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Uniqueness and Mixing Properties of Gibbs Measures
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A short introduction to the theory of (finite-range) Gibbs measures and phase
transitions is given, starting with the famous Ising model. Some recent results
on uniqueness and mixing, based on percolation-type arguments, are summarized
and compared with more classical results.

1. THE ISING MODEL

The basic Ising model is a simple but very useful model of a ferromagnet. In
the 2-dimensional case it is as follows. Counsider a finite part A (for instance an
n x n box centered at O) of the square lattice (this is the graph whose vertices
are the elements of Z? and where two vertices share an edge iff their distance
is 1). Assign to each vertex i a variable o;, which can take the value +1 or —1,
and which represents the spin of the ‘elementary magnet’ at ¢. It is assumed
that only neighbours (vertices at distance 1) interact, namely in the following
way. Each pair ¢,j contributes an amount J to the total energy if o; # o,
and an amount —J otherwise. Here J > 0 is the interaction parameter of the
model. The total energy Hy is the sum of all such contributions. Further,
based on statistical/physical arguments, it is assumed that each configuration

o € {—1,+1}"* occurs with a probability proportional to exp H2(9) So we
have
exp Halo)
palo) = =, (1)

where Z is a normalizing constant. This probability distribution is called a
finite-volume Gibbs measure.

It is clear that this probability distribution ‘has a preference’ for neighbour
spins to be the same. It is also clear that if A is fixed and we make J very large,
then, with very high probability, there is either a vast majority of +1-spins or
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a vast majority of —1-spins. More surprising (and certainly not trivial) is that
if we first fix J at a sufficiently high value, then this symmetry breaking persists
for arbitrary large A. More precisely, there is a critical value J, such that if
J < J., the following, related, properties hold

— If we let the size of A go to co then the frequency of + spins tends (in a
strong probabilistic sense) to 1/2. Moreover, the +1-spins and —1-spins
are typically well mixed so that no macroscopic magnetic field is created.

— Suppose we have a so-called boundary condition 7. (This means that each
vertex ¢ on the outer boundary of A has a fixed value 7; which influences
the energy, and hence the distribution, by its interaction with its neigh-
bour inside A). Then, no matter which boundary condition we choose, the
probability that the spin at the origin is +1 tends to 1/2 as the size of A
tends to oo.

— There is a unique infinite-volume GZibbs measure. This means that all prob-
ability distributions on {—1,+1}%" which arise as (weak) limits of finite-
volume Gibbs measures, are the same.

On the other hand, if J > J., these properties no longer hold. In particular,
there is a p > 1/2 (depending on .J), such that if A is very large, then with
high probability either the fraction of +-spins is close to p or the fraction of
—-spins is close to p. (The behaviour in the 3-dimensional case can be more
complicated). This symmetry breaking causes a macroscopic magnetic field
(spontaneous magnetization). This behaviour for very large boxes corresponds
with the non-uniqueness of infinite-volume Gibbs measures.

Summarizing, we say that this model has a phase transition. Since these
phenomena correspond reasonably well to what is observed for real feromagnets,
this model, and several variations, have become very popular in theoretical
physics.

2. FINITE-RANGE GIBBS MEASURES; MARKOV PROPERTY

The Ising model is an example of a finite-range Gibbs model. In general we have
a single-site state space S, and for each A C Z¢ with diameter < r (the range
of interaction) we have an interaction function which assigns to each element
of 84 a real number, the contribution to the total energy H,. Then, as in
the Ising model, we consider the finite-volume Gibbs measure on S* defined
analogously to (1).

Again we can introduce a boundary condition, and one of the central ques-
tions is whether the influence of the boundary condition vanishes (as the size
of A grows to 0o) and the infinite-volume Gibbs measure is unique.

Gibbs measures originate from Statistical Physics. More recently they be-
came important in the context of statistical image analysis, randomized opti-
mization algorithms and certain large communication networks (KELLY [11]).
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In the last context the notion of phase transition is important because it re-
flects a certain instability: an event very far away (for instance the breakdown
of a node) may have a non-negligible impact throughout the network.

In fact, finite-range Gibbs measures are, from a mathematical point of view,
quite natural objects for the following reason. It is not difficult to check that
they satisfy the following Markov property. For each vertex x the conditional
distribution of o, given all other spins, depends only on the spins of the vertices
at distance < r from x. Moreover, the reverse als holds (which is not trivial): if
the above Markov property holds, then the distribution is a Gibbs distribution
with respect to an interaction with range r.

3. MIXING

As we stated before, an important question is whether the influence of a bound-
ary condition vanishes as the size of a box goes to co. More generally, we are
interested in convenient bounds for the influence of two sets A and B of vertices
on each other. First we have to quantify the notion ‘influence’. This is often
done as follows. We assume that we deal with a finite box A. Take two possible
spin configurations 7 and 7 on A, and consider the corresponding conditional
Gibbs ditributions on A \ A, restricted to B. Take their variational distance
and maximise this over all pairs 7, 7. We call the result the influence of A on B
(in A), denoted by fx(A, B). If the vertices « and y are neighbours (notation:
x ~ y), then, somewhat confusing, we define the local influence of z on y as
follows: let 7 and 7' be two configurations on the set of neighbours of y which
differ only at . Again take the variational distance of the corresponding dis-
tributons of o, and maximise over all such pairs 7, 7/. The result is denoted
by g(z,y). (It is important to note that each g(x,y) can be explicitly calcu-
lated when the interaction functions are given.) It can be shown (by a clever
argument) that f) is dominated by a function fj which satisfies, for arbitrary
z,y €A,

Fale,y) < file,i)gli,y). (2)

i~y

Related to this, it can be shown that if the supremum over j € Z® of ZiNj g(i,7)
is smaller than 1, then there exist C' and v > 0 (independent of A) such that
for all finite boxes A C Z9, and all A, B C A,

fA(AaB) S C|A| eXp—dist(A,B)7

where |A| is the size of A and dist(A, B) the distance between A and B. This
is an example of a mizing property. In particular, the boundary influence then
vanishes and there is a unique infinite-volume Gibbs measure. This is a classical
result of DOBRUSHIN [6].

A few years ago Van den Berg and Maes have obtained an alternative result
(see also VAN DEN BERG [2] and VAN DEN BERG & STEIF [3]). The idea was
to compare the ‘spread of influence’ with a percolation process. In percolation
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models each vertex z is, independent of the others, open with probability p,
and closed with probability 1 — p,. One is interested in the probability that
there is an open path between vertices at large distance of each other, and, in
particular, the existence of infinite open paths. If all p, are smaller than some
critical p. (which depends on the graph), then, with probability 1, only finite
open paths exist. Van den Berg and Maes have shown the following. Let, for
each vertex =z,

pz:me(Nz>I)> (3)

with f as above, N, the set of vertices at distance < 7 from z, and N, =

N; \ {z}. Like g(z,y), p. can be explicitly calculated when the interaction
functions are given. Then

where the right hand side is the probability of an open path from A to B in
the percolation model with parameters p,,z € Z<¢ (and ‘path’ refers to the
graph whose vertices are the elements of Z¢ and where two different vertices
share an edge iff their distance is at most 7). As a consequence, using results
from percolation theory, if sup, p. < p., then there exist C' and 7" > 0 such
that fy(A, B) < C'|A|exp 7' 4st(4B) and the infinite-volume Gibbs measure
is unique.

It appears that for some models, in particular low-range 2-dimensional hard-
core models and antiferromagnetic Ising models (where the interaction parame-
ter is negative, and hence there is a tendency for neighbours to disagree), this al-
ternative condition gives a better result than Dobrushin’s condition. Moreover,
this percolation-like approach appears to be more robust with respect to non-
homogeneity: If a non-zero fraction of the vertices j of Z? has Eiwj g(i,7) > 1,
then the inequality (2) is quite useless. However, if a non-zero fraction of the
vertices have large p,, then the right hand side of (4) may still be exponentially
small in dist(A, B) when the other vertices have sufficiently small p,.

4. RANDOM INTERACTIONS
The above mentioned robustness was exploited by GIELIS & MAES [9] for the
case of random interactions, i.e. when the interaction functions are not fixed
but first chosen according to some random mechanism, after which the Gibbs
measures for that particular choice are studied. Random interactions are used
to model disordered materials and networks (for instance, a dilute ferromagnet
where not every vertex but a fraction of the vertices contains an ‘elementary
magnet’; or a communication network which does not correspond with a regular
grid, but which does have much regularity in a statistical sense). Usually,
to make these models mathematically tractable, a lot of spatial indepence is
assumed, as well as translation invariance of the interaction process.

Related to what we said at the end of the previous section, if the vertices
have a positive probability (no matter how small) to have bad local interac-
tions, then (2) is not useful. BASSALYGO & DOBRUSHIN [7] give an elementary
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but complicated method which does give useful results in many of these sit-
uations. The approach of Gielis and Maes, which uses (4), seems to be more
intuitively appealing and elegant. In fact, the flexibility (towards randomness of
the interactions) of the percolation approach is related to the following: a per-
colation model with random, independent parameters pg,z € Z%is, essentially,
equivalent to one with fixed parameters equal to the ezpectations of the pls.
Although Gibbs models with random interactions lead, via (4), to percolation
models with random but locally dependent parameters, this local dependence
creates only minor difficulties. As a result, Gielis and Maes obtain a theorem
of the form that if for each @ the expectation of the right hand side of (3) is
sufficiently small, then (for almost all realizations of the interactions) there is
a unique Gibbs measure, and some kind of mixing holds.

5. RESCALING

DOBRUSHIN & SHLOSMAN [7] present a so-called constructive version of Do-
brushin’s uniqueness result. Instead of local influences on single sites it involves
local influences on boxes (e.g. cubes of size [), which we will not define here
precisely. They obtain a result of the form: if, for some [, each cube of size [
satisfies a local influence condition, then the system is, in some sense, mixing,
and, in particular, there is a unique Gibbs measure.

This naturally leads to the question if the percolation approach also has a
‘constructive extension’. Recently VAN DEN BERG [5] has, for the 2-dimensional
case, obtained a rescaled version of the Van den Berg-Maes result, and com-
bined this with the above mentioned idea of Gielis and Maes. The result for
random interactions is of the following form: if, for some n, the expected ‘influ-
ence’ of the boundary of a 3n x 3n square on the n X n square in its middle,
as well as the expected ‘influence’ of the horizontal sides of an n x n square
on the horizontal strip of width » — 1 in its middle (and the analog for verti-
cal instead of horizontal) are sufficiently small, then (almost surely) there is a
unique infinite-volume Gibbs measure, and some mixing property holds. (We
write ‘influence’ because it is not exactly the same notion of influence defined
before). Moreover, an extension (to random interactions) is obtained of the
interesting result (of MARTINELLI, OLIVIERI & SCHONMANN [12]) that, for
2-dimensional spin systems two mixing properties, of which one is seemingly
stronger than the other, are actually equivalent.
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