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Abstract

When we look at successful sales processes occurring in practice, we
find they combine two techniques which have been studied separately
in the literature. Recommender systems are used to suggest additional
products or accessories to include in the bundle under consideration,
and multi-issue negotiation focuses on optimizing the precise configu-
ration of the bundle and its price. In this paper, we pursue the joint
automation of such interactive sales processes.

We present some key insights about, as well as a procedure for lo-
cating mutually beneficial alternatives to the bundle currently under
negotiation. The essence of our approach lies in combining aggregate
(anonymous) knowledge of customer preferences, learnt by the shop

∗We want to thank the anonymous reviewers for helpful comments on our paper.
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in interactions with previous customers, with current data about the
ongoing negotiation process with the current customer. We present
a memory- and a model-based method for online learning customer
preferences and discuss their pros and cons. The performance of our
system is illustrated using extensive computer experiments involving
simulated customers with highly non-linear preferences which the sys-
tem has no trouble learning.

1 Introduction

In every shop in daily life, one can encounter the phenomenon of the sales
process: sales people ask customers for their demands, and try to come to
a good deal. Often, this is based on suggesting other, additional products
forming an interesting bundle together, or by giving discounts and negotiat-
ing about the price. Price negotiation usually quickly shifts to negotiating
about the contents of a bundle of items with an overall price, where a sales
person may prefer to add an item to a bundle with a reduced extra price,
rather than discounting the overall price of the existing bundle. An example
is car sales, where accessories like light metal rims or a stereo-system may be
included in the overall deal at a reduced price, but also attractive financing
or insurance opportunities may be offered, and even trading-in one’s old car
may make a difference. Other examples include negotiating different aspects
of work contracts between an employer and its workers, or of procurement
contracts between firms.

Such adding, removing, or substituting items in a bundle is often initiated
by the sales person, who has the most domain knowledge, regarding both
interesting additional items for a specific customer as well as the products
in general, and regarding the price/profit ratios of these products. Often,
customers have limited knowledge about the possibilities and have limited
awareness of their needs (say, limited “active knowledge”). We mean this in
the sense that, even though customers can value specific offers by the sales
person, they cannot easily generate all interesting combinations themselves,
simply because they don’t know what’s available. This is where good sales
people can help and enhance the sales process, while still keeping focused on
their sales results.

When analysing the above sales process, one can distinguish two impor-
tant aspects that have been addressed in the literature separately. On the
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one hand, the suggestion of new products in a bundle is done in recommender
systems, where clients with limited active knowledge get recommendations
about other products based on their recent choices. On the other hand, nego-
tiation about the price and options in a transaction is studied in multi-issue
negotiation, where both negotiating parties have full active knowledge about
the product domain, but with their own (often private) preferences.

In this paper, we consider the sales process by two parties: a sales per-
son with full active domain knowledge, and a customer with limited active
domain knowledge (i.e., passive domain knowledge). We aim at automating
this process by a combination of negotiation and recommendation in an in-
tegrated and integrative fashion, that answers the needs of the two involved
parties. In particular, our goal is to automate the role and activities of the
sales person, in the form of an intelligent system (or agent) that can interact
with the customer, or possibly her software agent. We especially focus on
the intelligent and algorithmic aspects of such a solution, with an eye on po-
tential short-term applicability as well as feasibility for the sales domain. We
also keep an eye on keeping the models, protocols and solutions sufficiently
stylized in order to allow robust and thourough research and experimentation
results.

We discuss existing results in the related fields of multi-issue negotiation
and recommender systems.

1.1 Integrative Multi-Issue Negotiation

One technique that has been studied for reaching agreements among auto-
mated agents is the use of integrative negotiation [8]. This allows the agents
involved to explore the space of outcomes for mutually satisfying deals. In
an online retail e-commerce setting, outcomes may represent goods with dif-
ferent aspects, such as delivery date, quality level, price, etc. Alternatively,
as in the scenario we study, different combinations of goods and accessories
together with a price may be the subject of negotiation. The key idea is that
although each agent’s individually optimal outcome will generally be un-
acceptable for the other, there will also be many outcomes that both agents
like. Negotiation enables the agents to locate those outcomes, by successively
proposing concessions [13].

Multi-issue negotiation is especially effective at reaching such win-win
outcomes, since issues with different weights to each of the agents may be
traded off against each other [18]. From the point of view of the sales person,
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this also allows for personalization of deals towards individual customers.
Most multi-issue negotiation work, however, has focused on a small number
of issues, and, more importantly, on linear preferences [6]. For our setting of
automated sales processes, we need to address non-linearity, however, because
very often, the value of some items will depend on whether certain other
items are also obtained, sometimes in positive, and sometimes in negative
ways, representing complementarities and substitutes, respectively. And we
also need to address that customers often only have limited active knowledge
about their prefernces.

1.2 Bundling and Recommender Systems

Another relevant approach in the context of selling multiple items is bundling,
which means combining two or more items and selling them as one good [1].
Bundling can be a very effective sales strategy due to the possibility of re-
ducing the costs of producing, marketing and selling products. In addition,
and more importantly, bundling can stimulate the demand for related goods.
Bundles are usually composed offline, where the seller analyzes historical
sales data or uses expert knowledge to decide which combinations of goods
to sell at which (reduced) prices. Such bundles are therefore usually lim-
ited in number, compared to the total number of products available or to
the (exponential) number of theoretically possible bundles. Alternatively,
such historical data or expert knowledge may be used as input for recom-
mender systems, which allow sellers to assemble bundles online. This is done
by suggesting to customers additional items known to be popular or other-
wise suitable together with their initial selection. Collaborative or cognitive
filtering methods may be used to establish the relevant similarities [7]. Usu-
ally, adaptive pricing schemes for (extended) bundles are not occurring in
recommender systems, due to the (static) nature of the system with many
products. Some (general) pricing scheme techniques do exist [12], which of-
ten work with discounts based on the number of products purchased. Thus,
complementarities or substitutabilities between products are not expressed
in the price here.

The drawback of these approaches is that the scope for designing both
bundles and recommendations is limited by the static nature of the fixed
datasets they build on. So even thought these methods are able to capitalize
on the aggregate knowledge gathered in interactions with many different
customers, this provides only partial personalization. A recommender system
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presents two customers selecting the same initial item, with exactly the same
recommendations. Even though their preferences may be quite different, they
are treated as if they are identical. In reality, of course, no two customers
are identical, or, in the words of amazon.com founder Jeff Bezos: “We have
6.2 million customers, we should have 6.2 million stores. There should be the
optimum store for each and every customer.”1 Also, pricing mechanisms are
usually very limited in terms of personalization, due to the static nature of the
corresponding kind of bundling, the limited number of bundles available, or
the simplicity of the pricing schemes. The interactive nature of negotiation,
on the other hand, does offer the shop possibilities for learning about an
individual customer. In the past, however, this has not been exploited in
combination with aggregate knowledge like available in recommender systems
or human expert knowledge, but mainly for learning in interactions with
single customers.

1.3 Automated Interactive Sales

In this paper, we introduce a solution for automatic sales processes, consisting
of an intelligent combination of negotiation, bundle recommendation, and
aggregate knowledge derivation. This approach relates to what happens in
real life. In our approach, a shop and a customer negotiate about a bundle
of products and its total price. The customer has limited active knowledge
about his preferences. The shop uses aggregate knowledge for online decisions
about which bundles to recommend to an individual customer during this
process. This aggregated knowledge could come from human domain experts,
but, as we will show, it can in particular be derived from past negotiations
with anonymous customers (i.e., their identity need not be stored in relation
to this data). This knowledge derivation technique makes the system self-
contained, and it also allows for a high level of privacy for the customers.
Also, it does not ask for additional efforts of customers like filling out interest
forms and such, but merely uses past negotiation data. The shop’s experience
with an individual customer during a negotiation is used in addition to the
aggregate background domain knowledge. This allows the interaction in the
sales process to be truly tailored to an individual customer, and hence it
enhances the level of personalization. Finally, the sales process is tailored

1Quote from a BusinessWeek Online Q&A published online at http://www.
businessweek.com/ebiz/9903/316bezos.htm on March 16, 1999, last accessed on De-
cember 21, 2009.
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towards reaching win-win results, so-called Pareto optimal outcomes, which
are defined as outcomes in which one party can only get a better result at
the cost of the other (and thus no ‘free’ opportunities are left unused).

2 Automated Interactive Sales: Approach and

Stategy

We start from the problem description as given in Subsection 1.3. In more
detail, we propose that the shop negotiates with a customer about the com-
position and price of a bundle of goods. A negotiation is modeled as an
alternating exchange of offers and counter offers. Each offer is a proposed
outcome or contract, consisting of a bundle of goods plus a price for that
bundle. Such a proposal may be accepted by the other agent, or rejected
and countered with a new proposal, a counter offer. Depending on the de-
velopment of the negotiation process, the shop may recommend (negotiat-
ing about) an alternative bundle. The selection of such recommendations
is based on an incremental search for more ‘promising’ bundles. The cus-
tomer’s counter offers to the shop’s proposals provide the shop with valuable
information about the customer’s preferences, which may be used to further
guide the search.

2.1 Pareto Efficiency and Gains from Trade

To explain what it means for a bundle to be ‘promising,’ we start by making
the standard assumption that the customers and the shop are able to valu-
ate contracts based on their net monetary value or ‘utility’ for them, i.e. the
agents are able to express both valuations v and prices p of bundles in mone-
tary terms. The utility of a contract (a bundle-price combination) (b, pb) for
a customer is then equal to her valuation of the bundle minus the price she
needs to pay, and for the shop to the price paid, minus his valuation (usually
interpreted as his cost):

uc(b, pb) = vc(b)− pb and us(b, pb) = pb − vs(b).

If the shop and the customer ‘trade the bundle for the price,’ they both gain
a certain amount of utility, so the sum of the utilities is equal to the gains
arising from the trade.
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Formally, the gains from trade (gft) associated with a bundle b are de-
fined as the sum of the utilities for the shop us and for the customer uc of
contracts involving bundle b. Equivalently, the gains from trade are equal
to the difference between the customer’s and the shop’s valuation v of the
bundle [16]:

gft(b) = uc(b, pb) + us(b, pb)

= vc(b)− pb + (pb − vs(b))

= vc(b)− vs(b).

Note that the price does not influence the size of the gains from trade for a
bundle, but it does influence the way in which the bundle’s gains from trade
are split among the agents in terms of their respective utilities. The price
resulting from a negotiation depends on the negotiation tactics employed by
the agents, and on other external factors, such as outside options and the
distribution of power among the agents. These factors are outside the scope
of our research.

As explained in section 1.3, the shop wants to increase not only its own,
but also the customer’s satisfaction. This means the shop searches for Pareto
optimal or Pareto efficient outcomes. Previously we have shown that such
Pareto efficient outcomes are the ones involving the bundle(s) with the high-
est gains from trade [19],2 so the shop needs to search for these bundles
with the highest gains from trade attainable. (For contracts involving such
bundles, increasing one partner’s utility necessarily means making the other
partner worse off, i.e. they do not allow Pareto improvements.) Since the
shop knows its own valuation of bundles, the challenge is to estimate the
customer’s valuations in order to determine different bundles’ gains from
trade, and make an estimate of which ones represent Pareto improvements
to the bundle currently being negotiated.

2.2 Searching Multi-Issue Recommendations

The problem facing the shop is to locate Pareto efficient bundles (or bundles
with the highest joint utility or gains from trade), while the customer’s val-
uations for bundles are not only unknown to the shop, but also non-linear in

2Because we do not focus on negotiation tactics, in our experiments we are only in-
terested in the extent to which Pareto efficiency is approximated, and not in the agents’
relative utilities obtained.
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her valuations of the individual goods. In addition, the customer is assumed
to have limited active knowledge about her preferences, i.e., she will not be
able to propose alternative bundles, but only to value bundles proposed by
the shop. The shop uses feedback from negotiations with the current and
past customers to dynamically build up aggregate knowledge about its cus-
tomers. It uses such aggregate knowledge together with negotiation feedback
from the current customer to guide an incremental search process for bundles
with progressively higher gains from trade.

Without loss of generality, we assume that the interactive process starts
with the customer selecting an initial bundle and price. We call this bundle
the (shop’s estimation of the customer’s) ‘interest bundle.’ The shop and
the customer negotiate about the price for the interest bundle, until the
shop decides that an alternative bundle should be negotiated about. This
decision is based on the following. In each round of the negotiation, the shop
estimates ∆t, the remaining time required to reach a deal in the negotiation
about the current bundle, by intersecting its own sequence of planned future
concessions with a linear extrapolation of the customer’s two most recent
offers. If we let O = (b, p) and O′ = (b, p′) denote the customer’s current
and previous offers for bundle b, then the estimated remaining number of
negotiation rounds is estimated as:

∆t =
vs(b)− p

p− p′
,

where vs(b) is the shop’s valuation of the bundle, and p and p′ are the cus-
tomer’s two consecutive offered prices for bundle b. The decision to generate
a recommendation is then stochastic, with a probability Prrecomm that in-
creases in this estimated required time:

Prrecomm = 1− exp(−0.25∆t).

If the shop decides that a recommendation is due, an alternative bundle b′

is selected from the set B of bundles in the interest bundle b’s ‘neighborhood,’
which is defined as the set of bundles which differ from the interest bundle b
by the presence or absence of just one good (a bitflip in the interest bundle’s
bitstring representation). Thus, estimations of alternative bundles’ gains
from trade have to be made only for a small subset of all possible bundles.
Moreover, the customer will perceive the recommendation process as gradual,
and will not perceive recommendations as appearing haphazard.
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Selection of recommendations from the neighborhood B is done using the
softmax method with a Boltzmann distribution and a decreasing temperature
τ [20]. This means each bundle b′ ∈ B has a probability Pr(b′) of being
selected to be the recommendation, which is based on the bundle’s estimated
‘gains from trade difference:’

Pr(b′) =
exp(∆gft(b, b′)/τ)∑

b′∈B exp(∆gft(b, b′)/τ)
,

where ∆gft(b, b′) = gft(b′) − gft(b) is the estimated difference in gains from
trade between bundles b′ and b. The time-decreasing parameter τ is the
temperature, which determines the rate of exploration versus exploitation: if
τ = 0 there is no exploration, and softmax turns into greedy search. Having
exploration is useful because the shop has imperfect knowledge about the
specific customer it is interacting with.

With knowledge of his own valuation of the bundles b′ in the neighbor-
hood B, the shop thus needs to estimate the customer’s valuation of those
bundles, or equivalently, the gains from trade difference for each of the bun-
dles b′ ∈ B. The recommendation is presented to the customer along with a
price determined by the shop’s negotiation tactic, and the negotiation process
continues. A crucial feature of our approach is that, in contrast to current
‘passive’ recommendation methods, embedding recommendations in a nego-
tiation process enables the shop to learn about the appropriateness of the rec-
ommendation for this particular customer. Depending on the ‘enthousiasm’
of the customer’s counter offer to the offer containing the recommendation,
the shop designates the recommended bundle as the new interest bundle (and
thus diverts the search to this new interest bundle’s neighborhood), or aban-
dons the recommended bundle and generates a new recommendation from
the current interest bundle’s neighborhood. This process continues until a
deal is reached, or until one of the agents leaves the negotiation.

In this way, we are able to combine aggregate knowledge about the ‘aver-
age’ customer, learned in interactions with many customers, with customer-
specific knowledge learned in the unfolding negotiation process. The aggre-
gate knowledge is used to start off the interaction, while negotiation data
may override aggregate knowledge-based decisions in favor of adaptations of
the process to the responses of the individual customer.
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2.3 Predicting Preferences

A very important component of our method is yet to be discussed: the shop
needs a method for learning aggregate knowledge about customers’ valua-
tions for bundles. In line with concerns for customers’ privacy, this method
should use only anonymized negotiation data. We have chosen to use only
implicit ‘ratings,’ i.e. ratings which are derived from (implicit in) the cus-
tomer’s behavior: they do not require the customer to deviate from what she
was doing already. A prime example is sales data, and in our case negotiation
data. Implicit ratings are easily anonymized, and they are less intrusive to
collect than explicit ratings provided by customers by filling in forms and
scoring items in ways other than by buying them. In particular, we use data
collected in the negotiation process as ratings: not just for learning specific
knowledge about the current customer, but, in anonymized form, also for
learning aggregate knowledge about customers in general. The advantage of
using negotiation data as ratings is that providing them is incentive compat-
ible for the customer, who benefits from negotiating better prices, while the
shop learns more about the customer’s valuations. Furthermore, this yields
a closed system, with no need for exogenous data.

Multi-issue negotiation has been studied thoroughly, for example study-
ing the influence on the efficiency and speed of deals reached by agents of
different protocols, often using mediators [10, 13]. Studies of learning in
multi-issue negotiation generally find that enabling agents to learn about as-
pects of the opponent increases the performance of the process in terms of
locating profitable negotiation outcomes, and using less negotiation rounds.
This is the rationale underlying this part of our system as well. In an early
example, Zeng and Sycara [21] use Bayes’ rule to update beliefs about the
opponent’s reservation price. Others have proposed methods to learn the
opponent’s preference function, like Buffet and Spencer [3] who use Bayesian
classification of an opponent’s preferences function. The effectiveness of their
model depends on the preference functions in the various classes, and fur-
thermore they assume the opponent is making concessions, whereas we are
able to handle the general case. Jonker, Robu and Treur [11] find that reveal-
ing little information can lead to efficiency improvement using a model for
estimating attribute-weights for a linear utility function. Another approach
for estimating weights of linear utility functions, is used by Coehoorn and
Jennings in [4], and by Hindriks and Tykhonov in [9], who also allow an
agent to learn the actual preference values. The restriction to linear pref-
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erence functions is also used in [15], who develop an automated agent that
learns an opponent profile from a given fixed set of possible profiles. The
agent can outperform human negotiators. Here, we’re explicitely interested
in non-linear utilities. These are also treated by Lai, Li and Sycara in [14],
who propose a model where agents propose multiple goods, or even complete
iso-utility curves as offers. However, they show results for only 3 issues. The
most closely related work is by Robu, Somefun and La Poutré [17], who use
negotiation data to learn parameters of a so-called utility graph, which ex-
presses interdependencies between (valuations for) goods. Their approach,
however, requires that the seller knows the structure of the utility graph.

Two types of methods can be used for predicting customer preferences in
recommender systems [2]: memory-based and model-based. Memory-based
methods operate on collected data or ‘ratings’ directly, while model-based
methods use such data to estimate the parameters of a given model, which is
then used to predict preferences. Memory-based methods are more efficient,
in that they generate predictions without the need for preprocessing data (i.e.
estimating a model), but they suffer from scalability problems, unlike model-
based methods which typically scale well. For model-based methods, on the
other hand, the challenge lies in selecting the right model and in actually
estimating it, while these methods are very fast at generating predictions
once the models have been estimated.

First we assume that bundling will be worthwhile only for ‘subdomains’
of a shop’s catalogue containing limited numbers of goods compared to the
shop’s complete catalogue of items. When considering the purchase of a cam-
era, for example, a suitable bag and a tripod and possibly a limited number of
other items are relevant accessories. In general, the range of individual goods
the shop will consider in negotiating with his customers will be limited. For
such domains (i.e. n = 10 individual goods), the exponential memory require-
ments of memory-based methods for storing data about all possible bundles
is no impediment. We will present a memory-based method for this setting
in Section 3. Its advantage is that it works independently of a model of
the customers’ preferences, while its main disadvantage of course, is that it
doesn’t scale well. In particular, for our experiments with this memory-based
method, 20 items is already too much, so for those circumstances, we develop
a model-based method which scales much better (Section 4). Content-wise,
the first method is very general, in that it requires no model of the customer’s
preferences. The second method, on the other hand, estimates a model of
the customer’s valuation function, and thus requires that model to be of
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sufficiently manageable complexity to actually be estimated.

3 The Memory-based Method MeB

Our memory-based method MeB learns the gains from trade difference ∆gft(b, b′)
between all possible bundles b and all bundles b′ in their respective neigh-
borhoods. Right before and after a recommendation, the customer will bid
consecutive offers about the original bundle b and the recommended bundle
b′ from b’s neighborhood, respectively. A comparison of the prices in those
offers indicates to the shop what the customer’s difference in valuation of the
2 bundles is.

Knowing his own valuation, these offers also tell the shop the gains from
trade difference ∆gft(b, b′) between the 2 bundles b and b′. The shop averages
these differences for each such (b, b′)-pair across all customers who make
consecutive bids for the bundles involved in this pair (b, b′). Although the
customer may strategically misrepresent her valuations, we assume this effect
on average to be negligible between consecutive offers because they are made
so close together in time. Moreover, some customers will bid offers in the
order (b, b′) and some in the order (b′, b), thus further diminishing the effect
of strategic misrepresentation. Also note that each pair of offers obtained
from one customer, may be used twice, namely to estimate the differences
between both (b, b′) as well as (b′, b). This gives the shop an estimate of the
average or ‘typical’ customer’s gains from trade difference between each such
pair. It uses these differences for softmax-selecting a bundle to recommend
from a given interest bundle’s neighborhood, as explained above.

3.1 Experiments

We have evaluated our methods in numerical experiments involving simulated
customers. To test the MeB method, we used n = 10 individual goods, and
compared the MeB method’s performance against two benchmarks providing
heuristic upper and lower bounds on performance.

We repeated each experiment a number of times using different random-
seeds. In each experiment, we determined the Pareto optimal bundle and
the gains from trade associated with it, by performing a brute force search of
all bundles, for each distinct combination of instances for the customer’s and
the shop’s valuations. This allows us to measure to what extent the Pareto
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efficient outcome is approximated.

Valuations and Negotiation Tactics A customer’s valuation of a bundle
is constructed as the sum of her valuations for the individual goods, plus her
(positive or negative) valuations for the interactions among different subsets
of goods, up to interaction effects among 3 goods. All these valuations are
drawn uniformly at random, from the range [0, 250] for individual goods and
[−250, 250] for the interaction effects. The customer’s choice of an initial
bundle is determined as a randomly chosen bundle at a distance of 3 bit-
flips from the optimal bundle, so that the shop’s method has some room for
improvement.

In the experiments, we gave both the customer and the shop a time-
dependent concession tactic [5], called TDF (for Time-Dependent Fraction).
This tactic starts bidding at some distance above (for the shop) or below (for
the customer) the agent’s valuation, and gradually approaches the valuation
over time, using a shrinking fraction of the valuation. Each agent had a 2%
probability of breaking off negotiations in each round.

Benchmarks To the best of our knowledge, no prior work has addressed
the same situation as we have. We have therefore chosen to implement two
benchmarks to compare the performance of our system with. The first bench-
mark (called PK for Prior Knowledge) simulates the shop having access to
aggregate knowledge in the form of the actual probability distributions un-
derlying customers’ valuations (but not to individual customers’ valuations).
This provides a heuristic upper bound for the performance of our methods.
In essence, this benchmark indicates what is the most that can be expected
from our system, although for achieving this it would still have to learn this
aggregate knowledge. We will see that our system is indeed able to learn this.
A lower bound is provided by the other benchmark, called RR for Random
Recommendation. This benchmark simulates the shop generating random
recommendations from the interest bundle b’s neighborhood, without taking
any aggregate knowledge about gains from trade into account. We would
hope that our system performs at least as good, but preferably much better
than this rather uninformed approach to generating recommendations. This
is indeed confirmed in our experiments.
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3.2 Results

The main results for this experiment are shown in Figure 1. The ‘relative per-
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Figure 1: Comparison of MeB with the benchmarks PK and RR in experi-
ment I. These results are averages across 10 runs with different random seeds,
and 12000 customers per run. Standard deviations are indicated as errorbars.
Note that for each method, the 2 bars on the left are measured on the left
y-axis, while the bar on the right is measured on the right y-axis.

centage’ numbers measure the extent to which the methods are able to reach
Pareto optimal outcomes, relative to the gains from trade of the negotiation’s
starting bundle, gft(binit):

relative percentage =
(gft(bfinal)− gft(binit))

(max. gft− gft(binit))
,

where bfinal is the bundle under negotiation when the process ends, irrespec-
tive of whether this is because a deal is reached or because of the 2% exoge-
nous break-off probability, and max. gft is the maximum gains from trade
attainable across all bundles, which we established for each shop-customer
interaction by brute force search over all possible bundles. Presenting perfor-
mance relative to the minimum gains from trade attainable would obviously
give higher percentages, but is deemed an unrepresentative measure.
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Figure 1 shows that the MeB method enables the shop to reach deals with
many customers very quickly, by online learning about the customers’ pref-
erences and applying this knowledge in negotiations with future customers.
Especially compared to what would be possible when the shop already had
access to the probability distributions underlying the customers’ preferences,
the MeB method is competitive in terms of both the fraction of deals reached,
as well as the number of negotiation rounds required to reach a deal.

Figure 2 shows the development of the relative percentage score of the
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Figure 2: Relative percentage of the MeB method on the left, compared to
the RR- and PK-benchmarks; cumulative average fraction of deals reached
on the right. Both graphs show 100-customer moving averages.

MeB method over time (on the left). Each datapoint is the average across 10
customers, drawn from different random distributions. The MeB method’s
performance starts out at the level attained by recommending randomly cho-
sen bundles from the interest bundle’s neighborhood, which is precisely what
this method does initially, before it has begun to build up aggregate knowl-
edge. Eventually, the MeB method is able to attain about 85% of the perfor-
mance of the PK benchmark, which has unrestricted access to the complete
probability distributions underlying the customers’ preferences. The graph
on the right shows the performance in terms of the fraction of customers with
which a deal is reached: starting at the level of random recommendations
again, the MeB method eventually reaches deals with the same fraction of
customers as the PK benchmark, although these deals are of lower quality in
terms of gains from trade involved.
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4 The Model-based Method MoB

The MoB method predicts a customer’s valuation of a bundle as a function of
the bundle’s configuration. A customer’s valuation is calculated as the sum
of the customer’s valuations of the individual goods, plus the valuations for
all subsets of size ≥ 2 of goods in the bundle. In general, interaction effects
may occur among subsets of goods up to a certain size m ≤ n, the number of
goods. In practical circumstances, however, m will be limited, for example
because of limitations on humans’ cognitive abilities. For choosing a suitable
value for m, we consider that humans are able to consider a maximum of
7± 2 items at the same time, and we pick m = 3 so that we allow sufficient
non-linearity while keeping our models manageable. In general, this gives a
total of k =

∑m
i=1

(
n
i

)
parameters to be estimated, which is k = 1

6
n3 + 5

6
n for

m = 3, so k = 1350 for n = 20.
A customer’s valuation for a bundle, vc(b), is then calculated as

vc(b) =
n∑

p=1

a<p>b(p)+
n∑

p=1

n∑
q=1

a<p,q>b(p)b(q)+
n∑

p=1

n∑
q=1

n∑
r=1

a<p,q,r>b(p)b(q)b(r),

where a<p,q> is the customer’s valuation (a real number) for obtaining just
goods p and q together, etc., and b(p) is 1 if bundle b contains good p, and
0 otherwise. Let a be the k-dimensional vector of these parameters a<p>,
a<p,q>, and a<p,q,r> in an arbitrary, but systematically chosen order. For-
mally, there exists a fixed mapping f : {0, 1}n 7→ {0, 1}k, known by the shop,
which maps a bundle in binary notation to a k-dimensional vector of bits
signifying whether each of the corresponding elements of the k-dimensional
vector of parameters a is relevant when determining a customer’s valuation:
for any bundle b ∈ {0, 1}n, vc(b) = f(b)Ta.

As an example, when n = 3, a customer’s valuation of the bundle b =
(1, 1, 0), i.e. the bundle containing only goods 1 and 2, is vc(1, 1, 0) = a1+a2+
a1,2. Depending on the encoding, we could have f(b) = (1, 1, 0, 1, 0, 0, 0), but
irrespective of the encoding, f(1, 1, 0) should contain three 1’s and four 0’s,
since only the three parameters a1, a2 and a1,2 contribute to the customer’s
valuation of this bundle.

The idea of the MoB method is that the shop estimates the k parameters
in the vector a from observations of customers’ valuations of bundles. If the
shop has t observations i = 1, . . . , t of a customer’s valuation vi for bundle
bi, then

v = Ba, (1)
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where v = [v1, . . . , vt]
T and B = [f(b1), . . . , f(bt)]

T . Since the shop knows
f , he knows both v and B, and if the rank of the matrix B is equal to
k, he can calculate the vector of parameters a as a = B+v, where B+ is
the (Moore-Penrose) generalized matrix inverse of B, and B+v is the least
squares solution of the system of linear equations described by equation 1.
We solved the two problems this approach has, namely that the vector a
is typically different for different customers (such that it is more accurately
interpreted as a random vector), and that the shop does not observe a cus-
tomer’s valuations of bundles but rather her bids for those bundles. We first
discuss the former problem (Section 4.1), and then show how a clever pre-
processing of negotiation data can generate the high quality data necessary
for the first step (Section 4.2).

4.1 Estimating Means and Co-variances

Since valuations will normally differ from one customer to the next, each
customer really has an individual vector ac containing her preferences, and
the vector a would be a random vector, described by a vector of means µa

and a co-variance matrix Σa giving rise to a multivariate distribution from
which the individual customers’ vectors ac are drawn. In order to be able to
search Pareto optimal deals with new customers, the shop wants to estimate
µa and Σa. Assume for the moment that the shop sees customers’ valuations
rather than bids. (As announced, we discuss below how the shop may go
from bids to valuations.) If the shop would negotiate for a long time with
customer c, while constantly suggesting new bundles, then eventually this
would yield v = [v1, . . . , vt]

T and B = [f(b1), . . . , f(bt)]
T such that the rank

of B is k, as required for solving equation 1. In the absence of strategic
behavior, the shop would then be able to estimate ac from negotiation data
v and B. It would then become straightforward to estimate a’s mean µa and
co-variance matrix Σa from data about individual customers’ preferences.

For large k, of course, customers will break off negotiations long before
the matrix B grows into a rank k matrix. However, the general idea may be
usefully employed to at least partly reveal ac for most customers c, as follows.
The general idea is that for each individual customer c, the shop obtains a′

c,
containing the values of a small subset of ac, and uses the combination of
all these values over multiple customers to estimate µa and Σa. As with ac

above, this k′-dimensional vector a′
c (with k′ � k) is obtained as the solution

of the customer c-specific, and reduced version of equation 1, namely a′
c =
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B′+v′. This requires that the rank of the matrix B′ is k′, which is guaranteed
if the sequence of suggestions meets certain conditions. The sequence of
bundles bl+1, . . . ,bl+δ suggested is constructed in such a way that strictly
less individual goods are considered than is possible. In the experiments, 4,
5, or at most 6 individual goods are considered. By doing so, it becomes
feasible to completely describe the required k′-dimensional subspace using
just a limited number of recommendations. With these suggestions, the
vector f =

∑δ
i=1 f(bl+i) contains only a few nonzero elements. This sequence

of recommendations gives rise to a matrix B = [f(bl+1), . . . , f(bl+δ)]
T whose

rank k′ is equal to the number of nonzero columns. If the zero-columns are
removed, we have the δ × k′ dimensional matrix B′, which, along with the
customer’s valuations of the bundles in the sequence, v = [vl, . . . , vl+δ]

T , the
shop may use to estimate a′

c, the k′ dimensional vector containing all the
identifiable parameters of ac.

Intuitively, the shop recommends a sequence of bundles involving only a
small number of individual goods. This way, these bundles map to a sequence
of corresponding vectors of parameters with the required rank for performing
the matrix inversion. In addition, consecutive recommended bundles differ
from each other with Hamming distance of 1, so that these recommendations
don’t appear too haphazard.

4.2 Pre-processing

With strategic behavior, the shop does not observe the customer’s valuations
v, but rather the customer’s corresponding vector of bids p = [pl, . . . , pl+δ]

T .
In order to go from observed bids to estimations of valuations, the shop
needs a model of the customer’s strategic behavior. The essence of our pre-
processing method is to make this model explicit, estimate it, and check
whether it is consistent with a customer’s bidding behavior. Rather than
valuations v in the previous subsection, the shop uses estimated valuations
ve, which he predicts using the model

pt = g(t)[cnst · (f(bt)
Tac)], (2)

where cnst ∈ R is a constant, f(bt)
Tac denotes the customer’s valuation for

bundle bt, and g : N 7→ R is some function of the negotiation round. So,
the bid in a given negotiation round t is assumed to be composed of a fixed
and a variable, strategic, component, cnst and g(t), respectively. The fixed
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component specifies how much the customer is at most willing to pay for
the bundle, and the variable component specifies how the customer’s bidding
proceeds over time.

First, the shop will use l + δ observations to estimate g(t). For the first
l of these observations, the shop makes no recommendation, so these are all
about the same bundle so that, presumably, differences in the customer’s
consecutive bids represent g(t). Given a fixed functional form, the shop then
fits a function ge (an estimation of g(t) in Equation 2) through these first l
bids. In real world applications, the shop might have a collection of bargain-
ing models it can try, or estimate ge assuming a different functional form,
e.g. exponential instead of linear. Over the course of the next δ observations,
the shop suggests different bundles and uses ge to estimate valuations for
these bundles as ve(t) = p(t)/ge(t) for l ≤ t ≤ δ. These valuations are used
by the method described in the previous section to estimate ac. Finally, the
shop will use an additional γ observations to perform consistency checks: if
the estimated model does not predict these data, then the valuations esti-
mated from this model are not included in the subsequent step of estimating
coefficients of the customer’s utility function (as described in Section 4.1).

4.3 Experiments

The experiments we performed to evaluate the performance of the MoB
method were set up in exactly the same way as those in Section 3.1. The
only difference is that we used n = 20 goods, and the customer’s initial
bundle was located at 5 bitflips from the optimal bundle. Also, we only
simulated sequences of 5000 customers, and we replicated each of those 30
times. Table 3 gives the overal results for experiment II. The labeling of the
rows is the same as that in Table 1. Note the high standarddeviations of the
maximum and minimum gains from trade attainable, indicating significant
differences between the 30 problem intances. However, the standard devia-
tions of the important performance indicators is low, showing robustness of
the results across those problem instances. The negative gains bfinal for the
RR benchmark means that it often finds a bundle for which there is no ‘zone
of agreement,’ i.e. a bundle with negative gains from trade; this also partly
explains the low average number of deals.

Figure 4 shows the quick learning of the MoB method. In particular, the
MoB method quickly reaches the performance levels of the PK benchmark,
which has direct access to the probability distributions underlying customers’
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Figure 3: Comparison of MoB with the benchmarks PK and RR in exper-
iment II. These results are averages across 30 runs with different random
seeds, and 5000 customers per run. Standard deviations are given between
brackets.

valuations. About 500 customers suffices for the MoB method because the
systems obtains such large amounts of data from those individual early cus-
tomers: abour 55 negotiation rounds, and valuations for different bundles.
This is because we condensed the learning phase into the first 500 customers.
In a practical application, the learning would normally have to be spread out
across more customers, and they should be learned from more gradually. In
the current setup, the initial customers are essentially exploited by having
to respond to many different proposals from the shop, for the sole purpose
of allowing the shop to learn. Many of the deals which are not reached by
the MoB method are in fact not reached in interactions with exactly those
initial customers.

5 Conclusions and Future Work

In this paper, we have outlined a novel utility-based approach to recommend-
ing, combining a number of distinct worlds. We view recommending in the
context of bundling: recommendations are personalized bundles. Bundling
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Figure 4: Relative percentage (on the left) and number of rounds required
to reach deals (on the right) for the MoB method. The graphs present 100-
customer moving averages.

provides opportunities for win-win outcomes, while multi-issue negotiation
is especially effective at reaching win-win outcomes when they exist. Closing
the circle, we connect recommendations with negotiations in a proposed sys-
tem for adapting recommendations to knowledge learned about the customer
in the interactive negotiation process. Numerical experiments involving sim-
ulated customers show our system’s effectiveness in different circumstances.
We feel that these first steps have opened up many opportunities for further
research in this new and promising area.

It is important to note that the reason we don’t report experiments with
the MoB method beyond n = 20 is that we use brute force search of the
exponential space of bundles for the Pareto optimal bundle (to be able to
show the method’s perfomance relative to the optimal bundle’s gains from
trade). The method itself can easily handle much larger bundles, since the
number of parameters it needs to estimate is only a polynomial in the number
of individual goods.

It is especially impressive that this method starts out with no prior knowl-
edge about the distribution of its customers’ valuations. It is able to learn
such preferences quickly, up to point where its performance matches a system
which starts out with such prior knowledge (the PK benchmark).

As for future work, we do not currently give the customer the opportunity
to also adapt the bundle configuration. We chose not to include this possi-
bility because in our experiments, this would have required an ad-hoc model
of how the customer makes such decisions. In an actual application, on the
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other hand, the customer could easily be given this option. With currently
available online product review sites and corresponding well-prepared cus-
tomers, this would be all the more appropriate. All this would require in our
system is that the shop would simply shift its estimation of the customer’s
interest bundle to whichever bundle the customer would suggest negotiating
about.

Within negotiations, the shop would have the option of learning about
the customer on the basis of more data than used now, such as trends in the
customer’s bidding behavior, and idiosyncratic choices not fitting with the
aggregate knowledge. Furthermore, we have chosen a difficult application
scenario by limiting ourselves to anonymized, privacy-protecting data. In
certain settings, customers may very well be willing to give up some informa-
tion about themselves, especially when the shop can make such information
sharing incentive compatible like it can with negotation data.

A variety of extensions and alternative methods are possible for the do-
main problems reported in this paper. Recent related and concurrent work
by several of the current authors is [17], which investigates a different trade-
off between more effectively searching multi-issue negotiation proposals and
making stronger assumptions about the (higher) level of active knowledge of
the customer (the customer’s level of ‘rationality’). We expect that, with the
current research in place, many subsequent research steps can be taken into
various other directions.
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