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Abstract
Consider a random variable of the form f (X1,...,Xy), where f is a
deterministic function, and where Xi,...,X,, are i.i.d random variables.

For the case where X1 has a Bernoulli distribution, Talagrand (in [15]) give
an upper bound for the variance of f in terms of the individual influences
of the variables X; for i = 1,...,n. We generalize this result to the case
where X, takes finitely many vales.
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1 Introduction and statement of the results

1.1 Statement of results

Let (Q,]—" , ,ul) be an arbitrary probability space. We denote its n-fold product
by itself by (2™, F™, u™). Let f : Q® — C be a function with finite second
moment, that is [, |f[?du™ < oco. The influence of the ith variable on the
function f is defined as

Aif(xlw"?xn) :f(xlw"axn)_/Qf(xlw"u$i717£a$i+1a~~'7xn)ul (dg)

for z = (21,...,2,) € Q" and i = 1,...,n. We will use the notation | f||, for

the £, norm ¢ € [1,00) of f, that is || f||, = {/ [q. | f|2du.

Using Jensen’s inequality, Efron and Stein gave an upper bound on the
variance of f (see [9]):

Var (f) < [Aifl3 - (1.1)
=1

In some cases (1.1) has been improved. We write P (S) for the power set
of a set S. For the case when € has two elements, say 0 and 1, and p ({1}) =
1 — p ({0}) = p, Talagrand showed the following result:
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Theorem 1.1. (Theorem 1.5 of [15]) There exists a universal constant K
such that for every p € (0,1), n € N and for every real valued function f

on (an Fr, :un) = ({Ov 1}” P ({07 l}n) uuz)) 5

Var(f)<Klog< 2 )zn: [ , (1.2)
- p(L=p)/) = log(ellAiflly /1Aifll1)

where i, ({z}) = pXiz1 =i (1 — p)" " ==1" for z € {0,1}".

Remark 1.2. An alternative proof of Theorem for the case p = 1/2 can be
found in [4].

We will generalize Theorem [T.1] for all finite sets 2 in the following way.
Theorem 1.3. There is a universal constant K > 0 such that for each finite

set 0 and each measure p* on Q with pyi, = minjeq p' ({j}) > 0, and for all
complez valued functions f on (Q™, P (Q™),u"),

1A |
(el Aiflly /AT,

Var (f) < Klog (1/pmin) Z Tog (1.3)

Remark 1.4. The special case of Theorem where p is the uniform measure
on " has been proved in [g].

1.2 Background and discussion

Inequality gives a bound on Var (f) in terms of the influences. These and
related inequalities, for example the widely used KKL lower bound for influences
(see [12]) and various so called sharp-threshold results (see e.g. [I1]]), are useful
when the function f is complicated, but its influences are still tractable. Such
situations occur for example in percolation theory (see e.g. [4}[6] [7, [16]). In fact
the above mentioned KKL bound is, in some sense a consequence of (see
Corollary 1.4 in [15]). (We write ’in some sense’ because the paper [12] appeared
significantly earlier.) This also holds for certain sharp-threshold results (see
Corollary 1.3 in [15]).

Inequality is the most literal extension of to the case where €2 has
cardinality k, k > 2. It will be explicitly used in [I7].

Falik and Samarodnotsky (see [I0]) used logarithmic Sobolev inequalities
to derive edge isoperimetric inequalities. Rossignol used this method to derive
sharp threshold results (see [13] [14]). Furthermore, Rossignol with Benaim
extended the results of [4] (where Talagrand’s Theorem above is applied
to first-passage percolation), in [3], again with the use of logarithmic Sobolev
inequalities. These similar applications suggest a deeper connection between
logarithmic Sobolev inequalities and . Indeed, Bobkov and Houdré in [3],
proved that a version of actually implies a logarithmic Sobolev inequality
in a continuous setup.



We finish this introduction with some remarks on the proof of Theorem
The proof of Theorem 1.5 of [15] uses a hypercontractive result (Bonami-Beckner
inequality, see [2]) followed by a subtle symmetrization procedure (see Step 2 and
3 of the proof of Lemma 2.1 in [15]). In the proof our more general Theorem
above, we use a consequence of the extended Bonami-Beckner inequality (for
an extension of the Bonami-Beckner inequality see Claim 3.1 in [I]) from [8]
and then modify Talagrand’s symmetrization procedure. This generalization of
Talagrand’s symmetrization argument, which covers Sections [2:2] and 2.3] is the
main part of our proof.

2 Proof of Theorem [1.3

Without loss of generality, we assume that 2 = Zj, (the integers modulo k) for
some k € N.

Let n be an arbitrary measure on Z}. For each n, we will write £, (Z}) for
the Hilbert space of complex valued functions on Zy, with the inner product

(f.9), = , fgdn for f.g € £, (Z7).
k

We will write Hf||£q(n) for the g-norm, ¢ € [1,00), of a function f : Z} — C
with respect to the measure 7, that is

1/q
1,0 = ( [ 16170)

When it is clear from the context which measure we are working with, we will
simply write | ], -

2.1 A hypercontractive inequality

Let v denote the uniform measure on Z}. Then the inner product on £, (Z}) is

(), = [ Fadv = 5 S f@al@) for £ € 8, (Z3).

€LY
Define the ’scalar product’ on Z} by
n
(x,y) = inil/i7 for z,y € Zj,.
i=1
Let ¢ = e2™/*_ For every y € Z}, define the functions
w, (r) = @Y for z € Z}.

It is easy to check the following lemma.



Lemma 2.1. {w,} form an orthonormal basis in £, (Z}) .

YyeELY
Let us denote the number of non-zero coordinates of £ € Z} by [¢]. We will
use the following hypercontractive inequality:

Lemma 2.2. (Lemma 1 of [8]) There are positive constants C,~ such such that
for any k,n € N, m € {0,1,...,n} and complex numbers a,, for y € Z}, we

have
1/2

Z Ay Wy < (Cr)™ Z |ay|2
lyl=m

£4(v) [y]=m

Remark 2.3. The proof (in [§]) of Lemma is based on Claim 3.1 of [I].
Claim 3.1 of [I] is a generalization of the so called Bonami-Beckner inequality
(see Lemma 1 of [2]). That inequality played an important role in [I5] in the
original proof of Theorem

2.2 Finding a suitable basis

We assume that p!' ({j}) > 0 for all j € Z;. Moreover, to ease the notation, we
write p in stead of p™.

Let £,1 (Zx) be the Hilbert space of functions from Zj, to C, with the inner
product

(a,b),, = Z a(§)b(G)u' ({5}) for a,b € £, (Zg).
JELy
Let co € £,,1 (Zy) be the constant 1 function. By Gram-Schmidt ortogonaliza-
tion, there exist functions ¢; € £,1 (Zy,) for I € Zy, \ {0}, such that c;, j € Z
form an orthonormal basis in £,1 (Zy) .
Using the functions ¢;, j € Zj we define an orthonormal basis in £, (Z})
analogous to the basis wy, y € Z}.

Lemma 2.4. The functions uy, for y € Z}, defined by

uy(z) = Hcyi (x;) for x € Zf, (2.1)

i=1
form an orthonormal basis in £, (Z}) .

Proof. Since p=pu" =p' @ p' @ ... ® u', we have

(uy,s), = ey, (i)es, ()l de)
[ Mentee



2.3 Extension of Lemma 2.2]

The key ingredient in the proof of Theorem is the following generalization
of Lemma[2.2] It can also be seen as an extension of Lemma 2.1 of [I5].

Lemma 2.5. With the constants of Lemma (2.9, we have for every k,n € N,
m € {0,1,...,n} and complex numbers a,, y € Z},

1/2

Z AyUy
[y]=m

< (CORN)™ Y layl?
La(p) [y]=m

holds, where 0 = kmax;_ ; |c; (j)].

Proof. The proof generalizes the symmetrization technique of the proof of Lemma
2.1 of [15]. Recall the definitions of ¢ and w, for y € Z} of Section Let
n, k,m and the numbers a, y € Z}} as in the statement of Lemma [2.2

Step 1 Define the product space G = (ZQ)]c with the probability measure
e = ®f:1u. Note that the measures j; and p* are different, the first is a
measure on G, while the second is a measure on Z}. For y,z € Z} define the
functions gy, g,,- on G as follows. For X = (XO, e ,kal) € (ZZ)k and z € Z,
let

k—1
I D en(xhet, (2.2)

gy (X) =
1<i<n, y;#0 1=0
k-1
gyz (X) = H gy Z Cy; (Xf)glyi = gy (X) wy(2). (2.3)
1<i<n, y; #0 =0

Recall that v is the uniform measure on Zy, and define the set H = G x Z} and
the product measure k = puj, ® v on H. We also define, for y € Zj the functions
hy on H by hy (X, 2) = gy (X) = gy (X) wy(2).

Step 2 For X as before and for z € Z} define X, as

(Xz)é _ Xf“i mod k-

Then

k—1

9y,z (Xz) = H chi (XerZi mod k)g(lJrzi)yi
1<i<n,y;7#0 1=0

k—1
= I D enxDe

1<i<n, yi£0 1=0
= gy (X).



Hence for each fixed z € Z}, we have

Z Ay Gy = Z AyGy.» . (2.4)

[y]=m L4l [y]=m £

Integrating over the variable z with respect to v, Fubini’s theorem gives that

Z Ay Gy = Z ayhy . (2.5)

ly]= £4(pr) [y]l=m £4(k)

Step 3 For fixed X, use Lemma [2.2|for the numbers a,g, (X), and get

4 2

[|Z amom@f a< @07 3 las0F ) - @0
lyl=m

Since # = kmax; j |c; (j)|, we have that |g, (X)| < 6™, which together with ([2.6)
gives

4 2

/ Z aygy (X)wy (2)| dv(z) < (09k7)4m Z |ay‘2
[y]=m

Integrating with respect to duy(X) and taking the 4th root gives

1/2

> ayhy, < (COkT)™ Z lay|? . (2.7)

[y]=m £4(k) l=m

By (2.7) and (2.5) we only have to show that

Z Oy Uy < Z Ay Gy . (2.8)

[y]l=m £4(1) [y]=m £4(pr)

Step 4 Now we prove an alternative form of the function g,. Recall the
definition (2.2 of g,. Expand the product, and get

gy (X) = H Z ey (X et

1<i<n, y;#0 1=0

= Z [T e x@)eetm, (2.9)

) 1<i<n, y; #0

where (%) denotes the sum over all functions « : {i|y; # 0} — Z.



We will use the following trivial observation:
Observation: c,, (X!)e!¥ = 1 whenever y; = 0.
With the Observation we rewrite (2.9) as follows.

S TLen(x0@eetom

acA, i=1

oI I enxhet, (2.10)

a€Ay t€Zy 1<i<n, a(i)=t

9y (X)

where A, is the set of functions o : {1,2,...,n} — Z; with the property
that « (i) = 0 if y; = 0. For a function a € A, we can define the vectors
vt =o' (a) € Z} for t € Zj, by

of = ! (@) = {yz if (i) =t

0 otherwise.

The map o — (v' (a))iez, is one-to-one, furthermore the image of A, under
this map is

Vy = {” = (”t)tezk

th:y, and Viv! # 0 for at most one t € Zy, }
tEZLy

Using the properties of the map a — (v! (a))ez, together with the Observation
and the definition of u, we can conclude from (2.10) that

g (X) = S I I]eo(xbet

vEVy tEZ i=1

ST e (39t 51) (2.11)

where 1 is vector in Zj with all coordinates equal to 1.
Step 5 Now we prove (2.8). Jensen’s inequality gives that

4

S s (0] di )

[y]=m
4

Z/|/[y]z:maygy (X) dpe—1 (X, XFY) ] dp (X9).
4

:/ > ay/gy (X) dp—r (X, XEY) ] dp (X°). (2.12)
[v]=m



By (2.11)), the inner integral of the left hand side of ([2.12) is

/gy (X) dp—r (X, ..., XF1)

/Z I wor (X")e (") G (XL XY

vEVy tELY
=> (Hs v 1>uv (X9 H/ul Ndp (X'). (2.13)
veV,y, \lEZy

Since ug is the constant 1 function on Z}, and by Lemma (U, w € Z}) is
an orthonormal basis of £, (Z}), we have

1 ifw=
/uwd,u = [ uypuodp = { nw 0

0 otherwise.

By this and the definition of V, we conclude from (2.13)) that
[ o dm (1 x5
= > <H gt(v'1) ) o(X0) = wu,(X°). (214)

VEVy,vi=..=vF-1=0 \t€Zk
together with gives that
4 4
/ Z aygy (X)| dpk (X) 2/ Z ayuy(X°)| dp (X°),
[yl=m [yl=m

from which by taking the 4th root, we get (2.8). This completes the proof of

Lemma ([2.5). O

From Lemma (2.5) and duality, we conclude the following lemma.

Lemma 2.6. With the constants of Lemma for any function g € £, (Z})

we have .
S 15 ()2 < (Cok) \\g\\s4/3<u>
[y]=t



2.4 Completion of the proof of Theorem [1.3
Notice that

/Quy (x17~-~,$i_1,§,$i+1,---,xn)Ml (dg) = Z C’UL(J)p] H Cy, (xl)

JELy, 1<Ii<nl#i
= <Cywco>p H ey (1)
1<i<nl#i
_ Juy(x) ify; =0
) if y; #0.
Hence
/ f(xh”wxiflué_axi‘#la"w:pn)ul (dé-) = Z f(y)uy
@ yE€Ly,yi=0
where [ = Y, f(y)uy, e fy) = (fou),.
By the definition of A;f we have
Aif= Y f@u, (2.15)

YELY, yi7#0

Recall that [y] was the number of non-zero coordinates of a vector y € Zj.
Define M (g) by

~ 2
MgP= Y 9Ey]> for g € £, (Z}).
yELy, y#0 y

Take a function f € £, (Z}) with [ fdu = 0 (which is equivalent to f(0) = 0).
Then Parseval’s formula and (2.15) gives that

Hf”?:Q(u) = Zf(y)2 = ZM(Aif)2- (2.16)
y#0 i=1

Since 1 = Z;:é lci (j)|2pj, we can conclude that § < k/min; ,/p;. Hence
Theorem follows from the following Proposition and (2.16)).

Proposition 2.7. There is a positive constant K, such that if [ gdp =0, we
have

gl
M(g)? < K log (COK™ ’
(9) (COR) tog e lgll, /ol

where 0 = kmax;=1, _njcz, |¢; (j)|, and the constants C,~ are the same as in
Lemma 2.2



Proof. The proof of Proposition is the same as the proof of Proposition 2.3
in [15] with the following modifications. Take g = 4 instead of ¢ = 3, and use
Lemma [2.6] instead of Proposition 2.2 of [I5]. The only difference will be in the
constants. First we get the term 2log (COkY) in stead of log (202). Furthermore
we have to replace the estimate

3
gl < llgll
lglly lglls,/o

2
lolly _ (lslla )~
gy ||9||4/3

which is a consequence of the Cauchy-Schwartz inequality. This substitution
only affects the constant K.

This completes the proof of Proposition (2.7) and the proof of Theorem
L3l O

by
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