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Abstract

We consider the behavior of a 2-level storage system operating with the LRU or the FIFO
replacement strategy where accesses to the main storage are described by the independent
reference model (IRM). Let the size of main storage be m. We prove that the miss ratio
(i.e. the steady-state probability that the item currently required is not in main storage)

exhibits the following properties:
e The miss ratio is a convex function of m under LRU,

e The following function of the miss ratio, (1 — miss ratio)/m, is non-increasing in m

under FIFO,
e The miss ratio is a Schur-convex function of the reference probabilities under FIFO.

Last, we disprove some results claimed earlier in the literature.
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1 Introduction

Suppose there are n items denoted by 1,2,...,n which are permanently located in auxiliary
storage. In addition, m < n items may also be in main storage. If an item is required, first the
main storage is inspected. If it is not present there, it is copied from auxiliary storage into main
storage. If the main storage is already full, an item is removed according to some replacement
algorithm. This situation arises in many contexts, such as processor caches [15], paged virtual
memory systems [7], database buffers [13], etc...

Many replacement algorithms have been studied in the past for such systems. Two of the
most widely studied algorithms include the Least Recently Used (LRU) and First-In-First-
Out (FIFO) algorithms. There is a large amount of literature concerned with analyzing the
performance of these policies. The reader is referred to [1, chapters 4,5]. for a thorough
treatment of this subject.

An important performance metric is the miss ratio, which is defined as the steady-state
probability that the item currently required is not in main storage (in computer storage terms,
this is the frequency of page faults). Much of the work in the area of 2-level storage systems
is concerned with predicting this metric, designing practical algortihms for minimizing this
metric, or choosing the size of the main storage so as to minimize the miss ratio subject to
cost constraints. Unfortunately these tasks are made difficult due to the absence of simple to
compute closed form expressions for this metric, even under the simplest assumptions. For
example, the simplest model is one where each item has a fixed reference probability and
where the references are mutually independent. In other words, the string of page references is
modeled as a sequence of i.i.d. random variables. This is known as the independent reference
model (IRM). In the literature explicit formulas for the miss ratio in terms of the reference
probabilities and the size of main storage are given (see [12, 8] for examples). However, they
involve a summation in which the number of terms grows exponentially as a function of m, and
are therefore not very tractable. A number of papers have focussed on developing bounds (see
[10, 2] for examples) or developing approximate models, [6], for predicting the miss ratio.

In this paper we derive several properties for the miss ratio under the LRU and FIFO policies

for the IRM. These include,
e The miss ratio is a convex function of m under LRU,

e The following function of the miss ratio, (1 — miss ratio)/m, is non-increasing in m under

FIFO,



e The miss ratio is a Schur-convex function of the reference probabilities under FIFO.

In addition, we construct a counterexample to some claims made regarding the Schur-convexity
of the miss ratio under LRU in [1].

The above properties are of interest for several reasons. First, they can be used by analysts
to develop accurate approximate models for predicting the miss ratio of LRU and FIFO, i.e.,
these approximate models should satisfy the above properties. Second, a number of studies,
[16, 6], have studied the problem of partitioning a main storage operating under LRU among
several classes of items in order to minimize the miss ratio. In all of these studies, the approaches
require that the miss ratio be a convex function of m in order to guarantee that the optimal
solution be found. Our result provides evidence that this is so.

Last, although our results are for the IRM, they are of practical interest because there is
evidence that the IRM is appropriate for database systems, [11], and this has formed the basis

of a number of analytical models of such systems operating under LRU, [4, 5].

2 Formal statement of results

Consider the IRM model described in section 1. Let n denote the number of items, p =
(p1, P2, ---, Pn) their reference probabilities, and m the size of main storage. The miss ratio,
introduced before, depends on p, m and the replacement algorithm A, and is denoted by
Fn(4,p). Often, when the context is clear, we will omit one or more of the parameters.

Let {zr}2 , be a sequence of independent and identically distributed random variables with

pj=Plzo=17j), j=1,2,...,n, (1)

where zg can be regarded as the item currently being referenced and zj the k-th item previously
referenced, k = 1,2, .... It is not difficult to see (see e.g. Aven, Coffman and Kogan [1, chapter
4]) that for LRU the miss ratio, defined in the introduction, is equal to:

F.(LRU) = P(=z¢ is not equal to one of the first m distinct values

in the sequence z1, z, .. .). (2)

Using this equality, the miss ratio can also be expressed more explicitly in terms of the p;’s and

m (see [12, 8]). We will find (2) suitable for our purpose.



As to FIFO, it has been shown by King [12] and Aven and Sokolov [3] that, for m < n,

2 (it rim)EAmm PiaPiz - - - Pi (L — Piy — Piy -+ — Pia)
E(il,...,im)eAm,n Pi\Piy - - - Pisy,

F(FIFO) = : (3)

where the sum is over the set A, ,, of all sequences of m distinct elements taken from the set
of integers {1,2,...,n} (see also [1, section 4.6]). If m > n then, of course, F,, is 0. It is easily

seen that (3) can also be written as follows:

P(zo,z1,...,&n, are distinct)

Fo(FIFO) =

(4)

P(z1,...,2n, are distinct)

and this is the expression used in the remainder of this paper.

We will prove the following two results:

Theorem 1 The miss ratio for LRU is a convez function of the size of main storage, i.e. for

fized p, Fr(LRU) — Fppp1(LRU) is non-increasing in m.

Theorem 2 Under FIFO, the miss ratio exhibits the following properties:
a) For a fized p, (1 — F,,(FIFO))/m is non-increasing in m.

b) The miss ratio for FIFO is a Schur-convez function of the reference probability vector p.

As a consequence of theorem 2 b), we have the following corollary.

Corollary 1 Let V C {1,...,n} and 0 < a < 1. Then, subject to the constraint ),y p; = a,

maxp F(FIFO, p) is achieved for p; = ﬁ, 1€V and p; = nl__|{',‘|, i¢ V.

Remark. The following special case of theorem 2 b) has been stated in [1, sec. 4.7]. If
p=(p1,...,pn) and p' = (p1,...,p,) are two memory reference probability distributions such
that p1 > pp > - > P, P > Py > -+ > P, Pi = pjy 6= 3,..., 1, p1+p2 = p1 +p3, and pi > p1,
then F,,(FIFO,p) > F,(FIFO,p’). As a consequence they have obtained the above corollary
under the additional restriction that for any ¢ € V and j ¢ V p; > p;. They claim that their
results hold for a large class of algorithms, including LRU and then develop upper bounds on
the miss ratio of LRU based on this claim. However, we have constructed a counter-example
for LRU (see section 5).

In section 3 we prove theorem 1. In section 4 we prove theorem 2. The corollary above
follows straightforwardly from the second property of theorem 2 and we omit its proof. In

section 5 we construct a counter-example to some results claimed in [1].



3 Convexity of LRU

Since this section deals with LRU only, we omit this argument in the mathematical expressions.

Let g(p,m) = Fpp_1(p) — Fin(p). From (2) it follows:

g(p,m) = P(zo is equal to the m-th different value
in the sequence 1, z3,...). (5)
It suffices to prove that g(p,m) is a non-increasing function of m, m = 1,2,.... We prove this

using induction.

Consider m = 1 as the basis step. Note that

g9(p,1) = P(zo = z1) = Y _pi’ (6)
=1
and
g(p,2) = P(wo is equal to the second different value in the sequence
L1,L2,.. )
= Z Z P(zo = i,z1 = j, the first value in the sequence
i=1j=1,j#i
Ta,Z3,... different from j equals )
& & pi
i=1 \j=1,j#i Pj
. o, L n pj
Now define, for 1 < i< n, f; = p; and h; = oy —1_’”.

Equation (7) can then be written as

9(p,2) = Y pif:hi. (8)
i=1
It is easy to check that for any 2 and 7,1 < 4,5 < n,

fi > fi <= h; < hj. (9)

A degenerate case of the FKG inequality (Fortuin, Kasteleyn and Ginibre [9]) states that
(9) implies



zn:Pz'fihi < (zn:pzfz)(zn:pzhz) (10)

Remark: We speak of a degenerate case of the FKG inequality because (9) involves a total

order, while the general FKG inequality holds, under certain conditions, for partial orders as

well. The proof of the special case above is easy (see the introduction of [9]).

From (8), (10) and the definition of f; and g; we get

o0, < (CnfIYpihd)

- T > 1)

=1 joigpi L T Pi
= 9 1)Y} T~ > m
i=1 T P sy

= 9(p,1)> 77 —(1-p))
j=1 Pj

= g(p,1). (11)

This completes the proof for m = 1.

Now let m > 2 and assume the result holds for m — 1. We have

g(p,m)

where z,), 2,0 .

value j. It follows

Lo, ml(j)a mz(j)a o

the vector

.1s

= P(zo is the m-th different value in z1, 2o, ...),

= Z P(z1 = j, %0 # J, o is the (m — 1)-th different value in
i=1

m1(j), mz(j), ) (12)

is the sequence obtained from i, s, ... by removing all elements with

from standard arguments that, given z; = j and z¢ # j, the sequence

a sequence of i.i.d. random variables with probability distribution given by

() — (_P1 p2 Pj-1  Pj+1 Prn 1
pY = , s , y e . 3
(1—pj 1 —pj l-pj 1-p; 1—pj) (12)




Hence, (12) can be rewritten as follows:
g(p,m) =Y pi(1 - pj)g(P¥,m - 1). (14)

i=1

Of course g(p, m + 1) can be written in a similar way, the only difference being that the m — 1

in the r.h.s. of (14) is replaced by m. Now apply the induction hypothesis. |

4 Properties of FIFO

4.1 Notation and a preliminary result

Since this section deals with FIFO only, we omit that argument in the mathematical expressions.
First we need some additional notation. Let the sequence zg,%1,... be as in section 2. Define,

for k=1,2,..,
Gr(p) = P(z1, ...,z are distinct). (15)
Moreover, define, for V C {1,...,n},
GY (p) = P(z1, ...,z are distinct and not in V). (16)

We will often omit the parameter p when it does not introduce any confusion. If & < 0, we

define G,‘: = 1. Clearly, if V = 0, then G} = Gj. Also note that, if i ¢ V and k > 0, then

GY = P(zy,...,zx are distinct and not in V)
= P(#1,...,% are distinct and not in V' U {3})
+ P(z1,..., 2 are distinct and not in V, and

exactly one of them equals )

= Gyl 4 kpay (17)
We require the following lemma.

Lemmal Let1<k<landV C{1,...,n}. Then

GY Gl > G{_,G{,1. (18)



Proof. If GJ; = 0, (18) is clearly true. If G}, # 0 then G} # 0 for alli <[+ 1 and (18) can

be written as G} /GY | > Gl‘q_l/GlV so that it is sufficient to handle the case k£ = [. So we are

required to prove
(GX)? = Gi1GY 2 0. (19)
This can be done by induction as follows. The case k < 1 is trivial. Now let £ > 1 and assume

that the inequality holds for £ — 1. We have

(GY)? - G}_,Gl,; = P(z1,...,2 are distinct and not in V,
Tht1,...Tor are distinct and not in V)
— P(21,...,%E_1 are distinct and not in V,
Tk, ..., 22 are distinct and not in V).

Since for any two events B and C we have P(B) — P(C) = P(B N C¢) — P(C N B°), the

above can be rewritten as

(Gl‘c/)z - GX—1GX+1 =

P(z1, ...,z are distinct and not in V, 2g41,. .., 22 are distinct
and not in V, z, .. ., Zax are not distinct)
— P(z1,...,2p_1 are distinct and not in V, @, ..., zax are distinct
and not in V, z1, ..., 2 are not distinct). (20)

The first event occurs if and only if, for some ¢ € {1,...,n} — V,and | € {k+1,...,2k},
z1,...¢k_1 are not in V U {3}, zx = #; = ¢ and @g41,...,%1-1,Li41,- . ., Lok are distinct and

not in V' U {s}. This occurs with probability

Vui:
Y (G

i€{l,...n}NVe

Similarly, the second event has probability

> k-npte e

i€{l,...n}NVe
We have
(G}c’)Z _ G,‘c’_lG}c’+1 = Z [kPiZ(GZBl{i})Z (k- 1)pi2GZBZ{i}GZu{i}]
i€{l,...n}NVe



v

i€{l,...n}NVe

> 0.

This last inequality is a consequence of the induction hypothesis.

4.2 Proof of theorem 2a

S (- 1) GO - ey ]

We have to prove (1 — F,)/m > (1 — Fipy1)/(m+1). If m + 1 > n, then F,, and F,,4; are 0

and the inequality is obviously true. So we may assume m + 1 < n. From (4) it follows that

1-F, 1 y P(z1, ...z, are distinct and one of them equals )
m - om P(z4,...,zm are distinct) ’
_ P(zo == and z,,.. .2, are distinct)
B P(z4,...,zm are distinct)

and, similarly,

1—Fny1  P(zo =21 and 21, ...,y are distinct)

m+1 P(z1,...,2m41 are distinct)
Hence, we have to prove
P(zo = 21 and 21, ..., 2, are distinct)
xP(z1,...,2m41 are distinct)
> P(zo = 21 and z1, ..., Zm,q1are distinct)
XP(#1,..., %y are distinct).
By summing over all possible values of z;, the first factor in the Lh.s. of (21) equals

n

ZP(:{:O =21 =1)P(22,..., &, are distinct and different from ¢) =

i=1
prGg}—l ’
i=1

(21)



while the second factor equals
n

Z P(zy = j)P(za,...,Tm41 are distinct and different from j) =
J=1

Y G
7=1

The two factors in the r.h.s. can be rewritten similarly and we conclude that (21) is equi-

valent to

Z P?PijﬁlG,{,{}z Z pgpjgg}gﬁl
1<i,jsn 1<i,5<n

or

> (pi—pj)piv; [Gfrf}_ﬂy{i} - G,{£1G,{f;}] > 0.
1<i<j<n

This last inequality is certainly true if, for any pair ¢,5 € {1,...,n},
pi > p; < G ¢l — gl ¢l > 0. (22)
In order to see that (22) is true, note that, if 7 # j, by (17),
GhL G = (G574 (m - Vp,GL)(GET + mpiGE),

and the expression for GE’LG,{,Z;} is obtained by exchanging ¢ and j. Hence,

G,{f;}_lG,{,{'} - G7{1£1G7{1f} =
i 2 id i
m(pi — ;) (G21)" — (m = 1)(pi — p;) G 3 GEY.

According to lemma 1 this is non-negative iff p; > p;, so that (22) is indeed true. |

4.3 Proof of theorem 2b

We begin this section with the definition of a Schur-convex function.

10



Definition 1 Vector X = (X, -+, X}) is said to majorize vector Y = (Yq,---,Y;) (written
Y < X) iff

J
ZX'h j:]-:"':k_]-
=1

M
IN

=1
k A k A
=1 =1

where the notation X; (resp. Y;) is taken to be the i-th largest element of X (resp. X ).
Definition 2 A real valued function f defined on IR* is said to be Schur-convez if
z<y = f(x)<f(y), Ve,ycIR*

We find the following result useful in our proof.

Lemma 2 (Marshall and Olkin [14, section 3.A.2.b]) A function f is Schur-convez iff f
is symmetric and f(Aq, (1—A)q,y3,Ya, - - -, Y&) 1S a non-decreasing function of A for A € (0,1/2].

In our problem, F;, is clearly a symmetric function of p. Hence it suffices to fix ps,...,pn,
define p; = Ag and p; = (1 — A)gq for some A € (0,1) where ¢ =1 — (p3 + ...+ pn) and show
that Fy, is non-decreasing in A for A € (0,1/2]. To avoid trivialities we assume that 1 < m < n.

Note that, by (4) and (15),
F, = Gmi1/Gm. (23)

Further, by the same arguments used in the derivation of (17),

Crm = G2 + mgGL?} 4+ m(m - 1)@?A(1 - )G (24)
Hence,
d
750 = (1 - 2X)¢"m(m - nei, (25)

Of course, Gy 41 and %Gm+1 are obtained from the above expressions by replacing m by m—+1.
We have to prove that

4G
dx G,

11



which is equivalent to
d d
GmﬁGm-I—l > Gm+1 ﬁGma

which, by (24) and (25) and the fact that A € (0,1/2], is equivalent to

(GR 4+ meGl? 4 m(m — 1)@2A(1 - NG x (m+ 1)L

>

(G + (m+ 1)GR™ + m(m + 1)@?A1 - NG x (m - 1)657.
After removing common terms from both sides, the above inequality reduces to

(m+1)GE262 L mim o+ 1)g(c2)? (26)

(m — 1)G7{1}f1}G,{1}’_22} + (m—1)(m+ 1)qG,{,f’_2§G,{1}’2},

which follows from lemma 1. [ |

5 Counterexample

In [1], section 4.7, two properties, denoted by P1 and P2 are stated and used in the proof
of several theorems. The claim is made that P1 and P2 “are satisfied by any reasonable
algorithm” including LRU 3. However, we present a counter-example to P2 for LRU. Before we
state property P2 we introduce some additional notation.

If A is a replacement algorithm, then R(1)A is defined to be the replacement algorithm
corresponding to A, where item 1 resides permanently in main storage and algorithm A is
applied with respect to the m — 1 remaining positions in main storage and the n — 1 remaining

items.

It is not difficult to see that (see [1, sections 4.6 and 4.7]) the following relation is true for
many algorithms, including LRU

Fu(R(1)A,p) = (1 — p1)Fm-1(4,pM), (27)

where p(1) = (pa/(1 — p1),...,Pn/(1 — p1)). Property P2 is stated below.

®This material originally came from [2] where no such claim was made.

12



Property P2. Let p and p' be access distributions such that py > ps > ... > pn, p1’ > p2’ > p3,
P11‘|‘P2’ =D ‘|‘P2; pll > P, a'ndp'lt = Di, 1= 37' -, . Then

Fu(R(1)A,P') < Fu(R(1)A,p) (28)

whenever m < n.

We proceed with our counter-example. Let p and p’ satisfy the condition in P2. Let
g=pitp2=pi'+p,andps=ps=...=pa=p3' =ps' = ... =p = (1—q)/n. Let {yx};,
be a sequence of i.i.d. random variables with distribution given by p{!) (see (27)).

According to (2) we have, for A = LRU,

Fr_1(A,p")) = P(yo = 2 and the first m — 1 distinct values in
Y1,Y2, ... are different from 2)
+ P(yo # 2 and yo does not belong to the first m — 1

distinct values in y1,y2,...). (29)

Now fix all parameters, except n, which we allow to go to infinity (note that p and p’ depend
on n). As to the first term in (29), the event (the first m — 1 distinct values in y;,y2, ... are
different from 2) is contained in the event (y1,y2,...,Ym—1 are different from 2). However, the
difference between the two events is contained in the event (y1,¥s,...,Yym—1 are different from
2, but they are not all distinct), whose probability goes to 0 as n goes to infinity.

As to the second term in (29), the difference between the event (yo # 2 and yo does not
belong to the first m — 1 distinct values in y1, ys, . ..) and the event (yo # 2) is the event (yo # 2
and yo belongs to the first m — 1 distinct values in y;,y2, . ..), whose probability also goes to 0
as n goes to infinity.

Therefore, we have

lim Fr1(A,pM) = P(yo=2andyi,...,ym-1 #2) + P30 # 2),

P2 1-q\ma 1-4
e (= + -7
1-p 1—P1) 1-p;
Hence, by (27),

. 1—g¢
lim F,(R(1)A,p) = pa(-—)

n—oo 1-— P1

m-li1—g (30)

13



and analogously,

lim Fo(R(1)A, ) = ph(—— Ly 41— . (31)

n—oo 1-— Pl’

1;, so that, for m sufficiently

However, by the assumptions, p;’ > pj, it follows that 11_;:1 < 11__1,

large,

Fix such an m. According to (30) and (31) there exists an n such that
Fn(R(1)A,p) < Fu(R(1)4,P),

which contradicts P2.

Property P2 plays an important role in the derivation of other results in section 4.7 of [1].

For instance, in Theorem 14 it is stated that, for a large class of algorithms, including LRU,
the following holds:
Ifpy >pa>--->ppand 37, p; = a, then

Fn(A,p) < Fu(A,p)

where p;' = ... =p,/ = (1 - a)/s and ps,11' = ... = pn' = a/(n — s). Here A is taken to be
one of these algorithms. (For A = FIFO, this is a somewhat weaker version of corollary 1 in
section 2, see the remark after our corollary). A small modification of the construction of our
counterexample to P2 leads quite easily to a counterexample (for LRU) to the above stated
theorem 14 in [1]. Theorem 14 in turn is used to develop several distribution free upper bounds

on the miss ratio of LRU.

6 Summary

In this paper we have derived several interesting properties of the miss ratio for LRU and FIFO
in a 2-level storage model for the IRM. Using similar arguments, it is possible to derive the
convexity result for LRU to the transient case, i.e., the miss ratio for the i-th reference is a
convex function of the main storage size m under the assumption that the main storage is
empty prior to the first reference. Extending the properties for the miss ratio under FIFO to

the transient case appears to be more difficult.

14



Another direction worth pursuing is that of obtaining similar results for more interesting
reference models where the i-th reference may depend in some way on the previous 7 > 0

references (the IRM corresponds to this model with j = 0).
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