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We analyze the permutation representations of low degree of Held's simple group 
He. We also determine its primitive multiplicity free permutation representations 
and show that there is no graph on which it or its automorphism group acts as a 
distance transitive group of automorphisms. In doing so. we supply a computer-free 
construction of /fr. • 19~9 Ac;idem1c Press. Inc 

I. STATEMENT OF RESULTS 

Let He be the finite simple group of order 2 10 · 33 · 52 . 73 • 17 discovered 
by Held [ 4, 5] and H its automorphism group Aut He, which is of twice 
the order of He. The maximal subgroups of He and H are determined by 
Butler [2] and Wilson [7]. In Section 3, we give a construction of H 
which differs from the known computer-free construction in that it does not 
depend on the construction of the Monster. We subsequently derive some 
properties of its permutation representations. In particular, we determine 
the distance distribution diagrams of graphs underlying the two primitive 
permutation representations of lowest degrees (viz. 2058 and 8330, cf. Sec­
tions 3 and 4) and prove 

1.1. THEOREM. Let G he H or He and let K he a maximal subgroup of G. 
Then: 

(i) The permutation rank o( G on K is strictly smaller than 6 if and 
only il K has index 2058 in G and [K, K] is isomorphic to P Sp( 4, 4 ). (In this 
case, the rank is 4 if G =Hand 5 if G =He.) 
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(ii) The permutation rank of G on K lies between 6 and 7 if and only if 
K has index 8330 in G and Kn He is isomorphic to 22 • L(3, 4). Sym3 • (In 
this case, the rank is 6 ifG=H and 7 (fG=He.) 

(iii) The permutation character of G on K is multiplicity free if and 
only if K is one of the groups described in ( i) and (ii). 

We heavily employ the information on Has given in the "Atlas" [3], 
notably its character table. Study of the graph on 8330 vertices (cf. Sec­
tion 4) has led to the permutation character la+5lu+5lb+680a+ 
1275"+ 19200 +4352" for He on Kn He as in (ii), which differs from the 
character given in the "Atlas". (The character given there cannot be a per­
mutation character as the value on an element of type 14A has value - 1.) 
The paper was motivated by the quest for the following consequence of the 
above theorem and the results of Sections 3 and 4. We recall (cf. Biggs [1]) 
that a group G is said to act distance transitively on a graph if, for each 
distance i realized in the graph, G is transitive on the set of (ordered) pairs 
of vertices at distance i. 

1.2. COROLLARY. Let G be He or H. There is no graph on which G acts 
distance transitively. 

In order to prove parts (i) and (ii) of the theorem, we need some proper­
ties of PSp( 4, 4 ); these are derived in Section 2. Part (iii) of the theorem 
requires analysis of several possible subgroups K; this is done in Section 5. 
The final Section 6 is devoted to the proof of the corollary. 

2. LEMMAS ON PSp(4, 4) 

Held's simple group He has a subgroup isomorphic to PSp(4, 4):2. In 
this section we describe some properties of the group P Sp( 4, 4) relevant to 
the construction of He in the next section. 

Consider a nondegenerate sym plectic geometry in PG ( 3, 4 ). Then the 
isotropic points and lines form a self-dual generalized quadrangle, denoted 
by GQ, of order ( 4, 4 ). The automorphism group S of GQ is the extension 
of PSp(4, 4) by a field automorphism r of order 2. There is a duality 
between points and lines established by an outer automorphism (J of S of 
order 4 squaring to r such that S · (6) is transitive on the Levi graph of 
GQ (i.e., the graph whose vertex set consists of the points and lines of GQ 
and in which adjacency is incidence). Inside GQ, the following substruc­
tures can be found: points; lines; flags, i.e., incident point line pairs; sub­
quadrangles of order ( 4, 1 ), called grids; subquadrangles of order (l, 4 ), 
called dual grids; subquadrangles of order (2, 2), called quads. We denote 
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by P the set of points, by L the set of lines, by F the set of flags, by G the 
set of grids, by DG the set of dual grids, and by Q the set of quads in GQ. 
The first lemma collects some well-known facts. 

2.1. LEMMA. Let S, be the stabilizer in S of x (x E P, L, F, G, DG, or Q ). 
Then S is transitive on each al the sets P, L, F, G, DG, and Q. Moreover, 
\P\=85 and S/l;:;:26 :(3xA 5):2 (fpEP; \L\=85 and S1 ~26 :(3xA 5 ):2 
if !EL; \F\=425 and S1 ~(22 x2 2 + 4 :3):6 if' fEF; \G\=136 and 
Sg~(A 5 xA 5 ):2 2 1/ gEG; \DG\=136 and Sd;:;;(A 5 xA 5 ):2 2 (l dEDG; 
I QI= 1360 and SI/~ s6 x 2 u· q E Q. 

Let g be a grid. We shall investigate the orbits of SK on F, G, DG, and Q. 
First we consider the action of Sx on G. We need the following definitions. 
Let D be a set of 5 pairwise noncollinear points of g. If there is a point 
p E P such that p is collinear with all points in D, then D is called a grid 
diagonal and otherwise it is called a quad diagonal. 

2.2. LEMMA. The subgroup Si( is transitive on the set of' 60 grid diagonals 
and on the set of 60 quad diagonals of' g. 

Proof: For any 3 pairwise noncollinear points of GQ, either there is a 
unique point of GQ colinear with all 3 or the 3 points are on a hyperbolic 
line of GQ. Clearly no 3 pairwise noncollinear points of a grid are on a 
hyperbolic line. As there are 60 points outside g, we find there are 60 grid 
diagonals in a grid. Thus there are also 60 quad diagonals. Finally, SK acts 
transitively on both sets as it is transitive on the set of 3 pairwise non­
collinear points in g. I 

2.3. LEMMA. There are precisely 3 S g-orhits on G: { g}, [ h E G I h n g is u 
grid diagonal} ( ol size 60 ), and {11 E G I h n g is the union of 2 intersecting 
lines} (of' si:e 7 5 ). 

Pro<'./ Let g be a grid and p a point of GQ not in g. Then p is collinear 
with 5 points of g forming a grid diagonal of g. Let q 1 and q2 be two points 
in pi. n g and suppose q3 and q4 are the two points in q~ n qi different 
from p and not in g. Let g' be the grid spanned by q1 , q2 , q 1 , and q4 • We 
show that gn g'= p~ n g. Let r be a point in pj_ n g\{q 1 , q2 }. There is a 
unique line I through r that intersects the line through q 1 and q 3 and a 
unique line/' through r that intersects the line through q 1 and q4 • But since 
there are only 5 lines through a point, the line I also intersects the line 
through q2 and q4 and/' also intersects the line through q2 and q3 • But that 
means r E g' and therefore g n g' = p j_ n g. So for every grid diagonal of g 
there is a unique grid g' that intersects g in that grid diagonal, and, by the 
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above lemma, Sg is transitive on the set of grids intersecting g in a grid 
diagonal and this orbit of Sg has size 60. 

Now suppose /1 and /2 are two intersecting lines of g and Jet p 1, p 2 be 
two noncollinear points on /1 and /2 , respectively. Then every point in 
pf n Pt that is not in g determines a unique grid intersecting g in 11 and 
12 • Hence there are 25 · 3 = 75 grids intersecting gin two intersecting lines. 
Since S has rank 3 on G (see the "Atlas" [ 3]) these 7 5 grids form an 
Sg-orbit. I 

2.4. LEMMA. The Sg-orhits on DG are { x E DG Ix n g is a quadrangle} 
(of si::e I 00 ), and : x E DG Ix n g = 0} (of si::e 36 ). 

Proof: Let g be a grid and x a dual grid that intersects g nontrivially. 
Since x consists of two perpendicular hyperbolic lines of GQ, this intersec­
tion is a quadrangle. Conversely, every quadrangle is in a unique dual grid. 
Hence there are 100 dual grids that intersect gin a quadrangle and, as 5 11 

is transitive on the set of quadrangles in g, these 100 dual grids form an 
S 11-orbit. The remaining 36 dual grids have empty intersection with g and, 
by consideration of rank (see the "Atlas" [3] ), form also an Sg-orbit. I 

2.5. LEMMA. The S11-orhits on Fare U E Flf r:;;;_ g} of si::e 50, {f E Flf 
contains a point ofg hut no line of g} (ofsi::e 75) and {fEFlfn g=0} 
( <>l si::e 300 ). 

Proof Clearly, 511 has two orbits of size 50 and 75 as stated. It remains 
to check that Sg is transitive on { f E Flf n g = 0 }. Let f = ( p, I) where p 
is a point not in g and I a line through p. Then p determines the grid 
diagonal, d = pj_ n g of g, and Ing is a point of d, say p'. Clearly, f is 
uniquely determined by the pair ( p', d) and, since Sg is transitive on the set 
of all such pairs, it is also transitive on { f E FI f n g = 0 }. I 

2.6. LEMMA. The S g-orhits on Q are { q E Q I q n g is a 3 x 3 grid} (of 
si::e 100 ), { q E QI q n g is a set C!l 5 points contained in two intersecting lines 
of g} (of size 900), { qE QI q n g is a point} (of size 300), and {qE Qlq n g 
is a quad diagonal} (of size 60 ). 

Proof Let I' be a 3 x 3 grid, then there is a unique grid that contains 1'· 
A quad contains 3 x 3 grids, so there are quads that intersect a grid in a 
3 x 3 grid. So fix a 3 x 3 grid I' in g. Since any 3 pairwise noncollinear 
points in a grid determine a unique point collinear with all three, there is at 
most one quad that intersects gin I'· But as S11 is transitive on the 100 3 x 3 
grids contained in g, there is a unique quad that intersects g in}', and Sg is 
transitive on the 100 quads intersecting g in a 3 x 3 grid. 

Now let / 1 and /2 be two intersecting lines of GQ and choose two points 
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on 11 and two on 11 different from / 1 n12 • This can be done in 6 · 6 = 36 
ways and there are 85 · 20/2 = 850 ways to choose 11 , 11 • Since there are 
1360 quads, there are 1360 · 15 · 3/850 · 36 = 2 quads that contain the above 
4 points and 11 n /2 • Now suppose 11 and 12 are in g. Then one of these two 
quads intersects g in a 3 x 3 grid containing the above 5 points, and the 
other quad intersects g in precisely this set of 5 points. Hence given such a 
set of 5 points in g, there is a unique quad that intersects gin those points. 
Since Sg transitively permutes the sets of 5 points chosen in the above way, 
it has an orbit { q E QI q n g is a set of 5 points contained in two inter­
secting lines of g} on Q of length 25 · 6 · 6 = 900. 

Suppose q is a quad and p 1 , p 1 are two noncollinear points in q. Denote 
by P.i and p4 the two points in pf n pf \q and consider the grid spanned 
by p 1 , p 1 , p 3 , and p4 . This grid intersects q in 5 points that form a quad 
diagonal of the grid. Furthermore every quad diagonal of a grid is in at 
most one quad. So there is an Sg·orbit of length 60 in Q, consisting of 
quads that intersect g in a quad diagonal. 

Fix a quad q and a point p of q. There are two lines 11 , 12 on p not in q. 
Furthermore, there are 4 grids on 11 v12 , two of which meet q in a quad 
diagonal. The other two meet q precisely in p. Counting pairs, we find 
1360· 15·2/136=300 quads intersecting gin a point. As the two grids 
meeting q in precisely p are easily seen to be interchanged by a "'field" 
automorphism (fixing q pointwise), we get that sg is transitive on the 
above set of 300 quads. I 

There are dual versions of the above lemmas for the dual grids. 
We now concentrate on flags and quads. We say a line is in a quad if 

and only if at least two points of the line are in the quad. In this case of 
course precisely 3 points of the line are in the quad. 

Fix a quad q E Q. 

2.7. LEMMA. The suhgroup s" has the following orhits on F: the 45 flags 
in q; the 30 .flags that intersect q in a point; the 30 flags that intersect q in a 
line; the 120 flags that have an empty intersection with q and such that the 
point of the flag is on a line of q; the 120 flags that have an empty inter­
section with q and such that the line of the flag contains a point of q; the 
remaining 80 flags (these are disjoint from q). 

Proof Straightforward. I 

2.8. LEMMA. There are 120 quads that intersect q in a Ku (a complete 
hipartite graph with parts of sizes 2 and 3 ), 120 in the dual (a 2 x 3 grid), 15 
in p J_ n q for some p E q, 15 in the dual, 360 in a K 2• 1 , 360 in the dual, 45 in 
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the union of' three points on a line and three lines on a point, 180 in a flag, 
and 144 are disjoint from q. 

Proof: First observe that for every K 3 _3 there is a unique quad contain­
ing it. Now suppose q' is a quad such that q n q' contains a quadrangle (. 
This quadrangle is contained in a unique dual grid, h say. There are 4 
quads q" on ( that intersect q in 5 points of h and 4 that intersect q in 4 
points of h. But then q n q" is a Kn or the dual, and there are 120 
possibilities for q" in both cases. 

Let p be a point of q, then there is a unique quad q' (distinct from q) 

that intersects q in pl. n q. So there are 15 quads that intersect q in p.i n q 

for some p and 15 that intersect q in the dual. Let g be a grid intersecting q 

in 5 points that form a quad diagonal, D say, and suppose q' is another 
quad that intersects g in a quad diagonal that is disjoint from D. Then 
q n q' = 0. Suppose g' is another grid that intersects q in a quad diagonal. 
Then clearly these two grids intersect in two intersecting lines. So g' n q' is 
not a quad diagonal. Note that q intersects 6 grids in a quad diagonal and, 
given a fixed quad diagonal in a grid, there are 24 quad diagonals disjoint 
from that fixed one. Therefore, there are at least 144 = 6 · 24 quads q' that 
are disjoint from q. 

Let p be a point of q, and q 1 , q2 two noncollinear points in p.i n q. Then 
there is a unique dual grid that contains p, q 1 , and q2 • In this dual grid we 
can choose a Ku that intersects q in p, q 1, and q2 in two different ways. 
Each of these K 3 . .i's is contained in a unique quad that intersects q in p, q 1 , 

and 1]2. Hence there are 15 · 6 · 4 · 2/2 = 360 quads that intersect q in a Ku 
and also 360 that intersect q in the dual. 

Now suppose Po is a point in q and fix a line through p 0 in q. Let 
p 1 , p 2 , p .\, and p 4 be the points of the two other lines of q on p 0 that are 
not in q. There arc two quads containing p 0 , p 1 , .•• , p 4 ; one intersects q in 
the dual of p.i n q for some p and the other in the union of 3 points on a 
line and 3 lines on a point. So there are 15 · 3 quads that intersect q in the 
latter union. 

Finally, fix a point p and a line l in q containing p. Then there are two 
lines l 1 and / 2 on p that are not in q. If we fix a point on one of these 
lines, then there arc two quads that contain that point, p, the points of l 
not in q, and / 1 , 11 . These quads intersect q in p and /, so there are 
15 · 3 · 8 · 2/4 = 180 quads intersecting q in a flag. 

Since there are 1360 quads, we have analyzed all situations. I 
To end this section, we recall-without proof--some facts about the flag 

graph associated with GQ. 

2.9. LEMMA. The distribution diagram of the flag graph of GQ, i.e., the 
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graph whose vertex set is F and in which two .flags are adjacent tl and only if 
they hare a point or a line in common, is 

"'"' 

11,,foreorer, S. < <5) acts distance transitively on this graph. 

3. THE GRAPH I' ON 2058 VERTICES AND A CONSTRUCTION OF AUT He 

Let r be the graph with vertex set { w} u Gu DG u Q u F and the 
minimal symmetric adjacency relation satisfying the following conditions: 

( i) w is adjacent to all grids and dual grids; 

(ii) if g E G, then g is adjacent to all dual grids that have an empty 
intersection with g, to all flags that intersect g in a point, and to all quads 
that intersect g in a quad diagonal or a 3 x 3 grid; 

(iii) if dE DG, then dis adjacent to all flags that intersect din a line 
(i.e., the line of the flag contains two points of it, but the point of the flag is 
not in d), and all quads that intersect d in 5 pairwise disjoint lines or in 6 
points (a K3. 3 ); 

(iv) if q E Q, then q is adjacent to all quads that intersect q in a flag, 
and to all flags that intersect q in a point or a line; 

( v) two flags are adjacent if and only if they are at distance two m 
the flag graph of GQ. 

From the above lemmas it follows that r has distribution diagram (seen 
from the point co) given in Fig. 1, and that the stabilizer in Aut r of oo 1s 
isomorphic to Sp( 4, 4): 4. 

Let g be a grid, then with the help of the above lemmas it 1s 

75 
32 

48 425 

32 1360 60 

180 

192 

FIGURE I 
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straightforward to check that the S~-orbits on the vertex set of L1 are the 
following 13 sets: 

I'o: g; 

I'1 : the 36 dual grids that are disjoint from g; 

I'2 : the 60 grids that intersect g in a grid diagonal; 

I'3 : the 60 quads that intersect g in a quad diagonal; 

I'4 : the l 00 dual grids that intersect g in a 2 x 2 grid; 

I'5 : the l 00 quads that intersect g in a 3 x 3 grid; 

r6: the 75 grids that intersect g in two intersecting lines; 

r1: the 75 flags that have their point in g but not their line; 

rx: the 50 flags inside g; 

r'!: the 300 flags outside g; 

rJ(): the 300 quads that intersect g in a point; 

r, 1 : the 900 quads that intersect gin the set of all points in a quad on 
two intersecting lines; 

r "-: oo. 

Even more detailed information on r is provided by the distribution 
matrix in Table I whose i)-entry (where i, j= 0, I, ... , 11, oo) contains the 
number of elements of r, that are adjacent to a fixed element of ri. Again, 
proofs are quite straightforward from the above. 

In a diagram, this information can be displayed as shown in Fig. 2 (for 
reasons of legibility, the numbers that can be determined from symmetry 
are not always given). 

TABLE I 

0 2 3 4 5 6 7 8 9 10 JI ro 

0 1 J 1 
I 36 6 6 12 12 6 6 4 36 
2 10 10 18 6 4 12 12 10 6 60 
3 60 JO JO 6 18 4 12 10 12 6 
4 30 JO 16 24 12 24 18 JO 12 100 
5 100 10 30 16 12 24 24 10 18 12 
6 25 5 18 9 19 12 12 6 10 75 
7 75 25 5 9 18 19 12 6 12 JO 
8 10 10 12 12 8 8 8 2 2 8 
9 50 60 50 54 30 48 24 12 24 46 42 

10 50 50 60 30 54 24 48 12 46 24 42 
11 100 90 90 108 108 120 120 144 126 126 120 
'N I 
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FIGURE 2 

3.1. THEOREM. The group Aut r is isomorphic to He. 2 and acts flag 
transititiely on I'. Moreover, the distribution diagram of r is as given in 
Fig. I. 

Proo/ The bulk of the proof consists of establishing the existence of a 
symmetry of the graph which interchanges cfJ and a grid. Fix a grid g Er, 
and adopt the above notation To, r,' ... , r, I, r ,_ with respect to g. The 
elements of the sets r,' ... , r, l will be identified with certain subcon­
figurations of g as follows. 

Those of I'2 , T 3 , I'4 , T 5 , I'8 , and r 11 are identified with their intersec­
tions with g. Suppose f = ( p, /) E T 9 , then we identify f with the point, grid 
diagonal pair (In g, pi n g) in g. Let q Er 10 , and denote by p the unique 
point in q n g. As we saw before, there is a unique quad q' e T 3 that inter­
sects q in pin q. Now q will be identified with the point, quad diagonal 
pair (qn g, q' n g). 

Let f= (p, /)EI'7 • We identify f with the 4-tuple of grid diagonals 
{ ( p') .l n g Ip' e l\ { p} } in g; such a 4-tuple will be called a grid quartet. 

Suppose h E r6 and let p be the point of intersection of the two lines in 
h n g. Let p' be a point of h \h n g. Then there is a unique point p" E g that 
is on the hyperbolic line { p, p'} .l.l, and there are three points, p 1 , P2, and 
p 3 in ((p').lng)\(gnh). The points p,p",p 1,p2 , and p 3 form a quad 
diagonal. The 16 points of h\g determine 4 quad diagonals in the above 
way, and we can identify h with the 4-tuple of these quad diagonals. Such a 
4-tuple will be called a quad quartet. 
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Finally we have to identify the elements of I' 1 with subconfigurations 
of g. This will be done in two ways, one in terms of grid diagonals of g and 
the other in terms of quad diagonals of g. Let d be a dual grid that has 
empty intersection with g. Then every point p of d determines the grid 
diagonal pJ. n gin g, and the 5 points of a hyperbolic line in d determine a 
partition of the point set of g by 5 grid diagonals. Such a partition will be 
called a grid partition corresponding to the two hyperbolic lines of d. Let 
C 1 , C 2 be the grid partitions coming from d. 

For all d 1 EC 1 and d2 EC 2 we have ld1 n d2 I = 1. (In fact, the elements of 
C 2 are the only grid diagonals that intersect all 5 elements of C 1 in a point. 
This follows from the observation that the 25 points and 60 grid diagonals 
of g form the point set of a generalized quadrangle isomorphic to GQ if 
adjacency is defined in the following way: 

two points are adjacent iff they are collinear in g; a point and a grid 
diagonal are adjacent iff the point is in the diagonal; 

two diagonals are adjacent iff they intersect in a unique point. 

So C 1 and C 2 are two perpendicular hyperbolic lines in this generalized 
quadrangle. The same observation also holds for quad diagonals.) The pair 
( C 1 , C 2 ) is called a double grid partition of g. Suppose C is a set of 5 quad 
diagonals partitioning the 25 points of g. Then the corresponding 5 quads 
have empty intersections. So there are 60 - 5 · ( 15 - 5) = 10 points that are 
in neither of these quads. Clearly these 10 points form a dual grid, d say, 
that does not intersect g. Let p be one of these l 0 points and let l be a line 
through p. Exactly one of the 5 quads intersects l in 3 points which are not 
in d. Call this quad q. Now by Lemma 2.8 there is a unique quad q' that 
intersects q in these 3 points. Then q' n g is a diagonal that intersects all 
diagonals of C in one point. In this way we obtain a set of 5 diagonals such 
that q is not one of the quads corresponding to these diagonals. By the 
same observation as above these 5 quad diagonals form the unique par­
tition of the points of g with the property that every diagonal intersects all 
elements of C nontrivially. A partition by quad diagonals of g will be called 
a quad partition of g, and a pair of quad partitions (C1 , C2 ) with the 
property that for all d 1 eC1 and d2 eC2 , ld1 nd2 1=1, will be called a 
double quad partition. Thus we can identify the elements of r with the 
double quad partitions of g. A double grid partition ( C 1 , C 2 ) of g and a 
double quad partition ( C'1. c;) of g determine the same dual grid in r if 
and only if, for all d E C 1 u C2 and d' E C'1 u c;, Id" d'I = 1. 

It is possible to describe the adjacency relation between the vertices of 
the graph in terms of these subsets of g. 

Let u=(ij)x/deSym5 xSym 5 in Aut(g) (l::;;;;i<j::;;;;S). We define an 
involutory permutation a on the vertex set of I': 
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on l'o u r, : ex_, Ii = g and g" = ,x_,; 

on r2 u ri: d" = d" for all diagonals d of g; 

on r 1 : (C 1, C2 )°= (C~, C2) for all double grid and quad partitions 
(C1, C2 ) of g; 

on I'9 u r 10 : ( p, d)" = ( p", da) for all point, grid diagonal and point 
quad diagonal pairs ( p, d) of g; 

on I'6 uI'7 :(d1 , ••• ,d4 )°=(d~, ... ,dX) for all grid and quad diagonal 
quartets (d1 , ... , d4 ) of g; 

on I'8 : ( p, !)° = ( p", (/" )') for all flags ( p, /), where (/" )' is the line 
through p(J distinct from r; 

on r 1 1 : ( { p, a 1 , a 2 , h 1 , h 2 } ) " = { p, a 3 , a 4 , h 3 , h 4 } " if { p, a 1 , a 2 , a 3 , a 4 } 

and { p, h 1, h 2 , h 1 , h4 } are intersecting lines of g; 

on F4 u I'5 : (s)" = (s")' for any m x m grids of g, where m = 2 or 3 and 
(s" )' is the complement of the span of s" (a ( 5 - m) x ( 5 - m) grid). 

Using the above description of the graph r it is straightforward (the 
arguments involved being similar to those of Section 2 ), but tedious, to 
check that a E Aut r. So far, we have established that Aut r contains 
S. < c5) and a. It follows that Aut r is transitive on the points of rand that 
the vertex stabilizer is isomorphic to P Sp( 4, 4): 4. 

We shall now derive that Aut r is isomorphic to the group H. First of 
all, Aut r is transitive on the vertex set of I', so, by the fact that its vertex 
stabilizer is S · «> ), its order is I HI. Let N be a non trivial minimal normal 
subgroup of Aut r. As the latter is primitive on the vertex set of I', the 
group N is transitive on the vertex set as well. By standard arguments, N 
cannot be regular, and so it contains the normal subgroup of any vertex 
stabilizer isomorphic to P Sp( 4, 4 ). In particular, N has index at most 4 in 
Aut I' and N is simple. Since a is an odd permutation of the vertices of I', 
we cannot have N = Aut r. Now by the classification of finite simple 
groups, there is no simple group of order I Hel/2, and a unique one of order 
IHel, whence N is isomorphic to He, has index 2 in Aut I', and Aut I'~ H. 
This proves the theorem. I 

3.2. Remarks. (i) If adjacency is defined with respect to the 425-orbit, 
the distribution diagram of the resulting graph is 

75 
32 50 272 

256 00 

80 1360 60 

285 



HELD's SIMPLE GROUP 17 

and with respect to the 1360-orbit it is 

We shall refer to these graphs by F425 and r 136ci. respectively. 

(ii) The permutation representation on the vertex set of r has character 
1"+51"+51"+680"+ 1275". 

4. DESCRIPTION OF THE GRAPH ON 8330 VERTICES 

Let r be the graph on 2058 vertices of valency 272 of the previous sec­
tion. Thus H = Aut r~ Aut He, and He= [H, HJ has index 2 in H. Fix a 
vertex Xo of/'. We retain the notation of Section 2. Take a point p of GQ. 
The subgraph II( p) of r induced on the set consisting of oc, the 16 dual 
grids on p, and the 25 flags { q, I} with q = p or p EI has distribution 
diagram 

We define a double plane to be a graph whose vertex set is the union of the 
point and the line set of the projective plane of order 4 and whose 
adjacency is the union of collinearity, incidence, and intersecting. Thus it 
has 42 vertices, 2 maximal cliques of size 21, and 42 maximal cliques of 
size 6. The above subgraph II( p) of F425 is a double plane. 

There are 85 =I PI double planes of shape fl( p) ( p E P) on c:D, and, 
similarly, there are 85 double planes of shape fl(I) on cJ:J constructed 
"dually" with a line I of GQ instead of a point. A look at the construction 
of r shows that there are no other double planes in r containing YJ. 

4.1. LEMMA. 

(i) The group H is transllwe on each of' the sets M 6 and M 21 of 
maximal F425-cliques of sizes 6 and 21, respectively; 

(ii) each member of M 21 lies is a unique double plane in I'425 ; in 
particular, there are 8330 double planes and H permutes them transitively. 
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The proof, being straightforward from transitivity of H on I', is left to 
the reader. 

We recall that a hyperoval in the projective plane of order 4 is a set of 6 
points with the property that every line meets the set in 0 or 2 points. Let 
II be a double plane, with point set R 1 and line set R2 • A double hyperoval 
is defined to be the union of a hyperoval K1 in R1 and the set K2 of 6 lines 
not containing a point of R 1 • (Observe, that K 2 is a hyperoval in the dual 
plane so that the choice of R 1 as point set does not lead to ambiguity.) A 
double hyperoval in I'425 will be understood to be a double hyperoval in a 
double plane occurring in I'425 • 

4.2. LEMMA. 

(i) Each double hyperoval is contained in a unique double plane; 
furthermore, the group H is transitive on the set of double hyperovals; 

(ii) the map K1-+ { y, c5 }, where y and c5 are the two vertices I'-adjacent 
to all members of K, establishes a bijective correspondence between the 
double hyperovals K of I' and the unordered I'1360-adjacent pairs y, 8; 

(iii) for each ye I', the assignment (J H ll(y, (J ), where Il(y, (J) is the 
unique double plane containing the double hyperoval corresponding to { y, (J} 
defines an injective map on I'1360 (y). 

Proof (i) The first statement follows by consideration of the graph 
from co; the second from the action of the stabilizer in H of a double plane 
II (isomorphic to 22 · L(3, 4) · Dih 12 ). 

(ii) Let Kbe a double hyperoval in I'425 • By (i), we may take Kto be the 
union of 6 grids pairwise intersecting in two intersecting lines and 6 dual 
grids (uniquely determined by the grids). The 15 points of intersection of 
the 15 pairs of intersecting lines thus obtained are the point set of a mem­
ber (J e Q. From the definition of r, it is clear that y = oo and (J are only 
two vertices of I' adjacent to every vertex of K. 

Conversely, let y, (J Er satisfy (J E rl360( y ). Taking (without loss of 
generality) y = oo and (J e Q, we see that the subgraph of r induced on the 
32 common neighbors of these two vertices has precisely two 6-cliques, say 
K 1 and K2 . Setting K = K1 u K2 , we obtain the required correspondence. 

(iii) Without loss of generality, we take y = oo. Then, again, from the 
definition of r, it is clear that, by the correspondence of (ii), distinct double 
hyperovals in Gu DG lead to distinct quads D. I 

We denote by A the graph induced on the set of all double planes by 
letting two members II1 and II2 be adjacent if and only if they have 
precisely I 0 vertices of r in common. 
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4.3. THEOREM. The graph LI has 8330 vertices. The permutation character 
of He on its vertex set is la+ 51a+51h+680a + 1275a + 1920" + 4352a. The 
distance distribution diagram of LI with respect to a vertex is: 

30 

60 

64 

32 

21 

35 

Proof First, we determine the He£orbits on the vertex set of LI. The 
sets { ll(x) Ix a line or point of GQ} and {II( oo, c5) I c5 E I'1360( cx:i)} are H 'h­

orbits of respective sizes 170 and 1360 (cf. Lemma 4.2). The first one splits 
into two Hex-orbits, the latter is a single He"" -orbit. 

Fixing a grid g and a point p of g, the 21-set consisting of g, the 8 flags 
in g with point collinear to but distinct from p and line not containing p, 
and the 12 quads on p intersecting gin the singleton { p}, form a maximal 
21-clique in r425• which in turn determines a unique double plane (cf. 
Lemma 4.1 ). Varying ( g, p) over all incident grid, point pairs, we obtain an 
He, -orbit of 3400 double planes X( g, p ), each consisting of 4 grids ( g is 
one of them), 10 flags, and 28 quads. Dualizing yields another Hex -orbit of 
3400 double planes X(d, I) determined by a dual grid d and a line I in d 
(i.e., having two points in d), containing 4 dual grids and the same number 
of flags and quads. These two fuse under H ,,_ to the third and (by coun­
ting) final H, -orbit, of size 6800. 

Fix a line I of GQ. Exploiting the viewpoint from oo, the structure of L1 
on the vertices II with II n II(!) is readily determined. As a consequence, 
we get that each II ELI is as described in one of the lines in Table II (where 
m is a line in the dual grid d, p is a point of the grid g, and q is a quad). 
Also, it is not hard to derive that each line represents a single Hex, nu>­
orbit. 

Let IIELI. From the Table II, there are 105 vertices adjacent to II, 1344 
meeting II in an edge of I', and 1680 meeting II in an edge of I'425 • Using 
transitivity of H 11 on II, we find three H IT"orbits of the indicated sizes. 

Next, we determine the permutation character n of He on the vertex set 
LI. By the above, the rank of the permutation representation lies between 5 
and 9. Using that He'L and Hx. have 5, 3 orbits on the vertex set of L1, 
respectively, we see that the low degree characters 51 a and 51 b occur with 
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TABLE II 

n flnfl(/) Restriction Size 

fl(/) n 
fl(m) 10 Vertices m meets I 20 

fl(m) Edge m disjoint from I 64 

fl(p) 10 Vertices pet 5 
fl(p) T425-edge peP\I 80 

fl(x,q) 0 jlnqj = 3 240 

mx. q) T425-edge j/nqj = 1 480 

mx.q) 0 jlnqj =0 640 

X(g. p) 10 Vertices I a line of g, p e I 80 

X(g, p) Tm-edge I a line of g, p ~ I 320 

X(g, p) T425-edge I a line not in g, [ p l = g n I 120 

X(g, p) Edge I a line not in g, p .l (/ n g) 960 

X(g, p) 0 I a line not in g, p 1- (In g) 1920 

X(d,m) Tm-edge I a line of d, m = I 40 

X(d,m) Edge I a line of d. m meets I 320 
X(d,m) Tm-edge I a line of d, m disjoint from I 640 
X(d,m) 0 I a line not in d, m meets I 480 
X(d,m) 0 I a line not in d, m disjoint from I 1920 

small multiplicities. It is then straightforward from the character table in 
the "Atlas" [3] that n is the character as described in the statement of the 
theorem. In particular, H n has 6 orbits on the vertex set of L1. Thus, the set 
of 5200 vertices II' with II n II'= 0 partitions into two orbits. By 
Lagrange and Table II, there is only one possibility for the two orbits 
sizes, namely 720 = 240 + 480 and 4480 = 640 + 1920 + 1920. By L1,, for 
x E { 1344, 1680, 4480, 720}, we denote the graph structure on the vertex set 
of L1 induced by the suborbit of size x. 

We next exhibit an edge between a vertex in L1 4480(ll) and L1 720(ll). Let d 
be a dual grid. Take two intersecting lines 11 and /2 in d. Denote by I a 
line of GQ not in d and meeting /1 in a point (outside d). Now 
X(d, /i)EL1 720(ll(/)) and X(d, /2 )EL1 4480(II(/)); moreover the 3 flags (p, m) 
with p a point of d and m a line of GQ incident with p and the point of 
/ 1 n /2 , are vertices of r in X(d, I;) for both i, whence there is an edge from 
X(d, Ii) to X(d, /2 ). 

Taking suitable representatives of vertices in the orbits of sizes 1344 and 
1680, one deduces the remaining numbers given in the distribution 
diagram. I 
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5. THE REMAINING PERMUTATION REPRESENTATIONS OF He AND HARE NOT 

MULTIPLICITY FREE 

In order to establish Theorem 1.l it remains to show that permutation 
representations distinct from those in Sections 3 and 4 are not multiplicity 
free. The lemma below bounds the index of the subgroups to be taken into 
consideration. 

5.1. LEMMA. Let G =He or H be multiplicity free on a subgroup K. Then 
IG/KI ::::;268,618 ifG=He, and IG/KI ::::;478,976 if G=H. 

Proof Let n be the permutation character of G on K, and denote by 
Irr(G) the set of irreducible characters of G. Then, as n is multiplicity free, 
IG/KI = rr(I)::::; Lie IrriGi x(I ), and the lemma follows from a direct com­
putation (using the character table) of the latter sum. I 

As the degree of an irreducible character of G is at most 23,324, we 
conclude from knowledge of maximal subgroups (cf. the "Atlas" [3]) 

5.2. COROLLARY. Let X he a set of si::e v, and let G, with G = He or H, 
act primitively on X. If this action is multiplicity free or of rank at most 7, 
then G.1 , for y EX, is one of the subgroups of G indicated in Table III (up to 
conjugacy in G, cf the "Atlas" [3]). 

The third and sixth column of the table contain references to sections 
where the proof for G, of the indicated isomorphism type can be found. 

5.3. LEMMA (maximal 6-cliques in F 425 with stabilizer 26 :3-Sym6 ). The 
permutation character of He on a subgroup isomorphic to 26 : 3 · Sym 6 is not 
multiplicity free and of rank at least 8. 

TABLE III 

G~He G~H 

G,. Section G; Section 

PSp(4. 4):2 2,058 3 PSp(4. 4):4 2,058 3 
22 · l(3, 4)-Sym 3 8,330 4 22 · l(3, 4) · Dih 12 8,330 4 

2°: 3 · Sym 0 29,155 5.3 Sym 5 x Sym 5 :2 279,888 i4 
2°:3-Sym, 29,155 5.3 24 ' 4 · Sym 1 x Sym 1 · 2 437,325 5.4 

2 1,. 0 • l( 3, 2) 187,425 5.5 2\''·L(3.2)·2 187,425 5.6 
72 :Sl(2, 7) 244,800 5.6 72 :SL(2,7)·2 244,800 5.6 

3 · Sym 7 266,560 5.5 3-Sym 7 x2 266,560 5.5 
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Proof: He contains two classes of maximal subgroups of index 29, 155 
interchanged by an outer automorphism of He. Any such maximal sub­
group K can be obtained as the stabilizer of a maximal 6-clique in F425 • We 
exhibit 6 maximal 6-cliques in F425 which are from distinct H x.-orbits: 5 
flags on a common line and Y,j (of size 85 ); a dual grid d and 5 flags in d 
whose lines are on a common point p and whose points differ from p (of 
size 1360 ); 2 flags ( p, !). ( p, m) and 4 grids any two of which intersect each 
other in l u n (of size 850 ); a grid g and 5 quads intersecting g in a point 
such that the 5 points so obtained form the quad diagonal corresponding 
to each quad (of size 8160); 2 grids intersecting each other in the union of 
two lines /, m and 4 quads intersecting the grids only in Inn such that in 
either grid their quad diagonals cover the set of 16 points of the grids not 
on I or n (of size 5100); 2 flags (p, /), (p',m) (pi=-p', lnn=r, r#p, p') 
and 4 quads having the following property: 

for each grid g containing the two flags let r' be the unique other 
point collinear with p and p'. Then three of the quads intersect g 
in r'; their quad diagonals contain r and r' and the union of the 
quad diagonals form, after deletion of rand r', a 3 x 3 grid which is 
the intersection of g with the remaining quad (of size 13,600 ). 

Thus, there are at least 6 He'· -orbits of maximal 6-cliques in I'425 . 

Moreover, up to substitution of the representatives just given by their 
duals, we may take them to be in the same He-orbit. From Frobenius 
reciprocity it follows that the permutation character of He on K is not mul­
tiplicity free and that its permutation rank is at least 8. I 

5.4. LEMMA (Novelties). If K ~ Sym 5 x Sym 5 : 2 or 24 + 4 · Sym 1 x 
Sym 1 · 2, then the permutation character of H on K is not multiplicity free 
and the permutation rank is at least 10. 

Pro(){ Recall that r (resp. F 425 ) is the graph on 2058 vertices with 
valency 272 (resp. 425 ). This graph has 279,888 (resp. 437,325) edges, and 
K is the stabilizer in H of one of them. (In the first case cf. Lemma 2.1; in 
the second case by the results of Section 4 every edge is on precisely two 
maximal 6-cliques, one of each He-orbit, so Kn He is contained in a sub­
group 26 : 3 · Sym 6 with index 15 ). Fixing a vertex I Er, we see from the 
distance distribution diagram in Section 3 that H .. has at least 7 orbits on 
the edge set. By Frobenius reciprocity, this impli~s that the inner product 
of the permutation characters of Hon Kand on S. (6) is at least 7. Since 
the character of H on S · ( 6) has 4 irreducible constituents ( cf. 
Remark 3.l(ii)), it follows that the permutation character on K has a mul­
tiplicity > 1 and that the permutation rank is at least 10. I 
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5.5. LEMMA. 

(i) The permutation character of He on a subgroup K isomorphic to 
2 ~ + 6 · L( 3, 2) is not multiplicity free; 

(ii) the permutation character of H on a subgroup K isomorphic to 
3 · Sym 7 x 2 is not multiplicity free. Consequently, neither is the permutation 
character of He on a subgroup isomorphic to 3 · Sym 7 • In this case, the 
permutation rank is at least 14. 

Proof (i) Since K is the centralizer of an involution, say b of type 2B, 
the set He/ K can be identified with the class B of involutions of this type, 
with He-action given by conjugation. Now b fixes a member x of B if and 
only if xb has order at most 2. A standard computation using the character 
table shows that there are 84 elements x E B with xh an involution of type 
2A and 364 with xh E B. Thus, b has 1 + 84 + 364 = 449 fixed points in r. 
As Lx(hl>oX(h)=315, an irreducible character with x(b)>O must occur 
with multiplicity > I. 

(ii) As in (i), we can identity the H-set H/K with the class, C say, of 
involutions of type 2C. For c EC, there are 168 x EC with xc an involution 
of type 2A and 315 with xc an involution of type 2B, whence b has 
1+168+315=484 fixed points on I'. As Lx(bJ>ox(b)=442, we again 
encounter an irreducible character with multiplicity > 1. It follows 
immediately that the restriction to He is also not multiplicity free. The 
statement about the permutation rank is a consequence of the observation 
that the quotient of the index by the maximum degree of an irreducible 
character is strictly bigger than 11. I 

5.6. Computation of two permutation characters. For the two classes of 
maximal subgroups below, we have no better way of proving the main 
theorem than to explicitly determine the entire permutation character as a 
sum of irreducible characters. 

5.6.1. LEMMA. Denote hy K a maximal subgroup <d' H. 

(i) JfK is isomorphic to 72 : SL(2, 7) ·2, then the permutation character 
of He on Kn He is 

nlf(r;Hc= la+ I53u+ 153h+ 1920u+4080u+4352u+2x6272u 

+ 6528,, + 2 X 7650"+ 2 X I0,880u + 1 J ,475u + l J ,475h + 2 X 13,720" 

+ 2 X 14,400" + 2 X 17,493" + 20,825u + 21,504u + 21,504h• 

(ii) (l K is isomorphic to 2 1/ 6 • L(3, 2) · 2, then the permutation 
character of He on Kn He is 
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7! I Kn fie= 1,, + 680" + 2 X 1275" + 19200 + 4080" + 4352" + 6528" 

+ 2 x 7650" + 10,880" + 3 x 11,900<1 + 2 x 13,720" 

+ 2 x 17,493" + 21,504" + 21,504". 

Proof (i)The conjugacy classes of KnHe~7 2 :SL(2,7) are as 
indicated in Table IV, where ux denotes a representative with 
u E 0 7 ( Kn He) and x an element of a fixed complement isomorphic to 
SL(2,7). Here {{Y,Y*},{X,X*}, {Z,Z*}}={{A,B},{C},{D,E}}, 
and : is the nontrivial central element, c, dare nonconjugate transvections, 
a is a diagonal element of order 6, and h is an element of order 8 in 
SL(2, 7). Now (n\Knlfe• x), for every irreducible x of He, can be computed 
as (I Kn Ho x I Kn lie) due to Frobenius reciprocity, yielding the assertion of 
the lemma. 

(ii) Let Xr, for T the type of an element in He, denote the size of the 
class to which it belongs. From Wilson [7] we deduce that x 2A = 126 and 
x 28 = 449. By the fixed point free action of an element of order 7 in Kon 
0 2(K)/Z(K) ~ 26 (on which K/0 2(K) acts as the sum of the natural l(3, 2)­
module and its contragredient ), there are precisely two classes of elements 
of order 7 (and they are algebraically conjugate), which must be of type 7 D 
and 7 E in He; both have size 1536. Therefore, xw = x7E = 1536, and from 
this it follows directly that x 14c = x i sD = 1536 as we!L whereas x r = 0 for all 
other type of elements of orders 7 and 14. Since, from the power map in the 

x 

d 
d 
d 
d 

:c 
:d 
a 

a' 
h 
h' 
h' 

TABLE IV 

u Size 

10. OJ I 

11. 0 J 48 
10. 0) 49 

10.0) 168 
11. 0) 336 
(2.0) 336 
(3, 0) 336 
(0,0) 168 
(1, 0) 336 
(2. 0) 336 
(3, 0) 336 
(0,0) 1176 
(0,0) 1176 
(0.0) 2744 
(0,0) 2744 
(0.0) 2058 
(0, 0) 2058 
(0, 0) 2058 

He-class 

IA 
7(' 
28 
7D 
7X 
7Y 
7Z 
7£ 

7Y* 
7Z* 
7X* 
14C 

14C 

68 
38 
8A 
4(' 

8A 
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"Atlas" [3 ], there is no element of order 6 whose square has type 3A and 
whose cube has type 2B, we must have x 3A = 0, and hence also x 6 A = 0. We 
have 

If x 7 # 0, then 
TE {IA, 2A, 2B, 3B, 4A, 4B, 4C, 6B, 7D, 7£, 8A, l2B, 14C, 14D}. 

Counting the number of elements of Kn He mapping onto an element of 
order 3 in Kn He/0 2(KnHe), we find 

The innerproducts of the permutation character of He on Kn He with the 
characters 1.,, 680.,, 51.,, and the permutation character of 3.2(ii) give the 
following restrictions on x 4A, x4 s, X 4c, and XgA: 

( 10,304 + 8X40)/21504 E Z ;;.O• 

( - 3360 + 3x4A + 3x4B - X4c + XsA )/21,504 E z ;;>0• 

(40,320 + l4x4 A + 18x48 + 2x4 c + 2x8A)/21,504E Z.,o, 

leading to the unique solution x 4 s = 1400, x 4 A = 672, x 4 c = 4200, and 
x 8 A = 1344. We now examine elements of order a multiple of 3. 
The inner product with 22,050., yields ( 14,336 - 6x38 - 2x68 )/21,504 E Z ;.o• 

and the inner product with 4352 11 yields ( 14,336 + 8x38 )/21,504 E Z ;.o· 
This forces x 38 = 896 and x 68 = 4480, whence x 128 = 1792, and all x 7 

are determined. It is now straightforward to compute the permutation 
character. I 

5.6.2. COROLLARY. Theorem 1.1 holds for pairs H, K as in the above 
lemma. 

Proof Obviously, the permutation rank of G on K exceeds 7. Also in 
case (ii), the multiplicity 3 of 11,900" in n I K,, He implies that His not mul­
tiplicity free on K, so let K be as in (i), and suppose that n is multiplicity 
free. Then, the lemma implies that we must have 

1T.= l 11 +b1 J920.,+b24080a+b34352.,+b46528a 

+ '5 5 20,825., + '5 6 21,504., + <5 7 2 l ,504h + t/;, 

where b1 is the identity or the sign character with kernel He, the characters 
xm refer to the "Atlas" [3], and 1/1( g) = 0 if g E H\He. Now consider 
x, y E H\He of type 8B and 6D, respectively. Then x 2 and y 2 are of type 4B 
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and 3A. resp., so n(x)=n(y)=O. Therefore, we get b 5(x)= I and 
1 +36 1(y)+2t5 1(y)-3b 4(y)-6 5(y)=0, a contradiction with 6,,,(x)= 
ci 111(y)E{l,-lj. I 

6. PROOF OF COROLLARY 1.2 

If G =He, H acts distance transitively on an imprimitive distance regular 
graph r, then, by a result of D. Smith [6], there is also a primitive distance 
regular graph I" on which G acts distance transitively. So suppose r is a 
primitive distance regular graph and G acts distance transitively on !'. 
Then the stabilizer K in G of a vertex is a maximal subgroup, the per­
mutation character of this permutation representation is multiplicity free, 
and all irrcducibles occurring in that character are real. By Theorem 1.1, 
we must have KnHe:;:;;.Sp(4,4):2 or KnHe;;:::.2 2 ·L(3,4)·Dih 12 .• From 
the results in Section 3 it follows that in the first case the corresponding 
graph is not distance transitive. So suppose we are in the second case. Then 
the subdegrees are I, I 05, 720, 1344, 1680, and 4480, and r =A, with x 
being one of these subdegrees and notation as in Section 4. Furthermore, it 
is well known that in a distance regular graph of diameter d and subdegrees 
I, k 1 , ••• , k" we have the following inequalities. 

for all i E { 2, ... , d - 1 } . 

Hence k 1 = 105 or 720. The case k 1 = 105 leads to a contradiction as the 
corresponding graph L1 is not distance regular (see Section 4 ). So assume 
k 1 = 720. From the distribution diagram of L1 given in Section 4 it follows 
that there are 3 vertices x, y, and :: such that x, :: and x, y are A 720-edges 
and x, y is a L1-edge. So if k 1 = 720, then k 2 = I 05, a contradiction with ( * ). 
Hence there is no graph r on which He or H acts distance transitively. 

REFERENCES 

I. N. L. B1c;t;s ... Algebraic Graph Theory," Cambridge Tracts in Math., Vol. 67, Cambridge 
Univ. Press, Cambridge, 1974. 

1 G. Ben.ER, The maximal subgroups of the sporadic simple group of Held, J. Algehra 69 
(1981 ). 67 81. 

3. J. H. CONWAY, R. A. WILSON, R. T. CURTIS, S. P. NORTON, AND R. P. PARKER, "Atlas of 
Finite Groups," Oxford Univ. Press (Clarendon), London, 1985. 

4. D. HELO, The simple groups related to M,4 , J. Algehra 13 ( 1969 ), 253 296. 

5. D. Hao. The simple groups related to M 24 , J. Austral. Math. Soc. 16 ( 1973 ), 24 28. 

6. D. H. SMITH, Primitive and imprimitive graphs, Quart. J. Math. Oxfiml Ser. 2 22 ( 1971 ), 
551-557. 

7. R. A. WILSON, Maximal subgroups of automorphism groups of simple groups, J. London 
Math. Soc. 32 ( 1985 ), 460-466. 


