m+ 1)qGf1;2gm +m(m+ 1)q2�(1� �)Gf1;2gm�1)� (m� 1)Gf1;2gm�2 :After removing common terms from both sides, the above inequality reduces to(m+ 1)Gf1;2gm Gf1;2gm�1 + m(m+ 1)q(Gf1;2gm�1)2 (26)�(m� 1)Gf1;2gm+1Gf1;2gm�2 + (m� 1)(m+ 1)qGf1;2gm�2Gf1;2gm ;which follows from lemma 1.5 CounterexampleIn [1], section 4.7, two properties, denoted by P1 and P2 are stated and used in the proofof several theorems. The claim is made that P1 and P2 \are satis�ed by any reasonablealgorithm" including LRU 3. However, we present a counter-example to P2 for LRU. Before westate property P2 we introduce some additional notation.If A is a replacement algorithm, then R(1)A is de�ned to be the replacement algorithmcorresponding to A, where item 1 resides permanently in main storage and algorithm A isapplied with respect to the m� 1 remaining positions in main storage and the n� 1 remainingitems.It is not di�cult to see that (see [1, sections 4.6 and 4.7]) the following relation is true formany algorithms, including LRUFm(R(1)A;p) = (1� p1)Fm�1(A;p(1)); (27)where p(1) = (p2=(1� p1); : : : ; pn=(1� p1)). Property P2 is stated below.3This material originally came from [2] where no such claim was made.12



Property P2. Let p and p0 be access distributions such that p1 � p2 � : : :� pn, p10 � p20 � p3,p10 + p20 = p1 + p2, p01 > p1, and p0i = pi, i = 3; : : : ; n. ThenFm(R(1)A;p0) < Fm(R(1)A;p) (28)whenever m < n.We proceed with our counter-example. Let p and p0 satisfy the condition in P2. Letq = p1+p2 = p10+p20, and p3 = p4 = : : : = pn = p30 = p40 = : : : = pn0 = (1�q)=n. Let fykg1k=0be a sequence of i.i.d. random variables with distribution given by p(1) (see (27)).According to (2) we have, for A = LRU,Fm�1(A;p(1)) = P (y0 = 2 and the �rst m� 1 distinct values iny1; y2; : : : are di�erent from 2)+ P (y0 6= 2 and y0 does not belong to the �rst m� 1distinct values in y1; y2; : : :): (29)Now �x all parameters, except n, which we allow to go to in�nity (note that p and p0 dependon n). As to the �rst term in (29), the event (the �rst m � 1 distinct values in y1; y2; : : : aredi�erent from 2) is contained in the event (y1; y2; : : : ; ym�1 are di�erent from 2). However, thedi�erence between the two events is contained in the event (y1; y2; : : : ; ym�1 are di�erent from2, but they are not all distinct), whose probability goes to 0 as n goes to in�nity.As to the second term in (29), the di�erence between the event (y0 6= 2 and y0 does notbelong to the �rst m�1 distinct values in y1; y2; : : :) and the event (y0 6= 2) is the event (y0 6= 2and y0 belongs to the �rst m� 1 distinct values in y1; y2; : : :), whose probability also goes to 0as n goes to in�nity.Therefore, we havelimn!1 Fm�1(A;p(1)) = P (y0 = 2 and y1; : : : ; ym�1 6= 2) + P (y0 6= 2);= p21� p1 ( 1� q1� p1 )m�1 + 1� q1� p1 :Hence, by (27), limn!1Fm(R(1)A;p) = p2( 1� q1� p1 )m�1 + 1� q (30)13



and analogously, limn!1Fm(R(1)A;p0) = p02( 1� q1� p10 )m�1 + 1� q: (31)However, by the assumptions, p10 > p1, it follows that 1�q1�p1 < 1�q1�p10 , so that, for m su�cientlylarge, p2( 1� q1� p1 )m�1 < p20( 1� q1� p10 )m�1:Fix such an m. According to (30) and (31) there exists an n such thatFm(R(1)A;p) < Fm(R(1)A;p0);which contradicts P2.Property P2 plays an important role in the derivation of other results in section 4.7 of [1].For instance, in Theorem 14 it is stated that, for a large class of algorithms, including LRU,the following holds:If p1 � p2 � � � � � pn and Pni=s+1 pi = �, thenFm(A;p) � Fm(A;p0)where p10 = : : : = ps0 = (1� �)=s and ps+10 = : : : = pn0 = �=(n � s). Here A is taken to beone of these algorithms. (For A = FIFO, this is a somewhat weaker version of corollary 1 insection 2, see the remark after our corollary). A small modi�cation of the construction of ourcounterexample to P2 leads quite easily to a counterexample (for LRU) to the above statedtheorem 14 in [1]. Theorem 14 in turn is used to develop several distribution free upper boundson the miss ratio of LRU.6 SummaryIn this paper we have derived several interesting properties of the miss ratio for LRU and FIFOin a 2-level storage model for the IRM. Using similar arguments, it is possible to derive theconvexity result for LRU to the transient case, i.e., the miss ratio for the i-th reference is aconvex function of the main storage size m under the assumption that the main storage isempty prior to the �rst reference. Extending the properties for the miss ratio under FIFO tothe transient case appears to be more di�cult.14
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