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ABSTRACT

It is known that in real-valued Single-Objective (SO) op-
timization with Gaussian Estimation-of-Distribution Algo-
rithms (EDAs), it is important to take into account how
distribution parameters change in subsequent generations
to prevent inefficient convergence as a result of overfitting,
especially if dependencies are modelled. We illustrate that
in Multi-Objective (MO) optimization the risk of overfitting
is even larger and only further increased if clustered varia-
tion is used, a technique often employed in Multi-Objective
EDAs (MOEDAs) in the form of mixture modelling via clus-
tering selected solutions in objective space. We point out
that a technique previously used in EDAs to remove the risk
of overfitting for SO optimization, the anticipated mean shift
(AMS), can also be used in MO optimization if clusters in
subsequent generations are registered. We propose to com-
pute this registration explicitly. Although computationally
more intensive than existing approaches, the effectiveness of
AMS is thereby increased. We further propose a new clus-
tering technique to improve mixture modelling in EDAs by
1) allowing clusters to overlap substantially and 2) assign-
ing each cluster the same number of solutions. This allows
any existing EDA to be transformed into a mixture-based
version straightforwardly. Finally, we point out the benefit
of injecting solutions obtained from running equal-capacity
SO optimizers in synchronous parallel and investigate ex-
perimentally, using 9 well-known benchmark problems, the
advantages of each of the techniques.
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1. INTRODUCTION
EDAs aim to exploit features of a problem’s structure in

a principled manner via probabilistic modelling. It is of-
ten assumed that a higher capacity of the distribution class
used in an EDA automatically allows for a larger, and more
complex, class of optimization problems to be solved effi-
ciently. Merely enlarging this capacity, e.g. by allowing more
dependencies to be modelled, isn’t necessarily enough how-
ever. When using Gaussian (i.e. normal) distributions with
maximum-likelihood estimates for instance, it is known that
modelling dependencies may actually lead to overfitting the
selected solutions, which, in turn, results in an inefficient
alignment of the distribution with the direction of improve-
ment in the problem landscape [5, 6, 7, 8]. For this reason,
the direction in which the distribution has shifted in subse-
quent generations must be considered. This is done using
adaptive mechanisms that span multiple generations such
as the Anticipated Mean Shift (AMS) [1] approach in EDAs
and the evolution path and the estimation of covariances
using the mean in the previous generation in CMA-ES [8].

For single-objective (SO) optimization, these algorithms
are highly efficient. Many optimization problems in practice
however are multi-objective (MO). In MO optimization, the
optimum is no longer a single solution but a set of solutions,
called the optimal Pareto front. This is because many solu-
tions may be equally good, e.g. solution a may be better in
the first objective than solution b, but worse in the second
objective. Population-based methods such as evolutionary
algorithms (EAs) are commonly accepted to be well-suited
for solving MO problems [4]. Because a set of solutions is
used, EAs can spread their search bias along the Pareto front
and thereby prevent many re-computations that are involved
if a single point on the Pareto front is repeatedly targeted
using an approach that only considers a single solution.

Considering EDAs, mixture distributions are of particu-
lar interest when solving MO optimization problems because
they can spread the search intensity along the Pareto front,
allowing more focused exploitation of problem structure in
different regions of the objective space [2, 12]. To obtain
high-quality solutions, exploiting dependencies in each re-
gion may be necessary, but the configuration of these depen-
dencies or the values for the problem variables may be very
different in each region. Probabilistic dependency modelling
may be less effective if it is the same in each region.

It is the focus of this paper to study more closely the rela-
tion between spreading the search distribution in EDAs us-
ing mixture distributions and the observed pressure towards
finding better (i.e. Pareto-dominating) solutions. In MO op-



timization, the number of equally-preferable solutions can
easily be larger than the population size, causing the vari-
ance of the estimated distribution to quickly become focused
on the variety within sets of equally-preferable solutions in-
stead of the variety between such sets, i.e. the direction of im-
provement in the MO fitness landscape. Non-zero variance
along such directions is required for any EDA to have a sub-
stantial probability of sampling better solutions. If higher-
order dependencies can be modelled, the risk of fitting only
solutions of equal preference becomes only larger because
a more accurate probabilistic representation of the selected
solutions is possible, especially in the case of real-valued ob-
jectives because then there may be an infinite number of
equally-preferable solutions. Arguably, premature conver-
gence and inefficient performance are then much more likely,
making this an important topic to study more closely.

2. MULTI-OBJECTIVE OPTIMIZATION
We assume to have m objective functions fi(x), i ∈ {0, 1,

. . . , m − 1} and, without loss of generality, we assume that
the goal is to minimize all objectives.

A solution x0 is said to (Pareto) dominate a solution x1

(denoted x0 ≻ x1) if and only if fi(x
0) ≤ fi(x

1) holds
for all i ∈ {0, 1, . . . , m − 1} and fi(x

0) < fi(x
1) holds for

at least one i ∈ {0, 1, . . . , m − 1}. A Pareto set of size
n then is a set of solutions xj , j ∈ {0, 1, . . . , n − 1} for
which no solution dominates any other solution, i.e. there
are no j, k ∈ {0, 1, . . . , n − 1} such that xj ≻ xk holds. A
Pareto front corresponding to a Pareto set is the set of all m-
dimensional objective function values corresponding to the
solutions, i.e. the set of all f (xj), j ∈ {0, 1, . . . , n− 1}.

A solution x0 is said to be Pareto optimal if and only if
there is no other x1 such that x1 ≻ x0 holds. Further, the
optimal Pareto set is the set of all Pareto-optimal solutions
and the optimal Pareto front is the Pareto front that cor-
responds to the optimal Pareto set. We denote the optimal
Pareto set by PS and the optimal Pareto front by PF .

3. CLUSTERED VARIATION
Instead of using one population, multiple populations can

be used. With the exception of selection, a completely sepa-
rate EA is run for each subpopulation. Because selection is
performed on all solutions in all populations the generations
are synchronized and the populations can also be thought
of as subpopulations. This approach is taken in SDR-AVS-
MIDEA [3] and in MO-CMA-ES [11].

Not all populations necessarily then get the same num-
ber of selected solutions. For some populations, none of the
generated solutions may even be selected in the next gen-
eration. In that case, the population will have to be reset
somehow, for instance by copying solutions from other pop-
ulations. Also, all adaptive mechanisms that span multiple
generations will have to be reset for the disappearing popu-
lation. This is the case for SDR-AVS-MIDEA [3]. One way
to overcome this problem is to restrict the population size to
be of size 1. This is the case for in MO-CMA-ES [11] where
a (1, 1) strategy is used. This restriction however doesn’t
allow other existing SO population-based methods to be ex-
tended to the MO case in a straightforward manner.

Clustered variation can also be performed using only one
population. The selected solutions are then first clustered.
Subsequently, the actual variation takes place by consider-
ing only individuals in the same cluster, i.e. a mating re-

striction is employed. To ensure that the spatial separation
of the search bias is obtained in the objective space, clus-
tering should be performed on the basis of objective val-
ues. In EDAs, this corresponds to using a mixture distribu-
tion. A mixture probability distribution is a weighted sum
of k probability distributions. Let X be the random vari-
able that represents the parameter space of the problem at
hand. A mixture probability distribution is then defined by
Pk−1

i=0
βiP

i(X), βi > 0, i ∈ {0, . . . , k− 1} and
Pk−1

i=0
βi = 1.

The βi are called the mixing coefficients and each probability
distribution P i is called a mixture component.

Using mixture probability distributions instead of subpop-
ulations is probabilistically a superior approach because all
data is used each generation to compute the distribution.
Obtaining mixture distributions by clustering the selected
solutions and estimating a probability distribution in each
cluster separately is an approach taken in various MOEDAs,
e.g. in MIDEA [2] and in mohBOA [12]. The main difference
between these two approaches, besides employing Gaussians
for real-valued solutions versus employing decision graphs
in Bayesian factorizations for discrete solutions, is that in
MIDEA a different clustering algorithm is used (leader clus-
tering) than in mohBOA (k-means). We refer the interested
reader for details on these clustering algorithms to the re-
spective literature. Although asymptotically these cluster-
ing algorithms have the same computational complexity, the
k-means clustering algorithm loops over the data more than
once, requiring more time, but typically resulting in a supe-
rior clustering result with less variation in cluster sizes.

The clustering methods used so far do not necessarily re-
sult in a clustering where each cluster has equal size. This
can give similar problems as when using multiple popula-
tions. For a straightforward extension of existing EAs, it is
convenient to know for sure that cluster sizes are uniform
and what this size is. To this end, we propose the following
mix of the leader and the k-means clustering algorithms.

First, a nearest-neighbour heuristic is used to select k lead-
ers that are spread as well as possible: the first leader is
chosen as a solution with a maximum value for a randomly
chosen objective. For all remaining solutions, the nearest-
neighbor distance is computed to the single leader and the
one with the largest distance is chosen as the next leader.
The distances for the remaining solutions are updated by
checking whether the distance to the new leader is smaller
than the currently stored nearest-neighbour distance. These
last two steps are repeated until k leaders are selected. Sec-
ond, these solutions serve as the initial cluster means for
k-means clustering. Third, the distance from each selected
solution to the final cluster means is computed. After sort-
ing then, for each cluster the closest c solutions are finally
assigned to that cluster, ensuring that each cluster consists
of exactly c solutions. Because sorting and the final assign-
ment is done independently for each cluster, some solutions
may be assigned to multiple clusters whereas other solutions
are not assigned at all. The probability of this happening
can be reduced by forcing the clusters to overlap by setting
c > 1

k
|S | where S is the set of selected solutions. Specifi-

cally, we propose to use c = 2

k
|S |, resulting in substantial ex-

pected overlap between neighboring clusters. This increases
the expected density in the usual void between the bound-
aries of clusters in the objective space, thereby increasing
the probability of finding a good, uniform spread of solu-
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Figure 1: Three clustering algorithms and density
contours of the associated Gaussian mixture.

tions faster. Further, twice the number of clusters can be
used in this way, given the same population size.

Figure 1 shows results of clustering 105 samples in a trian-
gle, reminiscent of a selection result on a 2D slope, i.e. min-
imizing x0 + x1. Also shown are the density contours of the
associated Gaussian mixture that is obtained by estimat-
ing a Gaussian distribution in each cluster. For the leader
and the k-means clustering algorithm, 5 clusters are com-
puted. For the proposed balanced k-leader-means (BKLM)
clustering algorithm, 10 clusters are computed. An increase
in uniformity of the density estimate can be observed with
an increase in clustering effort, with the smoothest density
estimate obtained using BKLM. The problem of unequal
cluster sizes also diminishes with increased clustering effort.
The most uneven result was found for leader clustering: 29,
27, 23, 19 and 8, followed by k-means: 27, 22, 22, 20, 15 and
finally BKLM with all equal cluster sizes of 21.

Finally, we remark that clustering in MOEDAs should
compute distances based on normalized objective values to
remove the influence of differently scaled objectives. To this
end, first the minimum fmin

i and maximum fmax
i values for

each objective i can be computed from all selected solutions.
A point in objective space f(x) then can be scaled linearly
to the observed ranges, i.e. (f(x)− fmin

i )/(fmax
i − fmin

i ).

4. CLUSTER REGISTRATION
An important part of state-of-the-art variation operators

are adaptive mechanisms that span multiple generations such
as the Anticipated Mean Shift (AMS) [1] approach in EDAs
and the evolution path and the estimation of the covari-
ance matrix based on the mean in the previous generation in
CMA-ES [8]. The contribution of these mechanisms strongly
depends on a correlation to exist between the sets of solu-
tions in subsequent generations from which the models are
built. By re-applying clustering each generation however,
in principle there is no spatial relation between clusters in
subsequent generations. Even if the clustering algorithm
has low variation when applied twice to the same data, the
final enumeration of the clusters does not guarantee at all
that cluster i in generation t − 1 is near cluster i in gen-
eration t. Therefore, some form of registration is required
that determines the best correspondence between clusters in
subsequent generations. An implicit form of registration is
achieved by assigning each newly generated solution to the
cluster to which it is nearest (i.e. the highest density). This
approach is taken in SDR-AVS-MIDEA [3]. Once new so-
lutions cannot be assigned to a particular cluster anymore
because it has become too large already (i.e. larger than the
predefined subpopulation size), suboptimal cluster assign-
ments can be made. Over multiple generations, the spatial
separation can then degrade, resulting in clusters moving
across the Pareto front as can for instance be observed in
Figure 2. This problem can not be overcome by using a
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Figure 2: Clustering of selected solutions in different
generations using implicit and explicit registration
of 5 and 10 clusters respectively and estimating a
Gaussian with a full covariance matrix per cluster.

population size of 1 as in MO-CMA-ES [11] unless an ex-
plicit registration is performed. Therefore, we propose to
explicitly compute a registration between clusters in subse-
quent generations. The approach to this end that we propose
here is not specific for Gaussian EDAs and can therefore be
applied to any clustered or multi-population algorithm.

The goal of explicit cluster registration is to re-assign the
cluster indices of the current generation t such that cluster
i in generation t is the cluster that is closest to cluster i in
the previous generation t − 1. To this end, we propose an
algorithm that first computes all distances between clusters
in generation t and generation t− 1. The distance between
two clusters is taken to be the smallest distance between
any solution in the one cluster and any solution in the other
cluster. Also all cluster distances are computed between the
clusters in generation t and between the clusters in gener-
ation t − 1. Then, the algorithm repeatedly selects r ≤ k
clusters to be registered, that is, r clusters in generation t
and r clusters in generation t− 1. To this end, first the two
still-unregistered clusters in generation t are determined that
are the farthest apart. One of these two far-apart clusters
is randomly selected as well as the still-unregistered cluster
in generation t − 1 that is closest to it. The r − 1 nearest
neighbours of these clusters are then determined in the set
of still-unregistered clusters of their respective generations,
leading to two subsets of r clusters to be registered. To reg-
ister subsets of clusters, all possible r! permutations for the
set of clusters in generation t are considered and the permu-
tation is selected for which the sum of the distances between
the matched clusters is minimal. Subset registration is then
repeated until all clusters are registered.

The reason for using subset registration with r ≤ k instead
of r = k is that subset registration is performed by enumer-
ating permutations. As this number grows factorially fast,
exact optimization via enumeration of all possible permuta-
tions can only be done for small values of r. Still, we found
that r can be set large enough (we used r = 10) to sub-
stantially reduce the risk of suboptimal registration without
requiring more time than other parts in model-building.

Figure 2 shows clusters in different generations (1, 30 and
60) using the same number of solutions for implicit registra-
tion and explicit registration on the well-known benchmark
problem EC1. For implicit registration, k = 5 subpopula-
tions are used. For explicit registration, BKLM is used with
k = 10 clusters. In each cluster a Gaussian distribution
is estimated using a full covariance matrix without further
adaptive enhancements. The superiorly smooth front and



stable registration over many generations is clear for explicit
registration, but so is the lack of front progress as a result of
overfitting the selected solutions with more involved mixture
estimates. Next, we specifically target this issue.

5. GAUSSIANS, AMS, SDR, AVS AND MO
Estimating a Gaussian distribution only using the selected

solutions of the current generation, the density contours can
become aligned with directions in which only solutions of
similar quality can be found. Methods that only adaptively
scale the covariance matrix, such as SDR-AVS, do not help
much as they almost solely increases search effort in the fu-
tile direction perpendicular to the direction of improvement.
In SDR-AVS, a distribution multiplier cMultiplier is main-
tained by which the covariance matrix is multiplied each
generation. This multiplier is scaled up if improvements
are found that are more than standard-deviation away from
the mean and scaled down if no improvements are found (for
more details, see [1]). This misalignment behavior is already
known to occur in SO optimization with EDAs [1, 8], but
the same issue can occur in MO optimization because it is
a direct consequence of selecting solutions of similar quality,
regardless of the number of objectives.

This inefficient behavior is illustrated in Figure 3 on a two-
dimensional and two-objective minimization problem defined
by f0(x) = 1

2
(x2

0 + (x1 − 1.0)2) and f1(x) = 1

2
((x0 − 1.0)2 +

x2
1). The optimal Pareto front is convex and defined by

x0 = 1−x1 and f1 = f0−2
√

f0 +1. By initializing the pop-
ulation in the initialization range (IR) [0.9; 1.0]2, the better
solutions form a rotated V-shape in the lower-left triangle
of the IR. Using a maximum-likelihood estimate, the dis-
tribution thereby becomes misaligned with the direction of
improvement. Although the variance is adaptively scaled
up, the misalignment prevents the MOEDA from efficiently
locating solutions closer to the optimal Pareto front.

One way to overcome this problem, is to use the An-
ticipated Mean Shift (AMS) [1]. The AMS is computed
as the difference between the means of subsequent genera-
tions, i.e. µ̂Shift(t) = µ̂(t) − µ̂(t − 1). A part, specifically
α100%, of the newly sampled solutions is then moved in
the direction of the AMS: x ← x + 2µ̂Shift(t). The ratio-
nale is that solutions changed by AMS are further down
the slope. Selecting those solutions as well as solutions not
changed by AMS aligns the distribution estimate better with
the direction of improvement. In a population of size n
where ⌊τn⌋ solutions are selected, nelitist solutions are main-
tained and n − nelitist new solutions are generated, propor-
tioning the selected solutions perfectly between unaltered
and AMS-altered solutions requires α(n − nelitist) = 1

2
τn

and thus α = 1

2
τ n

n−nelitist . A combination of AMS with SDR

and AVS has been termed AMaLGaM (Adapted Maximum-
Likelihood Gaussian Model) [1] in which traversing a slope
is further sped up by multiplying the movement of solutions
in the direction of the AMS by the same multiplier used for
the covariance matrix, i.e. x← x + cMultiplier2µ̂Shift(t).

The effect of adding AMS, i.e. using AMaLGaM, is shown
for the example problem in Figure 3. In parameter space,
the Gaussian is quickly adaptively re-aligned with the direc-
tion of Pareto-improvement. In objective space the variance
towards the optimal Pareto front remains substantial, caus-
ing the density to already start spreading along the optimal
Pareto front within the first 7 generations.

AMS, SDR and AVS can all be applied directly in com-
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Figure 3: 95%-contours of the estimated distribu-
tion in the first 7 generations of typical MOEDA
runs with either a single Gaussian (left column) or
a mixture (right column) and with either SDR-AVS
(top row) or AMaLGaM (bottom row), on the ex-
ample problem with IR [0.9; 1.0]2. Subsequent gener-
ations alternatingly use solid and dashed lines. The
estimations are shown both in parameter space (red
and green) and objective space (blue and pink).

bination with mixture distributions if a correspondence be-
tween the clusters in subsequent generations exists. For each
cluster then, a separate AMS, SDR and AVS mechanism can
be used. For the use of SDR-AVS without AMS however,
the resulting performance of the MOEDA when going from a
single distribution to a mixture distribution can become even
worse. In Figure 3 it can clearly be seen that the problem of
overfitting the selected solutions is even more problematic.
In each cluster, the selected solutions can be fitted even more
closely, resulting in an overall better fit, but less progress in
terms of optimization. The addition of AMS for each cluster
separately changes this behavior completely. Similar to us-
ing a single distribution, within a few generations the most
important direction of improvement is detected and the den-
sity of the estimated distribution is re-aligned to efficiently
find Pareto-improving solutions. The density in the objec-
tive space also shows that in the last few generations a more
uniform density estimate is obtained only in the vicinity of
the Pareto front, whereas for a single cluster the density in
objective space is spread out even across large parts of the
objective space that are inferior.

6. MAMALGAM-X
We call the composition of the techniques proposed above,

i.e. the MOEDA illustrated in the bottom-right in Figure 3,
MAMaLGaM-X (Multi-objective AMaLGaM-miXture) and
summarize its operational description below.

Given a population of size n, ⌊τn⌋, τ ∈ [ 1

n
, 1], solutions

are selected and clustered using BKLM, giving cluster sizes
of 2

k
⌊τn⌋. Selection is performed by computing domination

ranks and then selecting the lowest ranks that fit within the



maximum of ⌊τn⌋. From the rank that crosses this bound-
ary, the same nearest neighbour heuristic is used to fill the
selected set with as is used to select the k leaders in BKLM.

An elitist archive is maintained, storing all currently non-
dominated solutions. Because the objectives are real-valued,
there are typically infinitely many non-dominated solutions
possible. To prevent the archive from growing to an ex-
treme size, the objective space is discretized into hypercubes.
Only one solution per hypercube is allowed in the archive.
Newly generated solutions are compared to the solutions in
the archive. If a new solution is dominated by any archive
solution, it is not entered. If a new solution is not domi-
nated, it is added to the archive if the hypercube that it re-
sides in does not already contain a solution or if it dominates
that particular solution. When a new solution is entered, all
archive solutions that are dominated by it, are removed.

After clustering and subsequently performing explicit clus-
ter registration, a Gaussian distribution is estimated in each
of the clusters and adapted using the combination of AMS,
SDR and AVS as in AMaLGaM [1] with two minor differ-
ences. 1) The AVS scheme is based upon whether improve-
ments are found. After generating new solutions, each newly
generated solution is re-associated with the cluster to which
it is closest in objective space. An improvement is said to
be obtained for cluster i if any new solution associated with
cluster i is added to the archive. 2) The SDR scheme com-
putes, for each cluster, the average of all improvements asso-
ciated with that cluster and checks whether the average lies
beyond one standard deviation. Because here improvements
can be obtained in different regions, the ratio of the aver-
age improvement is less informative. Instead, we therefore
compute the average ratio of the improvements.

Keeping elitist solutions in the population can contribute
to improved convergence. Therefore, each solution in the
elitist archive is associated with its nearest cluster. For each
cluster, at most 1

k
⌊τn⌋ of its associated elitist solutions are

copied to the population. If there are more elitist solutions,
the same nearest-neighbour heuristic is used as in selection.
Finally, each cluster generates equally many solutions, corre-
sponding to uniform mixture coefficients βi = 1

k
. Depending

on how many elitist solutions were copied to the population,
at least n− ⌊τn⌋ new solutions are thereby generated.

7. SYNCHRONOUS PARALLEL SOEDAS
Although clustered variation spreads the search bias, MO

selection still focuses exploitation on all objectives at the
same time, reducing pressure towards finding Pareto im-
provements. It may therefore be beneficial to add expert
search bias in the form of separate SO optimization of the m
objectives. In SO optimization there are typically less prob-
lems with maintaining pressure on finding improvements.

A combination of MO optimization and SO optimization
has been proposed before [10]. There, m+1 equal-sized pop-
ulations are used. Here, we propose to set the population
size for each of the m SO optimizers equal to the cluster size
in the MO population. For MAMaLGaM-X this amounts
to an overall population size of n + 2mn

k
. We further pro-

pose to use an EA for SO optimization that is similar to
the MO optimizer being used, i.e. using the same variation
operator and same selection intensity. In this way, given
enough clusters, the rate of convergence in each cluster is
expected to be similar, resulting in better-aligned support
of the SO optimizers in terms of convergence. Furthermore,

in [10] solutions are migrated from the SO populations to
the MO population and vice versa. Assuming competent
SO optimizers however, this may only reduce the effective-
ness of the SO optimizers. We therefore propose to only
add the best solutions found by SO optimizers in each gen-
eration to the archive of the MO optimizer. By injecting
the best solutions found by the SO optimizers for the differ-
ent objectives into the elitist archive the pressure of the SO
optimizers to find improvements can filter through to the
MO optimizer. Also, the search bias of the MO optimizer is
spread out towards the edges of the Pareto front, i.e. where
the SO optimizers are, ensuring that no unnecessary gap
appears between solutions found by the SO optimizers and
solutions found by the MO optimizer. In the remainder we
will refer to the SO-extended version of MAMaLGaM-X by
MAMaLGaM-X+.

8. EXPERIMENTS

8.1 Test suite
The definitions of the problems in our multi-objective op-

timization problem test suite are presented in Table 1.
The first two problems we use are the easiest. They are

generalizations of the MED (Multiple Euclidean Distances)
problems [9]. Each objective is similarly scaled. There are
furthermore no constraints and no local Pareto fronts, mak-
ing the problem relatively simple, comparable to the sphere
function in real-valued SO optimization. The initialization
range (IR) of [−1; 1] is not a constraint. The optimal Pareto
front for GM1 is convex; for GM2 it is concave.

We also used the well-known problems1 ECi, i ∈ {1, 2, 3,
4, 6}. The IRs of the ECi problems are also constraints.
These problems differ from the GM problems in that the
objectives are not similarly defined and not similarly scaled.
For more details about these functions, see [13].

The final two problems come from more recent literature
on real-valued MO optimization [3] and are labeled BDi,
i ∈ {1, 2}. Both problems make use of Rosenbrock’s func-
tion. Premature convergence on this function is likely with-
out proper induction of the structure of the search space.
Function BD2 is harder than BD1 in that the objective func-
tions overlap in all variables instead of only in x0. Further,
the IR of x0 in function BD1 is also a constraint. Finally, we
have scaled the objectives of BD2 to ensure that the opti-
mum of all problems is in approximately the same range. By
doing so, using the same value-to-reach for the DPF →S indi-
cator (which is explained in the next Section) on all problems
corresponds to a similar front quality on all problems.

To avoid artifacts resulting from boundary-repair meth-
ods, the sampling procedure in all MOEDAs is constructed
such that solutions that are out of bounds are rejected.

8.2 Measuring performance
We consider the elitist archive upon termination to be

the outcome of a MOEDA and refer to it as an approxima-
tion set, denoted S. To measure performance the DPF →S

performance indicator is computed. This performance in-
dicator computes the average distance over all points in
the optimal Pareto front PF to the nearest point in S:
DPF →S(S) = 1

|PF |

P

f1∈PF
minf0∈S{d(f 0, f 1)} where f

is a point in objective space and d(·, ·) computes Euclidean
distance. A smaller DPF →S value is preferable and a value

1These problems are also known as ZDTi.



NameObjectives IR

GM1

f0 =
˛

˛

˛

˛

1

2

`

x − c0
´

˛

˛

˛

˛

d
, f1 =

˛

˛

˛

˛

1

2

`

x − c1
´

˛

˛

˛

˛

d

c0 = (1, 0, 0, . . .), c1 = (0, 1, 0, 0, . . .), d = 2

[−1; 1]10

(l = 10)

GM2

f0 =
˛

˛

˛

˛

1

2

`

x − c0
´

˛

˛

˛

˛

d
, f1 =

˛

˛

˛

˛

1

2

`

x − c1
´

˛

˛

˛

˛

d

c0 = (1, 0, 0, . . .), c1 = (0, 1, 0, 0, . . .), d = 1

2

[−1; 1]10

(l = 10)

EC1

f0 = x0, f1 = γ
“

1−
p

f0/γ
”

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”

[0; 1]30

(l = 30)

EC2

f0 = x0, f1 = γ
`

1− (f0/γ)2
´

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”

[0; 1]30

(l = 30)

EC3

f0 = x0, f1 = γ
“

1−
p

f0/γ − (f0/γ)sin(10πf0)
”

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”

[0; 1]30

(l = 30)

EC4

f0 = x0, f1 = γ
“

1−
p

f0/γ
”

γ = 1 + 10(l − 1) +
Pl−1

i=1

`

x2
i − 10cos(4πxi)

´

[−1; 1]×
[−5; 5]9

(l = 10)

EC6

f0 = 1− e−4x0sin6(6πx0), f1 = γ
`

1− (f0/γ)2
´

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”0.25

[0; 1]10

(l = 10)

BD1

f0 = x0, f1 = 1− x0 + γ

γ =
Pl−2

i=1

`

100(xi+1 − x2
i )

2 + (1− xi)
2)

´

[0; 1]×
[−5.12; 5.12]9

(l = 10)

BDs

2

f0 = 1

l

Pl−1

i=0
x2

i

f1 = 1

l−1

Pl−2

i=0

`

100(xi+1 − x2
i )

2 + (1− xi)
2)

´

[−5.12; 5.12]10

(l = 10)

Table 1: The MO problem test suite.

of 0 is obtained if and only if the approximation set and the
optimal Pareto front are identical. This indicator is useful
for evaluating performance if the optimum is known because
it describes how well the optimal Pareto front is covered and
thereby represents an intuitive trade-off between the diver-
sity of S and its proximity (i.e. closeness to the optimal
Pareto front). Even if all points in the S are on the opti-
mal Pareto front the indicator is not minimized unless the
solutions in the approximation set are spread out perfectly.
Because the optimal Pareto front may be continuous, there
are infinitely many solutions possible on the optimal Pareto
front. Therefore, we computed 5000 uniformly sampled so-
lutions along the optimal Pareto front to use as a discretized
version of PF for a high-quality approximation.

For the problems in our test-suite, given the ranges of
the objectives for the optimal Pareto front configurations, a
value of 0.01 for the DPF →S indicator corresponds to fronts
that are quite close to the optimal Pareto front. Fronts that
have a DPF →S value of 0.01 can be seen in Figure 4.

8.3 Results
All presented results are averaged over 30 runs. The sub-

population or cluster sizes were set according to guidelines
from recent literature on SO [1]. For the two different prob-
lem sizes in our test suite, i.e. l = 10 and l = 30, this
boils down to cluster sizes of 112 and 510 respectively for
the full-covariance matrix, 52 and 99 for the Bayesian fac-
torization and 32 and 55 for the univariate factorization.
Both MOEDAs were given the same overall population size,
meaning that twice the number of clusters could be used in
MAMaLGaM-X (see Section 3), i.e. the population size in
MAMaLGaM-X variants is 1

2
k times the cluster size whereas

the population size in SDR-AVS-MIDEA variants is k times
the cluster size. The discretization of the objectives into
hypercubes for the elitist archive is set to 10−3. We com-
pared SDR-AVS-MIDEA using implicit cluster registration
with MAMaLGaM-X and MAMaLGaM-X+ using explicit
cluster registration. We observe the average convergence of
the DPF →S metric to study the impact of the various tech-
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Figure 4: Default fronts and approximation sets ob-
tained with MAMaLGaM-X+ (DPF →S =0.01, k=20).

niques proposed in combination with estimating Gaussian
distributions either modelling all dependencies (i.e. using
a full covariance matrix), a subset of all dependencies via
greedy Bayesian factorization learning (which is a common
approach in EDAs, see, e.g. [1, 2, 12]), or modelling no de-
pendencies at all (i.e. using the univariate factorization). In
case of the Bayesian factorization, we limited the maximum
number of parents per variable to 5.

In Figure 5 the convergence of successful runs of both
MOEDAs is shown on EC1 and EC6 with and without the
use of AMS. These results were found to be exemplary of
the results on all problems. If not all runs were success-
ful, the average convergence over all unsuccessful runs is
also shown. A run is defined to be successful if a value of
0.01 was reached within the limit of 106 function evalua-
tions. The convergence results without AMS are inferior.
This is especially the case if the full covariance matrix is
used, i.e. when overfitting is most likely. Overfitting is also
more likely if BKLM clustering is used and consequently,
without AMS, MAMaLGaM-X performs the worst. How-
ever, combined with explicit cluster registration, AMS has a
tremendous impact on the performance of MAMaLGaM-X.
AMS also speeds up SDR-AVS-MIDEA, albeit not as pro-
foundly. AMS further can be seen to positively influence the
convergence of both MOEDAs if only a subset of all possi-
ble dependencies is estimated. The impact is then smaller
though because the density-misalignment problem associ-
ated with overfitting isn’t there. Overall, MAMaLGaM-X
(with AMS) has the best convergence behavior for all vari-
ants of dependency processing due to the use of the BKLM
method combined with explicit registration.

A similar positive influence by AMS was observed on all
problems, for which reason we refrain from presenting fur-
ther convergence graphs for results obtained without AMS.
Instead, results are summarized using success rates (within
the limit of 106 evaluations) and presented in Table 2. These
results confirm that using AMS results in better perfor-
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Figure 5: Average performance of SDR-AVS-
MIDEA (k = 10) and MAMaLGaM-X (k = 20) with
and without AMS, on two problems, estimating full
covariance matrices (top row), Bayesian factoriza-
tions (center row) and no covariances (bottom row).
Horizontal axis: number of evaluations (both objec-
tives per evaluation). Vertical axis: DPF →S . For
each algorithm averages are shown both for succes-
ful runs and unsuccesful runs, giving double occur-
rences of lines if some runs were unsuccesful.

mance. The table also shows the severity of the impact of
overfitting. Going from low-order dependency learning to
learning the full covariance matrix, one would expect only
higher success rates. Without the use of AMS however, the
success rates almost always drop, often to near 0% success.
With AMS however, the overfitting problem is relieved and
the intuition of being able to solve a larger class of problems
reliably by estimating dependencies again can be seen, ob-
taining high success rates (given enough clusters and explicit
cluster registration as in MAMaLGaM-X) when the use of
the univariate factorization fails (e.g. on problem BDs

2).
Figure 6 shows convergence graphs for use of the full-

covariance Gaussian. MAMaLGaM-X either performs sim-
ilar to SDR-AVS-MIDEA or outperforms it. This shows
that the BKLM clustering and explicit cluster registration
techniques are beneficial and promising in general for multi-
objective optimization with mixture-based EDAs.

If the Bayesian factorization or univariate factorization
are used, convergence happens faster because a much smaller
population size can be used. For our test suite, a similar suc-
cess rate is even obtained, with the exception of BDs

2. On
this problem, slower convergence is obtained using Bayesian
factorizations and the optimum cannot be found using uni-

Full covariance matrix

BD1 BDs

2 GM1 GM2 EC1 EC2 EC3 EC4 EC6

Without AMS

SDR-AVS-MIDEA-05 83 0 100 100 0 0 13 0 40
SDR-AVS-MIDEA-10 100 0 100 100 0 0 0 0 6

MAMaLGaM-X-10 93 0 100 100 6 0 0 0 100
MAMaLGaM-X-20 83 3 100 100 0 0 0 3 0

With AMS

SDR-AVS-MIDEA-05 96 3 100 100 100 83 86 0 100
SDR-AVS-MIDEA-10 96 3 100 100 0 0 0 0 100

MAMaLGaM-X-10 100 3 100 100 100 10 93 0 100
MAMaLGaM-X-20 100 63 100 100 100 100 93 3 100

MAMaLGaM-X+-10 100 100 100 100 100 100 96 0 100
MAMaLGaM-X+-20 100 100 100 100 100 100 100 0 100

Bayesian factorization

BD1 BDs

2 GM1 GM2 EC1 EC2 EC3 EC4 EC6

Without AMS

SDR-AVS-MIDEA-05 90 3 100 100 100 100 100 0 100
SDR-AVS-MIDEA-10 100 86 100 100 100 100 100 0 100

MAMaLGaM-X-10 43 0 100 100 100 100 100 0 100
MAMaLGaM-X-20 80 0 100 100 100 100 90 3 100

With AMS

SDR-AVS-MIDEA-05 86 10 100 100 100 100 100 0 100
SDR-AVS-MIDEA-10 100 100 100 100 100 100 100 0 100

MAMaLGaM-X-10 100 40 100 100 100 100 100 3 100
MAMaLGaM-X-20 100 96 100 100 100 100 100 6 100

MAMaLGaM-X+-10 100 100 100 100 100 100 100 0 100
MAMaLGaM-X+-20 100 100 100 100 100 100 100 0 100

Univariate factorization

BD1 BDs

2 GM1 GM2 EC1 EC2 EC3 EC4 EC6

Without AMS

SDR-AVS-MIDEA-05 0 0 100 100 100 100 80 0 100
SDR-AVS-MIDEA-10 0 0 100 100 100 100 100 0 100

MAMaLGaM-X-10 0 0 100 100 100 55 93 0 100
MAMaLGaM-X-20 0 0 100 100 100 100 46 0 100

With AMS

SDR-AVS-MIDEA-05 6 0 100 100 100 100 70 0 100
SDR-AVS-MIDEA-10 0 0 100 100 100 100 100 0 100

MAMaLGaM-X-10 86 0 100 100 100 39 96 0 100
MAMaLGaM-X-20 100 0 100 100 100 100 100 0 100

MAMaLGaM-X+-10 30 96 100 100 100 100 100 0 100
MAMaLGaM-X+-20 100 96 100 100 100 100 100 0 100

Table 2: Success rates, i.e. the percentage of times
a MOEDA variant obtained DPF →S indicator ≤ 0.01.

variate factorizations. Although it concerns only a single
test problem here, this does illustrate the important fact to
keep in mind that not all problems can be solved efficiently
without taking dependencies into account, which is also in
accordance with findings for discrete MO problems [12]. Ex-
amining this importance in the light of more practical or
even real-world problems is however an important topic of
future research. Also, although the problems used here have
dependencies between the problem variables, i.e. because of
the Rosenbrock problem in BD1 and BDs

2, these dependen-
cies are of low order. Using Bayesian factorizations rather
than a full covariance matrix the Rosenbrock function can
be optimized more efficiently. Moreover, using AMS, the op-
timum can be found even with the univariate factorization,
albeit it less efficiently. For this reason the optimum of BD1

and BDs

2 can be found using MAMaLGaM-X+ for all vari-
ants of dependency modelling. On the one hand this demon-
strates the potential of the proposed SO-MO combination.
On the other hand, this stresses even more the importance
of testing the influence of high-order dependency modelling
on more practical or even real-world MO problems.

Overall, MAMaLGaM-X+ performs the best. While re-
quiring only marginally more effort in terms of function
evaluations, good approximations can be found in all runs
on all problems. The exception is problem EC4, where all
tested MOEDAs almost always fail. This problem is highly
multi-modal. Furthermore, the optima of the EC problems
lie on the boundary of the search space. Finally, we note
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Figure 6: Average performance of various MOEDAs on all problems, estimating full covariance matrices in
each cluster. Horizontal axis: number of evaluations (both objectives per evaluation). Vertical axis: DPF →S .
For each algorithm averages are shown both for succesful runs and unsuccesful runs, giving double occurrences
of lines if some runs were unsuccesful.

that the < 100% successrate of the univariately-factorized
MAMaLGaM-X+ is only due to the limit of 106 evaluations,
around which budget the MOEDA is always near the re-
quired DPF →S score of 0.01.

9. SUMMARY AND CONCLUSIONS
To find good approximations of the optimal Pareto front,

continued pressure toward finding improvements is required.
If the Pareto front spreads fast, this pressure can be hard to
maintain, especially in the real-valued case where infinitely
many solutions are available. As many solutions of a sim-
ilar quality are then selected, a MOEDA can easily con-
verge prematurely due to overfitting solutions of that qual-
ity, i.e. a contour in the fitness landscape. Enlarging the
capacity of the probabilistic model via mixture distributions
and the modelling of dependencies only increases the prob-
ability that such overfitting can occur, contrary to what is
commonly expected from EDAs when employing more com-
plex distributions. The techniques described in this paper
reduce this risk substantially and effectively. Moreover, us-
ing the proposed BKLM clustering technique any EDA can
be extended to a mixture-based version straightforwardly.
In future work we shall use this approach to further study
the convergence of MOEDAs in discrete search spaces. We
shall also investigate the use of incremental learning meth-
ods to reduce the required number of solutions per cluster.
Especially in combination with many clusters, this can po-
tentially lead to large performance improvements.
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