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We propose new summary statistics for intensity-reweighted moment stationary point pro-

cesses that generalise the well known J-, empty space, and nearest-neighbour distance dis-

tribution functions, represent them in terms of generating functionals and conditional inten-

sities, and relate them to the inhomogeneous reduced second moment function. Extensions

to space time and marked point processes are briefly discussed.
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1 Introduction

The analysis of data in the form of a map of (marked) points often starts with the computation
of summary statistics. Some statistics are based on inter-point distances, others on the
average number of points in sample regions, or geometric information. For a survey of the
state of the art and pointers to the literature, the reader is referred to the recent handbook
of spatial statistics [10].

In the exploratory stage, it is usually assumed that the data constitute a realisation of
a stationary point process and deviations from a homogeneous Poisson process are studied
to suggest a suitable model. Although stationarity is a convenient assumption, especially if
– as is often the case – only a single map is available, in many areas of application, though,
heterogeneity is present. To account for possible non-stationarity, Baddeley et al. [3] defined
a reduced second moment function by considering the random measure obtained from the
mapped point pattern by weighting each observed point according to the (estimated) intensity
at its location. Gabriel and Diggle [9] took this idea further into the domain of space time
point processes.

In this paper, our aim is to define an extension of the J-function [18] that is able to
accommodate spatial and/or temporal inhomogeneity. The idea underpinning the J-function
is to compare the point pattern around a typical point in the map to that around an arbitrarily
chosen origin in space in order to gain insight in the interaction structure of the point process
that generated the data. The power of the J-function in hypothesis testing was assessed in [6]
and [26]. Extensions to multivariate point processes were proposed by [19], and window based



J-functions suggested by [2] and [6]. For applications in agriculture, astronomy, forestry and
geology, see [8, 13, 14, 15, 21, 24].

The plan of this paper is as follows. In Section 2 we fix notation and recall some basic
concepts from stochastic geometry. In Section 3 we describe the most important summary
statistics that are being used in exploratory analysis of point patterns under the assumption
of stationarity. Section 4 introduces the new statistic Jinhom and gives representations of it in
terms of generating functionals and conditional intensities. Section 5 is devoted to the explicit
computation of Jinhom for some important classes of point process models. In Section 6 we
develop a minus sampling estimator and apply it in Section 7 to simulated examples. The
paper closes with suggestions for further extensions to space time and marked point processes.

2 Preliminaries and notation

Throughout this paper, let X be a simple point process on Rd. Its intensity measure Λ is
defined by

Λ(B) = E

[

∑

x∈X

1{x ∈ B}

]

for Borel sets B ⊆ Rd. We assume that Λ is locally finite, i.e. Λ(B) < ∞ whenever B is
bounded, and absolutely continuous with respect to Lebesgue measure so that

Λ(B) =

∫

B
λ(x) dx

for some non-negative measurable function λ referred to as intensity function. Heuristically
speaking λ(x) dx is the probability of observing some point in the infinitesimal region dx and
represents the heterogeneity of X.

Note that the intensity measure is also known as the first order factorial moment measure
of X. Higher order factorial moment measures Λ(n), n ∈ N, are defined by

Λ(n)(B1 × · · · × Bn) = E

[

∑ 6=

x1,...,xn∈X
1{x1 ∈ B1; . . . ; xn ∈ Bn}

]

,

where the superscript 6= indicates that the sum is taken over all n-tuples of distinct points
and the Bi are Borel subsets of Rd. As the intensity measure, Λ(n) is not necessarily locally
finite, nor guaranteed to have a Radon–Nikodym derivative. If Λ(n) is absolutely continuous
with respect to the n-fold product of Lebesgue measures,

Λ(n)(B1 × · · · × Bn) =

∫

B1

· · ·

∫

Bn

ρ(n)(x1, . . . , xk) dx1 · · · dxk

for some non-negative measurable function ρ(n) called n-th order product density of X. Note
that ρ(n) is permutation invariant and satisfies the integral equation

E

[

∑ 6=

x1,...,xn∈X
g(x1, . . . , xn)

]

=

∫

· · ·

∫

g(x1, . . . , xn) ρ(n)(x1, . . . , xn) dx1 · · · dxn
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for all non-negative, measurable functions g ≥ 0. Thus, ρ(n)(dx1, . . . , dxn) may be interpreted
as the infinitesimal probability of finding points of X at each of dx1, . . . , dxn. For further
details, see for example [10, 12, 16].

In the physics literature, n-point correlation functions tend to be used instead of product
densities [22]. They are defined recursively by

ξ1 ≡ 1;

ρ(n)(x1, . . . , xn)

λ(x1) · · ·λ(xn)
=

n
∑

k=1

∑

D1,...,Dk

ξn(D1)(xD1) · · · ξn(Dk)(xDk
),

where the last sum ranges over all partitions {D1, . . . , Dk} of {1, . . . , n} in k non-empty,
disjoint sets, and the xDj

= {xi : i ∈ Dj}, j = 1, . . . , k form the corresponding partition of
points. Since for a Poisson point process ξn ≡ 0 for n > 1, heuristically speaking n-point
correlation functions account for the excess due to n-tuples in comparison to a Poisson point
process with the same intensity function.

3 Summary statistics

Summary statistics are used by spatial statisticians as tools for exploratory data analysis,
testing, and model validation purposes. Popular examples include the nearest neighbour
distance distribution function G, the empty space function F , the reduced second moment
function K and the J-function. More specifically, for a stationary point process X with
intensity λ > 0,

(1)















F (t) = P(X ∩ B(0, t) 6= ∅),
G(t) = P!0(X ∩ B(0, t) 6= ∅),
K(t) = E!0

[
∑

x∈X 1{x ∈ B(0, t)}
]

/λ,
J(t) = (1 − G(t)) / (1 − F (t)) ,

where B(0, t) is the closed ball of radius t ≥ 0 centred at the origin and P!0 denotes the reduced
Palm distribution of X. For further details about these and other summary statistics, see
for example [12]. Note that the J-function is defined only for t such that F (t) < 1. Values
larger than one indicate inhibition, whereas J(t) < 1 suggests clustering, but note the caveats
against drawing too strong conclusions in [4].

All statistics defined in (1) can be expressed in terms of product densities. Indeed, if
the second order factorial moment measure exists as a locally finite measure with Radon–
Nikodym derivative ρ(2)(x1, x2) = ρ(2)(||x1 − x2||),

K(t) =

∫

B(0,t)

ρ(2)(||x||)

λ2
dx =

∫

B(0,t)
(1 + ξ2(||x||)) dx.

Clearly, K depends only on product densities up to order two. In contrast, the empty space
function depends on product densities of all orders [27],

F (t) = −
∞

∑

n=1

(−1)n

n!

∫

B(0,t)
· · ·

∫

B(0,t)
ρ(n)(x1, . . . , xn) dx1 · · · dxn
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provided all order product densities exist and the series is absolutely convergent, that is,

lim supn→∞

(

Λ(n)(B(0,t)n)
n!

)1/n
< 1. Similarly,

G(t) = −
∞

∑

n=1

(−1)n

n!

∫

B(0,t)
· · ·

∫

B(0,t)

ρ(n+1)(0, x1, . . . , xn)

λ
dx1 · · · dxn,

provided that the series is absolutely convergent. Thence [17],

J(t) = 1 +
∞

∑

n=1

(−λ)n

n!
Jn(t)

for all t ≥ 0 for which F (t) < 1, where Jn(t) =
∫

B(0,t) · · ·
∫

B(0,t) ξn+1(0, x1, . . . , xn) dx1 · · · dxn.
If product densities of all orders do not exist, one may truncate the series. Indeed, using only
product densities up to second order gives

J(t) − 1 ≈ −λ (K(t) − |B(0, t)|)

so the K-function can be seen as a second order approximation to the J-function.
For non-stationary point processes, the definitions in (1) depend on the choice of origin

and adaptations are called for. To this end, Baddeley et al. [3] introduced the notion of
second order intensity-reweighted stationarity . A point process X possesses this property if
the random measure

Ξ =
∑

x∈X

δx

λ(x)

is second-order stationary. Here, δx denotes the Dirac measure that places a single point at
x. Clearly if Ξ is stationary, it is also second-order stationary but the converse does not hold.
Examples of second order intensity-reweighted stationary point processes include Poisson
point processes, the random thinning of a stationary point process, and log Gaussian Cox
processes driven by a Gaussian random field with a translation invariant covariance function.
Cluster processes, as well as more general superposition processes, typically are not second
order intensity-reweighted stationary.

For a second order intensity-reweighted stationary point process, an inhomogeneous K-
function [3] can be defined by

Kinhom(t) :=
1

|B|
E

[

∑ 6=

x,y∈X

1B(x) 1 {y ∈ B(x, t)}

λ(x)λ(y)

]

regardless of the choice of bounded Borel set B ⊂ Rd and using the convention a/0 = 0
for a ≥ 0. Indeed, Kinhom(t) = KΞ(B(0, t) \ {0}), where KΞ is the reduced second moment
measure of the random measure Ξ.

Gabriel and Diggle [9] restrict themselves to point processes X that are simple and have
locally finite moment measures of first and second order. Additionally they assume that X
has an intensity function λ that is bounded away from zero and a pair correlation function

g(x, y) = g(||x − y||) =
ρ(2)(x, y)

λ(x)λ(y)
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that depends only on ||x − y||. Clearly in this case

Kinhom(t) =
1

|B|

∫

B

∫

B(0,t)
g(||z||) dz dx =

∫

B(0,t)
g(||z||) dz,

which for any inhomogeneous planar Poisson process reduces to πt2.
Baddeley et al. [3] briefly discuss how to define empty space and nearest neighbour

distance distribution functions for inhomogeneous point processes. First, for given x ∈ Rd

and t ≥ 0, they propose to determine r(x, t) by solving

t =

∫

B(x,r(x,t))
λ(y) dy,

then set

Fx(t) = P(d(x, X) ≤ r(x, t))

Gx(t) = P
!x(d(x, X) ≤ r(x, t)),

where d(x, X) denotes the shortest distance from x to a point of X. For Poisson processes, the
above definitions do not depend on x and are both equal to 1−e−t. The obvious drawback of
such an approach is that r(x, t) may be hard to compute in practice. Moreover, the definitions
depend on x as well as t. Our goal in the present paper is to give an alternative definition
of F , G, and J for intensity-reweighted moment stationary point processes based on their
representation in terms of product densities that does not depend on the choice of origin and
is easy to use in practice.

4 Inhomogeneous J-function

Let X be a simple point process on Rd whose intensity function λ exists and is bounded away
from zero with infx λ(x) = λ̄ > 0. Assume that for all n ∈ N the nth order factorial moment
measure exists as a locally finite measure and has a Radon–Nikodym derivative ρ(n) with
respect to the n-fold product of Lebesgue measure ℓ with itself for which the corresponding
n-point correlation function ξn is translation invariant, that is, ξn(x1 + a, . . . , xn + a) =
ξn(x1, . . . , xn) for almost all a ∈ Rd. We shall call such a point process intensity-reweighted
moment stationary . Note that a fortiori X is second order intensity-reweighted stationary.
Moreover, a stationary point process is also intensity-reweighted moment stationary.

Definition 1. Let X be an intensity-reweighted moment stationary point process. Set

Jn(t) =

∫

B(0,t)
· · ·

∫

B(0,t)
ξn+1(0, x1, . . . , xn) dx1 · · · dxn

and define

Jinhom(t) = 1 +
∞

∑

n=1

(−λ̄)n

n!
Jn(t),

for all t ≥ 0 for which the series is absolutely convergent, that is, for which lim supn→∞
(

λ̄n

n! |Jn(t)|
)1/n

< 1.
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A few special cases deserve to be mentioned. For a Poisson point process with intensity
function λ(·), as the n-point correlation functions vanish for n > 1, so do the Jn whence
Jinhom(t) ≡ 1 for all t ≥ 0. Furthermore, if X is stationary, λ̄ = λ and by [17, Prop. 4.2],
Jinhom ≡ J .

Like in the stationary case considered in Section 3, the series in Definition 1 may be
truncated, for example when X is only second order intensity-reweighted stationary or not
all n-point correlation functions exist. For n = 1, we obtain

Jinhom(t) − 1 ≈ −λ̄

∫

B(0,t)
ξ2(0, x) dx = −λ̄ (Kinhom(t) − |B(0, t)|) .

In the remainder of this section, we rewrite Jinhom in terms of generating functionals and
conditional intensities. Recall that for any function v : Rd → [0, 1] that is measurable and
identically 1 except on some bounded subset of Rd, the generating functional at v is defined
as

G(v) = E

[

∏

x∈X

v(x)

]

,

where by convention an empty product is taken to be 1. The distribution of X is deter-
mined uniquely by its generating functional [7, Prop. 7.4.II]. The factorial moment measures,
provided they exist as locally finite measures, can be derived from the generating functional
using its Taylor expansion [7, Prop. 7.4.III]. Conversely, if product densities of all orders
exist, let u be a measurable function with values in [0, 1] that has bounded support. Then

G(v := 1 − u) = 1 +
∞

∑

n=1

(−1)n

n!

∫

· · ·

∫

u(x1) · · ·u(xn) ρ(n)(x1, . . . , xn) dx1 · · · dxn,

provided the series converges [25, p. 109].

Theorem 1. Write, for t ≥ 0 and a ∈ Rd,

ua
t (x) =

λ̄ 1{x ∈ B(a, t)}

λ(x)

and assume that lim supn→∞

(

λ̄n

n!

∫

B(0,t) · · ·
∫

B(0,t)
ρ(n)(x1,...,xn)
λ(x1)···λ(xn) dx1 · · · dxn

)1/n
< 1. Under the

assumptions of Definition 1, for almost all a ∈ Rd,

Jinhom(t) =
G!a (1 − ua

t )

G
(

1 − u0
t

)

for all t ≥ 0 for which the denominator is non-zero, where G!a is the generating functional
of the reduced Palm distribution P!a at a, G that of P itself.

Note that for a stationary point process, ua
t (x) = 1{x ∈ B(a, t)}, hence

G (1 − ua
t ) = P(X ∩ B(a, t) = ∅) = 1 − F (t).

6



Therefore, the generating functional in the denominator can be interpreted as the inhomo-
geneous counterpart of the empty space function. A similar interpretation holds for the
numerator in terms of the nearest neighbour distance distribution function and one retrieves
the classic definition of the J-function given in Section 3. At this point it should be empha-
sised that the numerator and denominator in the definiton of Jinhom generalise respectively
the nearest neighbour distance distribution function and empty space function.

Proof: We begin by showing that

E
!x

[

∑ 6=

x1,...,xn∈X

n
∏

i=1

1{xi ∈ B(x, t)}

λ(xi)

]

=

∫

B(0,t)
· · ·

∫

B(0,t)

ρ(n+1)(0, x1, . . . xn)

λ(0) λ(x1) · · ·λ(xn)
dx1 . . . dxn

for almost all x ∈ Rd. To see this, consider the functions

gA(x, X) =
1{x ∈ A}

λ(x)

∑ 6=

x1,...,xn∈X

n
∏

i=1

1{xi ∈ B(x, t)}

λ(xi)

defined for all bounded Borel sets A ⊂ Rd. By the definition of Palm distributions and the
Campbell–Mecke formula,

∫ ∫

g(x, ϕ) λ(x) dP
!x(ϕ) dx = E

[

∑

x∈X

g(x, X \ {x}

]

.

Using Fubini’s theorem, for our choice of g the left hand side can be written as

∫

A
E

!x

[

∑ 6=

x1,...,xn∈X

n
∏

i=1

1{xi ∈ B(x, t)}

λ(xi)

]

dx

while the right hand side is equal to

E

[

∑ 6=

x,x1,...,xn

1{x ∈ A}

λ(x)

n
∏

i=1

1{xi ∈ B(x, t)}

λ(xi)

]

.

The expectation can be computed in terms of ρ(n+1) and equals

∫

A

∫

B(x,t)
· · ·

∫

B(x,t)

ρ(n+1)(x, x1, . . . xn)

λ(x) λ(x1) · · ·λ(xn)
dx dx1 · · · dxn =

∫

A

∫

B(0,t)
· · ·

∫

B(0,t)

ρ(n+1)(0, x1, . . . xn)

λ(0) λ(x1) · · ·λ(xn)
dx dx1 · · · dxn

by the translation invariance of the n-point correlation functions. Hence

E
!x

[

∑ 6=

x1,...,xn∈X

n
∏

i=1

1{xi ∈ B(x, t)}

λ(xi)

]

7



is constant for almost all x ∈ Rd.
Next, note that

∏

x∈X

(

1 −
λ̄ 1{x ∈ B(a, t)}

λ(x)

)

= 1 +
∞

∑

n=1

(−λ̄)n

n!

∑ 6=

x1,...,xn∈X

n
∏

i=1

1{xi ∈ B(a, t)}

λ(xi)
.

Since the number of points in X ∩ B(a, t) is almost surely finite, the expressions are well-
defined under the convention that an empty product takes the value one. Consequently, for
almost all a,

(2) G!a(1 − ua
t ) = 1 +

∞
∑

n=1

(−λ̄)n

n!

∫

B(0,t)
· · ·

∫

B(0,t)

ρ(n+1)(0, x1, . . . , xn)

λ(0) λ(x1) · · ·λ(xn)
dx1 · · · dxn

provided the power series in the right hand side is absolutely convergent.
By the discussion preceeding the statement of the theorem,

(3) G(1 − u0
t ) = 1 +

∞
∑

n=1

(−λ̄)n

n!

∫

B(0,t)
· · ·

∫

B(0,t)

ρ(n)(x1, . . . , xn)

λ(x1) · · ·λ(xn)
dx1 · · · dxn,

since the power series in the right hand side is assumed to be absolutely convergent.
Upon recalling the definition of the n-point correlation functions and splitting into terms

that do or do not contain the origin, one obtains that the right hand side of (2) is equal to

1 +
∞

∑

n=1

(−λ̄)n

n!

∑

D⊆{1,...,n}

Jn(D)(t)

n−n(D)
∑

k=1

∑

D1,...,Dk 6=∅ disjoint
∪Dj={1,...,n}\D

In(D1) · · · In(Dk)

(with
∑0

k=1 = 1) which in turn can be written as

(4)

[

1 +
∞

∑

n=1

(−λ̄)n

n!
Jn(t)

]

×











1 +
∞

∑

m=1

(−λ̄)m

m!

m
∑

k=1

∑

D1,...,Dk 6=∅ disjoint
∪Dj={1,...,m}

In(D1) · · · In(Dk)











where

In =

∫

B(0,t)
· · ·

∫

B(0,t)
ξn(x1, . . . , xn) dx1 · · · dxn

and n(D) denotes the cardinality of the set D. The sum over k in the rightmost term of (4)
can be written as

∫

B(0,t)
· · ·

∫

B(0,t)

ρ(m)(x1, . . . , xm)

λ(x1) · · ·λ(xm)
dx1 · · · dxm,

hence the second term in (4) is equal to the right hand side of (3). Finally, since both sums
in (4) are absolutely convergent, so is (2), an observation that completes the proof. ¤
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Next, we focus our attention on conditional intensities λ(x; X), x ∈ Rd. Assuming they
exist, they are defined in integral terms by

E

[

∑

x∈X

g(x, X \ {x})

]

=

∫

E
!x [g(x, X)] λ(x) dx =

∫

E [g(x, X)λ(x; X)] dx

for any non-negative measurable function g.

Theorem 2. Assume that X admits a conditional intensity and define the random variable
Wa(X) :=

∏

x∈X (1 − ua
t (x)). Then, under the assumptions of Theorem 1, E [Wa(X)] = 0

implies E [λ(a; X)Wa(X)/λ(a)] = 0 for almost all a ∈ Rd, and otherwise

Jinhom(t) = E

[

λ(a; X)

λ(a)
Wa(X)

]

/ EWa(X),

the Wa-weighted expectation of λ(a; X)/λ(a).

Consequently, Jinhom(t) ≤ 1 ⇔ Cov
(

λ(a;X)
λ(a) , Wa(X)

)

≤ 0 with a similar statement for the

opposite inequality sign.

Proof: Consider the functions

gA(x, X) =
1{x ∈ A}

λ(x)

∏

y∈X

(

1 −
λ̄1{y ∈ B(x, t)}

λ(y)

)

defined for all bounded Borel sets A ⊂ Rd. Arguing as in the proof of Theorem 1 and using
the definition of conditional intensities, one obtains

∫

A
E

!x





∏

y∈X

(

1 −
λ̄ 1{y ∈ B(x, t)}

λ(y)

)



 dx =

∫

A
E





λ(x; X)

λ(x)

∏

y∈X

(

1 −
λ̄ 1{y ∈ B(x, t)}

λ(y)

)



 dx.

Hence,

E
!x





∏

y∈X

(

1 −
λ̄ 1{y ∈ B(x, t)}

λ(y)

)



 = E





λ(x; X)

λ(x)

∏

y∈X

(

1 −
λ̄ 1{y ∈ B(x, t)}

λ(y)

)





for almost all x ∈ Rd. An appeal to Theorem 1 completes the proof. ¤

5 Theoretical examples

5.1 Poisson process

Let X be a Poisson point process with intensity function λ : Rd → R+ that is bounded away
from zero. Since ρ(n)(x1, . . . , xn) =

∏

i λ(xi), the n-point correlation functions vanish for
n > 1, so Jinhom(t) ≡ 1 for all t ≥ 0.
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The generating functional of X is

G(1 − u) = exp

[

−

∫

u(x)λ(x) dx

]

.

In particular, for the function u = u0
t defined in Theorem 1, G(1 − u0

t ) = exp
[

−λ̄|B(0, t)|
]

.
Also, since according to Slivnyak’s theorem for a Poisson point process P!0 = P, G!0(1−u0

t ) =
G(1 − u0

t ). Finally, the conditional intensity λ(·, X) of X coincides almost everywhere with
the intensity function λ(·).

5.2 Location dependent thinning

Let X be a simple, stationary point process on Rd for which product densities ρ(n) of all
orders exist. Let p : Rd → (0, 1) be a measurable function that is bounded away from zero
and consider the thinning of X with retention probability p(x) as in Example 8.2 of [7]. Since

the process is simple, the product densities ρ
(n)
th of the thinned point process can be expressed

in terms of those of X by ρ
(n)
th (x1, . . . , xn) = ρ(n)(x1, . . . , xn)

∏n
i=1 p(xi). In particular, the

intensity function of the thinned point process is λth(x) = λ p(x), where λ > 0 is the intensity
of X. Consequently,

ρ
(n)
th (x1, . . . , xn)

λth(x1) · · ·λth(xn)
=

ρ(n)(x1, . . . , xn)

λn
.

Therefore, the n-point correlation functions of the thinned point process coincide with those
of the underlying stationary point process X, ξth

n (x1, . . . , xn) = ξn(x1, . . . , xn), and inherit the
property of translation invariance. Hence J th

n (t) is equal to the Jn-function of the underlying
point process X. As the intensity function of the thinned point process is bounded from
below by λp̄ where p̄ is the infimum of the retention probabilities,

J th
inhom(t) = 1 +

∞
∑

n=1

(−λ p̄)n

n!
Jn(t)

for all t ≥ 0 for which the series converges. Note that the power series coefficients are identical
to those in the power series expansion of the J-function of X.

The generating functional of the thinned point process is Gth(v) = G(vp + 1 − p), where
G is the generating functional of X. Hence

Gth

(

1 −
p̄

p(·)
1{· ∈ B(0, t)}

)

= G(1 − p̄ 1{· ∈ B(0, t)}) = E

[

(1 − p̄)n(X∩B(0,t))
]

,

the generating function of the number of points of X that fall in B(0, t) evaluated at 1 − p̄.

As the reduced Palm distribution of the thinned point process coincides with a random
location dependent thinning of the reduced Palm distribution of X with retention probabilities
given by the function p,

G!0
th(1 − u0

t ) = E
!0

[

(1 − p̄)n(X∩B(0,t))
]

,

10



so that under the assumptions of Theorem 1

J th
inhom(t) =

E!0
[

(1 − p̄)n(X∩B(0,t))
]

E
[

(1 − p̄)n(X∩B(0,t))
] .

To conclude this example, note that the assumption of stationarity of the underlying point
process X may be weakened to intensity-reweighted moment stationarity.

5.3 Scaling

Let X be a simple point process on Rd for which product densities ρ(n) of all orders exist.
Let c > 0 be a scalar constant and map the point pattern X to cX. Then all order product

densities ρ
(n)
cX of cX exist and are given by ρ

(n)
cX (x1, . . . , xn) = c−dnρ(n)(x1/c, . . . , xn/c). In

particular for n = 1, λcX(x) = c−dλ(x/c). Therefore the n-point correlation functions

ξcX
n (x1, . . . , xn) = ξn(x1/c, . . . , xn/c)

of cX are invariant under translations if and only if the n-point correlation functions ξn of X
are, in which case the Jn-functions JcX

n of cX are scaled versions JcX
n (t) = cdnJn(t/c) of the

corresponding functions of X. Furthermore, infx∈Rd λcX(x) = λ̄ c−d, so the inhomogeneous
J-function of cX is

JcX
inhom(t) = 1 +

∞
∑

n=1

(−λ̄ c−d)n

n!
cdnJn(t/c) = 1 +

∞
∑

n=1

(−λ̄)n

n!
Jn(t/c) = Jinhom(t/c),

the inhomogeneous J-function of X evaluated at t/c provided the series converges. Note that
in contrast to the thinning case, the power series coefficients are not identical to those of the
underlying point process X.

The generating functional of the scaled process is given by GcX(v) = G(v(c·)), where G
is the generating functional of X, whence

GcX

(

1 −
c−dλ̄

c−dλ(·/c)
1{· ∈ B(0, t)}

)

= G

(

1 −
λ̄

λ(·)
1{· ∈ B(0, t/c)}

)

.

Similarly, noting that dP!x
cX(ϕ) = dP!x/c(ϕ/c),

G!a
cX

(

1 −
c−dλ̄

c−dλ(·/c)
1{· ∈ B(a, t)}

)

= G!a/c

(

1 −
λ̄

λ(·)
1{· ∈ B(a/c, t/c)}

)

.

To conclude this example, a conditional intensity of cX is obtained by scaling that of X, i.e.
λcX(x, ϕ) = c−dλ(x/c, ϕ/c) [11], from which we retrieve the formula JcX

inhom(t) = Jinhom(t/c)
under the assumptions of Theorem 2.
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5.4 Log Gaussian Cox process

Write Q for the distribution of a random measure defined in terms of its Radon–Nikodym
derivative Λ with respect to Lebesgue measure. We assume that all moment measures of
the random measure exist and are locally finite. Let X be the Cox process directed by the
random intensity process Λ, that is, given a realisation Λ = λ, X is a Poisson point process
with intensity function λ. It follows from [7, p. 262] that the factorial moment measures of
X exist and are equal to the moment measures of the driving random measure. Hence X has
product densities ρ(n)(x1, . . . , xn) = E [

∏n
i=1 Λ(xi)] . Moreover, the reduced Palm distribution

of X at x is the distribution of a Cox process with driving random measure distributed as
Qx, the Palm distribution of the driving measure of X at x [25, p. 141].

The class of log-Gaussian Cox processes [20] is especially convenient. For models in this
class,

Λ(x) = exp [Z(x)]

where Z is a Gaussian field. Such a field is defined fully by its mean and covariance function.
Write µ(x) for the mean function, σ2(x) for the variance of Z(x) and r(x, y) for the corre-
lation function. In other words, the covariance function of Z is given by σ(x)σ(y) r(x, y).
Conditions have to be imposed on these functions in order to make the resulting Cox pro-
cess well-defined. In particular, the intensity function must be integrable almost surely, and
ΨΛ(B) =

∫

B Λ(x) dx a finite random variable for all bounded Borel sets B ⊂ Rd. Moreover,
the distribution of the random measure ΨΛ must be uniquely determined by that of Z. Suf-
ficient conditions are given in [1, Thm. 3.4.1] for zero mean Gaussian processes. Therefore,
we additionally assume that the mean function µ is continuous and bounded. Now, since
E [

∏

i Λ(xi)] = E
[

e
P

i Z(xi)
]

, the moment generating function of the normally distributed
random variable

∑

i Z(xi) evaluated at 1,

ρ(n)(x1, . . . , xn) = exp





n
∑

i=1

(

µ(xi) +
σ2(xi)

2

)

+
∑

i<j

σ(xi)σ(xj)r(xi, xj)



 .

Specialising to n = 1, it follows that the intensity function is log λ(x) = µ(x) + σ2(x)/2
whence

ρ(n)(x1, . . . , xn)

λ(x1) · · ·λ(xn)
= exp





∑

i<j

σ(xi)σ(xj) r(xi, xj)



 .

Thus, if σ(·) ≡ σ > 0 and r(x, y) = r(x−y), X is intensity-reweighted moment stationary and
the intensity function is bounded away from zero with infimum exp

[

σ2/2 + infx∈Rd µ(x)
]

.
In order to derive an explicit formula for Jinhom, we turn to the generating functional.

Recall that a Cox process has a generating functional [7, Prop. 8.5.1] defined by G(v) =
EQ exp

[

−
∫

(1 − v(x)) Λ(x) dx
]

. Therefore, for the log-Gaussian Cox process

G
(

1 − u0
t

)

= EZ exp

[

−µ̄

∫

B(0,t)
eZ(x)−µ(x)dx

]

.

where µ̄ denotes infx∈Rd eµ(x).
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The Palm distributions Qx of a log Gaussian random measure are Λ(x) = eZ(x)-weighted.
To see this, note that the Campbell measure evaluated at a bounded Borel set B ⊂ Rd and
F in the smallest σ-algebra for which ΨΛ(B) =

∫

B Λ(x) dx is finite for all such B, can be
calculated as

C(B × F ) = EQ [1F (ΨΛ)ΨΛ(B)] =

∫

B
λ(x)

[
∫

1F (ΨΛ)
Λ(x)

λ(x)
dQ(ΨΛ)

]

dx

by Fubini and the existence of a σ-finite intensity measure λ(·) that is bounded away from
zero. Therefore,

G!a (1 − ua
t ) = EZ

[

eZ(a)−µ(a)

eσ2/2
exp

[

−µ̄

∫

B(a,t)
eZ(y)−µ(y)dy

]]

.

Since Y (x) := Z(x) − µ(x), x ∈ Rd, is a stationary Gaussian process, the above generat-
ing functional does not depend on the choice of a. Therefore, under the assumptions of
Theorem 1,

Jinhom(t) =
EY eY (0)

[

exp
[

−µ̄
∫

B(0,t) eY (x)dx
]]

EY

[

eY (0
]

EY exp
[

−µ̄
∫

B(0,t) eY (x)dx
] .

The mixed Poisson process considered in [18] is a special case.

Note that Jinhom(t) < 1 if and only if the random variables eY (0) and e
−µ̄

R

B(0,t) eY

are
negatively correlated. The geostatistical models used in practice, for example the one we
shall use in Section 7, have a positive, continuously decreasing, correlation function. There-
fore, by Pitt’s theorem [23], the Gaussian fields defined by such correlation functions are
associated. Under the further conditions of [1, Thm. 3.4.1.], the sample functions Y (·)
are almost surely continuous and hence the integral of eY over B(0, t) is uniquely defined
and the limit of Riemann sums over ever finer partitions of B(0, t). Since Y is associated,

Cov
(

eY (0), e−ci

P

i eY (xi)
)

≤ 0 for all finite sums with positive scalar multipliers ci > 0. Upon

taking the limit, it follows that Jinhom(t) ≤ 1.

6 Estimation

The goal of this section is to develop an estimator for the inhomogeneous J-function of Defi-
nition 1. For this purpose, we shall use the representation in terms of generating functionals
of Theorem 1 and apply the minus sampling principle outlined in [25, p. 127].

Specifically, let Let W ⊂ Rd be a compact set with non-empty interior and suppose the
point process X is observed in W . For clarity of exposition, we assume that the intensity
function λ is known. If it is not, it can be estimated (for instance using kernel estimation [5])
and plugged into the estimators outlined below.

In order to estimate G(1 − u0
t ), let L ⊆ W be a finite point grid. Set

(5) ̂G(1 − u0
t ) :=

∑

lk∈L∩W⊖t

∏

x∈X∩B(lk,t)

[

1 − λ̄
λ(x)

]

#L ∩ W⊖t
,
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where W⊖t is the eroded set {x ∈ W : d(x, ∂W ) ≥ t} = {x ∈ W : x + B(0, t) ⊆ W}.

Note that ̂G(1 − u0
t ) is an estimator as for all grid points lk ∈ W⊖t the ball B(lk, t) is fully

contained in W so that no points of X \W are needed for the computation of the product in
the numerator of (5).

Similarly, set

(6) ̂G!a(1 − ua
t ) =

∑

xk∈X∩W⊖t

∏

x∈X\{xk}∩B(xk,t)

[

1 − λ̄
λ(x)

]

#X ∩ W⊖t
.

Compared to (5), the grid points lk are replaced by the points xk of X ∩ W⊖t. Again, (6) is
a function of X ∩ W only.

Proposition 1. Under the assumptions of Theorem 1, the estimator (5) is unbiased, (6) is
ratio-unbiased.

Proof: We claim that

(7) E





∏

x∈X∩B(lk,t)

(

1 −
λ̄

λ(x)

)



 = G(1 − u0
t )

for all lk ∈ L ∩ W⊖t. To see this, note that

(8)
∏

x∈X∩B(lk,t)

(

1 −
λ̄

λ(x)

)

= 1 +
∞

∑

n=1

(−λ̄)n

n!

∑ 6=

x1,...,xn∈X∩W

n
∏

i=1

1{xi − lk ∈ B(0, t)}

λ(xi)
.

Hence, under the assumptions made, the expectation of (7) can be expressed as

1 +
∞

∑

n=1

(−λ̄)n

n!

∫

B(lk,t)
· · ·

∫

B(lk,t)

ρ(n)(x1, . . . , xn)
∏n

i=1 λ(xi)
dx1 · · · dxn,

which, because of the translation invariance of the integrands, reduces to

1 +
∞

∑

n=1

(−λ̄)n

n!

∫

B(0,t)
· · ·

∫

B(0,t)

ρ(n)(x1, . . . , xn)
∏n

i=1 λ(xi)
dx1 · · · dxn = G(1 − u0

t ).

This proves the claim, from which the unbiasedness of (5) follows.
Next, turn to the numerator of (6). By the definition of Palm distributions and the

reduced Campbell–Mecke theorem [25, p.107], its expectation can be expressed as

∫ ∫

W⊖t
λ(x)

∏

y∈ϕ

(

1 −
λ̄ 1{y ∈ B(x, t)}

λ(y)

)

dP
!x(ϕ) dx.

By (8), Fubini, the first equation in the proof of Theorem 1, and (2), the Palm expectation
in the integrand equals G!0(1 − u0

t ) for almost all x, hence the numerator of (6) equals
G!0(1 − u0

t )
∫

W⊖t λ(x) dx. As the expectation of the denominator is equal to
∫

W⊖t λ(x) dx,
(6) is ratio-unbiased as claimed. ¤
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Figure 1: Each row contains a realisations of a point process in the leftmost frame, the graphs

of (5) (solid line) and (6) (dashed line) in the middle frame, and the graph of ̂Kinhom(t) (solid
line) compared to π t2 (dashed line) in the rightmost frame. The models are a Poisson point
process (top row), a log Gaussian Cox process (middle row), and a thinned hard core process
(bottom row).
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7 Examples

In order to see how Jinhom(t) works in practice, we simulated realisations of three of the
models presented in Section 5. Typical patterns are displayed in the leftmost column of
Figure 1. In all three images a smooth intensity gradient can be observed: more points are
located near the bottom of the square than near the top. However, the interaction structure
seems different. For example, the middle picture contains groups of points that are close
together, with large gaps in between the clusters. In the lower picture on the other hand,
points seem to avoid being very close together and are more evenly spaced out. In the top
picture, both very small and very large interpoint distances occur. In order to quantify the
above qualitative remarks, we applied the ideas presented in this paper and compared the
results to those obtained by a second order analysis. To simulate the patterns and calculate
the estimators, the R packages spatstat1 and RandomFields2 were used.

Poisson point process The first example is a heterogeneous Poisson point process with
intensity function λ(x, y) = 100 e−y. Note that the mean number of points is 100(1−e−1) ≈ 60
per unit area. A realisation is shown in the top left frame in Figure 1. The top middle frame
shows (5) (solid line) and (6) (dashed line). It can be seen that the graphs lie close together,
in accordance with the fact that for any Poisson point process, Jinhom ≡ 1. For comparison,
the plug in minus sampling estimator of Kinhom is shown as the solid line in the top right
frame. Again, the graph is close to that of the theoretical value π t2 (dashed line in the top
right frame).

Log Gaussian Cox process The second example is a log Gaussian Cox process. The
defining Gaussian random field has exponentially decaying correlation function, unit variance,
and mean function µ satisfying eµ(x,y) = 100 e−y−1/2. Note that the intensity function of the
Cox process thus defined coincides with that of the Poisson point process discussed above.
A realisation is shown in the middle row’s leftmost frame in Figure 1. The middle frame
in the same row show (5) (solid line) and (6) (dashed line). Note that the graph of (6) lies
well below that of (5), indicative of attraction between points due to the positive correlation
of Z after accounting for the inhomogeneity. For comparison, the plug in minus sampling
estimator of Kinhom is shown as the solid line in the rightmost frame in the middle row. From
about t = 0.13, the estimated value is smaller than π t2.

Thinned hard core process The third example is a thinned hard core (Strauss) process
defined by its conditional intensity β 1{d(x, X\{x} > R}. A realisation for β = 200, R = 0.05
and retention probability p(x, y) = e−y is shown in the bottom left frame in Figure 1. The
middle frame in the bottom row show (5) (solid line) and (6) (dashed line). Note that the
hard core distance is clearly reflected in the flat initial segment in the graph of (6), which lies
abovethe graph of (5) up to about r = 0.2, indicative of the inhibition between points due to
that present in the underlying hard core process after accounting for the inhomogeneity. For

1Adrian Baddeley, email: adrian@maths.uwa.edu.au; and Rolf Turner, email: r.turner@auckland.ac.nz
2Martin Schlather, email: martin.schlather@ math.uni-goettingen.de
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comparison, the plug in minus sampling estimator of Kinhom is shown as the solid line in the
bottom right frame. The estimated value is smaller than that of a Poisson point process up
to about t = 0.2 confirming the picture painted by the Jinhom-function approach.

8 Summary and extensions

In this paper, we defined a J-function for intensity-reweighted moment stationary point
processes in terms of their n-point correlation functions and gave representations in terms
of the generating functional and conditional intensity. We calculated Jinhom explicitly for
the three representative classes of intensity-reweighted moment stationary point processes
presented in [3], derived an estimator, and presented simulation examples.

Although this paper focussed on point processes on Rd, the approach may be extended
to space time or marked point processes. First, assume that Y is a simple point process on
the product space Rd × R equipped with the supremum distance whose intensity function
λ(·) exists and inf(x,t) λ̄(x, t) > 0. Furthermore assume all order factorial moment measures

exist as locally finite measures that have Radon–Nikodym derivatives ρ(n) with respect to
the n-fold product measure of ℓ with itself, n ∈ N, and the corresponding n-point correlation
functions are translation invariant in both components. Define Jn as in Definition 1, from
which an inhomogeneous space time version of the J-function can be defined. If the series is
truncated at n = 1, one obtains

JST
inhom(t) − 1 ≈ −λ̄

∫ t

−t

∫

||x||≤t
ξ2((0, 0), (x, s)) dx ds,

which corresponds to the K∗
ST -approach of Gabriel and Diggle [9]. If space and time are

scaled differently, see Section 5.3, JST
inhom(t, s) becomes a function of two variables, one for

spatial distances, the other for time differences, which is more natural in many applications.
For marked point processes on Rd with marks in some Polish space M equipped with a

finite reference measure ν, make the same assumptions as above for space time point processes
except that the n-point correlation functions are required to be translation invariant in the
spatial component only. For any Borel set B ⊆ M and n ∈ N, set JB

n (t) equal to the common
value of

1

ν(B)

∫

B

∫

B(0,t)×M
· · ·

∫

B(0,t)×M
ξn+1((a, b), y1 + a, . . . , yn + a) dν(b) dℓ × ν(y1) · · · dℓ × ν(yn)

for almost all a ∈ Rd and define a family of inhomogeneous J-functions with respect to the
mark set B as in Definition 1. Under suitable regularity conditions,

JB
inhom(t) =

G!0
B(1 − u0

t )

G(1 − u0
t )

,

where ua
t (y = (x, m)) = λ̄1{x ∈ B(a, t)}/λ(y) and

G!x
B(1 − ux

t ) =
1

ν(B)

∫

B

∫





∏

y∈Y

(1 − ux
t (y))



 dν(b)dP
!(x,b)(Y ),

which can be estimated using minus sampling ideas.
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