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SMALL PARAMETERS IN STRUCTURED POPULATION MODELS 
AND THE TROTTER-KATO THEOREM* 

H. J. A. M. HEIJMANSt AND J. A. J. METZt 

Abstract. The justification of some (often implicit) limit arguments used in the development of structured 
population models is discussed via two examples. The first example shows how a pair of sink-source terms 
may transform into a side condition relating the appearance of individuals in the interior of the individual 
state space to the outflow of individuals at its boundary. The second example considers the usual equation 
for size-dependent population growth in which it is implicitly assumed that discrete finitely-sized young are 
produced from infinitesimal contributions by all potential parents. The main mathematical tool for dealing 
with these examples is the Trotter-Kato theorem for one-parameter semigroups of bounded linear operators. 
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l. Introduction. 
1.1. Biological motivation: structured populations, semigroups of operators, and the 

need for model simplifications. The tenet of the physiologically structured approach to 
the modeling of the dynamics of populations as set out in Metz and Diekmann (1986) 
is that, provided all individuals experience the same environmental inputs such as 
food availability or chance of running into a predator, we may (and should) represent 
a population as a frequency distribution over a space D of potential states of the 
individuals comprising the population. (As we frequently need corresponding concepts 
on the individual and population levels we will, where necessary, use the prefixes i
and p- to distinguish the corresponding terms, for example i-state versus p-state, where 
the latter refers to the frequency distribution.) The main effort in model construction 
is the determination of an appropriate state representation of i-behavior, where the 
i-behavior consists of (i) any contributions to population change such as giving birth 
or dying, and (ii) any quantities relevant to the calculation of the output from the 
population model, such as the rate at which the individual consumes food. If we make 
the assumption that the number of individuals is sufficiently large, then for any given 
course of the environment the present p-state should determine the future p-states in 
a deterministic and linear fashion. For a constant environment the maps relating 
subsequent p-states should form a linear semigroup. 

The transition from i-model to p-model is made through their differential gen
erators. It is here that we leave biology and start doing mathematics: did we really 
write down a genuine differential generator, and what can be said about the properties 
of the semigroup so generated? 

Until now the attention has been mostly restricted to models where the i-state 
space n is a subset of !Rk, and where the individuals move through n according to the 
solution of an ordinary differential equation (ODE), possibly alternating with (usually 
randomly occurring) state jumps, for example, due to an individual losing weight when 
it splits off a daughter. The reasons for this restriction are twofold. First, models 
allowing continuous random i-state movements contain many more coefficient func
tions, which are difficult to specify on a mechanistic basis starting from known 
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underlying biology. Second, it is generally easier to obtain biological information from 
less complex models. After all, the goal of the whole exercise is gaining, preferably 
quantitative, insight into the relation between concrete, though possibly idealized, 
mechanisms operating in the individuals and consequent population dynamical 
phenomena. In fact random state jumps are already a bit of a nuisance in that they 
preclude the sort of simple calculations that a practicing biologist can perform all by 
himself. 

In the present paper we will consider the systematic simplification of two models 
that both contain random i-state jumps. In the first model, which derives from cell 
kinetics, we will remove the random character of the jumps by concentrating the 
takeoffs at one place in D only. In the second model, which derives from the population 
dynamics of ectothermic animals (compare Sinko and Streifer (1967); Streifer (1974); 
Murphy (1983); Metz, de Roos, and van den Bosch (1988); and in particular Metz 
and Diekmann (1986)) and also from the dynamics of fungal pellet cultures (compare 
Edelstein and Hadar (1983); and Chipot and Edelstein (1983)), we will let the size of 
the jumps become infinitesimally small, while at the same time increasing their occur
rence rate. The mathematical tools we use to justify the limit transitions are derived 
from the theory of one-parameter semigroups of operators (see Pazy (1983)). Par
ticularly important is the Trotter-Kato theorem, which relates the convergence of a 
sequence of infinitesimal generators (respectively, their resolvents) to the convergence 
of the associated semigroups. The resulting limit models both allow simple alternative 
representations in the form of renewal equations for the rates at which newborns 
appear into the population with kernels, which can easily be calculated in terms of 
the model ingredients, making possible the routine calculation of biologically relevant 
quantities such as the asymptotic rate of population increase. Moreover, the limit 
models contain a smaller number of coefficient functions, making it easier to calibrate 
them against experimental data. 

1.2. Simplification procedures in two special models. In both models considered in 
this paper the i-state variable of interest will be size; the growth rate of an individual 
of size x will be denoted as g(x ), and D will be an interval of IR+. The rate at which 
individuals of size x die will be denoted as µ(x). 

In the first family of models we consider cells that divide into two at a rate b, (x ), 
where e > O is a small parameter. It is assumed that cells that have passed size one 
are no longer capable of dividing, but either differentiate or die, i.e., b, (x) = 0 for 
x > l. We will moreover assume that b,(x) = 0 for x < 1- e. The two daughter cells 
may differ in size, but the distribution of their relative sizes is constant. This distribution 
is represented by the probability density d ( p ), d: (0, 1)...,.. IR+, where p is the fractional 
size of the daughter relative to that of its mother. As the sizes of the two daughters 
add up to the size of the mother, d is symmetric around 1. We will moreover assume 
that d ( p) = 0 outside d- ii,!+~). Finally we assume that e is so small that the size 
of the largest newborn daughter is less than the size of the smallest mother, i.e., 
1+ ~ < 1- e. Then the size of the smallest daughter, Xmin• satisfies 

Xmin=(l-e)d-~)> (1+ii)(!-~)=: a. 

This allows us to choose D to be [a, 1] independent of e. The growth rate g is assumed 
to be positive and continuous on D. Let n(t, ·) denote the density function of the cell 
sizes present at time t; then 

(I.la) ~n(t, x) = _.i_(g(x)n(t, x))-b,(x)n(t, x) +2f
1 

d(p) b, (~) n (t, ~) dp, 
at ax o p p p 

( 1.1 b) n ( t, a) = 0. 
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Now assume that when we let e i 0, the quantity 

I 1 b.(y) dy 
1-.. g(y) 

converges to a number larger than zero. This means that the probability that a newborn 
cell is eventually going to divide 

(1.2) ( f l b.(y) ) 
1T.=l-exp - --dy 

1-e g(y) 

converges to a value 1To > 0. In the limit cells will only divide on reaching x = 1, and 
they do so with probability 1T0 • The corresponding population equation is 

a a 
-n(t, x) = --(g(x)n(t, x))+2d(x)'7T0g(l)n(t, 1), 
at ax (1.3a) 

(1.3b) n(t, a:)=O. 

This limit model may be used as a convenient approximation when cell division occurs 
only in a narrow size window. 

In § 2 we show that under suitable assumptions on the functions g, d, and b., the 
solutions of (1.1) on the space L 1[a, 1] indeed converge to the solutions of (1.3). 

In the second family of models we consider individuals that reproduce at a rate 
13.(x) by splitting off young with size e, e small, while concurrently their size is 
decreased by the same amount. We assume that newborns have viability p. due to the 
necessity to survive an infinitesimally short larval stage. The corresponding population 
equation reads as follows: 

an a 
(1.4a) -(t, x)+-(g(x)n(t, x)) = -13.(x)n(t, x)+ 13.(x+ e)n(t, x+e)-µ(x)n(t, x), at ax 

(1.4b) g(e + )n(t, e +) - g(e -)n(t, e -) = p. f 13.(x)n(t, x) dx, 

(1.4c) g(O)n(t, O) = 0, 

(1.4d) n(O, x) = rfl(x). 

In (1.4b), 

g(e+)n(t, e+)- g(e -)n(t, e -) = lim [g(s+ h)n(t, e + h)- g(e - h)n(t, e - h)]. 
hio 

It is assumed that growth stops at x = 1, i.e., g(l) = 0, and that g is positive for all 
smaller sizes including zero. Although the model structure is still compatible with 
representing the population state as a density function n(t, ·),the jump condition (1.4b) 
makes the problem technically troublesome. A natural way out of this dilemma is 
provided by the observation that the only interesting quantities to be derived from a 
structured population model are population averages such as total population size, 
total biomass, or population feeding rate, i.e., linear functionals of n(t, ·).This brings 
us to consider the so-called backward equation 

am am 
-(t, x)-g(x)-(t, x) 
at ax 

(1.Sa) = -(3.(x)m(t, x)+ l3s(x)m(t, x- e)+p.13.(x)m(t, e) - µ(x)m(t, x), 

(l.5b) m(O,x)=<,b(x), 
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satisfied by the clan averages 

(1.6) m(t, x) = [ q,(g)Nx(t, dg), 

where the Borel measure Nx( t, · ) represents the expected state at time t of a clan 
descending from an ancestral individual sized x at time zero. If m8 (t, x; <P) is the 
solution of (1.5), then every p-output is of the form J~ m,(t, x; <P)l/l(dx), where I/I is 
the initial condition in (l.4d). In § 3.3 we give a precise description of the duality 
relation between solutions of the forward and backward equations in terms of semi
groups and generators (also see Heijmans (1984) and Clement et al. (1987)). 

In nature usually roughly the same amount of energy is available for reproduction, 
which, depending on the species, may be spent on producing a few large or many 
small young. Therefore we set 

(1.7) 

Moreover, in species with many small young, infant mortality is generally much higher 
than when the young are large. If recruitment is to stay bounded when we let e go to 
zero we have to put 

(1.8) p. =er. 

Inserting ( 1.7) and (1.8) into (1.5a) and letting e i 0, we obtain 

am am 
-(t, x)-(g(x)- b(x))-(t, x) = rb(x)m(t, 0)- µ,(x)m(t, x), at ax ( 1.9) 

which corresponds to the forward equation 

a a 
-n(t, x) = --( y(x)n(t, x))- µ,(x)n(t, x), 
at ax 

(1.10) 

y(x0 )n(t, x0) = J rb(y)n(t, y) dy, 

with 

(1.11) y(x) = g(x)- b(x) 

and x0 = 0. Instead of being set back in size at each discrete reproductive event the 
individual's growth rate is reduced by an amount related to the energy spent in 
reproduction. Note that in contrast tog the reduced growth rate y is no longer positive 
on (0, 1), in particular ')'(1)=-b(l)<O. 

In § 3.2 we show that under suitable assumptions on the functions g, b, and µ,, 
the semigroup generated by (1.5) indeed converges to the semigroup generated by 
(1.9). In that section we will also discuss in somewhat more detail the relation between 
the forward and backward equations. 

Equation (1.10) is the equation usually encountered in the population dynamical 
literature; only x0 is generally assumed to be positive. Biologically this amounts to the 
assumption that either parents can time and again produce instantaneously additional 
masses x0 , notwithstanding the fact that they can add to their own body mass only in 
a continuous fashion, or else that live newborns are created by magic out of the added 
infinitesimal contributions by all parents together. Both assumptions go against the 
grain. Our limiting procedure provides a possible justification, provided x0 is vanish
ingly small. 
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Note for the biological reader. There remains the seemingly awkward assumption 
that g(O) > 0. However, the most often encountered biological growth law, the Von 
Bertalanffy equation, has precisely this property. Note that the Von Bertalanffy Ansatz 
does not allow individuals to spontaneously spring into being by growing away from 
size zero. What matters is that limxio g(x) > 0. Individuals of size zero never exist, 
only individuals that are very small. 

Remark. Another way to guarantee that recruitment stays bounded for s ! 0 is to 
keep Ps constant and to replace the usual integrability assumption on µ by the 
assumption that 

µ(x) =..!.+ j(x) 
g(x) x 

with! an L 1 function. To see that this has indeed the intended effect, observe that the 
probability that a recruited individual survives until it reaches size x > s equals 

exp (-r ;~; dy ). 

(Note that any other choice for the behavior ofµ, (x) near x = 0 does not fore! 0 yield 
the needed survival proportional to e during the first moments after recruitment!) 

2. From distributed to concentrated division. 
2.1. The equation and the associated semigroup. In this section we make a thorough 

mathematical study of (1.1) describing a size-structured cell population reproducing 
by division. For the sake of convenience we recall the following equation: 

(2.la) an ( t, x) +i. (g(x)n( t, x)) = -be(x )n ( t, x) + 2 f 1 
d(p) bs (!.) n( t, !.) dp, 

at ax o p p p 

(2.lb) n(t,a)=O, 

(2.lc) n(O, x) = cjJ(x). 

We will prove that under the right set of assumptions solutions of this problem converge 
for e!O to solutions of the limit equation (1.3), i.e., 

(2.2a) 

(2.2b) 

(2.2c) 

an a 
-(t, x)+-(g(x)n(t, x)) = 2?T0d(x)g(l)n(t, 1), at ax 
n(t, a)= 0, 

n(O, x) = <!>(x). 

We refer to § 1.2 for the interpretation of e, g, b., d, a, and 1To. As the underlying 
population state space we choose X = L1[a, 1]. We make the following assumptions. 

Assumption 2.1. (a) geC[a,1]; g(x)>O,xe[a,1]. 
(b) d E C[O, 1]; d(p)>O if and only if Jp-!J<~; dis symmetric around p =L 

and f:~~~~ d(p) dp = 1. 
(c) beEC[a,l]; b8 (X)=O,xe[a,1-s]; b,(x)>O,xe(l-e,1]. 

We can write (2.1) with initial condition </> e X as the abstract Cauchy problem 

dn 
(2.3) d/t) = A8 n(t), n(O) = </>, 

where the closed operator As on X is given by 

d f I/2+Ad( ) (x) (x) (2.4) (Ae</>)(x) =-71(g(x)<!>(x))-b.(x)<!>(x) +2 _P bs - <f> - dp, 
x 1/2-i:J. p p p 
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for any <f> in its domain 

(2.5) D(A,) ={</>EX: g<f> E W1•1[a, 1] and <f>(a) = O}. 

Using a standard perturbation result for C0 -semigroups (Pazy (1983, § 3.1)) we easily 

show that AF is the infinitesimal generator of a strongly continuous semigroup 

{T.(t)L,.,o-
Let A be a closed linear operator on the Banach space X and let M ~ 0, w ER 

We say that A E G(M, w) if A is the infinitesimal generator of a C0 -semigroup { T(t)},,.,0 

of bounded linear operators satisfying 

(e.g., Pazy (1983, § 3.4)). The next proposition states, among other things, that there 

exists a semigroup solution to (2.1). 
THEOREM 2.2. There exist constants w E lffi and M ~ 1 (which do not depend on t: ), 

such that A. E G(M, w ). 
Proof Let II · II be the L 1-norm. Then the norm II · II is equivalent to the norm I/ · II' 

given by 

II</> II'= [ xi<f>(x)i dx, </>EX. 

Let, for t ~ 0, 

II T.( t)ll' =sup {II T.(t)<f> II'/ II</> II': </>EX, </> ~ O}. 

Since T.(t) is a positive operator, we have 

II Te(t)ll' ={II Te(t)</>ll'/ll</>ll': </>EX+,</>~ O}, 

where X+ is the cone of positive elements. If </> EX+, then II T.( t) </>II' = t xn ( t, x) dx, 
where n(t, x) is the solution of (2.1). If, in addition, </> E D(A,), then 

d f I JI f 1 - xn(t, x) dx ~ g(x)n(t, x) dx;;;; w xn(t, x) dx, 
dt a a "' 

where w > 0 is taken so large that g(x) ~ wx, x E [a, l]. So for </> E D(A.) n X+ we find 

that 

llTe(t)<f>ll'= [ xn(t,x) dx~ew' [ x<f>(x) dx=ew'll<f>ll'. 

Since D(A,) n X+ is norm-dense in X+, this holds for any </>EX+, and we find that 

II T.(t) II';;;; ew', t ~ 0. 

Since II · II' and II · II are equivalent norms, there exists a constant M > 0 such that 

llT,(t)ll;;;;Mew', t~O, 

and the result is proved. D 

2.2. Justification of the limit transition. In this section we give a formal mathemati

cal justification of the limit transition d 0 which amounts to (2.2). That is to say, we 
prove that the solution of (2.1) given by n ( t, ·) = Te( t) <f> converges to the solution of 
(2.2) as t: i 0. For this purpose, we use the Trotter-Kato theorem. Besides Assumptions 

2.l(a)-(c) we only assume there exists a 7T0 E [O, 1) such that limdo 7T, = 7T0 . 
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We rewrite (2.2) as the abstract Cauchy problem 

(2.6) 
dn 
dt (t) = An(t), n(O) = c/>, 

where A is the closed operator 

(2.7) (Ac/> )(x) = - ~ (g(x )<f>(x)) + 21T0 d (x)g(l)<f>(l) 

with dense domain 

(2.8) D(A) = { cf> Ex: g<f> E w1•1[a, 1] and <f>( a)= O}. 

THEOREM 2.3. For A E IR large enough we have 

for every <f> E X. 
Proof The proof consists of four steps. 
(1) Let the isomorphism Ue: X"' X be given by 

Ee(x) 
( U.<f> )(x) = g(x) <f>(x ), 

where E.(x) =exp (-J: (b.(y)/ g(y)) dy). Let 

D= D(A) = D(A.) ={</>EX: g</J E W1•1[a, 1] and <f>(a) = O}, 

and 

i5 = u;1 D = {<f> EX: <f> E w1•1[a, 1] and ij>(a) = O}. 

Let A. be the closed operator u; 1 A.,Ue with domain D(A.) = i5. Then A. is given by 

(A.<t>)(x)=-g(x)d<t>(x)+2 g(x) f l/2+Ad(p) r.(.::)</J(_::) dp, 
dx Ee(x) 1;2-A P P P 

where r.(x) = (b.(x)/ g(x))E.(x) for x E [a, 1]. We define the isomorphism 
U:X "'X by 

<f>(x) 
(U</>)(x)= g(x)' 

Let A be the closed operator u-1 Au with domain D(A) = u-1 D =D. For 
<f> E D(A) we have 

- d<f> 
(Aij>)(x) =-g(x) dx (x)+21T0 d(x)g(x)<f>(l). 

(2) We show that for every <f> ED, 

A.</> "' A<f> as e i 0. 

Let </> E D, then 

- - g(x) f 112
+A d(p) (x) (x) (Ae<l>)(x)-(Aij>)(x)=2-E ( ) --r. - <f> - dp-27r0 d(x)g(x)<f>(l). 

e X 1/2-A p p r 
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We define g =maxxe[a,IJ g(x), i1 =maxpe[i;2-A,i/z+AJ d(p). Now 

_ _ f 1 12g(x)I 112
+a d(p) (x) (x) I \\Ae<P-A<P\I= -(-) -re - <P - dp-27T0 d(x)g(x)<P(l) dx 

a Ee X 1/2-A P P P 

= 2g(x) _P_ r, !_<P !.. dp-271"0 d(x)g(x)<P(l) dx I l/2+A I f 1/2+6 d( ) ( ( ) I 
(l/2-L.1)(1-e) 1/2-L.I P P P 

I 11
2
+t. If 1;2+a d( ) (x) (x) I -;;£2g _P_re - <P - dp-TT,d(x)<fJ(l) dx 

(1/2-A)(l-e) 1/2-A p p p 

+2g 171", -TTol · l<t>(l)\. 

This second expression at the right-hand side can easily be estimated. We write the 

first expression as the sum of three integrals: 

f 1/2+A f 1/2-A f ( l/2+L.l)(l-e) f l/2+A 

(1/2-A)(l-e) = (1/2-6)(1-e) + 1/2-L.I + (1/2+L.l)(l-e). 

It is the middle integral that causes the most trouble, and we restrict our attention to 
this term. Let 8 > 0: 

f c1;2+t.)(1-eJ I f 1;2+a d(p) (x) (x) I 
2g --r, - <P - dp-7T, d(x)<fJ(l) dx 

1/2-A 1/2-L.I p p p 

f (1/2+L.l)(l-•) I f x/(1/2-L.I) l (X) I 
= 2g -d - r,(y)<P(y) dy-11', d(x)<fJ(l) dx 

1/2-A x/( l/2+L.I) Y Y 

f (l/2+L.1)(1-e) If I 1 (X) f I I 
=2g -d - r,(y)<fJ(y) dy- d(x)r,(y)<P(l) dy dx 

1/2-A 1-e Y Y 1-e 

f 0/ 2
+t.1)(1-•) If 1 {1 (x) 1 (x) } I =2g -d - <fJ(y)--d - </J(l) r,(y) dy dx 

1/2-L.I 1-e Y Y 1 1 

f
(l/2+L.1)(1-e){fl } 

-;;£2g 8r,(y) dy dx-;;£2g· 2A · 8. 
1/2-L.I 1-e 

Here we have chosen s > 0 so small that 

for every xE[~-A,(!+A)(l-s)] and yE[l-s, l], and we used that J:_, r,(y) dy= 

7T,-;;:;, 1. This shows that A,<fJ ~ A<P as d 0, for <PE J5. 
(3) We show that for A EIR large enough (in particular A> w; see Theorem 2.2) 

R(A,A,)<P~R(A,A)<P as dO, 

for every <PE X. Choose A> w so large that A E p(A) = p(A). Let <PE X, and define 
if; E fJ as if;= R(A, A)<P. For e > 0, let <P. =(A -A,)i/J. From 

A.ifJ~AifJ as do 
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. A- )- u-1 R(>.. A ) U we deduce from Theorem 2.2 
wegetcf>,..+<t>asdO.SmceR(A,. - • ' • •• 
that 

- M 
llR(>..,A.)11;;;~, s>O. 

Here we have used explicitly that 7To < 1. Now _ 

Jim R(A, A,)cf> = lim [R(>.., A,)(cf>-<P.) +if!]= o/ = R(A, A)cp. 
dO sio 

(4) We finally show that for>.. elR large enough, 

R(>.., A,)cf>.,. R(A, A)<f> as dO, 

for every cf> e X. It is easily checked that 

u,q, ... U<P, dO and U; 1<1>-+ u-1<f>, e!O, 

for every tb e X, and that there exists a constant L>O such that II V.11. II VII. II U;;- 1 11, 

11u- 1 11~L, e>O. For every </>EX we have 

llR(A, A,)cf>- R(A, A)c/>ll =II u,R(A, A.) u;1<1>- UR(>.., A) u-1 <t>ll 

= ll(V. - u)(R(A, A.) u;1 -R(A, ,t) u-1 +R(A, 1t) u-1 

-R(>.., A) u-1+ R(>.., A) u- 1 )<P 

+ u(R(>.., A..)- R(>.., A))( u;1 - u-1 + u-1)<P 

+UR(><, A)(u; 1 - u- 1 )<f>ll 

;a11u.-Vll llR(>..,A,)ll llU;1<1>- u-1 <Pll 

+llU.- Ull llR(A,A,)U- 1cp-R(A, A)U- 1<Pll 

+ 11< u. - U)R(>.., A) u-1<t>11 

+II Ull llR(>.., A..)-R(>.., A)li 11 u;1<1>- u- 1<Pll 

+II Ull ll(R(>.., ;"8)-R(A, A)) u- 1<Pll 

+llUll JIR(A,A)1i llV;1<1>- u-1 <Pll. 

and all these terms go to zero as s ! 0. D 
We can now apply the Trotter-Kato theorem (Pazy (1983, § 3.4) ), which yields 

that (i) A is the infinitesimal generator of a C0-semigroup (in particular this means 
that (2.2) is well posed) and that (ii) the solution of (2.1) converges to the solution of 
(2.2) as dO. 

THEOREM 2.4. A E G(M, w ), and if { T(t) }i;;;0 is the semigroup generated by A, then 
for every </> EX, t ~ 0, 

T,(t)cf>-+ T(t)cf> as dO. 

Moreover, the convergence is uniform with respect to tin bounded subsets of (O, cx:i). 

3. From size jumps to reduced growth. 
3.1. The semigroup solution to the backward equation. In this section we show that 

under some reasonable assumptions we can associate a C0-semigroup of bounded 
linear operators on X = C[O, 1] with the backward equation (1.5), which we recall 
below for convenience. Throughout this section we will assume that the death rate J.L 
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is identically zero. However, all the results obtained here remain valid for nonzero 
death rates. The backward equation reads as follows: 

am am 
(3.la) -(t, x)- g(x)-(t, x) = -(3.(x)n(t, x) + f3.(x)m(t, x - s) + p.{3.(x)m(t, e ), at ax 

(3.lb) m(O, x) = <f>(x). 

Assumption 3.1. (a) g is Lipschitz continuous on [O, 1]; g(x) > 0, x e [O, 1); 
g(l) = 0. 

(b) f3. is Lipschitz continuous on [O, 1]; there is an a> e such that f3.(x) = 0, 
x e [O, a] and f3. (x) > 0, x e (a, 1]. 

Here a denotes the minimum size at which an individual can reproduce. We can 
write (3.1) as the abstract Cauchy problem: 

(3.2a) 
dm 
dt(t) = A,m(t), 

(3.2b) m(O) = <f>e X, 

where the closed unbounded operator A. with domain 

D(A.)={<f>eXn w:~~[O, 1]: g<f>'eX}, 

is given by 

d<f> 
(A.</> )(x) = g(x) dx (x) - {3,(x)<f>(x) + f3.(x) <f> (x - s) + p.{3.(x )<P(s ). 

We write A. as the sum of two operators: 

(3.3) 

where the closed unbounded operator A0 has the same domain as A. and is given by 

d<P 
(A0 <f>)(x) = g(x) d)x), 

and where B. is a bounded operator given by 

(B.</> )(x) = -/3. (x)<f>(x) + f3.(x )<f>(x - e) + p.f3. (x)<f>(s ). 

It is quite easy to show that A 0 generates a strongly continuous semigroup {T0(t)},i1!;0 , 

and therefore A., being a bounded perturbation of A 0 , also generates a strongly 
continuous semigroup {T.(t)},il!i 0 (see Pazy (1983, § 3.1)). 

Both {T0(t)},;;:; 0 and {T.(t)},il!i 0 are positive semigroups, which is intuitively clear 
from the biological interpretation, but can also be shown rigorously (see Heijmans 
(1986)). Let 1 be the element of X that is identically one on [O, 1]. Then 

Define the positive scalar w, by 

(3.4) w. =sup { p.f3. (x): x e [O, 1]}. 

We see immediately that 

o~ A.I~ Wei. 
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We show that Ae e G(l, we). First suppose that w. < s(A8 ), where s(As) is the spectral 
bound of Ae, i.e., s(Ae)=sup{ReA:Aeu(A6 )}. Since {T.(t)},~0 is a positive semi
group, s(A.) e u(A.) if u(Ae) ;e 0, and R(A, As) is a positive operator if A> s(A,.) 
(see Nagel (1986)). Choose A> s(A.). Since R(A, Ae) is a positive operator we get that 

1 
O~ R(A, A,)1 ~--1; 

A-w. 

hence llR(A, Ae)ll = llR(A, A.)111~1/(A-w,.), and we find that llR(A, A.)11 remains 
bounded if Ai s(A.), which is in contradiction with 

s(A.) e u(A.). 

Therefore w. ~ s(A,.). Using the same arguments as above, we find that for A> w., 

1 
llR(A, A,.)11 ~--, 

A - w,. 

which yields that for n = 1, 2, · · · 

and it follows from the Hille-Yosida theorem that As e G(l, w,.). In particular this 
implies that A. is the generator of a C0-semigroup {Te ( t)} ,;;;0 on X. 

3.2. The limit transition justified. Assuming (1.7) and (1.8), i.e., f3s(x) = e-1b(x) 
and p. = er, we find the limiting equation 

am am 
-(t, x)- -y(x)-(t, x) = rb(x)m(t, O), at ax (3.5a) 

(3.5b) m(O, x) = <f>(x), 

where 'Y is the reduced growth rate 

(3.6) y(x) = g(x)-b(x). 

Note that it follows from Assumption 3.1 that (i) b is Lipschitz continuous on [O, 1], 
b(x) = 0 for x ~a and b(x) > 0 for a< x ~ 1, and that (ii) 'Y is not positive on the 
whole interval [O, 1], in particular y(l) = -b(l) < 0. 

In the rest of this section we will show how the Trotter-Kato theorem can be used 
to justify the formal transition from (3.1)-(3.5). In the next section we interpret these 
results in terms of the forward equations (1.4) and (1.10) (with x0 = 0). 

First we reformulate (3.5a) supplied with initial condition (3.5b) as an abstract 
Cauchy problem: 

(3.7) 
dm 
dt(t) =Am(t), m(O) = <f> e X, 

where the closed operator A is given by 

d<f> 
(A</> )(x) = 'Y(x) dx (x)+ rb(x)<f>(O) 

for every <f> in its domain 

D(A) = { <f> ex n wt~~[o, 1]: 'Y<f>' ex}. 
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It is not difficult to show that A generates a strongly continuous positive semigroup: 
this, however, will also follow from the forthcoming analysis. Let 

(3.8) w := {rb(x): o~ x ~ l}. 

Obviously, w, = w and from the results of§ 3.1 it follows that 

(3.9) 

Assumption 3.2. There exists a unique x E (0, 1) such that g(x) = b(x). 
In combination with the other assumptions of this section this means that 

y(x)> 0, 

y(x)<O, 

o~x<x, 

x<x~l. 

Now let D = C 1[0, 1], i.e., the subspace of X containing all continuously differentiable 
functions on [O, 1]. Clearly 

D(A,)s:;; D, D(A)s:;;D. 

PROPOSITION 3.3. (A -A)D is dense in x for A EIR sufficiently large. 
Proof. Consider for FE X the inhomogeneous equation 

Ar.f>(x)- y(x)<f>'(x) = F(x), 

where A E IR is sufficiently large (A> w ). The solution of this equation for 0 ~ x < x is 
given by 

(*) Ix F(y) { I y dg } 
<f>(x)= x y(y) exp -A x y(g) dy, 

and a similar expression can be found for <f>(x), if x is greater than x. It is easy to 
check that cp ED if FE D. Now, for f EX, the solution of 

(**) A<f> -A</>= f, 

on (O,x) is given by(*), with F(x)=f(x)+rcp(O)b(x) substituted. Hence cpED if 
FE D. Let f EX and let cp be the solution of (**); then 

</>(O)=fx f(y)+rcp(O)b(y) exp{-A fY _.!!§_} dy. 
0 y(y) 0 y(g) 

We assume that A E IR is so large that 

f x b (y) { f y dg } 1 
a":= 0 y(y)exp -A 0 y(g) dy<-;;. 

and for f E X we define 

HA(/) :=-r-f x f(y) exp {-A f Y _.!!§_} dy. 
1-aAr o y(y) o y(g) 

Then the solution </> of(**) satisfies 

r<p(O) =HA (f). 

So we get that <f> ED if f + H>. (f)b ED. We define V c;; X as 

V= {/E X:f + HA(f)b ED}. 

Then V s:;; (A -A)D, and it suffices to show that V is a dense subset of X. Let f EX 
and define g EX as 

g = f + HA (f) b. 
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Let {g"} be a sequence in D converging to g as n ~ oo. The solution of 

gn =Jn+ HA (fn)b 

is given by 

Now fnE Vand 

Therefore V = X. D 
PROPOSITION 3.4. A.cp ~A</.> as e i 0, for every 4> E D. 
Proof. Let 4> E D. Then 

i(A,c,l>)(x)-(Acp)(x)i~lb(x)i ·l~(</.>(x)-</.>(x-e))-</>'(x)I +rlb(x)i · i<fi(e)-c,l>(O)i, 

for every x E [O, 1], and thus 

l!A.<f>-A<i>ll= sup j(A,<f>)(x)-(Ac,l>)(x)l~o, dO. D 
xe[0,1) 

We are now ready to apply the Trotter-Kato theorem which gives us the following 
theorem. 

THEOREM 3.5. A E G(l, w ), and if { T(t)},,,, 0 is the semigroup generated by A, then 

T,(t)</J~ T(t)</J, dO, 

for every <f> EX, where the convergence is uniform fort in bounded subsets of (O, oo). 
This theorem tells us that a solution of the limit equation (3.8) is indeed an 

approximation of solutions of equation (3.2a), presupposed that their initial condition 
<P is the same. 

We can give a very precise description of the relation between the backward and 
the forward equations and their respective solutions in semigroup terms. It is the 
backward equation that can be derived rigorously and that is to be solved on the space 
of continuous functions. Let A, be the differential operator on X associated with the 
backward problem (see (3.2) ). Then, by definition, the abstract forward equation is 

dn 
(3.10) d/t) = A:n(t), n(O) = l/1 EX*, 

where A:, the dual operator of A., is defined on the dual space X* = M[O, l], the 
space of regular Borel measures on [O, 1]. The solutions of (3.10) are given by 
n.( t, ·; l/1) = r:(t)l/1. Here the notion of solution must be understood in terms of the 
weak* topology on X*. The dual semigroup { r:(t) },e;0 is a weakly* continuous 
semigroup with weak* generator A: (see Butzer and Berens (1967)). There exists the 
following duality relation between solutions of the forward and the backward equations. 
For 4> E X we have 

L <fi(x)n,(t, dx; l/1) == (</>, n,(t, ·; lfl)> = (<P, T~(t)l/I) 

=(T,(t)</>,l/i)=(m.(t,·;4>),l/1)= L m,(t,x;cf>)l/J(dx), 

(3.11) 

where (·,·)denotes the duality pairing between X and X*, and where m,(t, ·; 4>) is 
the solution of the backward problem (3.1 ). 
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Let X 8 be the closed subspace of X* where { T:( t) },s:;0 is strongly continuous. 
Then X 8 = D(A!) (see Butzer and Berens (1967)). It can be shown (compare the 
remark below) that in the present situation X 8 = L 1[0, 1] (e.g., Clement et al. (1987); 
(Clement, Heijmans et al. (1987)). Obviously, X 8 is invariant under {T:(t)},s:;0 , and 
the restriction { I'?(t)}1s:; 0 is a strongly continuous semigroup. Ifwe denote its generator 
by A~, then 

dn 
dt (t) = A~n(t), 

is the abstract formulation of (1.4) and with this observation the circle is closed. 
Remark. To prove the latter statement, we have to calculate A: and its domain 

D(A:) from A, and D(A. ). This calculation involves the following steps (e.g., Heijmans 
(1984)): 

(i) compute the resolvent operator R(A, A,) 
(ii) compute its dual R(A, A:)= R(A, A.)* 

(iii) find the domain D(A:> from the relation 

D(A:) =Ran (R(A, A:)), 
Ran( · ) denoting the range 

(iv) calculate A:i/1, where i/J E D(A:), from the relation 

(</>,A:!/!)= (A.</>, 1/1) for</> E D(A.) 

(v) X 8 = D(A!) and A~ is the part of A: in x 0 

(e.g., Butzer and Berens (1967)). 
Our main result of this section, Theorem 3.5, can be restated in terms of solutions of 
the forward equation by using the duality relation (3.11). We find that for any 
"'E M[O, 1], 

n, ( t, · ; i/J) ~ n ( t, · ; i/J) as d 0 

where convergence holds with respect to the weak* topology of X* = M[O, l], and is 
uniform for t in bounded intervals of (O, oo ). 

4. Discussion. In the previous two sections we have proved the essential correct
ness of two limit arguments initially derived in a heuristic manner. We expect these 
cases to be exemplary for a general procedure: (i) start imagining how any model 
simplification works on the level of the individual, (ii) take good care that birth rates 
keep behaving, (iii) translate individual behavior into a structured population model, 
both before and after the simplification, (iv) use the Trotter-Kato theorem to connect 
the two. The upshot from the examples discussed in this paper is that our intuition 
derived from the individual level appears to be essentially correct when applied to the 
population level, at least when we are careful. To emphasize the latter point we finish 
with three cautionary notes. 

(i) From a biological point of view the models from which we started in our 
examples were already fairly metaphorical. In deriving them we made a great number 
of simplifying assumptions about the underlying biology, comparable to the ones we 
spelled out in our limit arguments. The nice thing about apparently being able to make 
our simplifications with impunity already at the level of the individual, is that usually 
for the more complicated pictures of individual behavior that lie at the start of our 
considerations we do not even know how to formulate a full population model. Yet, 
it is of great importance not to be too naive about our simplifications. A thorough 
analysis of some metaphorical examples such as those we consider in this paper should 
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help to clarify the issues. In this context we may point to the work of Chipot and 
Edelstein (1983) on the dynamics of fungal pellet cultures. Their heuristic model 
formulation basically seems comparable to the formulation that we chose in our second 
example. Therefore we feel that the limit model embodied in (1.10) also should be the 
correct model formulation for that particular class of biological systems, and we fail 
to understand the rationale that led these authors to a different type of equation. 

(ii) The Trotter-Kato theorem only gives information about what happens in 
finite time intervals. Often our main interest is in the long-term behavior of the 
population model under consideration. Whether the limit argument extends to such 
properties has to be ascertained in a separate manner. As an example we may refer 
to Heijmans (1984) who considers both the transient behavior and some properties of 
the stable i-state distribution (the dominant eigenfunction of the forward equation), 
as well as the eventual convergence of the p-state towards this distribution, for a model 
of satiation dependent predatory behavior. 

(iii) The proofs in this paper only apply to the linear time-invariant case, i.e., we 
did not allow any direct or indirect interactions between the individuals. Ultimately, 
we will wish to extend the limit theorems to the nonlinear case as well. After all, the 
greatest strength of the structured population methodology is that it allows us for the 
first time to incorporate various biologically realistic mechanisms for density dependent 
population regulation, such as a feedback through the limiting of individual growth 
by food shortage, into analytically formulated population models. Two approaches 
are possible. Either we could take recourse to direct nonlinear extensions of the 
Trotter-Kato theorem (compare, e.g., Clement, Heijmans et al. (1987, § 2.3)), or we 
could try to fall back on the specific mathematical structure of the equations of 
structured populations, whose main property is that for a given course of the environ
ment the equations are linear (but time-inhomogeneous). Abstractly, such equations 
take the form 

(4.1) 
dn 
dt (t) =Ae(E(t))n(t), n(O) = <f> EX. 

Here the vector E(t) describes the environment at time t, and can be calculated as the 
p-output 

E(t) = (n(t), g) 

for some g EX*. Assuming that, for a given input E( ·),the linear time-inhomogeneous 
equation (4.1) has a solution n( ·) we can compute the p-output 

E(t) =<n(t), g). 

Solving (4.1) amounts to solving the fixed-point equation 

E(-) = E(-). 

This fixed-point equation still depends on the parameter e. If this dependence is 
continuous (in a sense to be specified) then we might expect that the same is true for 
its solution. 

However, all this is music of a distant future as only the first hesitant steps toward 
a proof of existence and uniqueness theorems for somewhat more general structured 
population models of the form (4.1) are being taken at this very moment. Therefore 
the present paper should only be considered as an introduction to the fascinating 
problem of putting a more rigorous basis under the structured population methodology. 
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