DRAFT PROPOSAL
FOR THE

B PROGRAMMING
LANGUAGE

SEMI-FORMAL DEFINITION

LAMBERT MEERTENS

MATHEMATICAL CENTRE 1981

DRAFT PROPOSAL
FOR THE

B PROGRAMMING
LANGUAGE

SEMI-FORMAL DEFINITION

LAMBERT MEERTENS

MATHEMATISCH CENTRUM AMSTERDAM 1981

Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.

The Mathematical Centre, founded the 11" of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and its
applications. It is sponsored by the Netherlands Government through the
Netherlands Organization for the Advancement of Pure Research (Z. W. O.).

ACM—Computing Reviews—category: 4.22
ISBN 90 6196 238 2

Contents

QUICK REFERENCE 3
0. Introductionccceceveererernene 14
0.1. Some technical background 15
0.2. VW-grammarseceveuuee. 16
0.3. General constructions........... 18
0.4. Symbols and representations 19
0.4.1. Syntaxccoeeemenreerenriennns 19
0.4.2. Representations 19
1. Types and values.........cocueuene. 23
1.1. Metaproduction rules 24
1.2. Valueseeeereeeeeecreerecrennen. 24
1.2.1. Numbers.......ccceveevvecreceennen. 25
1.2.2. TeXtS .creeereeeeceeceeeceeereennes 25
1.2.3. Compoundscoueueveirunnne 26
1.2.4. LiStS ..oooveereeeeeeereerrevaenvennes 26
1.2.5. Tablesoceveeveeeeverecreceeenns 26
2. Locations and environments .. 26
2.1. Locationsccceeeeeeveeseeesveenne 26
2.1.1. Simple locations 27
2.1.2. Trimmed-text locations 27
2.1.3. Compound locations.......... 28
2.1.4. Table-selection locations ... 28
2.2. Environmentsccceevene.. 29
3. Elaborationcccceeeveruereennene 30
4, UNItS ..veverereeeereeeeeeeeeerneeeenereens 31
4.0.1. Syntaxveveeemrenrireeennnenes 32
4.0.2. Locality and shielding 32
4.1. How-to-unitsccccevevvereeeenne 33
4.2, Yield-units.......ccocvevrerrrrvernennns 34
4.3, Test-unitscceeeeeveveeeeerennen. 35
4.4. Refinementscccceeereneenn 35
4.5. Command-suites..................... 36
5. Commandscoeveerveeeenvennen. 37
5.1. Simple-commands 37
5.1.1. Check-commands 38
5.1.2. Write-commands 39
5.1.3. Read-commands.................. 40
5.1.4, Put-commands..................... 40
5.1.5. Draw-commands 4]
5.1.6. Choose-commands 41
5.1.7. Setrandom-commands 42
5.1.8. Remove-commands............ 43
5.1.9. Insert-commands................. 43

5.1.10. Delete-commands 44

5.1.11. Quit-command 44
5.1.12. Return-commands............ 45
5.1.13. Report-commands............. 45
5.1.14. Succeed-command 46
5.1.15. Fail-command 46
5.1.16. User-defined-commands .. 47
5.1.17. Refined-commands 48
5.2. Control-commands 49
5.2.1. If-commands 49
5.2.2. Select-commands................ 50
5.2.3. While-commands................. 51
5.2.4. For-commands 51
6. Expressions, targets and tests 52
6.1. EXpressionsccoceurirevenens 52
6.1.1. Constantscceceeeereernennes 54
6.1.2. Target-contents.................... 55
6.1.3. Trimmed-texts 55
6.1.4. Table-selections 56
6.1.5. Displaysccocouerererennnnee. 57
6.1.6. Formulascerveveenen.... 59
6.1.7. Refined-expressions............. 62
6.2. Targets ..., 62
6.2.1. Identifierscccoecvrvurrvernnne 63
6.2.2. Trimmed-text-targets 64
6.2.3. Table-selection-targets 64
6.3. TeStS ccouvevveeeeerrrerereeneeeceeneaenene 65
6.3.1. Order-testscccevvreueennn.n. 66
6.3.2. Propositionsceceeveeee 67
6.3.3. Refined-testsccoveerennenene 68
6.3.4. Conjunctions...........cccueueueee 69
6.3.5. Disjunctionsc.ceevennn. 69
6.3.6. Negationsccceeeevevevennnee 70
6.3.7. Quantifications 71
7. The static checks..........cceue.... 73
7.1. The static definedness check 75
7.2. The static content check 75
7.3. The static type check 76
APPENDIXvvvvvenrerrverereennns 78
A.l. Command language 78
A2, Files e 79
A.3. The editoroeueeeveenenne.. 79
A.4. Illegal constructions............. 83
REFERENCES ... 85
INDEX ...oeteeeeervvrescenerenseeenens 86

QUICK REFERENCE

Numbers are exact or approximate. You get an exact number even if you use
3.14 or 22/7. You get an approximate number if you use E for the ten
power, or if you use the ~ function (pronounced “about”). For example,
~1000 = E3, and ~0.005 = 0.5E—2. You may also write ~(a+b) etc.
Warning: an approximate number is never equal to an exact number. If you
want to test if you may divide by x, and if you are not very sure that x is ex-
act, it is not safe to use the test x <> 0 (which is shorthand for
{x <0 OR x > 0)). You should use ~x <> ~0.

If functions like +, —, *, / and ** work on exact numbers, the result is also
computed exactly, except if the exponent n in x**n is a fraction. (A formula
like a#xx**2+b*x+c stands for what is usually written as ax?+bx+c: your
computer cannot stand dancing lines and requires that you write * whenever
you mean multiplication, even in cases like 2xx.) Arithmetic on approximate
numbers gives approximate results (which, for many purposes, are precise
enough, and often are computed much faster). Functions like root, sin and
log always give an approximate result. (So root 4 <> 2 and log I <> 0).
More details are given at the functions below.

Texts consist of characters and are written like ‘Jack and Jill’ or
"Jack and Jill". (The characters meant are not Jack and Jill, but the “J,
“a”, etc. You may use any printing character and the space.) Which of the
forms you use, the one with single quotes or the one with double quotes,
makes no difference to your computer. Never confuse the number 747 with
the text ‘747’. Whereas 747 = 3x249, ‘747’ is quite another text than the
text ‘3249, and '3'x249’ is not even a text; to your computer it is mean-
ingless. The number 747 can be used to do arithmetic; to your computer it
does not consist of characters and it is written that way only because the
dominant earthian species has twice five wriggly appendices sprouting from
its upper tentacles and finds this clumsy notation convenient, and because
you are (presumably) a member of that species and your computer tries to
please you. The text '747’, on the other hand, cannot be used in arithmetic,
and if you nevertheless try to do so, your computer will warn you. It really
is three characters in a row. The so-called quotes on the outside do not real-
ly count. They only serve to make clear where the text begins and ends. If
you say prayers, it does not mean that you say “prayers”. But if you say
“prayers”, you don’t say the quotes, do you? You can find out the length of
a text with the function #. For example, # ‘roe’ = 3. If you use ’ before
and after your text, you can only use it inside if you double it thus: *’. Your
computer knows that you really mean it only once: # p’’g’ = 3. The rules
for ” are similar.

But if you use the other quote sign inside than the one you use on the out-
side, you should not double it. So write either: ‘He said: "don’'t!”’ or:
“He said: ""don’t!""" .

4 DRAFT PROPOSAL FOR B

Inside texts, you can use weirdos (which are known as conversions) of the
form ‘e*. Your computer computes the value and replaces the conversion by
a suitable text. For example, if /=239 and j= 4649, then
"t =ikt = ‘239 % 4649 = 1111111°. Within the conversions the
need to double the outside quotes inside has disappeared: "“# ‘toe”*’ = '3".
(Don’t look too long at it if you don’t want to strain your eyes.) On the other
hand, if you use a single " as character in a text, you have to double it.

You can join two texts thus: ‘now’"’here’ = ‘nowhere’, and you can repeat a
text as many times as you want: ‘ox""3 = ‘ox"‘ox"'ox’ = ‘oxoxox’ (just
like x**3 = x*x*x). You can take texts apart thus: "lamplight’@4 = ‘plight’
(since the “p” is the fourth character) and ’scarface’|5 = 'scarf.

You may combine @ and |: ‘Benedictine’@4|5 = ‘edictine’|5 = 'edict’, and
'Benedictine’|8@4 = 'Benedict'@4 = ‘edict’.

Forms with @ and | may be used as targets:

if ¢ has as content ‘Benedictine’, and you tell your computer to

PUT ’zedr’ IN t@4|5

it puts ‘Benzedrine’ in t; if t is ‘participle’ and you tell your computer to
PUT "' IN t|8@7

it puts ‘particle’ in t; and if ¢ is ‘creation’ and you tell your computer to
PUT 'm’ IN t@4|0

or to
PUT 'm’ IN t|3@4

it puts ‘cremation’ in 1.

Compounds are a bunch of values grouped together. For example, if you
want to keep track of which books you have lent when to whom of your
friends, you may tell your computer to

PUT 'N&P’, 'Mote’ IN book
PUT 84, 3, 17 IN date
INSERT book, date, 'bearded gnome’ IN books'lent

and your computer inserts (('N&P’, 'Mote’), (84, 3, 17), 'bearded gnome’) in
the list of lent books it keeps for you. (Better ask him his name next time,
though.)

You can obtain the fields (as they are called) by putting the compound in a
compound target. In the example, your computer would obey

DRAFT PROPOSAL FOR B 5

PUT book IN author, title

by putting ‘N&P’ in author and "Mote’ in title.
The following is a neat trick to swap the contents of two targets:

PUT a, bIND, a

This tells the computer to make the compound (g, b) and to decompose it
into (b, a).

Lists are like lists you make to do shopping: if you and a friend of yours
each make a list, and your list is

tooth paste

shampoo

cucumbers

yoghurt

muffins

birthday present for linda

and your friend has

birthday present for linda
shampoo

tooth paste

muffins

cucumbers

yoghurt

and you compare lists, you will exclaim: why, we have exactly the same list.
Similarly, your computer considers {¢ s; ¢; y; m; b} and (b; 5; t; m; ¢; y} as
the same list. In fact, it always sorts the entries in a list from low to high; if
you tell your computer to

PUT {5;7; 3; 2} IN a
INSERT 41IN a
WRITE a

you will see {2; 3; 4; 5; 7} written. The same entry may occur several times
in a list. If you tell your computer to

6 DRAFT PROPOSAL FOR B

PUT {} IN letters

FOR c IN ’mississippi’:
INSERT c IN letters

WRITE letters

it writes back {'i’; ‘i’; i’y i, 'm’; ‘p’; ph s s st s’}

You may insert all kinds of values in a list, but for each list they must all be
the same type of value (all numbers, or all texts, etc.). You may use {/..n} as
shorthand for {/; 2; ... ; n—1; n} and similarly {'a’..’z"}.

Tables are somewhat like dictionaries. A short English-Dutch dictionary (not
sufficient to maintain a conversation) might be

aardvark: aardvarken
apartheid: apartheid
furlough: verlof

of: van

or: of

van: bestelwagen
yacht: jacht

Table entries, like entries in a dictionary, consist of two parts. The first part
is called the key, and the second the associate. All keys must be the same
type of value, and similarly for associates. A table may be written thus:
{(['rj:1; ['v]: 5 ['X’]: 10}.

If this table has been put in a target roman, then roman['X'] = 10.

Your computer keeps the tables sorted by key. If you next tell your comput-
er to

PUT 100 IN roman['C’]

then roman will contain {/'C’]: 100; ['I’]: I; ['V']: 5; ['X']: 10}. You can
find out what the keys are with the function keys; in the example,
keys roman = {'C%; 'I; 'V 'X'}).

PREDEFINED COMMANDS

HOW'TO c: commands
tells your computer how to execute your command c. It must not be used in-
side other commands.

YIELD f: commands
tells your computer what value it must yield for your formula f when it is
computed. It must not be used inside other commands.

DRAFT PROPOSAL FOR B 7

TEST p: commands
tells your computer whether your proposition p should succeed or fail when it
is tested. It must not be used inside other commands.

CHECK test
checks if the test succeeds, in which case nothing happens, but aborts if the
test fails.

WRITE e
writes the value of e on the screen. It gives new lines for any /-signs before
and after e.

READ tEG e
asks an expression from you to put in t. The e tells your computer what type
of expression to ask for (number, text, etc.).

PUTelIN t
puts the value of e in t.

DRAW t
draws a random number (from ~0 up to ~1) and puts it in t.

CHOOSE t FROM 1
chooses at random an element from the text, list or table | and puts it in t.
(The element is not removed from 1.)

SET'RANDOM e
sets the random generator, using the value of e.

REMOVE e FROM |
removes the value of e from the list held in 1. The value must occur in that
list. It is removed only once.

INSERT e IN 1
inserts the value of e in the list held in 1.

DELETE t
deletes the target t. This is used mostly to delete entries from tables or to kill
permanent targets.

8 DRAFT PROPOSAL FOR B

ouIr
quits from a HOW'TO or refinement.

RETURN e
returns the value of e from a YJELD or refinement for further computation.

REPORT test
reports from a TEST or refinement whether the test succeeds or fails.

SUCCEED
reports success from a TEST or refinement.

FAIL
reports failure from a TEST or refinement.

IF test: commands
executes the commands if the test succeeds.

SELECT:
test: commands

test: commands
selects the first test to succeed and executes the commands after that test. At
least one test must succeed. To make sure, the last test may be ELSE, which
catches if all other tests fail.

WHILE test: commands

executes the commands if the test succeeds, and keeps repeating this while
the test keeps succeeding. If it fails the very first time around, the commands
are not executed at all.

FOR t IN e: commands
executes the commands for t ranging over the successive characters of e if e is
a text, entries of e if e is a list, and associates of e if e is a table.

ALLOW t
allows the use of the permanent t inside a HOW'TO-, YIELD- or
TEST-body. It must occur there at the head.

DRAFT PROPOSAL FOR B 9

PREDEFINED FUNCTIONS AND PREDICATES
Functions on numbers

~X
returns an approximate number, as close as possible in arithmetic magnitude
to x.

x+y
returns the sum of x and y. The result is exact if both operands are exact.

+x
returns the value of x.

x—y
returns the difference of x and y. The result is exact if both operands are ex-
act.

—X
returns minus the value of x. The result is exact if the operand is exact.

Xky
returns the product of x and y. The result is exact if both operands are ex-
act.

x/y
returns the quotient of x and y. The value of y must not be zero (ie.,
~y <> ~(0). The result is exact if both operands are exact.

Xy
returns x to the power y. The result is exact if x is exact and y is an integer.
If x is negative (i.e,, ~x < ~0), y must be an integer or an exact number with
an odd denominator. If x is zero, y must not be negative. If y is zero, the
result is one (exact or approximate).

n root x
returns the same as x**(1/n).

root x
returns the same as 2 root x.

abs x
returns the absolute value of x. The result is exact if the operand is exact.

10 DRAFT PROPOSAL FOR B

sign x
returns an exact number from {—I..+1} with the same sign as x (where, e.g,,
sign ~0 = sign —~0 = 0).

floor x
returns the largest integer not exceeding x in arithmetic magnitude (so, even
if perhaps 3 > ~3, floor ~3 still returns 3).

ceiling x
returns the same as — floor —x.

n round x

returns the same as (10%x —n)*floor(x*10%xn+.5). For example 4 round pi =
3.1416. The value of n must be an integer. It may be negative:
(—2) round 666 = 700.

round x
returns the same as 0 round x.

a mod n
returns the same as a—nxfloor(a/n). (Both operands may be approximate,
and n may be negative, but not zero.)

/*x
returns the smallest positive integer ¢ such that g*x is an integer. The value
of x must be an exact number.

*/x
returns the same integer as (/#x)*x. So, if x is exact, x = (%/x)/(/*x).

pi
returns approximately 3.1415926535... .

sin x
returns an approximate number by applying the sine function to x.

cos x
returns an approximate number by applying the cosine function to x.

tan x
returns the same as (sin x) / (cos x).

DRAFT PROPOSAL FOR B 11

x atan y

returns an approximate number phi, in the range from (about) —pi to +pi,
such that x is approximated by r * cos phi and y by r * sin phi, where r =
root(x*x+y*y). The operands must not both be zero.

atan x
returns the same as I atan x.

e
returns approximately 2.7182818284... .

exp x
returns approximately the same as exx*x.

log x
returns an approximate number by applying the natural logarithm function
(with base e) to x. The value of x must be positive.

b log x
returns the same as (log x) / (log b).

(There should also be a collection of simple matrix functions.)
Functions on texts

r‘'u
returns the text consisting of ¢ and u joined. For example, 'now’ 'here’ =
‘nowhere’.

""n
returns the text consisting of n copies of ¢ joined together. For example,
'Fi! "™"3 = 'Fi! Fi! Fi! . The value of n must be an integer that is not nega-
tive.

x<<n

converts x to a text (see 5.1.2.2.b) and adds space characters to the right until
the length is n. For example, 123<<6 = ‘123 ’. In no case is the text
truncated; if n is too small, the likely effect is that your beautiful lay out is
spoiled. The value of n must be an integer.

x><n

converts x to a text and adds space characters to the right and to the left, in
turn, until the length is n. For example, 123><6 = ’ 123 . In no case is
the text truncated. The value of n must be an integer.

12 DRAFT PROPOSAL FOR B

x>>n

converts x to a text and adds space characters to the left until the length is n.
For example, 123>>6 = ’ 123’. In no case is the text truncated. The
value of n must be an integer.

Functions and predicates on texts, lists and tables

keys t
requires a table as operand, and returns a list of all keys in the table. For ex-
ample, keys {[1]: 1; [4]: 2; [9]: 3} = {1, 4; 9}.

#t

accepts texts, lists and tables. For a text operand, its length is returned, and
for a list or table operand, the number of entries is returned (where dupli-
cates in lists are counted).

e#t

accepts texts, lists and tables for the right operand.

For a text operand, the first operand must be a character, and the number of
times the character occurs in the text is returned. For example,
"i'# 'mississippi’ = 4.

For a list operand, the number of entries is returned that is equal to the first
operand (which must have the same type as the list entries.) For example,
3# {133 4)=2.

For a table operand, the number of associates is returned that is equal to the
first operand (which must have the same type as the associates in the table.)
For example, 3 # {[1]: 3; [2]: 4 [3]: 3} = 2.

eint
accepts texts, lists and tables for the right operand. It succeeds if e#t > 0
succeeds.

e not'in t
is the same as (NOT e in t).

min t

accepts texts, lists and tables. For a text operand, its smallest (in the ASCII
order) character is returned, for a list operand, its smallest entry is returned,
and for a table operand, its smallest associate is returned. For example,
min 'syrupy’ = 'p’, min {1; 3; 3; 4} = 1, and min {[1]: 3; [2]: 4; [3]: 3} = 3.
The text, list or table must not be empty.

DRAFT PROPOSAL FOR B 13

e mint

accepts texts, lists and tables for the right operand.

For a text operand, the first operand must be a character, and the smallest
character in the text exceeding that character is returned. For example,
‘i’ min 'mississippi’ = 'm’.

For a list operand, the smallest entry is returned exceeding the first operand
(which must have the same type as the list entries.) For example, 3 min {I; 3;
34} =4.

For a table operand, the smallest associate is returned exceeding the first
operand (which must have the same type as the associates in the table.) For
example, 3 min {[1]: 3; [2]: 4; [3]: 3} = 4.

There must be a character, list entry or table associate exceeding the first
operand.

max t and e max t

are like min, except that they return the largest element, and in the dyadic
case the largest element that is less than the first operand. For example,
'm’ max 'mississippi’ = i’

n th'of t

requires an integer in {/..#t} for the left operand, and accepts texts, lists and
tables for the right operand. It returns the n'th character, list entry or associ-
ate. In fact, n th'of 1, for a text ¢, is written as easily t@n|l. For a table, it is
the same as t/n th'of (keys t)], which is something different from #/n], unless,
of course, keys ¢t = {1..#t}. For alist, I th'of t is min 1.

14 DRAFT PROPOSAL FOR B

0. Introduction

B is a programming language designed to be used on personal computers. Its
primary aim is ease of use for the programmer who wants to produce work-
ing programs without having to master a complex tool. B is a simple but
powerful language, suitable for applications as developing your own games,
bookkeeping in and around the house (not only financial), simple engineering
computations, solving puzzles, or learning how to program. It is not suited
to the development of huge production software, such as operating systems or
compilers. (Writing an interpreter in B for a mildly complex language is,
however, quite feasible.)

At first sight this definition of B may give the impression that B is not simple
at all. Although B has grown beyond the original intention, we still feel that
the language has a pervading basic simplicity that is hidden by this definition.
This may largely be caused by the fact that the simplicity we had in mind
when designing B was not definitional simplicity. In fact, it turns out that
efforts to prevent “surprises” (i.e., the definition prescribes an effect that the
innocent user would not expect) do not help to keep the definition short.
Also, some of the more powerful concepts of B are easier to grasp than to
describe formally.

One of the strong points of B (as we see it) is that the user can start using B
productively before she knows all concepts of B. The more advanced con-
cepts (e.g., parsing) are best explained in terms of the basic concepts.

This (provisional) definition of B is called semi-formal because the present
description, in spite of the use of a VW-grammar, does not capture most of
the “static semantics” in the syntactic description. Instead, these require-
ments are stated informally. An (unsuccessful) attempt has been made to
make the definition complete, in the sense that anything producible from the
Syntax is either assigned a unique meaning, or outlawed. Nevertheless, the
informality is such that the finer points may depend on the benevolent imagi-
nation of the reader.

The following may clarify some of the treatment of obscure issues. In the
design process, we started with an informal, simple conception of the mean-
ing of various constructions. In formalizing the description, it then turns out,
from time to time, that there are dark corners in which ambiguities, or worse,
are lurking. So we have a choice: restrict the access to the corner, or shed
light on it by defining a meaning, thus stretching the original conception.
The question we asked is: what does the user mean? If there is one obvious
meaning she must have had in mind, we tried to define the Semantics accord-
ingly. If there are several acceptable potential meanings, we tried to fence
the corner off. For assessing the proposed language, most of this is not par-

DRAFT PROPOSAL FOR B 15

ticularly relevant. With other solutions, the language would be equally use-
ful.

This document is rather putting-off in style. It is meant to be digested by
computer science gurus. Other interested parties are referred to the informal
definition of B (which is, alas, not available yet).

In a full definition of B also editing and operating procedures should be
described, since B is a full system, not a mere language. In the present docu-
ment, only the language itself is defined. See, however, the Appendix.

B (which, by the way, is only a temporary name) is by no means frozen. All
suggestions for improvements are welcomed. Please keep in mind that we
want to keep B simple. Some non-technical background on the B project is
given in GEURTS & MEERTENS[3] and MEERTENS[5].

In issuing this draft proposal, we express our feeling that the development of
B has reached a state where pilot implementations are in order. Those in-
terested in the development of B are urged to contact us, by writing to

B group

Mathematical Centre
Computer Science Department
P.O.B. 4079

1009 AB Amsterdam

The Netherlands

We are especially interested to hear from prospective implementers. We feel
that implementers should, at this stage of affairs, not feel compelled to follow
this definition to the last letter. Instead, if they see improvements keeping to
the spirit of the language, they are urged to adopt these. But please, let us
know. The experience gained will help us to improve B for the “official”
release.

0.1. Some technical background

Although B has no declarations for variables, it is a strongly typed language.
The type system is similar to that of LCF, for which a theory has been given
in MILNER[6]. The high level of B should help to reduce the overhead in in-
terpretive implementations. (A static type check and other static checks may
be combined with an interpretive implementation.) Compilation of B should
be possible by using techniques as described, e.g., by GEHANI[2]. For pilot
implementations aiming at obtaining experience in the use of B, this does not
seem worth the trouble. Also, any not grossly inefficient technique for han-
dling lists and tables will do for such implementations. Obvious candidates

16 DRAFT PROPOSAL FOR B

for optimization are scratch-pad copying, parsing and the use of
quantifications as the test of a while-command. Application of the monadic
functions # and keys (the latter if no copy is taken) should have a neglige-
able cost, or at least not increasing linearly with the size of the objects in-
volved. Similarly, the use of a list-display of the form {a.b} should not re-
quire, if no copy is taken, that the list be created in its full length.

0.2. VW-grammars

The syntax of B in this document uses a VW-grammar, as in the ALGOL 68
Revised Report (VAN WIINGAARDEN[7]).

VW-grammars can be used to define any language, however weird. Such is
the power of the mechanism. In this definition, only a very limited use is
made of that power. The main use of VW-grammar here is to enforce type
agreement. If the type system is orthogonal (and it is so), this can be very
naturally expressed in a VW-grammar. The agreement between “definitions”
and “applications” (enforced in [7] by the “NEST”) is not captured in the
present syntax.

The following, terse, exposition on VW-grammars is purely informal. It is in-
cluded only for the sake of making this document (to some extent) self-
contained. An entertaining complete exposition of VW-grammars is given in
CLEAVELAND & UZGALIS[1].

A VW-grammar is like a conventional BNF-grammar, except for two things.
The first difference is rather superficial. The left-hand side of a production
rule is separated by a colon from the right-hand side, alternative productions
are separated by semicolons, and the members of a production are separated
by commas. Moreover, the squiggles representing terminal symbols are not
written as such in the production rules. Rather, they are defined in a
separate section, called “Representations”. For example, a typical BNF pro-
duction rule as

<factor>::= <primary> | (<expression>)
is written in VW-style as
factor:
primary;
open-sign, expression, close-sign.

(The use of hyphens in these rules is a local deviation in this document from
the “official” VW-style.)

DRAFT PROPOSAL FOR B 17

The other difference is much deeper. A VW-grammar has two levels. In the
production rules words occur, spelled in capital letters (e.g., “TYPE”). These
are known as “metanotions”. A separate level of production rules, with two
colons instead of one, (the “metalevel”) defines “terminal metaproductions”
for these metanotions (for “TYPE”, among others, “numeric” and “textual”).
The production rules containing metanotions serve as templates for spelled-
out rules. For example, rule 6.1.2.1.a,

TYPE-target-content: basic-TYPE-identifier.
serves as a template for rules as:
numeric-target-content: basic-numeric-identifier.
and
textual-target-content: basic-textual-identifier.
and, in fact, many more rules. In this way, the grammar partially enforces
type agreement. If there is no need for agreement, this can be indicated by
appending digits to the metanotions: metanotions with different digits need
not agree. For example, rule 6.1.4.1.a,
TYPE2-table-selection:
tight-table-with-TYPEI -keys-TYPE2-associates-expression,
TYPE1-key-selector.
is a template for, among others,
numeric-table-selection:
tight-table-with-textual-keys-numeric-associates-expression,
textual-key-selector.
and
textual-table-selection:
tight-table-with-numeric-keys—textual-associates-expression,
numeric-key-selector.
“TYPEI” and “TYPE2” may also stand for the same type, as in
numeric-table-selection:

ti ght-table-with-numeric-keys-numeric-associates—expression,
numeric-key-selector.

18 DRAFT PROPOSAL FOR B

A guard of the form “where ... is ..” may appear in front of an alternative.
This means that the alternative applies only if the two “..” parts agree. This
depends on the substitutions for the metanotions. A guard of the form
“unless ... is ...” works the other way around.

Some metanotions are used, but not defined (“FIRST”, “NAMED”, “NEXT”,
“NOTION”, “TAG”). It is not particularly important what their exact
definition is, as long as there is a sufficient supply of terminal metaproduc-
tions. In particular, “NOTION” has anything as terminal metaproduction.

0.3. General constructions
0.3.1. Syntax

A) ITEM::
identifier;
target;
expression.

a) collateral-TYPE-ITEM:
TYPE-ITEM;
where TYPE is compound-with-TYPE1-TYPES-fields,
TYPE1-TYPES-ITEM.

(For TYPE and TYPES, see 1.1.)
b) TYPE-ITEM:
basic-TYPE-ITEM;

open-sign, collateral-TYPE-ITEM, close-sign.

(For basic-identifiers, -targets and -expressions, see 6.2.1.1.a, 6.2.0.1.a and
6.1.0.1.a.)

¢) TYPE-TYPES-ITEM:
TYPE-ITEM, comma-sign, TYPES-ITEM.

d) All tags contained in an identifier must be different.
e) optional-NOTION:

’

NOTION.

DRAFT PROPOSAL FOR B 19

Examples:
a) collateral-TYPE-identifier: b) TYPE-identifier:
a a
(a) (a)
(a b, (¢, d) (a b, (c, d)
a, b, (c, d)

(For the Semantics of TYPE-TYPES-identifiers, collateral-targets and -expres-
sions, see 6.2.1.2.b, 6.2.0.2.a and 6.1.0.2.a.)

0.4. Symbols and representations
0.4.1. Syntax

a) *symbol:
NAMED-keyword;
NAMED-tag;
NAMED-sign.

b) *typographical-display-feature:
space;
new-line;
increase-indentation;
decrease-indentation.

c) new-line:
optional-comment, new-line-proper, indent.

d) comment:
optional-new-line-proper, optional-spaces, comment-sign,
comment-body, optional-further-comment.

e) further-comment:
new-line-proper, optional-spaces, comment-sign, comment-body,
optional-further-comment.

f) spaces:
space, optional-spaces.

0.4.2. Representations
a) The representation of a NAMED-keyword is obtained by representing

NAMED in the “keyword alphabet”, which consists of 38 marks. The
representations establish a one-one-correspondence between the terminal

20 DRAFT PROPOSAL FOR B

metaproductions of “NAMED” and the sequences of marks whose first mark is

a letter.

In this document, the following marks are used for the keyword alphabet:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 """

where the first line gives the letters.

Although the rules for representing a NAMED-keyword are not further

specified here, for the keywords named in the Syntax a rather obvious

correspondence should be applied, in which, e.g, a poiuyt-keyword is
represented by POIUYT.

b) The representation of a NAMED-tag is obtained by representing NAMED in

the “tag alphabet”, which consists of 38 marks. There is a one-one-

correspondence between the terminal metaproductions of “NAMED” and the
sequences of marks whose first mark is a letter.

In this document, the following marks are used for the tag alphabet:
abcdefghijklmnopgqgrstuvwxys:z
0123456789 """

where the first line gives the letters. (For some examples of tags, see
6.2.1.1.a)

(If the keyword and tag alphabets are indistinguishable, extra parentheses
may be needed to disambiguate some combinations.)

c) The representation of the NAMED-signs is as follows:

sign representation sign representation
1u70) (03 1 T3 | O : ONE-SIBMN ..covurernrennrnrarasseonnes 1
comment-signoeeeren \ tWO-SIBN .oovevvverereransiansrnsacae 2
new-line-signceeeeeueeas / three-signcoocvevemecennans 3
OPEN-SIBN roeereerrrecnnneansnncs (fOUr-signcceceveereinrannnas 4
ClOSE-SIEN ..ovvrrrrrncecirerernens) (A1 | R 5
COMMA-SIZN ..vvvrerererresnnnns , SIX-SIEN oveerierninnrenensasncaas 6

ZETO-SIEN .euvevererrerrrenesesnanaes 0 SEVEN-SIZN ..ooervrrrrencisceneses 7

DRAFT PROPOSAL FOR B

sign representation
Cight-SigNccoveriverinnrenes 8
NINE-SIBN ..overecrrncnincnscncnns 9
POIN-SIEN ...ocvrverrriirerinacnnns .
apostrophe-signcc........ !
QUOLE-SIZN ..verrvvrvrrrcrcrrvrnrnens "
CONVErt-Signocovivireenenenes '
curly-open-signceou... {
curly-close-signoceeeee }
enumeration-sign N
through-signcceeueeee. .
SUb-SIgN ...oceererreriereinens [
(2P R T2 (R,]
behead-signcccoeuvuenene. @
curtail-signccovcuvcuennee. |
about-signiieninnnae ~
plus-signccocvrrcuiincnnns +
timMES-SIgN ...ccevvercrreirenininnane *

sign representation
OVET-SIBN .cvvrerrisesnvecrencerenes /
to-the-power-sign * ok
NUMETAtOr-SigN ...covvervreseees */
denominator-sign /%
JOIN-SIEN evrrnricrirrcrenenens "
repeat-text-sign e
adjust-left-sign <<
CENEEr-SIEN ..cvvvrerirrirnresnens ><
adjust-right-sign >>
nUMbEr-Signocevcvcririnnnes #
less-than-sign <
at-MOSt-SIENocrvrverererenncs <=
equals-signcevivinenenees =
unequal-signcoceevveenee <>
at-least-signcceevueneuee >=
greater-than-sign >

(The following signs occur only as the sign of a textual-item.)

sign representation
SPACE-SIZN ..oervveriririvrsenrsinan
exclamation-sign !
dollar-signcccooureurermnnes §
PETCENt-SIgN ...ccovrmvmrrrannes %
ampersand-sign &
question-signececvcvennnee ?
capital-a-signcoceeuuee. A
capital-b-signcecreueunn B
capital-c-signceeeuennee C
capital-d-signccecevueunee D
capital-e-Signcocsveueeen E
capital-f-signccueuuee. F
capital-g-signcccccecuevune. G
capital-h-signccceueuneees H
capital-i-signccoceeeuenne. I
capital-j-signccoeeeeecucee J
capital-k-signceouueuue. K
capital-1-signcccoeevruecnee L
capital-m-signcocovvveeees M
capital-n-signc.coceceeueee N

sign representation
capital-0-5ignccoceunine. o
capital-p-signc.cooeceeenee P
capital-q-signcoeevenes)
capital-r-signccceceeneu.. R
capital-s-signccooeeence. S
capital-t-signc.cceccee... T
capital-u-sign U
capital-v-signececeeuee.. Vv
capital-w-signccuue.... W
capital-x-signoocoeuunee X
capital-y-signconvueens Y
capital-z-signcoceeeecee. z
underscore-sign _
T4 1 RO a
b-SigN .evrcne b
c-sign c
(4 BT 1 RN d
E-SIgN .oovinrc s e

J EET-4 1 RO f

22 DRAFT PROPOSAL FOR B

sign representation sign representation
h r-sign r
i s-sign s
j t-sign t
k u-sign u
1-5igN o l v-sign v
21 BT | LI m w-sign w
55 74 + OO n X-sign x
O-SIZI .ovvvimncrcrensencansensnans 0 y-sign y
P-SIBN oeirieircnniirerenenenans P z-sign z
G-SIEN vt q

d) With the exception of a comment, the user has no control over the way
typographical-display-features are inserted in her units and how they are
displayed (see Appendix). With the current syntax, comments are not al-
lowed preceding or following a unit. This should be relaxed.

e) (The following is tentative.) In the “canonic representation” a space is au-
tomatically inserted before and after keywords to separate these from adja-
cent other symbols, before and after ORDER-signs, predicates and non-empty
optional-new-liners of a write-command, after a tag, textual-display or
numeric-constant if followed by another tag, textual-display or numeric-
constant, after a comma, colon and enumeration-sign, after a dyadic-function
if followed by a (monadic) function, and before a comment-sign if preceded
by another symbol on the same line. Moreover, if spaces have been inserted
in a construction, that construction is separated by spaces from adjacent sym-
bols, and if a space is inserted between a dyadic-function and one of its
operands, then a space is also inserted between the function and the other
operand. However, at most one space is inserted, except before a comment-
sign, and no space is inserted within a symbol, a constant or a textual-
display, except possibly within conversions contained therein, after any of the
opening or before any of the closing parentheses, nor before a comma, colon
or enumeration-sign. The examples in this document follow the—tenta-
tive—canonic representation. Most situations mentioned occur in:

IF a < b AND 0 in min q: \ example of space insertion
WRITE / {a; b}, 1+3.14E—2, 1 + sin 3.14, min ‘ad’ /

fy On displaying a command- or alternative-suite, an increase-indentation
causes an incrementation of the indentation (left margin setting). A new-
line-proper causes a transition to the next line, and an indent positions at the
current indentation position. A decrease-indentation resets the indentation to
the previous position.

DRAFT PROPOSAL FOR B 23

1. Types and values

a) A “type” is a semantic attribute of a B value. It is a terminal metapro-
duction of “TYPE” not containing “poly”.

b) A “polytype” is a syntactic (static semantic) attribute of a B expression.
It is any terminal metaproduction of “TYPE”. The polytype may be “refined”
to the type of the values that may result from evaluating the expression by
consistently substituting some type for all occurrences of the form “poly-
TAG” in the polytype. For example,

table-with
-compound-with
-poly-a
-poly-b
-fields
-keys
-poly-a
-associates
may be refined to
table-with
-compound-with
-textual
-numeric
-fields
-keys
-textual
-associates

(where the lay out is intended to suggest the structure of the (poly)type.)

c) A self-contained collection of B units contains implicit definitions for the
polytypes of all its expressions, in particular for its identifiers. At the time of
application, the types to which these polytypes should be refined are known
from the invocation.

24 DRAFT PROPOSAL FOR B

1.1. Metaproduction rules

A) TYPE::
numeric;
textual;
COMPOUND;
LIST;
TABLE;
poly-TAG.

B) COMPOUND::
compound-with-TYPE-TYPES-fields.

C) TYPES::
TYPE;
TYPE-TYPES.

D) LiIST::
list-of-TYPE.

E) TABLE::
table-with-TYPE1-keys-TYPE2-associates.

1.2. Values

a) Each value has a type. The set of values of a given type T is called the T
“domain”. If T, and T, are different types, the T; and T, domains are dis-
joint. For example, each list-of-7 domain contains its own empty list. More-
over, there exists a set of “characters” (see 1.2.2.a), the character domain.

(Characters are not values. See, however, 1.2.2.c.)

b) A total ordering is defined on each domain (but not across domains). If
the elements of the domain are sequences of other values or of characters,
then that ordering is the lexicographic (dictionary) ordering, using the order-
ing already defined on the values or characters from which the sequences are

composed. For example, the test
(1, 'aa’) < (1, 'z') < (1.001, ")

succeeds.

DRAFT PROPOSAL FOR B 25

1.2.1. Numbers

a) A “number” is either an “exact number” or an “approximate number”
and has the type “numeric”. The “exact numbers” are the rational numbers;
arithmetic on exact numbers is supposed to be exact and to imply no con-
straints (other than memory exhaustion) on the size of the integers involved.
The “approximate numbers” are a subset of the real numbers; in general, ar-
ithmetic on approximate numbers is not exact and yields, unless some specific
functions are involved, again an approximate number. In an implementation,
these numbers may be modelled using a floating point representation. In
contrast to mathematical practice, the sets of exact and approximate numbers
are disjoint. This has, in particular, the consequence that, if the value of x is
an approximate number, the test x/x = I does not succeed. So, as a conse-
quence of 1.2.1.b, one of x/x < I and x/x > I must succeed. (The test
x/x = ~1, however, might have more success.) For a limited number of
operations, a run-time check is used to ensure that a number is an exact
number or even an integer. (An example is the requirement that the values
of i and j in {i.j} be integers. This is preferred to other solutions (e.g., au-
tomatic rounding) for reasons of security.)

b) The numbers are ordered according to their arithmetic magnitude, with
some tie breaking rule (not further specified, but consistent) for exact and ap-
proximate numbers with the same magnitude.

1.2.2. Texts

a) A “text” is a (possibly empty) sequence of characters and has the type
“textual”. Acceptable characters are the printing ASCII characters, including
the space, but not tab, backspace and new line or carriage return. They are
the 95 characters represented on the lines below, where the blank space * ”
preceding “/”” stands for the (otherwise invisible) space character:

P"#8%& T ()x+,—. /0123456789 :,;<=>7?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\] ~_
‘abedefghijklmnopgrstuvwxyz{|}~

b) The ordering on the characters is the ASCII collating order. (This is the
order in which the characters are displayed above.)

c) In the sequel, a text consisting of one character will be identified with
that character (so the statement “the text T is a character” is equivalent to
“the length of the text T is one”).

26 DRAFT PROPOSAL FOR B

1.2.3. Compounds

a) A “compound” is a sequence (tuple) of at least two “fields” and has a
type of the form “COMPOUND”. Each “field” is a value of some type. If the
type of the compound is compound-with-T)-...-T,-fields, where each T;,
1 < i < n,is a type, then the compound has n fields, and the type of the i-th
field is T;.

1.2.4. Lists

a) A “list” is a (possibly empty) sorted sequence of “list entries” and has a
type of the form “LIST”. Each “list entry” is a value. If the type of the list is
list-of-T, then each list entry has the type T. A list entry may occur more
than once in a list. For example, the list {I; 3; 3; 4} contains two oc-
currences of the number 3.

1.2.5. Tables

a) A “table” is a (possibly empty) sorted sequence of “table entries” and has
a type of the form “TABLE”. Each “table entry” is a sequence of two values,
the “key” and the “associate” of the table entry. If the type of the table is
table-of-T -keys-T, -associates, where T, and T, are types, then each table
entry has a key of type T, and an associate of type T,. Different table en-
tries have different keys. A given table entry occurs at most once in a table
(contrary to list entries in lists).

2. Locations and environments
2.1. Locations

a) A “location” is either a “simple location”, a “trimmed-text location”, a
“compound location” or a “table-selection location”. Each location has a
type. (Locations are not values.)

b) A value of some type may be “put in” a location of that same type,
whereupon the “content” of the location is that value. If, subsequently,
another value is put in the location, the content of the location is thereupon
that other value.

c) In some cases a location may be “emptied”, whereupon it no longer has a
content, until again a value is put in the location.

DRAFT PROPOSAL FOR B 27

2.1.1. Simple locations

a) A new “simple location” may be created for some given type. (If that
type is some COMPOUND, the thus created location is, nevertheless, not a
compound location.)

b) Until a value is put in a newly created simple location, it has no content.
¢) A simple location may be emptied.
2.1.2. Trimmed-text locations

a) A “trimmed-text location” is a location for textual. It is composed of
another location for textual, the “root location” (which is a simple, table-
selection or again a trimmed-text location), and two integers, the “behead”
and the “curtail”.

b) A trimmed-text location T composed of a root location R, a behead B
and a curtail C has no content if R has no content, if B < 0, if C < 0 or if
B+C > n, where n is the length of the content of R. Otherwise, let the con-
tent of R be the text r, .., r,. The content of T is then FB41s B2y o s

Fn—c—1stn—cC-

€) A text consisting of m characters c, ..., Cm is put in a trimmed-text loca-
tion T composed of a root location R, a behead B and a curtail C as follows:
Let the content of R be ry, ..., r,.

The text ry, ..., rg, ¢y, ..., Cm, Tn—C+15 - » I'p 15 put in R.

(For example,

PUT 'impious’ IN t
PUT 'sh’ IN t@5

has the effect of putting ‘impish’ in 1, and

PUT "lush’ IN t
PUT 0" IN 1|0

puts ‘blush’ in t. Trims may be stacked:

PUT 'hereby’ IN t
PUT ’s’ IN t@5|1

altogether puts ‘heresy’ in t.)

28 DRAFT PROPOSAL FOR B

d) A trimmed-text location must not be emptied. If the Semantics, during
the execution of a command, prescribes that a trimmed-text location be emp-
tied, an error is signalled.

2.1.3. Compound locations

a) A “compound location” is a location for some COMPOUND. It is a se-
quence of locations (not all of which are necessarily different).

b) A compound location C composed of n locations Ly, ..., L, has no con-
tent if, for some i/, 1 <i<n, L, has no content. Otherwise, let, for
1 < i< n, V; be the content of L;. The content of C is then the compound
whose fields are Vi, ..., V,.

¢) A compound consisting of n fields Fy, ..., F, is put in a compound loca-
tion C composed of n locations L, ..., L, as follows:
Fori=1,..,n:
F;isputin L;.
If the content of C is not Fy, .., F, (eg., because for some i/ and j,
1 <i,j=<n, L; and L; are the same location and F; is different
from F;):

An error is signalled.

(The order in which the fields are put in the component locations should be
immaterial. The current semantic model for trimmed-text locations appears
to have a defect in this respect; moreover, it sometimes results in surprises.
It seems possible to give a semantic model for trimmed-text locations for
which the intended results are obtained, but only at the cost of considerable
complications. The essence of the idea is to adorn the interstices between the
characters with unique labels. Note that PUT t[j], tfi] IN tfi], t[j] is well
defined, regardless of whether / and j have the same value or not, as long as
these values are keys of the table ¢.)

d) A compound location is emptied by emptying the locations of which it is
composed.

2.1.4. Table-selection locations
a) A “table-selection location” is composed of a location for some TABLE,
the “parent location” (which is either a simple or again a table-selection loca-

tion), and a key.

b) A table-selection location L composed of a parent location P and a key K
has no content if P has no content or if the content of P contains no table

DRAFT PROPOSAL FOR B 29

entry whose key is K. Otherwise, let the content of P be the table T. The
content of L is then the associate of the table entry of T whose key is K.

) A value V is put in a table-selection location L composed of a parent lo-

cation P and a key X as follows:

Let T be the content of P.

Let T’ be the table whose table entries are those of T, with the omission of
any table entry with key K, but with a new table entry composed
of the key K and the associate V.

T’is putin P.

d) A table-selection location L composed of a parent location P and a key K
is emptied as follows:
If L has no content:
The emptying is a dummy action.
Otherwise:
Let T be the content of P,
Let T’ be the table whose table entries are those of T, with the omis-
sion of the table entry whose key is X.
T’ is put in P.

2.2. Environments

a) An “environment” is a (partial) map from tags to simple locations. The
simple location to which a tag T is mapped by an environment E is said to
be the location “accessed” by T in E. There is one distinguished environ-
ment (for each work-space), the “permanent environment”. (Environments
are not values.)

b) An environment may be created, its domain may be augmented with tags,
and tags may be discarded from the domain of an environment. The tags
with which an environment domain is augmented, may be “bound”. (This is
the case if the augmentation is caused by locating the collateral- or
TEXTUALS-identifier of an in- or parsing-ranger, or if they are taken from
another environment in which they are bound.)

¢) A tag may be made to access a simple location in an environment.

d) A “transparent copy” E’ of an environment E is a newly created environ-
ment with the same domain as E, in which each tag accessing a location in E
is made to access that same location.

(Transparent copies serve to allow side-effects caused by commands whilst
precluding the export of tags local to the command. This model should be
equivalent to the more usual model where locales are chained in an

30 DRAFT PROPOSAL FOR B

environ(ment); the present model has no need for searching that chain. It is
suspected that the present Semantics would work as well, with the same
effects, if no transparent copies were made. Because we are not sure, they are
prescribed for robustness’ sake. Moreover, implementers are thereby suggest-
ed a slightly less unrealistic model for environments in case they model the
shielding mechanism (4.0.2.c) with conventional techniques.)

e) A “scratch-pad copy” E’ of an environment E is a newly created environ-
ment with the same domain as E, in which each tag accessing a location L in
E is made to access a newly created simple location L’ for the same type, in
which location L’ the content of L, if any, is put.

(Scratch-pad copies serve to warrant that formulas and tests cannot have
side-effects. However, currently, the following are still allowed:

o read and write;

o the setting and drawing of random numbers (5.1.5.2.b);

and, of course, the signalling of errors.

A simpler, but more restrictive, way to obtain a similar result would be to
outlaw any putting to “non-local” locations in the elaboration of formulas
and tests. If putting to the operands is also forbidden and the above-
mentioned side-effects are also outlawed, it is even possible to unify the
parameter-passing mechanism for how-to- and other units, at the cost of re-
quiring basic-identifiers as formal-operands.)

3. Elaboration

a) The computer is able to “elaborate” certain “constructions”, as produci-
ble from the Syntax: it is able to “execute”, among others, “commands”, to
“evaluate”, among others, “expressions” (6.1.a), to “locate”, among others,
“targets” (6.2.a) and to “test”, among others, “tests” (6.3.a). The sections
headed “Semantics” specify the elaboration of constructions.

b) Each elaboration is performed in an environment, descending, ultimately,
from the permanent environment (2.2.a).

c¢) In general, the elaboration of a construction requires the elaboration of
some or all of its component constructions. Unless the Semantics prescribes
otherwise, these component constructions are elaborated in the same environ-
ment as the original construction.

d) If the Semantics requires the elaboration of some construction, but that
elaboration is not specified by the Semantics, then that construction contains
a largest component construction for which the Semantics does specify its
elaboration, and that elaboration is the required elaboration for the original

DRAFT PROPOSAL FOR B 31

construction. (For example, the value of the key-selector i, j] is that of its
collateral-expression i, j.)

4. Units

a) Units are the building blocks from which a B “program” is composed.
They are not executed, but “invoked” by commands. In an interactive B sys-
tem, these units will reside, conceptually, in a work-space.

b) For non-interactive pilot implementations of B, the following syntax is
suggested:

program:
optional-unit-suite, immediate-command.

unit-suite:
unit, new-line, optional-unit-suite.

immediate-command:
command, optional-refinement-suite.

A program is then executed by executing the immediate-command. An
immediate-command is executed as though it were the body of an invoked
how-to-unit, except that it is executed in the permanent environment (2.2.a).
The request to execute an immediate-command is refused, however, if it does
not pass the (strict) “static checks” (7.a).

¢) For a properly interactive implementation, the following approximation is
suggested:

session:
user-action, optional-session;

user-action:
unit;
immediate-command.

After each execution of an immediate-command, those tags are deleted from
the domain of the permanent environment that access a location with no con-
tent (because of a delete-command). The following is therefore allowed

PUTOIN x
DELETE x
PUT ’a’ IN x

when given at the outer level, but not inside a command-suite,

32 DRAFT PROPOSAL FOR B

4.0.1. Syntax

a) *unit:
how-to-unit;
yield-unit;
test-unit.

b) refinement-suite:
new-line, refinement, optional-refinement-suite.

¢) A unit must pass the (relaxed) static checks (7.a). (In particular, the stat-
ic type check ensures that the polytypes of identifiers, including those of
formal-parameters and -operands, are consistent throughout the unit.)

d) A tag “local” (4.0.2.a) in a unit must not occur in that unit in an allow-
heading.

e) A tag “global” (4.0.2.b) in a unit not occurring there in an allow-heading,
may only occur as the tag of a function or predicate.

f) The keyword of a command-refinement contained in a unit may occur
otherwise in that unit as the first keyword of a command only if that com-
mand is a refined-command.

g) The tag of the basic-identifier of an expression-refinement contained in a
unit may occur otherwise in that unit only as the tag of a refined-expression.

h) The tag of the basic-identifier of a test-refinement contained in a unit may
occur otherwise in that unit only as the tag of a refined-test.

4.0.2. Locality and shielding

a) A tagis “local” in a unit U if it occurs in U
® in a formal-parameter or -operand,
@ in the basic-identifier of a basic-target but not in an allow-heading in U,
@ in the collateral-identifier of a for-command or ranger,

or @ in the basic-identifier of an expression- or test-refinement.

b) A tag is “global” in a unit U if it occurs in U but is not local in U.

¢) A copy of a unit U “shielded for” an environment £ is a unit that is a
copy of U in which, for the tags local in U, new tags have been consistently
substituted that are (arbitrarily chosen but) different from each other, from
the tags global in U and from the tags in the domain of E.

DRAFT PROPOSAL FOR B 33

(Shielding serves to prevent interference between the tags imported by
actual-/formal-parameter substitution and the local tags.)

4.1. How-to-units
4.1.1. Syntax

a) how-to-unit:
how-to-keyword, formal-user-defined-command, colon-sign,
command-suite,
optional-refinement-suite.

b) formal-user-defined-command:
FIRST-keyword, optional-formal-tail.

c¢) formal-tail:
formal-parameter, optional-formal-trailer;
formal-trailer.

d) formal-trailer:
NEXT-keyword, optional-formal-tail.

e) formal-parameter:
basic-TYPE-identifier.

f) The FIRST-keyword of a formal-user-defined-command must be unique,
i.e., different from all FIRST-keywords of formal-user-defined-commands of
other how-to-units. Otherwise, it may be chosen freely (given the way of
composing keywords from the keyword alphabet), except that it must not be
a “predefined” first keyword (ALLOW, CHECK, CHOOSE, DELETE,
DRAW, FAIL, FOR, HOW'TO, IF, INSERT, PUT, QUIT, READ,
REMOVE, REPORT, RETURN, SELECT, SET'RANDOM, SUCCEED,
TEST, WHILE, WRITE, YIELD).

g) All tags contained in the formal-user-defined-command must be different.

Example:
a) how-to-unit:
HOW'TO PUSH val ON stack:
PUT val IN stack[#stack]

34 DRAFT PROPOSAL FOR B

4.2. Yield-units
4.2.1. Syntax

A) ADIC::
zeroadic;
monadic;

dyadic.

a) yield-unit:
yield-keyword, formal-TYPE-ADIC-formula, colon-sign,
command-suite,
optional-refinement-suite.

b) formal-TYPE-zeroadic-formula:
zeroadic-function.

¢) formal-TYPE-monadic-formula:
monadic-function, formal-operand.

d) formal-TYPE-dyadic-formula:
formal-operand, dyadic-function, formal-operand.

e) formal-operand:
TYPE-identifier.

f) Functions must not be “overloaded”. However, a given tag may be used,
at the same time, (i) for a zeroadic- or monadic-function and (ii) for a
dyadic-function.

g) All tags contained in the formal-formula must be different.

Example:
a) yield-unit:
YIELD (a, b) over (¢, d):
PUT cxc+dxd IN rr
RETURN (axc+bxd)/rr, (—a%d+bxc)/rr

DRAFT PROPOSAL FOR B 35

4.3. Test-units
4.3.1. Syntax

a) test-unit:
test-keyword, formal-ADIC-proposition, colon-sign,
command-suite,
optional-refinement-suite.

b) formal-zeroadic-proposition:
zeroadic-predicate.

c) formal-monadic-proposition:
monadic-predicate, formal-operand.

d) formal-dyadic-proposition:
formal-operand, dyadic-predicate, formal-operand.

e) Predicates must not be “overloaded”. However, a given tag may be used,
at the same time, (/) for a zeroadic- or monadic-predicate and (ii) for a
dyadic-predicate.

f) All tags contained in the formal-proposition must be different.

Example:
a) test-unit:
TEST a subset b:
REPORT EACH x IN a HAS x in b

4.4. Refinements
4.4.1. Syntax

a) refinement:
command-refinement;
expression-refinement;
test-refinement.

b) command-refinement:
FIRST-keyword, colon-sign, command-suite.

c) expression-refinement:
basic-TYPE-identifier, colon-sign, command-suite.

36 DRAFT PROPOSAL FOR B

d) test-refinement:
NAMED-tag, colon-sign, command-suite.

Examples:
b) command-refinement:
SELECT'TASK:
PUT min tasks IN task
REMOVE task FROM tasks

¢) expression-refinement:
stack ptr:
IF stack = {}: RETURN 0
RETURN max keys stack

d) test-refinement:
special ‘case:
REPORT pos+d = line'length

4.5. Command-suites
4.5.1. Syntax

a) command-suite:
simple-command;
increase-indentation, optional-allow-heading,
optional-command-sequence, decrease-indentation.

b) allow-heading:
new-line, allow-keyword, collateral-TYPE-identifier,
optional-allow-heading.

€) command-sequence:
new-line, command, optional-command-sequence.

d) An allow-heading may only occur in the command-suite of a unit (and
not of a refinement).

e) All tags occurring in an allow-heading must be different from each other
and from all tags occurring in the formal-command, -formula or -proposition
of the unit in which it is contained.

f) Each execution path (7.d) of the command-suite of a yield-unit or
expression-refinement must end in a return-command, and return-commands
may only occur within such a command-suite.

DRAFT PROPOSAL FOR B 37

g) Each execution path (7.d) of the command-suite of a test-unit or test-
refinement must end in a report-, succeed- or fail-command, and these may
only occur within such a command-suite.

4.5.2. Semantics

a) A command-suite C is executed as follows:
The simple-command or the command-sequence, if any, of the optional-
command-sequence is executed.

b) A command-sequence C is executed as follows:

The command is executed.

If this execution results in the execution of a terminating-command contained
in C:

The execution of the largest command-suite in which C is contained is
terminated, and a value or outcome, if appropriate, is re-
turned or reported to the invoker of that command-suite.

Otherwise:

The command-sequence, if any, of the optional-command-sequence is

executed.

(Note that allow-headings are not executed.)
5. Commands
5.0.1. Syntax

a) command:
simple-command;
control-command.

5.1. Simple-commands
5.1.0.1. Syntax

a) simple-command:
check-command;
write-command;
read-command;
put-command;
choose-command,;
draw-command;
set-random-command,;
remove-command;
insert-command;

38 DRAFT PROPOSAL FOR B

delete-command;
terminating-command;
user-defined-command;
refined-command.

b) terminating-command:
quit-command;
return-command;
report-command;
succeed-command;
fail-command.

5.1.1. Check-commands
5.1.1.1. Syntax

a) check-command:
check-keyword, test.

Example:
a) check-command:
CHECKi>= 0AND j>= 0AND i+j <=n

5.1.1.2. Semantics

a) A check-command is executed as follows:
The test is tested.
If the test succeeds:
the execution of the check-command is complete (and the environment
offered is discarded).
Otherwise:
An error is signalled.

(Although the effect of run-time errors is not further specified here, the idea
is that the execution is terminated and that helpful information on the nature
of the error is displayed. In a check-command, extra care should be exer-
cised to provide such information; e.g., in a form as

Your check in YIELD upper m failed:
CHECKi>= 0AND j>= 0AND i+j <=n

™
(i=0j=5andn = 4).)

DRAFT PROPOSAL FOR B 39

5.1.2. Write-commands
5.1.2.1. Syntax

a) write-command:
write-keyword, new-liners;
write-keyword, optional-new-liners, collateral-TYPE-expression,
optional-new-liners.

b) new-liners:
new-line-sign, optional-new-liners.

Example:
a) write-command:
WRITE //
WRITE // 'Give a value in the range 1 through 'n*: '

5.1.2.2. Semantics

a) A write-command is executed as follows:
If the write-command does not contain an expression:

n—1 blank lines are displayed on the interactive output device, where
the write-command contains n new-line-signs, followed by a
positioning at the beginning of the next line.

Otherwise:

The collateral-expression is evaluated, giving a value V.

If the collateral-expression is preceded by n new-line-signs, n > 0:

n—1 blank lines are displayed on the interactive output device,
followed by a positioning at the beginning of the next
line.

V'is “converted” to a text T.

T is displayed on the interactive output device (in a typographical lay
out that is not further defined here), with at least one space
preceding 7 if not at the beginning of the line.

If the collateral-expression is followed by n new-line-signs, n > 0:

n—1 blank lines are displayed on the interactive output device,
followed by a positioning at the beginning of the next
line.

b) (The following “definition” is provisional.) A value V is “converted” to a

text T as follows:

Let S be the shortest expression not containing keywords other than “E”
(which occurs in approximate-constants), functions other than
monadic “—7, tags, predicates or conversions, and in which the
fillers in list- and table-displays are sorted according to the usual

40 DRAFT PROPOSAL FOR B

ordering, such that S (whose meaning is environment-
independent) would evaluate to a value “close to” V.

T is the text whose characters correspond, one to one, to the signs and spaces
of S, except that the initial and final QUOTE-signs of textual-
displays are omitted, and CHARACTER-images are replaced by sin-
gle CHARACTER-signs (so that a text is converted to itself).

c) A value V' is “close to” a value V if ... (This should determine, e.g., to
how many digits a value as 22/7 is converted.)

5.1.3. Read-commands
5.1.3.1. Syntax

a) read-command:
read-keyword, collateral-TYPE-target, eg-keyword,
collateral-TYPE-expression.

Example:
a) read-command:
READ n, s EGO, '’

5.1.3.2. Semantics

a) A read-command is executed as follows:

The target is located, giving a location L.

The user is prompted to supply a collateral-TYPE-expression.

The user-supplied collateral-expression is evaluated in the permanent environ-
ment (2.2.a), giving a value V.

Viis put in L.

(Note that the collateral-expression of the read-command itself is not evaluat-
ed.)

(There should also be some way to read “raw” lines supplied by the user into
textual locations.)

5.1.4. Put-commands
5.1.4.1. Syntax
a) put-command:

put-keyword, collateral-TYPE-expression, in-keyword,
collateral-TYPE-target.

DRAFT PROPOSAL FOR B 41

Example:
a) put-command:
PUT a+1, ({}, {1..a}) INa, b

5.1.4.2. Semantics

a) A put-command is executed as follows:

The collateral-expression is evaluated and the collateral-target is located, giv-
ing a value ¥V and a location L.

V'is put in L.

5.1.5. Draw-commands
5.1.5.1. Syntax

a) draw-command:
draw-keyword, numeric-target.

Example:
a) draw-command:
DRAW r

5.1.5.2. Semantics

a) A draw-command is executed as follows:
The target is located, giving a location L.

A number x is “drawn”.

The number x is put in L.

b) A number x is “drawn” by taking the next number from a pseudo-
random sequence of approximate numbers, uniformly distributed on [0, 1).
(So ~0 < x < ~1.)

5.1.6. Choose-commands
5.1.6.1. Syntax

a) choose-command:
where TYPE2 lodges TYPEI,
choose-keyword, collateral-TYPE]-target, from-keyword,
TYPE2-expression.

42 DRAFT PROPOSAL FOR B

b) where TYPE2 lodges TYPEI:
where TYPE2 is textual and TYPEI is textual;
where TYPE2 is list-of-TYPEI;
where TYPEZ is table-with-TYPEQ-keys-TYPE1-associates.

Example:
a) choose-command:
CHOOSE e FROM exits[cur 'room]

5.1.6.2. Semantics

a) A choose-command is executed as follows:
The collateral-target is located and the expression is evaluated, giving a loca-
tion L and a value (text, list or table) V.
If V'is an empty text, list or table:
An error is signalled.
Otherwise:
A number x is drawn (5.1.5.2.b).
Let n be the number of characters or list or table entries of V.
The i-th character, list entry or associate of V is put in L, where i =
1 + floor(n*x).

5.1.7. Set-random-commands
5.1.7.1. Syntax

a) set-random-command:
set-random-keyword, collateral-TYPE-expression.

Example:
a) set-random-command:
SET'RANDOM ’'monte carlo’, run

5.1.7.2. Semantics

a) A set-random-command is executed as follows:

The collateral-expression is evaluated, giving a value V.

The sequence from which numbers are drawn (5.1.5.2.b) is set to a pseudo-
random sequence depending only on V.

DRAFT PROPOSAL FOR B 43

5.1.8. Remove-commands
5.1.8.1. Syntax

a) remove-command:
remove-keyword, collateral-TYPE-expression, from-keyword,
list-of-TYPE-target.

Example:
a) remove-command:
REMOVE task FROM tasks

5.1.8.2. Semantics

a) A remove-command is executed as follows:
The collateral-expression is evaluated and the target is located, giving a value
V and a location L (for some LIST).
If L has no content:
An error is signalled.
Otherwise:
Let W be the content of L.
If W does not contain ¥ as a list entry:
An error is signalled.
Otherwise:
Let W’ be the list whose list entries are those of W, except that V'
occurs one time less in W".
W' is put in W.

5.1.9. Insert-commands
5.1.9.1. Syntax
a) insert-command:
insert-keyword, collateral-TYPE-expression, in-keyword,

list-of-TYPE-target.

Example:
a) insert-command:
INSERT new'task IN tasks

44 DRAFT PROPOSAL FOR B

5.1.9.2. Semantics

a) An insert-command is executed as follows:
The collateral-expression is evaluated and the target is located, giving a value
V and a location L.

If L has no content:
An error is signalled.

Otherwise:
Let W be the content of L. Let W’ be the list whose list entries are

those of W, except that ¥ occurs one time more in W'

W'is putin L.

5.1.10. Delete-commands
5.1.10.1. Syntax

a) delete-command:
delete-keyword, collateral-TYPE-target.

Example:
a) delete-command:
DELETE tfi], ufi, jj

5.1.10.2. Semantics

a) A delete-command is executed as follows:
The collateral-target is located, giving a location L.
If L has no content:
An error is signalled.
Otherwise:
L is emptied.

5.1.11. Quit-command
5.1.11.1. Syntax

a) quit-command:
quit-keyword.

b) A quit-command may only occur in the command-suite of a how-to-unit
or refined-command.

DRAFT PROPOSAL FOR B 45

Example:
a) quit-command:
QuIT

5.1.11.2. Semantics

a) A quit-command is executed as follows:

The execution of the largest command-suite containing the quit-command is
terminated, whereby the execution of the user-defined-command
or refined-command that invoked that command-suite is complete.

5.1.12. Return-commands
5.1.12.1. Syntax

a) return-command:
return-keyword, collateral-TYPE-expression.

b) The TYPE must be that of the formal-TYPE-formula or basic-TYPE-
identifier of the yield-unit or expression-refinement in which the return-
command occurs.

Example:
a) return-command:
RETURN (axc+b*d)/rr, (—axd+bxc)/rr

5.1.12.2. Semantics

a) A return-command R is executed as follows:

The collateral-expression is evaluated, giving a value V.

The execution of the largest command-suite in which R is contained is ter-
minated, and V is returned to the formula or expression-
refinement that invoked that command-suite.

5.1.13. Report-commands
5.1.13.1. Syntax

a) report-command:
report-keyword, test.

Example:
a) report-command:
REPORT i in keys t

46 DRAFT PROPOSAL FOR B

5.1.13.2. Semantics

a) A report-command R is executed as follows:

The test is tested.

The execution of the largest command-suite in which R is contained is ter-
minated, and the outcome of the test is reported to the proposi-
tion or test-refinement that invoked that command-suite.

5.1.14. Succeed-command

5.1.14.1. Syntax

a) succeed-command:
succeed-keyword.

Example:
a) succeed-command:
SUCCEED

5.1.14.2. Semantics

a) A succeed-command S is executed, in an environment E, as follows:

The execution of the largest command-suite in which S is contained is ter-
minated, and success, offering E, is reported to the proposition or
test-refinement that invoked that command-suite.

5.1.15. Fail-command
5.1.15.1. Syntax

a) fail-command:
fail-keyword.

Example:
a) fail-command:
FAIL

5.1.15.2. Semantics

a) A fail-command F is executed, in an environment E, as follows:

The execution of the largest command-suite in which F is contained is ter-
minated, and failure, offering E, is reported to the proposition or
test-refinement that invoked that command-suite.

DRAFT PROPOSAL FOR B 47

5.1.16. User-defined-commands
5.1.16.1. Syntax

a) user-defined-command:
FIRST-keyword, optional-tail.

b) tail:
actual-parameter, optional-trailer;
trailer.

¢) actual-parameter:
collateral-TYPE-ITEM.

d) trailer:
NEXT-keyword, optional-tail.

e) The FIRST- and subsequent NEXT-keywords must correspond one to one to
those of the formal-user-defined-command of one unique how-to-unit.

Examples:

a) user-defined-command:
CLEAN'UP
DRINK me
TURN a UPSIDE'DOWN
PUSH v ON operand’stack

5.1.16.2. Semantics

a) A user-defined-command U is executed, in an environment E, as follows:

Let H be the how-to-unit whose formal-user-defined-command F has a
FIRST-keyword that is the same as that of U (so all keywords of U
and F agree).

Let H' be a copy of H, shielded (4.0.2.c) for E.

Let H” be a modified version of H’, obtained by consistently substituting, in
H'’, for each occurrence of a tag occurring in a formal-parameter
in H’, the corresponding parameter of U, after enclosing the latter
between an open- and a close-sign.

The command-suite of H” is executed in a transparent copy (2.2.d) of E.

48 DRAFT PROPOSAL FOR B

(For example, given

HOW'TO TALLY x IN t:
SELECT:
x in keys t: PUT tfx]+1 IN t[x]
ELSE: PUT 1 IN t[x]

the user-defined-command TALLY a, b IN q is executed by executing

SELECT:

(a, b) in keys (q): PUT (q)[(a, b)]+1 IN (q)[(a, b)]
ELSE: PUT 1 IN (g)[(a, b)]

Moreover, given

HOW'TO ADD:
ALLOW stack
PUT #stack IN t
PUT stack[t]+stack[t—1] IN stack[t—1]
DELETE stack[t]

and the following invocation context:

FOR ¢t IN addends:
PUSH t ON stack
ADD

the user-defined-command ADD is executed by executing a version in which ¢
has been disambiguated (by shielding), such as

PUT #stack IN ¢’
PUT stack([t']+stack[t’'— 1] IN stackft’—1]
DELETE stack[t']

5.1.17. Refined-commands

5.1.17.1. Syntax

a) refined-command:
FIRST-keyword.

b) The keyword of a refined-command must occur as the keyword of one
command-refinement in the unit (or immediate-command; see 4.b) in which it
occurs.

DRAFT PROPOSAL FOR B 49

Example:
a) refined-command:
REMOVE'MULTIPLES

5.1.17.2. Semantics

a) A refined-command R is executed as follows:

Let C be the command-suite of the command-refinement, contained in the
same unit as R, whose FIRST-keyword is the same as that of the
refined-command.

C is executed (in the same environment as R).

(Note that neither shielding, nor scratch-pad or even transparent copying oc-
curs. Identifiers are not local to the command-suite of a refinement.)

5.2. Control-commands
5.2.0.1. Syntax

a) control-command:
if-command,;
select-command,;
while-command;
for-command.

5.2.1. If-commands
5.2.1.1. Syntax

a) if-command:
if-keyword, test, colon-sign, command-suite.

Example:
a) if-command:
IFi < 0: PUT —i, —jINij

5.2.1.2. Semantics

a) An if-command is executed as follows:
The test is tested, offering an environment E.
If the test succeeds:
The command-suite is executed in E.
Otherwise:
The execution of the if-command is complete.

50 DRAFT PROPOSAL FOR B

5.2.2. Select-commands
5.2.2.1. Syntax

a) select-command:
select-keyword, colon-sign, alternative-suite.

b) alternative-suite:
increase-indentation, new-line, alternative-sequence,
decrease-indentation.

c) alternative-sequence:
single-alternative;
else-alternative;
single-alternative, new-line, alternative-sequence.

d) single-alternative:
test, colon-sign, command-suite.

e) else-alternative:
else-keyword, colon-sign, command-suite.

Examples:
a) select-command:
SELECT: SELECT:
~a < ~0: RETURN —a ~a < ~0: RETURN —a
~a >= ~0: RETURN a ELSE: RETURN a

5.2.2.2. Semantics

a) An alternative-sequence is executed, in an environment E, as follows:
Case A: it has a single-alternative:
The test of the single-alternative is tested, offering an environment E’.
If the test succeeds:
The command-suite of the single-alternative is executed in E’.
Otherwise:
If it has a (different) alternative-sequence:
That alternative-sequence is executed in E’.
Otherwise:
An error is signalled.
Case B: it has an else-alternative:
The command-suite of the else-alternative is executed in E.

DRAFT PROPOSAL FOR B 51

5.2.3. While-commands
5.2.3.1. Syntax

a) while-command:
while-keyword, test, colon-sign, command-suite.

Example:
a) while-command:
WHILE x > 1: PUT x/10, c+1 IN x, ¢

5.2.3.2. Semantics

a) A while-command is executed, in an environment E, as follows:
The test is tested, offering an environment E’.
If the test succeeds:
The command-suite is executed in E".
The while-command is executed (again) in E.
Otherwise:
The execution of the while-command is complete.

5.2.4. For-commands
5.2.4.1. Syntax

a) for-command:
for-keyword, in-ranger, colon-sign, command-suite.

b) in-ranger:
where TYPE2 lodges TYPE],
collateral-TYPEl-identifier, in-keyword, TYPE2-expression.

(For “where ... lodges ...”, see 5.1.6.1.b.)

Example:
a) for-command:
FOR i, j IN keys t: PUT tfi, j] IN t'[j, i]

5.2.4.2. Semantics

a) A for-command is executed, in an environment E, as follows:

The expression of the in-ranger is evaluated, giving a value (text, list or table)
V.

Let E’ be a transparent copy of E.

52 DRAFT PROPOSAL FOR B

The collateral-identifier I of the in-ranger is located in E’, giving a new loca-
tion L, and the tags with which the domain of E’ is thereby aug-
mented, are bound.

For each value X “generated” (b, c, d) by V “for” [, in turn:

Xisputin L.
The command-suite is executed in E".

(Note that the expression is evaluated only once, and that the location re-
ceives each time the first value not yet treated. So, for example,

PUT {1..10} IN a
FOR i IN a:
WRITE i
REMOVE max a FROM a
PUT i+1IN i
WRITE i

has the same effect as

FOR i IN (1..10}:
WRITE i
WRITE i+1

PUT {} IN a)

b) The values “generated by” a text T, “for” some (irrelevant) collateral-
identifier, are the characters of T, taken in the order in which they occur in
T.

¢) The values “generated by” a list L, “for” some (irrelevant) collateral-
identifier, are the list entries of L, taken in the order in which they occur in
L.

d) The values “generated by” a table T, “for” some (irrelevant) collateral-
identifier, are the associates of the table entries of 7, taken in the order in
which these occur in 7.

6. Expressions, targets and tests

6.1. Expressions

a) An expression may be “evaluated”, giving “its” value. The evaluation of

an expression does not have side-effects on the environment in which it is
evaluated.

DRAFT PROPOSAL FOR B

6.1.0.1. Syntax

a) basic-TYPE-expression:
simple-TYPE-expression;
TYPE-ADIC-formula.

b) simple-TYPE-expression:
TYPE-constant;
TYPE-target-content;
TYPE-trimmed-text;
TYPE-table-selection;
TYPE-display;
TYPE-refined-expression.

) tight-TYPE-expression:
simple-TYPE-expression;
TYPE-zeroadic-formula;
open-sign, collateral-TYPE-expression, close-sign.

d) right-TYPE-expression:
tight-TYPE-expression;
TYPE-monadic-formula.

Examples:
a) basic-: b) simple-: c¢) tight-: d) right-expression:
a a a a
—a —a
a+b
(a+b) (a+b)

6.1.0.2. Semantics

a) A collateral-expression is evaluated as follows:
The constituent basic-expressions are evaluated, giving values V|, ..., V,
Case A:n = 1:
Its value is V.
Case B: n > 1:
Its value is the compound whose fields are Vi V.

(The evaluation of basic-expressions is described in the sections below.)

n-

33

54 DRAFT PROPOSAL FOR B

6.1.1. Constants
6.1.1.1. Syntax

A) DIGIT::
zero; one; two; three; four;
five; six; seven; eight; nine.

a) numeric-constant:
exact-constant;
approximate-constant.

b) exact-constant:
integral-part, optional-fractional-part;
integral-part, point-sign;
fractional-part.

) integral-part:
DIGIT-sign;
integral-part, DIGIT-sign.

d) fractional-part:
point-sign, DIGIT-sign;
fractional-part, DIGIT-sign.

€) approximate-constant:
optional-exact-constant, exponent-part.

f) exponent-part:
e-keyword, optional-plusminus, integral-part.

g) plusminus:

plus-sign;
minus-sign.
Examples:
b) exact-constant: €) approximate-constant:
666 2.99793E8
666. 2.99793E+8

3.14 E-9

DRAFT PROPOSAL FOR B 55

6.1.1.2. Semantics

a) The value of an exact constant C is the exact number of which C is a
conventional decimal representation.

b) The value of an approximate constant C is an approximate number that
is as close as possible to the value of which C is a floating point representa-
tion.

6.1.2. Target-contents
6.1.2.1. Syntax

a) TYPE-target-content:
basic-TYPE-identifier.

6.1.2.2. Semantics

a) A target-content is evaluated as follows:
The basic-identifier is located, giving a location L.
If L has no content:
An error is signalled.
Otherwise:
The value of the target-content is the content of L.

6.1.3. Trimmed-texts
6.1.3.1. Syntax

A) TRIM::
behead;
curtail.

a) textual-trimmed-text:
tight-textual-expression, TRIM-sign, right-numeric-expression.

Examples:
a) textual-trimmed-text:
lep
1|1
!|q@p
t@p|(q—p+1)

56 DRAFT PROPOSAL FOR B

6.1.3.2. Semantics

a) A trimmed-text is evaluated as follows:
The tight-textual-expression and right-numeric-expression are evaluated, giv-
ing values T and N.
If N is not an integer:
An error is signalled.
Otherwise:
Let T be the sequence of characters ¢y, ... , ¢,.
Let (B, C) be (N—1, 0) if the TRIM-sign is a behead-sign, and (0, n—N)
if it is a curtail-sign.
IfB<O0orC<OorB+C>n:
An error is signalled.
Otherwise:
The value of the trimmed-text is the text

CB+1>CB+2s «+ s Cn—C—15Cn—C-

(For example, the value of ‘nowhere’|3 is 'now’, and that of ‘nowhere'@4 is
‘here’. Note that the user always counts from the left, whereas the Seman-
tics, for curtailing, counts from the right.)

6.1.4. Table-selections

6.1.4.1. Syntax

a) TYPE2-table-selection:
tight-table-with-TYPE1-keys-TYPE2-associates-expression,

TYPE]-key-selector.

b) TYPEl-key-selector:
sub-sign, collateral-TYPEl-expression, bus-sign.

Examples:
a) table-selection: b) key-selector:
ti, j] (i j]

6.1.4.2. Semantics

a) A table-selection is evaluated as follows:
The tight-TABLE-expression and key-selector are evaluated, giving values T
and K.
If T contains a table entry whose key is K:
The value of the table-selection is the associate of that table entry.
Otherwise:
An error is signalled.

DRAFT PROPOSAL FOR B 57

6.1.5. Displays

6.1.5.1. Syntax

A) QUOTE::

B)

0)

a)

b)

d)

apostrophe;
quote.

CHARACTER::
space; exclamation; quote; number; dollar; percent; ampersand;
apostrophe; open; close; times; plus; comma; minus; point; over;
DIGIT; colon; enumeration; less-than; equals; greater-than;
question; behead; capital-LETTER; sub; comment; bus; join;
underscore; convert; LETTER; curly-open; curtail; curly-close; about.

LETTER::
a; by dies f; g b i 5 ki Lomg
D, 0; P Qs T S Gou Vi WX;y; oz
textual-display:

QUOTE-sign, optional-style-QUOTE-textual-body, QUOTE-sign.

style-QUOTE-textual-body:
style-QUOTE-textual-item, optional-style-QUOTE-textual-body.

style-QUOTE-textual-item:
unless CHARACTER is QUOTE or CHARACTER is convert,
CHARACTER-sign;
where CHARACTER is QUOTE or CHARACTER is convert,
CHARACTER-image;
conversion.

CHARACTER-image:
CHARACTER-sign, CHARACTER-sign.

conversion:
convert-sign, collateral-TYPE-expression, convert-sign.

LIST-display:
curly-open-sign, LIST-body, curly-close-sign.

58 DRAFT PROPOSAL FOR B

g) LIST-body:
optional-enumerated-LIST-filler;
where LIST is list-of-TYPE, where TYPE is numeric or TYPE is textual,
TYPE-bound, through-sign, TYPE-bound.

(The ambiguity in, e.g., {/...9}, is resolved by parsing this as {I. .. 9}.)
h) enumerated-NOTION:
NOTION;

NOTION, enumeration-sign, enumerated-NOTION.

i) list-of-TYPE-filler:
TYPE-expression.

J) TYPE-bound:
TYPE-expression.

k) TABLE-display:
curly-open-sign, TABLE-body, curly-close-sign.

I} TABLE-body:
optional-enumerated-TABLE-filler.

m) table-with-TYPEl-keys-TYPE2-associates-filler:
TYPE-key-selector, colon-sign, TYPE2-expression.

Examples:
a) textual-display: f) LisT-display: k) TABLE-display:
" {} {}
‘He said: "don’’t!"’ {x1; x2; x3} {[i jl: 0}
"He said: ""don't!""" {l.n—1} {[0]: {}; [1]: {0}}
‘altitude is “a/1E3" km' {‘a’.'z"} {[name]: (m, d, y)}

6.1.5.2. Semantics

a) A textual-display is evaluated as follows:

The expression of each constituent conversion is evaluated and that value is
“converted” (5.1.2.2.b) to a text.

The value of the textual-display is the text obtained by concatening the texts
of the constituent textual-items, taken in order, where the text of
a CHARACTER-sign or -image consists of the (single) corresponding
character, and the text of a conversion is the text into which its
value has been converted.

DRAFT PROPOSAL FOR B 59

b) A LIST-display is evaluated as follows:
Case A: the body is empty:
Its value is an empty list.
Case B: it contains a constituent enumerated-filler:
All the constituent fillers are evaluated, giving a bag of values.
Its value is then the (sorted) list whose list entries are the values in the
bag (so {1, 1; 2} and {I; 2; 1} give the same list, which is
different from (I, 2}).
Case C: it contains a constituent through-sign:
The bounds are evaluated, giving values L and U.
If L or U is not an integer or a character:
An error is signalled.
Otherwise, if U < X < L, for some integer or character X:
An error is signalled.
Otherwise:
Its value is the list whose list entries are all integers or characters
between L and U, including L and U (but if L = U,
the list has one list entry, and if U < L, the list is
empty).

c) A TABLE-display is evaluated as follows:

The constituent fillers are evaluated, giving a set of table entries, duplicates, if
any, being discarded. (So {[/i/: j; [j]: i} is lawful, even if i and j
have the same value.)

If two different table entries have the same key:

An error is signalled.

Otherwise:

Its value is the table with those table entries.

d) A TABLE-filler is evaluated as follows:

The key-selector and expression are evaluated, giving values K and T.

Its value is then the “table entry” (1.2.5.a) composed of a key K and an asso-
ciate 7.

6.1.6. Formulas
6.1.6.1. Syntax

a) TYPE-zeroadic-formula:
zeroadic-function.

b) TYPE-monadic-formula:
monadic-function, actual-operand.

60 DRAFT PROPOSAL FOR B

¢) TYPE-dyadic-formula:
actual-operand, dyadic-function, actual-operand.

d) The parsing ambiguities introduced by rules b and c are resolved by
priority rules, as follows:
Let a “priority interval” be a pair of integers (L, H), L < H.
The priority interval of an actual-operand that is a monadic- or dyadic-
formula, is the priority interval of the function of that formula;
The priority interval of other actual-operands is (9, 9).
The priority interval of a monadic- or dyadic-function that is a tag is
1, 8).
The priority interval of the other monadic- and dyadic-functions is given
by the following tables:

monadic-function priority interval dyadic-function priority interval
~ (8, 8) + 2,2
+ (8, 8) — 2,2
— 5, 5) * 4,4
%/ (1, 8) / 3,9
/% (1, 8) *% 6,7
.7 - 2,2
- (1,8
<< (L®)
>< (1, 8)
>> (1, 8)
7, 8)

Let the priority interval of the formula be (Ly, Hy).

The left operand, if any, must then have a priority interval (L,, H,), such
that L, = H .

The right operand must then be a monadic-formula, or have a priority in-
terval (L,, H,), such that L, > H.

(‘Formulas’ for which this requirement cannot be satisfied, e.g., a/b/c, a/b*c
and sin x-+y, are syntactically incorrect. They can be made correct by insert-
ing parentheses, thus: (a/b)/c or a/(b/c), (a/b)*c or a/(b*c), and (sin x) + y
or sin (x+y). The function ~ has been given a high priority, so that, e.g., ~0
behaves as a constant. The function # is given a high priority since expres-
sions like #r+] are so common, that it would be a nuisance to have to
parenthesize these, and more so since #(z+1) is meaningless anyway. Note
that, in spite of what ALGOL-habits could make one think, sin(x)+1 is as
unlawful as sin x + 1.)

DRAFT PROPOSAL FOR B 61

¢) zeroadic-function:
NAMED-tag.

f) monadic-function:
about-sign;
plus-sign;
minus-sign;
numerator-sign;
denominator-sign;
number-sign;
NAMED-tag.

g) dyadic-function:
plus-sign;
minus-sign;
times-sign;
over-sign;
to-the-power-sign;
join-sign;
repeat-text-sign;
adjust-left-sign;
center-sign;
adjust-right-sign;
number-sign;
NAMED-tag.

h) actual-operand:
TYPE-expression.

Examples:
a) zeroadic-formula: b) monadic-formula: ¢) dyadic-formula:
pi atan(y/x) X atan y

6.1.6.2. Semantics

a) A formula F is evaluated, in an environment E, as follows:

The actual-operands are evaluated, giving zero, one or two values V|, ..., V,.

Let U be the yield-unit whose formal-formula contains the same ADIC-
function as F.

Let U’ be a copy of U, shielded (4.0.2.c) for E.

Let £’ be a scratch-pad copy (2.2.¢) of E.

The formal-operands of the formal-formula of F’ are located in E’, giving lo-
cations L. ..., L,.

Viewo o VyareputinLy, ... L,.

62 DRAFT PROPOSAL FOR B

The command-suite of U’ is executed in E’; the value returned is the value of
the formula.

6.1.7. Refined-expressions

6.1.7.1. Syntax

a) TYPE-refined-expression:
basic-TYPE-identifier.

b) The basic-identifier of a refined-expression must occur as the basic-
identifier of one expression-refinement in the unit (or immediate-command:;
see 4.b) in which it occurs.

Example:
a) refined-expression:
stack ‘ptr

6.1.7.2. Semantics

a) A refined-expression is evaluated, in an environment E, as follows:

Let R be the expression-refinement whose basic-identifier is the same as that
of the refined-expression.

Let E’ be a scratch-pad copy (2.2.¢) of E.

The command-suite of R is executed in E’; the value returned is the value of
the refined-expression.

6.2. Targets

a) A target may be “located”, giving “its” location. Locating a target does
not have side-effects on the environment in which it is located.

6.2.0.1. Syntax

a) basic-TYPE-target:
TYPE-identifier;
TYPE-trimmed-text-target;
TYPE-table-selection-target.

6.2.0.2. Semantics

a) A collateral-target is located as follows:
The constituent basic-targets are located, giving locations L,, ..., L,,.

DRAFT PROPOSAL FOR B 63

Case A:n = 1:
Its location is L, .
Case B: n > 1:
Its location is the compound location composed of L, ..., L,,.

(The locating of basic-targets is described in the sections below.)
6.2.1. Identifiers
6.2.1.1. Syntax

a) basic-TYPE-identifier:
NAMED-tag.

b) A given tag must not stand, in the same unit (or immediate-command),
for a basic-target and/or refined-expression and/or refined-test and/or func-
tion and/or predicate.

Examples:
a) basic-identifier:

i
supercalifragilisticexpialadocious
t ’

t”
man'of 'war
2d2

6.2.1.2. Semantics

64 DRAFT PROPOSAL FOR B

6.2.2. Trimmed-text-targets
6.2.2.1. Syntax

a) textual-trimmed-text-target:
textual-target, TRIM-sign, right-numeric-expression.

(For “TRIM”, see 6.1.3.1.A))

Examples:
a) trimmed-text-target:
lap
t|1
t|q@p
tepl(q—p+l)

6.2.2.2. Semantics

a) A trimmed-text-target is located as follows:
The textual-target is located and the right-numeric-expression is evaluated,
giving a location P and a value N.
If P has no content or N is not an integer:
An error is signalled.
Otherwise:
Let the length of (the text which is) the content of P be n.
Let (B, C) be (N—1, 0) if the TRIM-sign is a behead-sign, and (0, n—N)
if it is a curtail-sign.
IfB<O0orC<OorB+C>n:
An error is signalled.
Otherwise:
The location of the trimmed-text-target is the trimmed-text loca-
tion composed of a parent location P, a behead B and
a curtail C.

6.2.3. Table-selection-targets
6.2.3.1. Syntax

a) TYPEZ2-table-selection-target:
table-with-TYPE-keys-TYPE2-associates-target, TYPE1-key-selector.

Example:
a) table-selection-target:

i, ji

DRAFT PROPOSAL FOR B 65

6.2.3.2. Semantics

a) A table-selection-target is located as follows:
The TABLE-target is located, and the key-selector is evaluated, giving a loca-
tion P and a value K;
If P has no content:
An error is signalled.
Otherwise:
The location of the table-selection-target is the table-selection location
composed of a parent location P and a key K.

6.3. Tests

a) A test may be “tested”, whereupon it “succeeds” or “fails”. Moreover, it
“offers” an environment (in which a command-suite selected by the outcome
of the test will be executed). Testing a test does not have side-effects on the
environment in which it is tested.

b) If the Semantics defines the outcome of some test as the outcome of some
other test, the environment offered is that offered by the other test. Other-
wise, if the Semantics does not explicitly state which environment is offered,
it is the environment in which the test is tested. (In general, it is a copy of
the original environment, augmented by any tags for which a value is given
by the testing, as in

WHILE SOME i IN digits HAS i > 9: REMOVE i FROM digits
in which the environment is temporarily augmented with i.)
6.3.0.1. Syntax

a) test:
tight-test;
conjunction;
disjunction;
negation;
quantification.

b) tight-test:
open-sign, test, close-sign;
order-TYPE-test;
ADIC-proposition;
refined-test.

66 DRAFT PROPOSAL FOR B

c) right-test:
tight-test;
negation;
quantification.

(The testing of tests is described in the sections below.)
6.3.1. Order-tests
6.3.1.1. Syntax

A) ORDER::
less-than;
at-most;
equals;
unequal;
at-least;
greater-than.

a) order-TYPE-test:
TYPE-expression, ORDER-sign, TYPE-expression;
order-TYPE-test, ORDER-sign, TYPE-expression.

Examples:

a) order-test:
(i j) > (i, j)
IOI <= d<= I9I
fa<=fix) >=fb

6.3.1.2. Semantics

a) An order-test O is tested as follows:
Case A: it has two expressions:
The expressions are evaluated, giving values V and W;
Its outcome is the outcome of the comparison of V against W, using the
ORDER-sign.
Case B: it has a (descendant) order-test O:
O’ is tested.
If O’ succeeds:
Let V be the value of the (textually) last expression of O’ (which
has been evaluated in the testing of O).
The expression of O is evaluated, giving a value W.
The outcome of O is the outcome of the comparison of ¥ against
W, using the ORDER-sign.

DRAFT PROPOSAL FOR B 67

Otherwise:
O fails.

b) The comparison of a value V against a value W, using an ORDER-sign,
succeeds in the following cases:

ORDER-sign success if
< V<Ww
<= V<Ww
= V=w
<> VW
>= V=Ww
> V>w

Otherwise, the comparison fails.
6.3.2. Propositions

6.3.2.1. Syntax

a) zeroadic-proposition:
zeroadic-predicate.

b) monadic-proposition:
monadic-predicate, actual-operand.

¢) dyadic-proposition:
actual-operand, dyadic-predicate, actual-operand.

d) ADIC-predicate:
NAMED-tag.

6.3.2.2. Semantics

a) A proposition P is tested, in an environment E, as follows:

The actual-operands are evaluated, giving zero, one or two values V), ..., V,.

Let U be the test-unit whose formal-proposition contains the same ADIC-
predicate as P.

Let U’ be a copy of U, shielded (4.0.2.c) for E.

Let E’ be a scratch-pad copy (2.2.€) of E.

The formal-operands of the formal-proposition of U’ are located in E’, giving
locations L,, ..., L,.

Vi,..,VyareputinL,, ..., L,.

68 DRAFT PROPOSAL FOR B

The command-suite of U’ is executed in E’.
If success is reported, P succeeds, and if failure is reported, P fails, and the
environment offered is E.

6.3.3. Refined-tests

6.3.3.1. Syntax

a) refined-test:
NAMED-tag.

b) The tag of a refined-test must occur as the tag of one test-refinement in
the unit (or immediate-command; see 4.b) in which it occurs.

Example:
a) refined-test:
special’case

6.3.3.2. Semantics

a) A refined-test is tested, in an environment E, as follows:

Let R be the test-refinement whose tag is the same as that of the refined-test.

Let E’ be a scratch-pad copy (2.2.€) of E.

The command-suite of R is executed in E’.

Let the environment offered by the outcome reported be F.

Let E” be a transparent copy of E.

The domain of E” is augmented with the bound tags in the domain of F not
occurring in the domain of E, and these tags are made to access
the locations they access in F.

The outcome of the refined-test is the outcome reported, but offering E”.

(This complicated operation on the environments is needed to ensure that the
effect of

IF r: ...
rt: REPORT some test
is the same as that of
IF some’test: ...
as is the case with substituting the refining expression for the refined-

expression if the refinement has only one return-command. For example, the
following is allowed:

DRAFT PROPOSAL FOR B 69

WHILE exception: NORMALIZE
exception: REPORT SOME i IN digits HAS i > 9
NORMALIZE: REMOVE i FROM digits

in which the bound i temporarily survives the test-refinement to be used in
the command-suite governed by the refined-test.)

6.3.4. Conjunctions
6.3.4.1. Syntax

a) conjunction:
tight-test, and-keyword, conjunct.

b) conjunct:
right-test;
conjunction.

Examples:
a) conjunction:
a>0AND b > 0
i in keys t AND tfi] in keys u AND uftfi]] <> ‘dummy’

6.3.4.2. Semantics

a) A conjunction C is tested in an environment E as follows:
The tight-test is tested, offering an environment E".
If the tight-test fails:
C fails and offers E’.
Otherwise:
The conjunct is tested in E’ and its outcome is the outcome of the test-
ing of C.

(See the remark at the end of 6.3.5.2.a.)
6.3.5. Disjunctions
6.3.5.1. Syntax

a) disjunction:
tight-test, or-keyword, disjunct.

70 DRAFT PROPOSAL FOR B

b) disjunct:
right-test;
disjunction.

Examples:
a) disjunction:
a<=00Rb<=0
n =0 OR s[l] = s[n] OR t[1] = t[n]

6.3.5.2. Semantics

a) A disjunction D is tested in an environment E as follows:
The tight-test is tested, offering an environment E’.
If the tight-test succeeds:
D succeeds and offers E”.
Otherwise:
The disjunct is tested in E’ and its outcome is the outcome of the test-
ing of D.

(The environment in which COM is executed in the context

IF (SOME i IN x HAS p(i)) OR (SOME j IN y HAS q(j)): COM
depends on which of the two quantifications succeeded. However, because of
the static content check (7.2.a), neither i nor j is accessible from COM, so the
effect is the same.
In the context of

IF (SOME i IN x HAS p(i)) OR (SOME i IN y HAS ¢(i)): COM
i is filled in either case if COM is reached, so it is accessible from there.)
6.3.6. Negations
6.3.6.1. Syntax

a) negation:
not-keyword, right-test.

Example:
a) negation:
NOT i in keys t

DRAFT PROPOSAL FOR B 71

6.3.6.2. Semantics
a) A negation N is tested in an environment E as follows:
The right-test is tested, offering an environment E’.
If the right-test fails:
N succeeds and offers E’.
Otherwise:
N fails and offers E".

6.3.7. Quantifications
6.3.7.1. Syntax

A) TEXTUALS::
textual-textual;
textual-TEXTUALS.

a) quantification:
quantifier, ranger, has-keyword, right-test.

b) quantifier:
each-keyword;
some-keyword;
no-keyword.

¢) ranger:
in-ranger;
parsing-ranger.

d) parsing-ranger:
TEXTUALS-identifier, parsing-keyword, textual-expression.

(For in-rangers, see 5.2.4.1.b.)

Examples:

a) quantification:
EACH i, j IN keys t HAS tfi, j] = t[j, i]
SOME p, q, r PARSING line HAS qin {". ; '? 7, 1 "}
NOdIN {2.n—1) HAS n modd = 0

72 DRAFT PROPOSAL FOR B

6.3.7.2. Semantics

a) A quantification Q is tested, in an environment E, as follows:

Let E’ be a transparent copy of E.

The collateral- or TEXTUALS-identifier I of the in- or parsing-ranger is located
in E’, giving a new location L, and the tags with which the
domain of E’is thereby augmented, are bound.

The expression of the in- or parsing-ranger is evaluated in E, giving a value
G.

Let K be the keyword of the quantifier.

For each value V “generated” (5.2.4.2.b, ¢, d, 6.3.7.2.b) by G, “for” I, in turn:

Visputin L (in E").
The right-test is tested in E’, offering an environment E”.
Case A: K is an each-keyword and the test fails:
The testing of Q is complete.
Q fails and offers the environment E”.
Case B: K is a some-keyword and the test succeeds:
The testing of Q is complete.
Q succeeds and offers the environment E”.
Case C: K is a no-keyword and the test succeeds:
The testing of Q is complete.
Q fails and offers the environment E”.
Other Cases:
The testing of Q is continued (until G is exhausted).
Case A: K is an each- or no-keyword:
Q succeeds and offers E.
Case B: K is a some-keyword
Q fails and offers E.

b) The values “generated by” a text T, “for” a TEXTUALS-identifier, are all
compounds of the type compound-with-TEXTUALS-fields, taken in order, such
that the concatenation of the fields of each compound is 7.

(For example, the values generated by ‘abba’ for p, ¢, r are

/l’ II’ Iabbal
II’ Ial’ Ibbal
", ‘ab’, 'ba’
", ‘abb’, ‘a’
II, Iabbal, 7

', ', "bba’
Ial’ Ibl’ Ibal
lal’ Ibbl’ Ial
Ial’ Ibbal, 7
Iabl’ II’ Ibal

DRAFT PROPOSAL FOR B 73

labl’ Ibl, Ial
Iabl’ Ibal’ rr
Iabbl’ II’ Ial
Iabbl’ Ial, 144
labbal’ II’ r’

in that order, which is the order in which these values would be sorted in a
list. The quantification

SOME p, q, r PARSING ‘abba’ HAS p = r
would succeed with p and r set to ** and q to ‘abba’.)
7. The static checks
(The following treatment is informal.)
a) The “static checks” are the “static definedness check”, the “static content
check” and the “static type check”. They are performed on immediate-
commands (4.b) and, in a relaxed form, on units.
b) Next to these checks, an implementer should feel free to implement a
“static no-nonsense check”. This check allows to signal statically as errone-
ous any construction of which it can be shown that its elaboration would
result in a run-time error or an infinite execution, or would make no sense
otherwise. (The other static checks may, to some extent, be viewed as special
cases of this catch-all check.)
(Since there is no end to the ingenuity that can be put in devising such a
check, this document does not attempt to define it. However, some likely
candidates are:

FOR x IN {'aa’.’zz’}: ...

FOR cIN {’a'.’Z"}: ...

PUTO, 1IN a, a

DELETE 1@l

74 DRAFT PROPOSAL FOR B

IFt = {}: PUT min t IN m

WHILE t <> {}:
INSERT mint IN u
REMOVE mint FROM u

The latter is a border-line case (it could be a defiant, though roundabout, way
to express one’s assuredness that ¢ = {}), and care should be taken not to de-
clare constructions nonsensical, however weird, that might express a lawful
intention of the user. An approach in such cases (e.g., put something in a
target that is never inspected again), is to have the system ask the user if this
is really her intention. If so, the system will not bother her again.)

¢) The static checks are described below in terms of infinite pseudo-
algorithms, using “execution paths”. However, they can be performed by
finite algorithms. Developing fast but simple algorithms for incremental
checks is still a matter of research. For pilot implementations these checks, if
implemented statically at all, may be performed using (by now) conventional
data-flow-analysis techniques, amounting to computing the closures of certain
relations.

d) An “execution path” is a finite sequence of simple-commands. Given the
set of units, it is possible to characterize, statically, the set of execution paths
for a given command. The execution paths may be viewed as the paths in an
execution tree that splits at choice points (on tests or on for-commands).

Informally, an execution path consists of successive commands that could be
caused, by the execution of the given command, to be executed, assuming
that tests succeed or fail at random and that TYPE-expressions return arbi-
trary values from the TYPE-domain. User-defined- and refined-commands are
replaced by the execution paths of their command-suites, and the command-
suites of (user-defined) formulas and propositions and of refined-expressions
and tests are, in some way, likewise interpolated, all after shielding (4.0.2.c)
as necessary. In interpolating the execution paths for formulas, put-
commands are inserted to copy the expressions to the formal-operands.
Return-commands are replaced by put-commands, putting the returned ex-
pression in a fresh basic-target coming in place of the formula. (Propositions
can be handled like formulas if a fictitious type “boolean” is introduced). A
terminating-command (QUIT etc.) finishes, of course, an execution path of a
command-suite. Where scratch-pad copying occurs, a put-command of the
form PUT a, b, ... IN a’, b’, ... is inserted, copying all live basic-targets to
fresh basic-targets, and corresponding adjustments are made in the controlled
commands. Finally, each read-command READ t EGe is replaced by
PUTelIN t.

DRAFT PROPOSAL FOR B 75

7.1. The static definedness check

a) The “static definedness check” for a given command is:

The functions and predicates occurring in formulas and tests in each execu-
tion path must be functions and predicates defined, with the same adici-
ty, by some unique unit or by predefinition (and the execution paths are
defined, in fact, only by virtue of this fact). Moreover, for each TYPE-
formula the yield-unit defining its function has a formal-TYPEO-formula
such that there is a polytype refinement (1.b) from TYPEQ to TYPE.

b) Since not all potentially invoked units need be defined at the time of
entering a unit (which is what the static definedness check checks), this check
should not be applied to units as such. Because of the incomplete knowledge
of execution paths then, the following static checks should correspondingly be
relaxed for units.

7.2. The static content check

a) The “static content check” for a given command is:

Let initially only those tags be “filled” that occur in the domain of the per-
manent environment (2.2.a). All other tags are “empty”. Proceed
along an execution path. Set the status of an empty tag to filled if it
occurs as the tag in a basic-target targeted in a put-command or if it
occurs as a bound tag (i.e., a tag in the collateral- or TEXTUALS-
identifier of a ranger) and the sequel of the execution path takes a turn
where the Semantics would put a value in the corresponding location.
Set the tag to empty if it istargeted in a delete-command.

It is then required that in all execution paths at all occurrences of a basic-
identifier in a target-content, trimmed-text-target or table-selection-
target, or in the target of a remove-, insert- or delete-command, the
corresponding tag be filled. Moreover, a tag occurring as a bound tag
may only occur in commands governed by the construction to which
the tag is bound.

(For example, after
SELECT:
0=1-:PUT "IN
1 =2:PUT "IN ¢

t may be considered filled, since execution must pass through one of the alter-
natives. Also, given

76 DRAFT PROPOSAL FOR B

HOW'TO FILL it:
IFO0 = I:
PUT "IN it
QUIT
FILL it

t may be considered filled after FILL ¢, since execution must have passed
through the put-command to leave the body of FILL. Of course, the static
no-nonsense check might reject these constructions.

The unlawful use of a bound tag occurs in

FOR i IN {I.n): SET'’KEY
DELETE t[i]
SET'KEY: PUT 0 IN t[i]

in which the delete-command is in error. The use of i in the refinement is al-
lowed, as long as it is only invoked under the control of constructions in
which i is bound. Note that the following is also allowed:

FOR i IN {l.n}: SET'’KEY
FOR i IN {p.q}: SET'KEY

as long as the separate bindings have the same type. Finally, the following is
not clearly excluded by the present wording, but should be outlawed:

FOR i IN {1..m):
FOR i IN (l.n}:)

(Once a collection of units passes the static definedness and type checks, for
purposes of the static content test the behavior of each unit can be abstracted
to: which parameters and permanent basic-targets are potentially inspected
before they receive a content, and which parameters and permanent basic-
targets must be filled on leaving the body. Using this abstraction, the effort
in performing the static content test for an immediate-command may be
greatly reduced. Similar optimizations are possible for the other static
checks.)

7.3. The static type check

a) The “static type check” for a given command is:

First, it is required that the process of substituting actual-parameters for
formal-parameters in commands in determining the execution paths (7.d)
for the given command result everywhere in (syntactically correct) com-
mands. (This should exclude, e.g., a user-defined-command INCR 0 in
the context of

DRAFT PROPOSAL FOR B 77

HOW'TO INCR i: PUT i+1 IN i

since the form PUT (0)+1 IN (0) is not a command.)

Second, let initially only those tags “carry” a type that occur in the domain
of the permanent environment (2.2.a). The type they carry is the type
of the location they access. All other tags are “empty”. Proceed along
an execution path. Set the type of an empty tag, if it occurs as the tag
in a basic-TYPE-identifier, to TYPE, which is required to be a type (and
not a proper polytype, i.e., a polytype still containing “poly”).

It is then required that in all execution paths at all occurrences of a basic-
TYPE-identifier the type of the tag, if previously set, be TYPE.

(This definition is non-constructive in the sense that one may have to “guess”
types such that no clash will occur later on, and especially so when units are
checked. For an algorithm for the static type check, see MILNER[6].)

A problem may occur by the combination of “{}” and a read-command. A
simple example of the problem is given by

READ x EG {}
and a more complicated one by

HOW'TO TYPE'PUZZLE:
PUT {[1]: ('a’, {})} IN a
READ x EG afl]

By the check as formulated until now, these are allowed. Even at run-time,
however, the type of the expression to be read will be unknown. Therefore,
such cases are not allowed. They are also caught by the static type check.
(The treatment of “{}” requires some special care anyway, but should cause
no insuperable difficulties.)

78 DRAFT PROPOSAL FOR B

APPENDIX. PRELIMINARY THOUGHTS ON THE B SYSTEM

The language B is embedded in a system that is fully dedicated to B, without
any exceptions. If the system is embedded again in a larger operating system,
that fact should be invisible to the user as far as possible. (An OS may have
nasty features that cannot be hidden.) In particular, a user should and need
not be aware of peculiar animals such as load modules, file systems etc.

If the B system is embedded in a larger system and it should be possible to
transfer data between the systems, this should be done by means of an inter-
face that displays to the B user a face in the spirit of B.

A.1l. Command language
Usually, a general purpose system is addressed in some lingo called “JCL”
or “command language”. The ideal is that the command language of the B
system is B itself. It is a matter of research to see to what extent this ideal
can be reached.
One part is relatively easy. Assume a how-to-unit has been defined:
HOW'TO ADVENTURE: ...
The “command” to invoke this unit would simply be the B command
ADVENTURE
just as it might occur in a program:
HOW'TO PLAY:
READ name EG "'

SELECT:
name = 'adventure’: ADVENTURE

There is no need for the user to request “compilation™; to the user the system
behaves as if the computer has B as its code.

This means that a B system can be used as a glorified calculator, since all
commands are usable as “JCL” commands:

DRAFT PROPOSAL FOR B 79

System: At your command
User: PUT5INn
System: At your command
User: FOR i IN {l..n}:
WRITE ixi
System: 1491625
At your command

If there is no compelling reason why the request for a specific system action
should not be a B command, it is preferable to introduce a new simple-
command. Not all requests to the system to perform some action, however,
can be B commands. All such requests are given such a form that it is en-
tirely obvious that they cannot be part of a command-suite. The requests
might be given by pressing special “function keys”, or at least be of a form
radically different from that of the commands. Requests are always obeyed
immediately. This also solves (largely) the problem of having different
“modes”.

A.2. Files

Among the global, permanent objects in a given workspace—how-to-, yield-
and test-units— there are also variables. This means that we can use normal
B values instead of traditional “files”. Character files may be modelled in B,
e.g., by a table of texts whose keys are {/..n}.

In many cases, however, a file is conceptually not a sequence of text lines, but
a structured object. Processing such a file often requires parsing to detect a
structure that was known to the program that created the file. In such cases,
it is much simpler to keep the original structure.

Tables are quite similar to indexed files, and the fields of a compound give a
simple way to model record fields.

A.3. The editor

Let us assume that part of the hardware configuration is the screen of a not
too dumb terminal. Although the B system should not have different
“modes”, the history of keys that have been struck up till now has a bearing
on the interpretation of further key strokes. This current “status” should be
clear from the contents of the screen. A reserved status bottom line may be
helpful (and can also be put to further uses.)

Some keys must allow easy editing of existing objects. Those, in particular,
should not be command-like; otherwise, the editor needs a command and a
text mode. Functions like listing (displaying) an object, available in most

80 DRAFT PROPOSAL FOR B

operating systems both as an editor capability and at the command language
level, exist only once. The editor is also a pretty-printer, displaying objects in
a canonic representation (0.4.2.e).

The editor is also invoked for interactive input; to the user, it should make
little difference whether ({[’linda’]: (2, 29, 72); [’john’]: (4, 1, 74);
['peter’]: (7, 16, 75)} is entered as part of a command, or in response to the
prompt from a read-command READ birthday EG {['name’]: (31, 12, 99)}.
In particular, even in the latter case all of the input should be available for
editing as long as the whole has not been finally, and irrevocably, entered. A
difference is that in a read-command the editor knows the type of the expres-
sion to be entered, so it can offer more editorial assistance.

Because the whole system is dedicated to B, the editor is cognizant of the
syntax, and (relevant) semantics, of B. If we distinguish between the abstract
syntax of B, which defines more or less tree-like forms, and the concrete syn-
tax giving a linearized representation, the typical situation might be that edit-
ing is (conceptually, at least) performed on the abstract form, even though a
concrete representation is continually displayed.

Advantages are:

© The user will obtain a keen feeling for the abstract syntax underlying the
concrete representations.

© The opportunity for making syntax errors is greatly reduced.

© The editor will immediately point out most other syntax errors.

© The number of key strokes is significantly reduced, since the editor immedi-
ately fills out redundant information. (This is important in view of the ver-
bosity of concrete B.)

The following ideas on “screen editing” are tentative. Only a pilot imple-
mentation can show how to make a smooth and friendly system.

Instead of the usual cursor, we have a focus of attention. The focus
corresponds to a node (with offspring) in the syntax tree. It is displayed in
some way distinguishing it from the context (e.g., brighter).

In the concrete representation the focus may consist of non-contiguous ele-
ments. (E.g,,

PUTaIN b
or

IFx>0ANDy>0AND:z > 0:....)

DRAFT PROPOSAL FOR B 81

Special keys allow the user to shift the focus in the tree, e.g., Up, Down, Left
and Right (where Up and Down, especially, bear no relationship to the usual
cursor up and cursor down).

The editor uses its knowledge of the B language to help minimize key strokes.
On entering a command, the editor tries to guess the kind of command from
the first letters of the first keyword. For example, after entering “P”, the
screen has already

PUTOINO.

(The boxes O stand for a dummy node.) If the next key entered would be an
“R”, the screen would change to

PRINT O

(assuming the user has defined a print-command). Sticking to the case of
“PUT O IN 07, the Down or Right key puts the focus on the first box. A
subsequent Right focusses on the second box.

If there is no right node on the same level, a sufficient number of Ups is as-
sumed before a Right (and similarly for Left). Down goes down on the left-
most branch if the current “direction”, determined by the last Right/Left
given, is Right, and on the right-most branch if the current direction is Left.
If there is no down branch, a sufficient numbers of Right/Lefts, in the
current direction, is assumed before a Down. To complicate the issue, a
Down immediately following an Up is equivalent to giving a Right/Left in-
stead of that Up+ Down.

To give an example, consider a tree with three branches, each having a node
with again three branches. The linearized tree is represented thus:

abc def ghi

Starting from a situation where the focus is on the q, subsequent Rights will
give the following sequence:

abc def ghi
abc def ghi
abe def ghi
abc def ghi
abc def ghi

after which the next Right leaves the tree. Starting from a situation where
the focus is on the whole tree, subsequent Downs will produce:

82 DRAFT PROPOSAL FOR B

abce def ghi
abe def ghi
abc def ghi
abc def ghi
abc def ghi
abc def ghi
abc def ghi

after which the next Down leaves the tree.

On entering a syntactic construction with a variable number of constituents
such as a command suite, the editor behaves as follows. Assume the user
enters “I”. The screen displays

IFO: 0.
If the user enters now Down, followed by “i > 0”, the screen has
IFj>00: 0.

A Right focusses on the right box. The command is now automatically
opened up, i.e., displayed over several lines:

IF > 0:
a

After entering a “P”, e.g., the situation becomes

IF > 0:
PUT O IN O
O

with focus on the put-command, but with a new box so that a Right or
Down, after finishing the put-command, e.g., in the following situation:

IFi > 0
PUTi—11INi
O

does not leave the command-suite prematurely. An Up, however, now
finishes the if-command. Since the command-suite contains only one short

command, it closes up and the screen displays

IFi> 0: PUTi—11IN i

DRAFT PROPOSAL FOR B 83

An Insert key creates a new box node in the tree at a position such that the
last Up/Down/Left/Right given would have focused there, had the node al-
ready been present. The ambiguity if there are several such positions is
resolved by the editor, using its knowledge of the syntax.

A Suck key allows to delete the focus. It is not irretrievably lost, but pushed
on a stack. A box is left, so that no Insert is needed if the purpose is to
change the node. That box is volatile, however, if part of a construction with
an arbitrary number of constituents: each subsequent action (including
another Suck) makes it disappear.

A Squirt pops the stack at boxes, assuming Inserts if necessary. The direc-
tion of Squirts is reversed, so that a repeated Suck followed by a repeated
Squirt does what one should hope. (This mechanism is not general enough,
since stacks are too well-behaved.)

Finally, there is some way to Undo unwanted changes without retyping,.

It will take a user some time to get proficient at such a system. Luckily, the
syntax of B is largely such that the editor is able to accept input by a user
who ignores the tree-structure and simply enters the linearized concrete
representation (see GEURTS & MEERTENS[4]). For example, in WRITE O,
an “(” results in WRITE (). Next, “i+j” results in WRITE (i+j). The
“normal” way to proceed would be an Up or Right, but a *)” is also accept-
ed, with the same effect: WRITE (i+j)0.

A4, lllegal constructions

The editor does more than context-free syntax checking. In particular, it
checks the type-consistency of the whole work-space incrementally as and
when units are entered. The editor refuses attempts to enter unlawful con-
structions that violate the context-free syntax. If the construction is wrong
because of an inconsistency with other constructions, but acceptable from a
context-free viewpoint, the editor protests, but the user may override it. (The
actual error may be in the other constructions.) The inconsistent parts are
displayed, e.g., in red.

For example, in the situation
HOW'TO INCR x:
PUTO IN O
a

with focus on the first box, the editor refuses all of the keys

84 DRAFT PROPOSAL FOR B

I'$%&), s <=>72@/[\N] "_ |}
since an expression may not start with these. In the situation

HOW'TO INCR x:
PUT x+1 IN z[J
a

it protests against a “/”, since z is un unlawful target here (being uninitial-
ized). If the user, however, Resets, the next “/” is obeyed, but z is displayed
in red. If the user then inserts ALLOW z, the red z receives the normal
color. A request to display the headings of the current units in the work-
space will display them in red if they could not be invoked as they stand.

An attempt to execute an unlawful command (not all errors can be caught on
entering, and a command may still contain boxes) will also bring the focus on
the offending part. A Help will explain what is wrong (in understandable
terms).

An important case is given by refinements. These are usually recognizable to
the editor because the refined-command, -expression or -test is normally
undefined without corresponding refinement. If properly treated, the user will
have an automatic reminder of the next step to be done (keeping track of
loose ends). For example, when the user has entered the tag entries in

YIELD aliases name:
ALLOW address'list
FOR i IN entries: [
O

the editor will already display

YIELD aliases name:
ALLOW address’list
FOR i IN entries: [J
O

entries: RETURN O

DRAFT PROPOSAL FOR B 85

REFERENCES

(1]

(2]

3]

(4]

(5]

[6]

(7]

CLEAVELAND, J.C. & R.C. UzGALIS, Grammars for Programming
Languages, Elsevier, 1977.

GEHANI, N., Generic procedures: an implementation and an undecidabil-
ity result, Computer Languages 5 (1980) [55-161.

GEURTs, L.J.M. & L.G.L.T. MEERTENS, Designing a beginners’ pro-
gramming language, in New Directions in Programming Languages
1975, 1-18, (S. A. Schuman, ed.), IRIA, Rocquencourt, 1976.

GEURTS, L.J.M. & L.G.L.T. MEERTENS, Keyword grammars, in Imple-
mentation and Design of Algorithmic Languages, 1-12, (J. André &
J.-P. Banitre, eds), IRIA, Rocquencourt, 1978.

MEERTENS, L.G.L.T., Issues in the design of a beginners’ programming
language, in Algorithmic Languages, [67-184, (J.W. de Bakker &
J.C. van Vliet, eds), North-Holland, 1981.

MILNER, R., A theory of type polymorphism in programming, Journal of
Computer and System Sciences 17 (1978) 348-375.

VAN WIINGAARDEN, A, & al, Revised Report on the Algorithmic
Language ALGOL 68, Acta Informatica 5 (1975) 1-236.

86 DRAFT PROPOSAL FOR B

INDEX

access: 2.2.a
actual-operand: 6.1.6.1.h
actual-parameter: 5.1.16.1.c
ADIC: 4.2.1.A
allow-heading: 4.5.1.b
alternative-sequence: 5.2.2.1.c
alternative-suite: 5.2.2.1.b
approximate number: 1.2.1.a
approximate-constant: 6.1.1.1.e
associate: 1.2.5.a
basic-expression: 6.1.0.1.a
basic-identifier: 6.2.1.1.a
basic-target: 6.2.0.1.a
behead: 2.1.2.a
bound: 6.1.5.1;
bound tag: 2.2.b
canonic representation: 0.4.2.e
character: 1.2.a, 1.2.2.a, ¢
CHARACTER: 6.1.5.1.B
CHARACTER-image: 6.1.5.1.d
check-command: 5.1.1.1.a
choose-command: 5.1.6.1.a
collateral-ITEM: 0.3.1.a
command: 5.0.1.a
command-refinement: 4.4.1.b
command-sequence: 4.5.1.c
command-suite: 4.5.1.a
comment: 0.4.1.d
COMPOUND: 1.1.B
compound: 1.2.3.a
compound location: 2.1.3.a
conjunct: 6.3.4.1.b
conjunction: 6.3.4.1.a
constant: 6.1.1.1.a
construction: 3.a
content: 2.1.b
content of a compound location:
2.1.3b

content of a table-selection location:

2.14b
content of a trimmed-text location:
2.1.2b

control-command: 5.2.0.1.a

conversion: 6.1.5.1.e

convert: 5.1.2.2.b

curtail: 2.1.2.a

decrease-indentation: 0.4.2.f

delete-command: 5.1.10.1.a

DIGIT: 6.1.1.1.A

disjunct: 6.3.5.1.b

disjunction: 6.3.5.1.a

display: 6.1.5.1.a, f, k

domain: 1.2.a

draw: 5.1.5.2.b

draw-command: 5.1.5.1.a

dyadic-formula: 6.1.6.1.c

dyadic-function: 6.1.6.1.g

dyadic-proposition: 6.3.2.1.c

elaborate: 3.a

else-alternative: 5.2.2.1.e

empty: 2.1.c

empty a compound location: 2.1.3.d

empty a table-selection location:
2.1.4d

empty a trimmed-text location:
2.1.2d

enumerated-NOTION: 6.1.5.1.h

environment: 2.2.a

evaluate: 6.1.a

exact number: 1.2.1.a

exact-constant: 6.1.1.1.b

execution path: 7.d

exponent-part: 6.1.1.1.f

expression-refinement: 4.4.1.c

fail: 6.3

fail-command: 5.1.15.1.a

field: 1.2.3.a

FIRST: 0.2

for-command: 5.2.4.1.a

formal-dyadic-formula: 4.2.1.d

formal-dyadic-proposition: 4.3.1.d

formal-monadic-formula: 4.2.1.c

formal-monadic-proposition: 4.3.1.c

formal-operand: 4.2.1.e

DRAFT PROPOSAL FOR B 87

formal-parameter: 4.1.1.e

formal-tail: 4.1.1.c

formal-trailer: 4.1.1.d

formal-user-defined-command:
4.1.1.b

formal-zeroadic-formula: 4.2.1.b

formal-zeroadic-proposition: 4.3.1.b

formula: 6.1.6.1.a, b, ¢

fractional-part: 6.1.1.1.d

function: 6.1.6.1.¢, f, g

further-comment: 0.4.1.e

generate: 5.2.4.2.b, ¢, d, 6.3.7.2.b

global: 4.0.2.b

how-to-unit: 4.1.1.a

if-command: 5.2.1.1.a

immediate-command: 4.b

increase-indentation: 0.4.2.f

indent: 0.4.2.f

in-ranger: 5.2.4.1.b

insert-command: 5.1.9.1.a

integral-part: 6.1.1.1.c

ITEM: 0.3.1.A

key: 1.2.5.a

key-selector: 6.1.4.1.b

keyword alphabet: 0.4.2.a

LETTER: 6.1.5.1.C

LIST: 1.1.D

list: 1.2.4.a

list entry: 1.2.4.a

LIST-body: 6.1.5.1.g

LIsT-display: 6.1.5.1.f

LiST-filler: 6.1.5.1.i

local: 4.0.2.a

locate: 6.2.a

location: 2.1.a

metalevel: 0.2

metanotion: 0.2

monadic-formula: 6.1.6.1.b

monadic-function: 6.1.6.1.f

monadic-proposition: 6.3.2.1.b

NAMED: 0.2

negation: 6.3.6.1.a

new-line: 0.4.1.c

new-line-proper: 0.4.2.f

new-liners: 5.1.2.1.b

NEXT: 0.2

NOTION: 0.2

number: 1.2.1.a

numeric-constant: 6.1.1.1.a

offer: 6.3

optional-NOTION: 0.3.1.e

ORDER: 6.3.1.1.A

order-test: 6.3.1.1.a

overloading of functions: 4.2.1.f

overloading of predicates: 4.3.1.e

parent location: 2.1.4.a

parsing-ranger: 6.3.7.1.d

permanent environment: 2.2.a

plusminus: 6.1.1.1.g

polytype: 1.b

predefined first keyword: 4.1.1.f

predicate: 6.3.2.1.d

priority: 6.1.6.1.d

program: 4

proposition: 6.3.2.1.a, b, ¢

pseudo-random: 5.1.5.2.b, 5.1.7.2.a

putin: 2.1.b

put in a compound location: 2.1.3.c

put in a table-selection location:
2.14c

put in a trimmed-text location:
2.1.2.c

put-command: 5.1.4.1.a

quantification: 6.3.7.1.a

quantifier: 6.3.7.1.b

quit-command: 5.1.11.1.a

QUOTE: 6.1.5.1.A

random: 5.1.5.2.b, 5.1.7.2.a

ranger: 6.3.7.1.c

read-command: 5.1.3.1.a

refined-command: 5.1.17.1.a

refined-expression: 6.1.7.1.a

refined-test: 6.3.3.1.a

refinement: 4.4.1.a

refinement of polytypes: 1.b

refinement-suite: 4.0.1.b

remove-command: 5.1.8.1.a

report-command: 5.1.13.1.a

88 DRAFT PROPOSAL FOR B

return-command: 5.1.12.1.a
right-expression: 6.1.0.1.d
right-test: 6.3.0.1.c

root location: 2.1.2.a
scratch-pad copy: 2.2.e
select-command: 5.2.2.1.a
session: 4.c
set-random-command: 5.1.7.1.a
shielded copy: 4.0.2.c

simple location: 2.1.1.a
simple-command: 5.1.0.1.a
simple-expression: 6.1.0.1.b
single-alternative: 5.2.2.1.d
space: 0.4.2.e

spaces: 0.4.1.f

static checks: 7

static content check: 7.2

static definedness check: 7.1
static no-nonsense check: 7.b
static type check: 7.3
style-QUOTE-textual-body: 6.1.5.1.b
style-QUOTE-textual-item: 6.1.5.1.c
succeed: 6.3
succeed-command: 5.1.14.1.a
surprise: 0

symbol: 0.4.1.a

TABLE: 1.LLE

table: 1.2.5.a

table entry: 1.2.5.a
TABLE-body: 6.1.5.1.1
TABLE-display: 6.1.5.1.k
TABLE-filler: 6.1.5.1.m
table-selection: 6.1.4.1.a
table-selection location: 2.1.4.a
table-selection-target: 6.2.3.1.a
TAG: 0.2

tag alphabet: 0.4.2.b

tail: 5.1.16.1.b

target-content: 6.1.2.1.a
terminal metaproduction: 0.2
terminating-command: 5.1.0.1.b
test: 6.3.0.1.a

testing: 6.3.a

test-refinement: 4.4.1.d
test-unit: 4.3.1.a

text: 1.2.2.a

textual-body: 6.1.5.1.b
textual-display: 6.1.5.1.a
textual-item: 6.1.5.1.c
TEXTUALS: 6.3.7.1.A
TEXTUALS-identifier: 0.3.1.c
tight-expression: 6.1.0.1.c
tight-test: 6.3.0.1.b

trailer: 5.1.16.1.d

transparent copy: 2.2.d
TRIM: 6.1.3.1.A
trimmed-text: 6.1.3.1.a
trimmed-text location: 2.1.2.a
trimmed-text-target: 6.2.2.1.a

type: l.a
TYPE: 1.1L.A
TYPES: 1.1.C

TYPE-TYPES-ITEM: 0.3.1.c
typographical-display-feature:
04.1b

unit: 4.0.1.a

unless ... 1s ...: 0.2
user-defined-command: 5.1.16.1.a
where ... is ...: 0.2

where ... lodges ...: 5.1.6.1.b
while-command: 5.2.3.1.a
write-command: 5.1.2.1.a
yield-unit: 4.2.1.a
zeroadic-formula: 6.1.6.1.a
zeroadic-function: 6.1.6.1.e
zeroadic-proposition: 6.3.2.1.a

