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Abstract. We compare the traditional and widely-used Chebyshev acceleration method with an 

acceleration technique based on residue smoothing. Both acceleration methods can be applied to a 

variety of function iteration methods and allow therefore a fair comparison. The effect of residue 

smoothing is that the spectral radius of the Jacobian matrix associated with the system of equations 

can be reduced substantially, so that the eigenvalues of the iteration matrix of the iteration method 

used are considerably decreased. Comparitive experiments clearly indicate that residue smoothing is 

superior to Chebyshev acceleration. For a model problem we show that the rate of convergence of 

the smoothed Jacobi process is comparable with that of ADI methods. 

The smoothing matrices by which the residue smoothing is achieved, allow for a very efficient 

implementation, thus hardly increasing the computational effort of the iteration process. Another 

feature of residue smoothing is that it is directly applicable to nonlinear problems without affecting 

the algorithmic complexity. Moreover, the simplicity of the method offers excellent prospects for 

execution on vector and parallel computers. 

1. FUNCTION !TERA TION METHODS 

In [2] a Jacobi-type iteration method for solving nonlinear elliptic difference 
equations f(u)=O is described which is essentially based on function evaluation 
without requiring the solution of linear systems during the successive iterations. The 

(*) The investigations were supported by the National Research Council (CNR) of Italy. 



70 

function values to be evaluated are smoothed residue values Sf, where S is a 
smoothing matrix. This function iteration method (smoothed Jacobi iteration 
method) is extremely simple to implement on a computer and highly vectorizable on 
vector computers. The numerical experiments reported in [2] show that smoothed 
Jacobi iteration is many times faster than conventional Jacobi iteration, indicating 
that it may be a competitor to other, more sophisticated, function iteration methods 
for solving nonlinear elliptic difference equations. It is the purpose of this paper to 
show that smoothed Jacobi iteration is really faster than function iteration methods 
with a comparable algorithmic complexity. As a reference method we chose the 
Chebyshev acceleration method applied to Jacobi iteration with automatic estimation 
of the dominant eigenvalue in order to provide the eigenvalue interval of the 
Jacobian matrix ()f/ou needed by the method. Like smoothed Jacobi iteration, 
Chebyshev-accelerated Jacobi iteration vectorizes well on vector computers. 
However, its implementation is more complicated and it turns out that smoothed 
Jacobi iteration is much faster both for linear and nonlinear problems. 

We have tried to accelerate Chebyshev-accelerated Jacobi iteration by applying 
a technique for eliminating dominant eigenvectors from the iteration error. Since 
the dominant eigenvalue is automatically determined, such an elimination technique 
does not complicate the method further. Although we found a reduction of the 
number of iterations compared with the Chebyshev method without elimination, 
smoothed Jacobi iteration is still markedly faster. 

We then tried to improve the smoothed Jacobi iteration method by applying 
Chebyshev acceleration, to obtain Chebyshev-accelerated smoothed Jacobi iteration. 
The results were disappointing. The generally small reduction of the number of 
iterations does not justify the increased implementational complexity. 

Finally, we investigated whether it pays to replace Jacobi iteration by SSOR 
iteration, to obtain smoothed SSOR iteration. This method requires the evaluation of 
the Jacobian matrix and is therefore not a true function iteration method any more. 
Consequently, the convergence improvement should be sufficiently large in order to 
justify the increased complexity of the method. We found that, when compared with 
the smoothed Jacobi method, the smoothed SSOR iteration (provided with optimal 
relaxation parameters) is slighter faster; however, the price to be paid seems not 
worth the additional effort, and we refrained from a comparison of the Chebychev
accelerated SSOR and the smoothed SSOR methods. 

Our conclusion is that smoothed Jacobi iteration is an extremely attractive and 
efficient method, particularly on vector computers, and that nonlinearities in the 
system to be solved neither destroy the high rate of convergence, nor increase the 
algorithmic complexity. We do not claim that this method is faster than, e.g., 
multigrid methods. However, such methods, even when the underlying relaxation 
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method is based on function iteration, require considerably more implementational 
effort and are less vectorizable than smoothed Jacobi iteration. In a forthcoming 
paper we will report on a performance evaluation of smoothed Jacobi iteration on 
vector computers. 

In the remainder of this section we shall briefly describe Chebyshev acceleration 
with automatic eigenvalue estimation and elimination of dominant eigenvector 
components in the iteration error, and the idea of residue smoothing. In the Sections 
2 and 3 we illustrate these techniques for a few linear and nonlinear examples. 

1.1. Chebyshev acceleration 
Consider a stationary, linearly convergent one-step iteration method 

(1.1) Un+l = F(un), n;?:: 0, 

where F(u) = u, for finding the solution u of the equation 
(1.2) f(u) = 0. 
It is explicitly assumed that the iteration function F does not depend on n, and that 
C1F /ou essentially has a real eigenvalue spectrum. By applying the well-known 
Chebyshev acceleration method to (1.1) we obtain the two-step semi-iterative 
method (cf. ,e.g., [1]) 
(1.3) Vn+l = Pn Vn + ~ F(vn) + rn Vn-1 , n;?:: 0, 
where the coefficients are defined by: 

PO= wo I (wo + w1), Pn = 2wo Tn(wo+w1) I Tn+1( wo+w1), n;?:: 1; 
(1.4) qo=l-po, qn=2w1Tn(wo+w1)/Tn+1(wo+w1), n;?::l; 

ro = 0, rn = 1 - Pn - ~. n ;;:: 1. 
Here, T n denotes the first-kind Chebyshev polynomial of degree n and 
(1.5) wo := - (b +a) I (b - a), w1 := 2 / (b - a), 

where, usually, [a,b] denotes the eigenvalue interval of the Jacobian matrix C1F/ou. 
One of the end points, say a, of the eigenvalue interval corresponds to the spectral 
radius of C1F /ou, and can be estimated by Gerschgorin's disk theorem. The 
estimation of b is discussed in the next subsection. 

1.2. Dominant eigenvectors 
In this subsection, we discuss the estimation of the eigenvalue corresponding to 

the dominant eigenvector. This dominant eigenvalue will provide us with an 
estimate of b. Furthermore, we consider the elimination of the dominant 
eigenvector in an attempt to speed up the Chebyshev acceleration process. 
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1.2.1. Estimation of dominant eigenvalues 
Introducing the iteration error 

(1.6) en = Vn - u, 
and substitution into (1.3) yields, in first approximation, 
(1.7) en"" Pn(dF/du) Eo, Pn(x) := Tn(wo + w1x) I Tn(wo + w1), 
where dF/()u denotes the Jacobian matrix of F evaluated at the solution u; we shall 
assume that ()F/()u exists in the neighbourhood of u and does not vanish, and that the 
initial approximation is already close enough to the true solution, so that second 
order terms can be neglected. 

Suppose that we choose the interval [a,b] such that all eigenvalues of ()F/du are 
in [a,b] except for one eigenvalue :v > b, with eigenvector e*. Then, for sufficiently 

large n, all eigenvector components occurring in the eigenvector expansion of the 
initial iteration error will be significantly reduced in magnitude, except for the 
eigenvector e*; this eigenvector component will dominate the iteration error, i.e., 
(1.8) En"" Pn0-*) e*. 

We shall call the above procedure where all eigenvectors but one are reduced in 
magnitude the reduction phase of the iteration method. 

From relation (1.8), an estimate for the eigenvalue A,* can be derived (we shall 

call /.., * the dominant eigenvalue ). In the following, division of vectors is always 

understood to be carried out componentwise. 

Theorem 1.1. Let wo, w1 be defined by (1.5), and let the vector R be defined by 
R := (wo + w1 + [(wo + w1)2 - l]l/2)Li Vn I Ll Vn-1> 

where Ll denotes the forward difference operator. Then, a vector of A,* values is 
provided by 

A.* "" [R/2 + 1/(2R) - wol]/wi. 

where 1 denotes the unit vector (1, 1, ... , l)T. 

Proof. From the definition of Chebyshev polynomials we derive, for I..* > b, 

(1.9) Pn(I..*)"" [W(A.*)/W(l)]n, W(x) := wo + w1x + [(wo + w1x)2 - 1]112. 

By rewriting (1.8) forn-1 and n+l, forming the expression 
[En+l - En] I [ €.n - En_iJ, 

and by using (1.9), we find that A.* approximately satisfies the relation 

(l.10) W(A.*) 1 = W(l) Li Vn/ Li Vn-1 = R. 
Solving relation (1.10) for I..* yields the estimate given in the theorem. 
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When this theorem is applied in actual computation, we obtain as many estimates 
to the dominant eigenvalue A* as there are equations. The spread ll."A * of the interval 

[A *-ll.A *, A *+bi.A*] of these estimates can be used as an indication to what extent the 

iteration error is indeed dominated by e*. The actually used approximation to the 
dominant eigenvalue might be the arithmetic mean of the available estimates. 

1.2.2. Elimination of dominant eigenvectors 
Having found an approximation to the dominant eigenvalue during the reduction 

phase of the iteration method, we can proceed with the elimination of the 
corresponding eigenvector e* from the iteration error (we shall call this process the 
elimination phase of the iterative method). Below, we briefly discuss a few 
possibilities for eliminating dominant eigenvectors. 

One possibility is to apply again the Chebyshev acceleration process (1.3) - (1.4) 
with the last computed iterate as new initial approximation and with modified values 
for the parameters wo and w1. 

Theorem 1.2. Let in (1.4) the parameters wo and w1be defined by 
(1.11) wo =[a cos(n/(2n)) +A*] I [a-A*], w1= (cos(n/(2n)) + 1) I ('A* - a), a< A*, 

where A* is the eigenvalue of dF/du corresponding to the eigenvector e* 

dominating the iteration error £0. 

(a) Then the Chebyshev method (1.3) - (1.4) eliminates e* from the iteration error 
after exactly n iterations. 
(b) If the number of iterations is sufficiently large, i.e., if 
(1.12) n ~ 1t [2 arccos([2A* - a - l] I [1 - a])]-1, 

then the method is stable in the sense that no eigenvector components of the iteration 
error are amplified. 

Proof. The expressions (l.11) immediately follow from the conditions that the 
polynomial Pn(x) should satisfy the relations: 

Pn(a) = ± 1/ T nCwo + w1), PnO" *) = 0. 

From these requirements we deduce 
wo + w1 a= -1, wo + w1 A*= cos(rc:/(2n)), 

resulting in (1.11). 
The stability condition (1.12) follows from the requirement wo + w1~ 1. II 

A disadvantage of the above elimination procedure is the computational effort 
involved by forming a new set of iterates. This leads us to a procedure based on 
iterates already computed during the reduction phase of the iteration method. 

Consider the k+l iterates Vn-j+l> j = 0, ... , k computed by (1.3), and define 
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(1.13) v* = Q(E) Vn-k+l> 
where E is the forward shift operator and Q is a polynomial of degree k satisfying 
the condition Q(l) = 1. For this k-step extrapolation formula the foilowing theorem 
holds: 

Theorem 1.3. Let A be the matrix defined by A:= diag (.6. Vn/.6. Vn-1), and define 

E* := v* - u; then 

llE*ll2 ~ p(Q(A)) llEn-k+1ll2, 

where II 112 denotes the spectral norm and p the spectral radius. 

Proof. Using Q(l)=l we find from (1.13) that 
(1.14) E* = v* - u = Q(E) Vn-k+l - u = Q(E) Vn-k+l - Q(E) u = Q(E) En-k+l> 

and using (1.7), 
(1.15) E* = Q(E) Pn-k+1(CJF/au) EQ. 

If e* dominates the iteration error, then it follows from (1.8) that 
E* = Q(E) Pn-k+l (A.*) e*, 

so that, by virtue of (1.9) , we obtain 
E* = [W(A.*)/W(l)]n-k+l Q(W('A*)/W(l))e* = Pn-k+l (A.*) Q(W('A*)/W(l))e*. 

Again using (1.8), and replacing W("A.*)/W(l) by a diagonal matrix A with elements 
defined by the components of the vector .6. Vn/.6. Vn-1' we arrive at the relation 

E* = Q(A) En-k+l> 
The assertion of the theorem is now immediate. • 

This theorem suggests that we should choose Q such that its magnitude is small 
in the interval 
(1.16) [a.*-.6.a.*, a.*+.6.a.*] := [min{.6. Vn/.6. Vn_i}, max{.6. Vn/.6. Vn_i}]. 

We remark that, if k=l, then, by requiring Q(a.*)=0, we obtain the famous one-step 

extrapolation formula of Lyustemik [4 ]. 
It follows from the recursion (1.14) that the extrapolation formula (1.13) is 

stable if the characteristic polynomial xk+ 1 - Q(x) has its roots on the unit disk, those 
on the unit circle being simple. It can be shown that, for formulas based on only a 
few back iterates and for a* close to 1, this requirement is easily violated if we 

require at the same time that Q is small in magnitude in the interval (1.16). More 
stable formulas can be constructed by increasing k. However, this means that more 
storage is needed to store the necessary iterates. 

In actual computation, instabilities introduced by a possible unstable 
extrapolation formula (l.13) are usually compensated by "overstability" of the 
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reduction phase. To be more precise, we consider the eigenvalues of the 
amplification matrix occurring in (l.15), i.e. the matrix 

Q(E)Pn-k+l (()F/()u) = Q(E)[Tn-k+1(wo + w1 ()F/()u )ff n-k+1(wo + w1)]. 
Let Q* be the polynomial obtained from Q by replacing all the coefficients of Q by 
their absolute values. Then, all eigenvalues a of this amplification matrix 

corresponding to eigenvalues of ()F/ou lying in [a,b] satisfy the inequality 
lal::::; Q*(E)[lff n-k+1Cwo + w1)] ""2 w - (n-k+l) Q*(l/w), w := W(l), 

where W(l) is defined as in (1.9). From this inequality we deduce that the 
eigenvector components of the initial error are certainly not amplified at the end of 
the reduction/elimination phase if 
(1.17) n ~ k - 1 + logw(2 Q*(l/w)). 

The following theorem presents the lower bound on n obtained when this result is 
applied to the case where Q has all its zeros at a*. 

Theorem 1.4. Let Q be given by 
Q(x) = [(x - a*)/(1 - a*)]k, 

where a* is defined in (1.16) and is assumed to be less than 1.Then, at the end of . 
the reduction! elimination phase, no eigenvector components of the initial error are 
amplified if 

n ~ k logw((l + wla*I) I (1 - a*))+ logw(2) - 1, w := W(l), 

where W(l) is defined in (1.9). 

Proof. It follows from the definition of Q that 
Q*(x) = [(x + la*I) I (1 - a*)]k. 

Substitution into (1.17) yields the lower bound on n stated in the theorem. II 

In our experiments, we employed two-step extrapolation formulas because we 
need already three iterates for estimating the dominant eigenvalue. 

1.3. Residue smoothing 
In [2] iteration methods employing residue smoothing have been analysed for 

solving nonlinear elliptic systems f(u) = 0. Here, we apply the same technique to a 
more general class of iteration methods. Given a difference matrix D, a set of 
nonnegative integers r e JR., a set of relaxation parameters ror, and some basic 

iteration method with iteration function 
G(u) := u + M f(u), 

where M is the characterizing matrix. Then, we define the class of smoothed 
iteration methods 
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(1.18a) Un+l = F(un), n;;?: O; F := IT Gr, 
relR 

(1.18b) Gr(u) := u + ffir M Sr f(u), 
(1.18c) Sr:= 4-r [T2r(I+2D) - I] (2D)-1, Tm(x) := cos(m arccos(x)), 
where Sr is the so-called smoothing matrix (notice that Sr reduces to the identity 

matrix if r=O). 
Thus, the iteration formula (1.18) may be interpreted as a cycle of smoothed 

basic iteration steps. 
1.3.1. The smoothing matrix 

The smoothing matrix Sr is a polynomial in D and completely defined as soon as 

Dis specified. We remark that Dis allowed to be a singular matrix because, in spite 
of our notation, its inverse does not need to exist. In order to simplify the notation 
we shall continue to write D-1 in the various formulas without actually requiring 
that it exists. 

The matrix D is a difference matrix the eigenvalues of which are assumed to be 
in the interval [-1,0]. As a consequence, the eigenvalues of the smoothing matrices 
are in the interval [0,1]. In one-dimensional problems (two-point boundary value 
pfoblems), one may consider the difference matrix 

0 
1 -2 1 

(1.19) D := (1/4) 

1 -2 1 
0 

This matrix generates smoothing matrices which leave the first and last component 
of the vector to which they are applied unchanged. Therefore, they are suitable in 
cases where the first and last component of the vector to be smoothed should not 
change. For example, we mention the case of a residue vector of which the first and 
last component vanish, that is, the case where the first and last equation of the system 
f(u) = 0 represent Dirichlet boundary conditions (we observe that in such situations 
the first element of the first row and the last element of the last row in D may be 
replaced by any value, so that D becomes nonsingular). 

In actual computation, it is generally not feasible to precompute the smoothing 
matrix because of storage requirements. On the other hand, in the case where D is 
defined by (1.19), the matrix Sr exhibits a regular pattern which can be exploited 

for a an efficient implementation. For example, the first three smoothing matrices 
are respectively given by So=l, 



S1 = (1I4) 

and 

4 
1 2 1 

16 

1 2 1 
4 

9 2 2 21 
424321 
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S2 = (1 I 16) 1 2 3 4 3 2 1 
01234321 
001234321 

These examples suggest the precomputation of the first few rows of the smoothing 
matrices until the pattern becomes regular. Alternatively, we can generate the 
smoothing matrices by exploiting factorization properties of Chebyshev 
polynomials. This approach seems to be more attractive. By using the identity 

T1r+l(z) = T1(T2r(z)), 
we derive from (1.18c) the recursion 

Sr+l =(I+ 4r D Sr) Sr. 
By writing Sr+ 1 = Fr+ 1 Sr we arrive at the following theorem which expresses the 
smoothing matrix Sr as a product of r factor matrices Ff 

Theorem 1.5. Let D be any difference matrix and define the factor matrices 
Fi:= I+ D, Fj+l :=(I - 2Fj)2,j;:: 1. Then Sr= Fi. F1 . .... Fr. • 

From this theorem we conclude that, if the factor matrices are precomputed, 
then the smoothing matrix can be generated by r matrix-vector multiplications. For 
a number of difference matrices D and for r not too large (in a typical case r should 
not exceed log2(1/.6.x) where Lix is the mesh size), it turns out that the corresponding 

factor matrices are almost as sparse as D itself, so that the application of the 
smoothing matrix involves only r matrix-vector multiplications with matrices of 
similar complexity as D. For larger values of r one may proceed as follows. Let Sq 
be the smoothing matrix which can 'conveniently' be generated by means of 
Theorem 1.5. Then, by employing the factorization formula 
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T2q+j(z) = Ti_j(T2q(z)), 

we find that 
Sq+j := 4-q-j [Ti_j(I+22q+1D Sq) - I] (2D)-1. 

This formula expresses Sq+j in terms of a polynomial of degree at most 2i of D and 
Sq. In this way it is in principle possible to generate smoothing matrices of higher 

indices. 
The precomputation of the factor matrices is relatively easy in the case of one

dimensional problems and can often be done by hand. In higher dimensional elliptic 
problems with irregular geometries, this is less attractive. However, by considering 
the problem as a system of coupled two-point boundary-value problems, one may 
apply one-dimensional smoothing operators (e.g., based on (1.19)) to the successive 
problems (cf. [2]). 

1.3.2. The matrix M 
By means of the matrix M, several basic iteration methods can be selected. Let 

the matrix ()f ;au be split according to 
{)f/()u = C + L + U or (1f/<1u = H + V, 

· where C is diagonal, Land U are lower and upper triangular, and H, V correspond 
to the ADI splitting of A (or any other 'convenient' splitting). In terms of these 
splitting matrices, various matrices M may be defined. In Table 1.1, a few examples 
are listed. Here, rn , filH and my are parameters which depend on the spectrum of 
ar;au (cf. [l]). 

Jacobi-type: 
Gauss-Seidel: 
SOR: 

SSOR: 

ADI: 

Table 1.1. Possible M matrices. 

M := diagonal, e.g., M = -C-1 
M := - (C + L)-1 
M := - (C/m + L)-1 

M := - (2/rn - 1) (C/rn + U)-1 c (C/rn + L)-1 

M := - (UJH +my) (V + rnyI)-1 (H + tiJHI)-1 

We observe that instead of solving f(u) = 0, we can alternatively solve the 
preconditioned system Pf(u) = 0. If we replace the matrix MSr by MSrP, then the 

resulting iteration method is given by (1.18). In particular, we may set M =I and P 
equal to one of the matrices specified above. 
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1.3.3. The model situation 
The choice of the relaxation parameters in (1.18) will be based on the model 

case where D equals the difference matrix defined by the normalized Jacobian off: 
ci.20) o := p-1 ar;au, 
with p denoting the spectral radius of Clf/Clu. However, we emphasize that the matrix 

D actually used in practice is a very rough approximation to this normalized 
Jacobian; for example, the matrix defined in (1.19) turned out to be rather effective 
in the case of smoothed Jacobi iteration of Dirichlet problems (cf. [2]). The damping 
of the iteration error, is largely determined by the Jacobian matrix aF;au in (1.18): 

(1.21) CJF/Clu =TI aGr/du = n [I+ COr M Sr ()f/du]. 
r r 

Substitution of (1.20) into (l.18c) and the resulting expression for Sr into (1.21) 

yields 
(1.22) dF/Clu =TI [I+ p ror 4-rM [T2r(I+2D) - I]/2]. 

r 

Thus, given the matrices M and D, we are faced with the problem of choosing a set 
of relaxation parameters { ror} such that the eigenvalues of aF /Clu are small in 

magnitude. These eigenvalues will be called damping factors of the iteration 
method. In Section 3 we will derive suitable relaxation parameters for the Jacobi 
case. The resulting iteration scheme belongs to the class of function iteration 
methods, which, essentially, only require the evaluation of values of f. In Section 4 
we describe a numerical approach to obtain relaxation parameters for the SSOR 
method. Formally, these schemes do not belong to the class of function iteration 
methods, although the amount of linear algebra for these schemes is rather modest. 
Still further away from this class is the ADI case, which involves the solution of 
tridiagonal systems. We did not consider this method; an analysis of smoothed ADI 
iteration may be found in [5]. 

First, however, for the sake of comparison, we give results obtained by 
Chebyshev-accelerated Jacobi iteration which still belongs to the most efficient 
conventional function iteration methods available in the literature for solving 
elliptic equations. 

2. CHEBYSHEV ACCELERATION OF JACOBI ITERATION 

We shall present numerical experiments with the Chebyshev acceleration 

method of conventional Jacobi-type iteration with automatic estimation of the 
dominant eigenvalue. The most simple choice of the matrix M characterizing a 
Jacobi-type iteration method is M = 21/p, where p is the spectral radius of ar;au. 
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Alternatively, one may choose M = - [diag(af/au)]-1= - c-1. We emphasize that, 
updating the matrix M during the iteration may result in an iteration function F 
which is n-dependent, contradicting our assumption that F is stationary (see Section 
1.1). If no Chebyshev acceleration is applied, then, at the cost of some additional 
computational effort, this strategy may improve the convergence (see Section 3.2). 
However, if Chebyshev acceleration is used, then the matrix M should be evaluated 
in the first step of the reduction phase. 

First, we apply the Chebyshev-accelerated Jacobi method without elimination of 
the dominant eigenvectors. In the next subsection we shall illustrate the effect of the 
elimination process. 

2.1. Chebyshev acceleration with automatic estimation of the 
dominant eigenvalue 

The following strategy was applied: 
(i) Initial approximation: linear interpolation of the boundary values. 
(ii) Chebyshev reduction phase: application of the Chebyshev 

acceleration process {(1.3) - (1.5)} where Fis defined by (1.18) with R={O}, 

roo=l/2, a=O, and where the value of b occurring in { (1.3) - (1.5)} is such that the 

dominant eigenvalue A.* is outside the interval [a,b] (observe that this choice of R 

results in a conventional iteration method because the only smoothing matrix 
Sr= So= I). In our experiments we chose b=0.95. 

(iii) Restart criterion: restart of the reduction phase with adjusted value 
of bas soon as the A.*-estimates obtained in two successive iterations (cf. Theorem 

1.1 and the discussion following this theorem) satisfy the condition 11/... * n - A.* n-1 I< 
< Tl A.*n· The new value of b is defined by b='A.*n+O(l- A.*n). The strategy 

parameters TJ and o are specified in the tables of results. 

(iv) Stopping criterion: termination of the iteration process as soon as 
the residue satisfies the condition llf(un)lloo ~ 10-2 (.6.x)2, where .6.x denotes the 

mesh size of the grid defining the elliptic difference equations. 
Consider the model problem Uxx= g(x) with Dirichlet boundary conditions at 

x=O and x=l, that is the system 

1 uo u(O) 

1 -2 1 u1 (.6.x2)g1 

(2.1) = 

1 -2 1 Um (.6.x2)gm 
1 Um+l u(l) 

f 
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where Ax := 1/(m+l), gj := gGAx), and where u(O) and u(l) are prescribed 

boundary values. 
We start with this model problem where 

(2.2) g(x) = 6x, u(O) = 0 and u(l) = 1. 
For future reference, we first give the results of the conventional Jacobi method for 
a few values of Ax. The numbers of iterations needed to satisfy the stopping 
criterion (iv) are given in Table 2.1. 

Table 2.1. Conventional Jacobi method for the model problem with M= (Ax)2 l/2. 

Ax=l/16 
1190 

Ax=l/32 
5342 

Ax=l/64 
23675 

Next, we apply the Chebyshev acceleration, following the above mentioned strategy. 
For a few values of Llx, ri and 8, the numbers of iterations are listed in Table 2.2. 

The smallest number on each grid is printed in bold type. 

Table 2.2. Chebyshev-accelerated Jacobi method for the model problem { (2.1)
(2.2)} with M = (Ax)2 I I 2 

10-2 
10-3 
10-4 
10-5 
10-6 

Ax=l/16 

o=o o=.1 0=.25 

159 148 131 
72 67 78 
74 66 79 

79 66 
71 

Ax=l/32 Ax=l/64 

8=0 0=.1 0=.25 0=0 o=.1 0=.25 

658 
265 242 199 983 
198 160 163 694 643 555 
166 158 175 554 501 388 
173 161 180 402 394 417 

The second example is a nonmodel problem originating from the nonlinear 
problem 
(2.3) (exp(u))xx - 5 x3 (4 + 5u) exp(u) = 0, u(O) = 0, u(l) = l, 
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the exact solution of which is given by u(x)=xs. This problem is discretized on the 
grid points {jti..x} using symmetric differences. 
Again, we start with the results obtained by the conventional Jacobi method: 

Table 2.3. Conventional Jacobi method for problem (2.3) with M= (.6.x)2 I I (2e). 

b.x=l/16 
1925 

ti..x=l/64 
38117 

The effect of the Chebyshev acceleration on this problem is shown in Table 2.4. 

Table 2.4. Chebyshev-accelerated Jacobi method for problem (2.3) with 
M = (b.x)2 I I (2e). 

io-2 
10-3 
10-4 
10-s 
10-6 

fi..x=l/16 

O=O o=.1 8=.25 

415 
415 392 356 
151 137 98 
151 137 98 
212 191 213 

fi..x=l/32 

8=0 0=.1 8=.25 

1417 
1222 
1235 1169 1064 
1235 1169 1064 
389 359 278 

Llx=l/64 

8=0 8=. l 0=.25 

2917 2763 2513 
2417 2289 2081 
1177 1001 

In performing the above experiments, we observed that the estimates A* n converged 

from below to the true value. This explains why the best results are obtained by 
slightly overestimating (i.e., by setting 8 >0) the final estimate. Furthermore, the 

convergence of A* n happened to be very slow. Therefore, it is not surprising that a 

rather stringent restart criterion (e.g. T) E [ 1Q-6,1 o-5]) results in an optimal 

performance. 

2.2. Chebyshev acceleration with automatic elimination of dominant 
eigenvectors 

Instead of the restart criterion (iii) of the preceding subsection we now use: 
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(iii) Elimination phase: application of a three-step elimination formula of 
the form (l.13) with characteristic polynomial defined according to Theorem 1.4, 
and restart of the reduction phase (ii) with adjusted value of b. The elimination 
formula is applied as soon as (1.17), with k=3, is satisfied, and if the A.*-estimates 

obtained in two successive iterations satisfy the condition IA.* n - "A* n-1 I < Tl 'A* n· The 

new value of b is defined by b = "( /..., * 0 , where the strategy parameter"( is specified in 

the tables of results. The analogues of the Tables 2.2 and 2.4 are given below. The 
numbers in brackets denote the number of times that a dominant eigenvector has 
been eliminated. A comparison of the results listed in these tables with those of the 
Tables 2.2 and 2.4 reveals that the reduction of the number of iterations is rather 
modest and does not seem worth the additional implementational effort. 

Table 2.5. Chebyshev-accelerated Jacobi method for the model problem { (2.1)
(2.2)} with M = (L\x)2 I I 2. 

L\x=l/16 L\x=l/32 L\x=l/64 
y=.95 y=.99 y=.95 y=.99 y=.95 y=.99 

10-2 55(5) 75(3) 141(10) 174(8) 483(23) 438(12) 
10-3 52(3) 71(3) 135(7) 188(7) 445(21) 435(11) 
10-4 49(2) 66(2) 212(7) 156(5) 856(21) 456(9) 
10-s 49(2) 57(1) 192(4) 135(3) 1074(10) 477(7) 
10-6 62(2) 56(1) 209(3) 129(3) 

Table 2.6. Chebyshev-accelerated Jacobi method for problem (2.3) with 
M = (L\x)2 I I (2e). 

10-2 
10-3 
10-4 
10-s 
10-6 

L\x=l/16 

y=.95 y=.99 

96(6) 124(5) 
137(6) 121(4) 
109(4) 100(3) 
130(4) 94(2) 
130(4) 183(1) 

L\x=l/32 

y=.95 y=.99 

303(16) 265(8) 
298(14) 261(8) 
463(14) 263(6) 
590(6) 392(4) 
491(4) 401(3) 

L\x=l/64 

y=.95 y=.99 

611(31) 622(14) 
656(30) 640(14) 

1258(31) 673(14) 
1963(19) 1025(13) 
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3. SMOOTHED JACOBI ITERATION 

As we have seen, if M is chosen to be a diagonal matrix, then the basic iteration 
method is of the Jacobi-type. In the previous section, we selected R = { 0}, resulting 
in Sr= I, i.e., an unsmoothed process. In this section we shall exploit the matrix Sr, 

that is we consider a smoothed Jacobi-type iteration method. 
We shall first derive suitable relaxation parameters for the model situation 

(1.20), and then we shall show, by means of numerical experiments, that these 
parameters are also effective in norunodel cases. 

3.1. Derivation of relaxation parameters 
Let M be the identity matrix (or any diagonal matrix with constant diagonal 

entries), and letµ, a.r(µ) and a(µ) denote the eigenvalues of D, oGrfdu and oF/du, 
respectively. An inspection of the zeros and extreme values of the functions a.r(µ) 
reveals that, if the set R contains an integer r, then it should contain the integers 
0, ... , r-1, otherwise a(µ) assumes values 1 in the interval [ -1,0). This leads us to 

define the set R by successive integers starting with r=O. From the expression (1.22) 
we obtain the following theorems: 

Theorem 3.1. Let D and of/ou be related according to (l.20), let R := { 0, 1, 
... , q}, and let p<0i4-rM =I for all r in R. Then the Jacobian matrix dF/du of the 

iteration function in (1.18) and the corresponding damping factors are respectively 
given by Sq+ 1 and by 

a(µ):= 2-(2q+3) µ-l[T2q+l(l + 2µ)-1], 

where µruns through the eigenvalues of D. 

Proof. On substitution of Rand p00r4-rM =I into (1.22) we obtain 
dF/du =TI [I+ T1r(I + 20)/2 ]. 

r 

Using a factorization formula for Chebyshev polynomials of degree m = 2P (cf. [2]): 
p-1 

Tm(z) = 1 - m(l-z) .n (1 + T2i(z)), 
J-;o 

we find that dF/du = Sq+l which yields the assertion of the theorem. • 

Theorem 3.2. Let the conditions of Theorem 3.1 be satisfied, let the largest value 
in the interval [-1,0)where the function a(µ) assumes a maximum value be denoted 

by µb, and let µ 8 be the largest value in [-1,0) where a(µ) = a(µb).Then the 

following assertions hold : 
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(a) If the eigenvalues µ of D satisfy the inequality -1 ~ µ ~ µs, then the spectrum 

of the matrix aFJau is contained in the interval [a,b] := [0, ex.(~)]. 
(b) For all q we have the approximation µ8 "" [cos(1t/2q) - 1]/3"" -4-qn2/6. 

Proof. It follows from Theorem 3.1 that the eigenvalues of the matrix aFJau are 
given by ex.(µ), whereµ runs through the spectrum of D (see Figure 3.1). From the 

definition of µb and µs it follows that 

0 ~ ex.(µ) ~ ex. (µb) = ex. (µs) for all µ E [-1, µs] 

proving part (a) of the theorem. 
A numerical calculation reveals that 

µs"" 2 µzf3, 

with µz the largest value in the interval [-1,0) where the function ex(µ) assumes a 

zero value. This leads to the approximation given by part (b ). • 

"' a(µ) ;;; 

0 

µ 

Figure 3.1. Behaviour of the function ex(µ) for q=3 

Recalling that the eigenvalues of aF /Clu are the damping factors of the iteration 
method, it is of interest to see to what extent the eigenvalue interval [a,b] = [O,b] of 
aFJau is reduced. In Table·3.l the numerical values of b for a few values of q are 
given. These values show that for q ;;:::; 3 this interval is almost constant and 
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approximately given by [0,.05], provided, of course, that the eigenvalues of D are 

less than µ 8. 

Table 3.1. Numerical values of µsand b =a (µs) 

q = 1 2 3 4 5 6 7 8 

- µs = 1;3 .9710-l .2510-l .6410-2 .1610-2 .4010-3 .9910-4 .2510-4 

b = .0741 .0525 .0485 .0475 .0473 .0472 .0472 .0472 

The following example, illustrates this result. 

Example 3.1. Consider the system (2.1) arising from the equation Uxx= g(x) with 

Dirichlet boundary conditions at x=O and x= 1. Let the matrix D be defined by 
(l.19), then the condition (1.20) is satisfied with p = 4(.6.x)-2. By virtue of the 
Dirichlet boundary conditions incorporated in (2.1 ), we can restrict the space of 
residue vectors to the subspace of vectors with vanishing first and last component. 
Let D* be the matrix obtained by omitting the first and last row and column of D. It 
is easily verified that, in this subspace, D and D* have the same set of eigenvectors 
and eigenvalues. It is well known that D* possesses eigenvalues given by 

µj* = - [1 - cos(jx/(m+l))]/2, j = 1, ... , m, 

where m is the order of the matrix D*. Thus, the relevant eigenvalues of D are in the 
interval (-1, - [1 - cos(x I (m+ 1))]/2] ~ (-1, -x2/( 4 (m+ 1)2)]. 
A comparison with the bound µs given in Theorem 3.2 yields the condition 

m::;; (3 4q/2)1/2 - 1 = 2q -Vl.5 - 1. 
On the other hand, in order to preserve a simple structure of the factor matrices Fj 
we should require that 

q $ log2(1/ilx) => m ~ 2q - 1. 
(cf. the discussion of Theorem 1.5). This leads us to the conclusion that smoothed 
Jacobi iteration has damping factors bounded by .05 if q ~ 3 and if m satisfies the 
above inequalities. For future reference, we list the bounds on m for a few values of 
q (cf. Table 3.2). Ill 
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Table 3.2. Lower and upper bounds form for the model problem (2.1). 

q= 

m:?: 
m~ 

3 

7 
8 

4 

15 
18 

5 

31 
38 

6 

63 
77 

7 

127 
155 

8 

255 
312 

Next we consider the average rate of convergence of smoothed Jacobi for the above 
model problem, or more generally, for problems which satisfy the conditions of 
Theorem 3.1and3.2 (a). Then the following theorem holds. 

Theorem 3.3. Let the conditions of Theorem 3.I be satisfied, let the eigenvalues 
µof D satisfy the inequality -1 ~ µ ~ µ8, and let q:::::log2(l/.6.x) as .6.x--70, then the 

average rate of convergence of smoothed Jacobi iteration is given by c/ln(l/.6.x) 
where c =2.1 as .6.x--70. 

Proof. It follows from Table 3.1 that per iteration step the average reduction 
factor for the iteration error is given by r:=bl/(q+l)=.051/(q+l). Hence, the average 
rate of convergence is given by R:=-ln (r)=3/(q+l), so that for q::::log2(1/.6.x) we 

obtain R::::2.l/ln (1/.6.x). 

The condition that q should be as large as log2(1/.6.x) without violating the 

condition -1~µ~µ8 can be satisfied in case of the model problem considered in 

Example 3.1. In the case of two-dimensional model problems, these conditions can 
also be satisfied provided that we base the smoothing procedure on the successive 
application of one-dimensional smoothing matrices. In fact, the value of b will be 
slightly smaller than .05 resulting in a slightly larger value for c. For such problems 
it is of interest to compare the average rate of convergence of smoothed Jacobi with 
that of ADI methods. For the Peaceman-Rachford version of the ADI method it is 
known that the average rate of convergence is given by R::::c/ln (1/.6.x), where c is 
some constant greater than .777. Thus, we may conclude that smoothed Jacobi has 
the same order of convergence rate as the ADI method, but is much cheaper per 
iteration step because of the absence of implicit relations to be solved. 
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3.2. Numerical experiments 
In our numerical experiments, we applied Chebyshev acceleration of smoothed 

Jacobi iteration with prescribed interval [a,b] according to the following strategy: 
(i) Initial approximation: linear interpolation of the boundary values. 
(ii) Chebyshev reduction phase: application of the Chebyshev 

acceleration process {(1.3) - (1.5)} where Fis defined by (l.18) and (1.19) with 
00r=22r-l (r=O, ... ,q). These ffir parameters give rise to a zero a-value. The value of b 

is specified in the tables ofresults and q and mare chosen as allowed by Table 3.2. 
(iii) Stopping criterion: termination of the iteration process as soon as 

the residue satisfies the condition llf(un)lloo ~ 10-2 (~x)2, where ~x denotes the 

mesh size of the grid on which the elliptic difference equations are defined. 

As in the preceding section, possible choices of the matrix M are M = 2I/p, 
where p is the spectral radius of of/CJu, or M = - [diag(<1f/ou)]-1. 

Again we start with the model problem defined by (2.1) with g(x) = 6x, u(O) = O 
and u(l) = 1. In Table 3.3 the numbers of iterations needed to satisfy the stopping 
criterion are listed. It turns out that if smoothing is used, then the exact solution of 
the system of equations is obtained after just one cycle of smoothed Jacobi iterations, 
that is, after one single application of the iteration formula (1.18). This means that 
the value of b is irrelevant, because the iteration process stops before the Chebyshev 
recursion gets started. The reason for this peculiar behaviour is that for model 
problems of the type (2.1) and for the special grids employed in Table 3.3, all 
damping factors of the smoothed Jacobi method (as specified above) vanish. 

Table 3.3. Smoothed Jacobi method for the model problem with M= (~x)2 I/ 2. 

ru..=l/16 L\x=l/32 ~x=l/64 L\x=l/128 ~x=l/256 

5 6 7 8 9 

Our second example is the nonmodel problem (2.3). The results of the smoothed 
Jacobi method without acceleration (first row in Table 3.4) show an impressive 
reduction of the number of iterations when compared with conventional Jacobi (see 
Table 2.3). But also the comparison of smoothed Jacobi and Chebyshev-accelerated 
Jacobi (see the Tables 2.4 and 2.6) clearly shows the superiority of residue 
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smoothing as an acceleration technique. We then tried to improve smoothed Jacobi 
further by applying Chebyshev acceleration to the smoothed Jacobi process. Table 
3.4 indicates only a modest increase of the rate of convergence, especially in cases 
where the b-value is not optimal. Therefore, one may decide to forget about 
Chebyshev acceleration in the case of residue smoothing. This results in one array 
less for storage and at the same time in an extremely simple algorithm. 

Table 3.4. Smoothed Jacobi method for problem (2.3) with M = (~x)2 I I (2e). 

Chebyshev 
acceleration [a,b] L\x.=1/16 L\x=l/64 L\x=l/256 

no 73 129 196 
yes [0,.75] 78 137 197 
yes [0,.50] 48 88 125 
yes [0,.40] 46 79 117 
yes [0,.30] 55 96 142 
yes [0,.20] 62 108 162 

Our next experiment illustrates the effect of tuning the matrix M to the diagonal 
of the Jacobian matrix ar;au. Table 3.5 shows that for problem (2.3) some 
reduction of the number of iterations is obtained, but it is doubtful whether it is 
worth the additional effort for computing the diagonal elements. A second 
observation is that for M = - [df(un)/au]-1 the Chebyshev acceleration does not 
improve the convergence, because the iteration function F is non-stationary. 
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Table 3.5. Smoothed Jacobi method for problem (2.3) with alternative M 

matrices. 

M = - [of(uo)/ouJ-1 M = - [of(un)/ouJ-1 

Chebyshev 
acceleration [a,b] ~x=l/16 ~x=l/64 ~x=l/256 ~x=l/16 ~x=l/64 ~x=l/256 

no 32 55 87 33 55 80 
yes [0,.75] 99 179 260 124 216 332 
yes [0,.50] 58 102 151 64 104 169 
yes [0,.40] 48 88 125 54 96 134 
yes [0,.30] 43 74 107 44 82 116 
yes [0,.20] 37 62 95 39 69 98 
yes [0,.10] 32 53 79 34 61 89 

4. SMOOTHED SSOR ITERATION 

If M is chosen according to the SSOR matrix listed in Table 1.1, then the 

resulting iteration method becomes a smoothed SSOR iteration method. We shall 

first derive suitable relaxation parameters for the model situation (1.20), and then 

we shall show, by means of numerical experiments, that these parameters are also 
effective in nonmodel cases. 

4.1. Derivation of relaxation parameters 

Assuming that (1.20) is satisfied, we find, upon substitution of the SSOR matrix 
in the expression (1.22), the matrix 

(4.1) oF/()u = D [I- p 00r4-r (2/UJ-1) (C/ID + U)-1 C (C/UJ + L)-l[T2r(l+2D)-l]/2]. 
reR 

In the following we shall allow that ID also depends on r, and we shall write 

'Yr := 00r4-r. 
From this expression we obtain the following theorem: 

Theorem 4.1. (a) Let D and of/ou be related according to (1.20). Then the 

Jacobian matrix ()F/ou of the iteration function in (1.18) is given by 
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(4.2) ()F/ch1 = II [I - Yr (2 - mr )(D + E)-1 [T2r(I + 2D) - I]/2], 
relR 

E := [mrLC-lU + (1-mr)C/mrJ/p 
(b) If ()f/()u is a tridiagonal matrix with lower diagonal, diagonal and upper 
diagonal elements respectively given by lj, j=2, ... , m, by Cj> j=l, ... ,m, and by 
Uj, j=l, ... ,m-1, then Eis a diagonal matrix with entries 

(4.3) ej=[ffiryuj-1/cj-1+(1-ffir)cj/mrJ/p, j=l, ... ,m; 11=0, 
with eo and em+l irrelevant. 

Proof. It is easily shown that the matrix (4.1) can be written in the form 

(4.1') CJF/du = II [I - PYr (2- ffir) (()f/()u + pE)-1[T2r(I+2D) - I]/2], 
relR 

where Eis defined as in (4.2). Hence, using (1.20) yields the representation (4.2). 
The proof of part (b) of the theorem is straightforward by verification. II 

In order to get some insight into the eigenvalues of the matrix CJF Jou, we 
consider the case where ()f/()u is tridiagonal; then the theorem states that E is 
diagonal. The usual approach now is to apply the frozen coefficient technique, that 
is, to consider the entries of the matrix E to be independent of j, thus simulating the 
analysis for a linear problem. Unfortunately, even in the case of the model problem, 
the assumption that E is a constant matrix is not true. This can be seen from the 
definition of E: all entries of E are equal (in the model case), except for the first 
element e 1, because the matrix LC-1 U gives no contribution for this first element 
(11=0). This exception has some consequences which will be discussed below. For 
the moment we ignore this deficiency and continue the analysis. 
Let us write 

ej = d IDr + c (1-IDr) I IDr, j = 1, ... , m, 
with d and c constant (for example, in the model problem (2.1), we have d = - 1/8 
and c = - 1/2), then the eigen- values of CJFJ()u are given by 

(4.4) ex(µ)= TI CXr(µ), 
relR 

exr(µ) := 1 -Yr (2- ffir) [µ + d ffir + c (1-mr) I IDr J-1 [T2r(l + 2µ) - 1]/2. 
Here, as before, µ runs through the eigenvalues of D. 

Using this expression, we performed numerically a minimization process for 
the maximal value of la:(µ)I on the eigenvalue interval of D. In this minimization 
process we imposed the constraint 0 < i'.Ur < 2, which is natural in the SSOR-context. 
Furthermore, because of the deficiency discussed above, we examined the 
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eigenvalues of oF/ou for the first element of the cycle separately (i.e., for r = 0), 
using the actual value for ei. That is, we considered the matrix (D+E)-lD (cf. 

(4.2)). It turned out that, for all values of mo, this matrix possesses an eigenvalue 

1/(2- m0), resulting in an eigenvalue 1 - 'Yo for oF/au. Hence, convergence of this 

unsmoothed SSOR process requires 0 < 'YO < 2. The necessity of this requirement 

was experimentally verified. For this reason, we imposed the additional constraint 
0 <'Yr< 2 in the minimization process. 

The eigenvalues of D defined by (l.19) are known from which we derive 
-1 ~ µ :s; - [l - cos(n/2q)]/2, where we have assumed the relation m + 1 = 2q, m + 2 

being the dimension of D. In Table 4.1, more or less optimal parameters are given, 
together with the value of o, denoting the spectral radius of C3F Jou, i.e., 

o :=maximum of la.(µ)I on the interval of eigenvalues µ of D. 

These parameters are determined on the basis of the model problem (2.1), 
where d = - 1/8, c = - 1/2, lR := {O, 1, ... , q}, and q = 1 until 8. These values were 
produced by the NAG routine E04 JAF for a suitable initial guess which was 
obtained by trial and error. 

Although the above analysis is of restricted value (because of the deficiency in 
the frozen coefficient approach) and consequently the given parameters 'Yr and IDr 

will not be optimal, the values of S given in Table 4.1 are impressive small. In 
addition, our numerical experiments show that these parameters considerably 
increase the rate of convergence. We emphasize, however, that the given parameter 
sets are not unique with respect to minimizing the maximum of la.(µ)I. We found 

different sets of parameters which resulted in more or less the same damping factor 
S. 
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Table 4.1. Smoothed SSOR parameters for the model problem. 

r IT mi- IT mi- IT mi- IT mx-

0 1.29483 1.16429 1.52664 1.31372 1.43313 1.26135 1.39671 1.23887 
1 0.67942 0.93100 0.83590 0.39225 0.59135 0.73279 0.61539 0.66521 
2 0.49908 0.49426 0.23099 1.30867 0.25340 1.35313 
3 0.19771 0.88092 0.19440 0.95840 
4 0.18481 0.84568 

q = 1, 5 = .0066 q = 2, 5 = .0028 q = 3, 5 = .0043 q = 4, 5 = .0043 

0 1.92161 1.46464 1.45986 1.26980 1.29871 1.15502 1.27984 1.12992 
1 0.90909 1.55156 0.76625 1.54084 0.80108 1.55903 0.45913 1.29275 
2 0.24421 1.31166 0.12622 1.45593 0.24561 1.68935 0.31452 1.68786 
3 0.73262 0.73607 0.18459 1.24836 0.16416 1.88198 0.25115 1.06478 
4 0.32470 0.57986 0.09664 1.43038 0.21041 1.10603 0.38700 1.22488 
5 1.24289 0.18750 0.07353 1.29864 0.20718 1.38827 0.10989 1.09238 
6 0.19498 0.78077 0.09785 1.11741 0.21708 0.79981 
7 0.11317 1.04884 0.08668 1.21313 
8 0.09560 1.15921 

q=5, o=.0041 q = 6, 5 = .019 q =7, o= .025 q =8, o= .019 

We conclude our analysis of smoothed SSOR with a picture of the behaviour of 
the function a(µ). In Figure 4.1 this function is plotted for q=3. 
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Figure 4.1. Behaviour of the function a(µ) for q = 3 . 

4.2. Numerical experiments 
By using residue smoothing employing the parameter values of Table 4.1, we 

obtain for the model problem the results as listed in Table 4.2. If, in addition, the 
Chebyshev acceleration is applied to this smoothed process, then the gain is almost 
negligible. This behaviour is similar to that observed in the preceding section on 
smoothed Jacobi iteration. 
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Table 4.2. Smoothed SSOR method for the model problem. 

Chebyshev 
acceleration [a,b] Lix=l/16 Lix=l/64 Lix=l/256 

no 17 39 64 
yes [-b,+6'] 18 38 56 
yes [-.01,+.0l] 21 39 63 
yes [-.1,+.l] 27 50 74 

The conclusion must be that the accelerating effect of the smoothing technique is 
so strong that the Chebyshev acceleration (which was invented to speed up 
traditional, unsrnoothed basic iteration methods) is of no use in this case. 

Next, we apply the same methods to the nonmodel problem (2.3). The analoque 
of Table 3.4 is given by Table 4.3. The conclusions that can be drawn from this table 
are the same as mentioned above. Finally, when compared with smoothed Jacobi, 
smoothed SSOR, provided with more or less optimal parameters, is slightly faster; 
however, the price to be paid is a more complicated algorithm. 

Table 4.3. Smoothed SSOR method for problem (2.3). 

Chebyshev 
acceleration [a,b] Lix=l/16 Lix=l/64 Lix=l/256 

no 26 50 83 
yes [-b,+b] 26 50 83 
yes [-.01,+.0l] 26 50 83 
yes [-.1,+.l] 31 49 91 
yes [-.2,+.2] 37 58 110 
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