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Abstract We study different extended formulations for the set X = {x € Z" |
Ax = AxY} with A € Z™*" in order to tackle the feasibility problem for the set
X N Z . Pursuing the work of Aardal, Lenstra et al. using the reformulation X =
(x €eZ" | x —xV = QA, A € Z"™}, our aim is to derive reformulations of the form
(xeZ" | Px—x%=Tu, u € Z°) with0 < s < n — m where preferably all the
coefficients of P are small compared to the coefficients of A and T . In such cases the
new variables u appear to be good branching directions, and in certain circumstances
permit one to deduce rapidly that the instance is infeasible. We give a polynomial time
algorithm for identifying such P, T if possible, and for the case that A has one row
a we analyze the reformulation when s = 1, that is, one w-variable is introduced. In
particular, we determine the integer width of the extended formulations in the direction
of the w-variable, and derive a lower bound on the Frobenius number of a. We conclude

with some preliminary tests to see if the reformulations are effective when the number
s of additional constraints and variables 1s limited.
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1 Introduction

Over the years a variety of approaches, other than cutting planes, have been proposed
for the reformulation of part or all of the feasible region of a linear integer program
{x € Z, | Ax = Ax"}. These include the conversion to a knapsack constraint
[5,20], coefficient reduction of knapsack constraints [4,7,19] that can be used in
preprocessing, and lattice reformulations in which theset X = {x € Z" | Ax = Ax"}
1S rewritten as {x | x = xV + QA, A € Z"7™} involving n — m new variables, see
among others [6]. In a recent series of papers Aardal, Lenstra and others [2,3] have
demonstrated the interest of the latter reformulation when Q is a reduced basis, and
In particular when the reduced basis Q has a partition 0 = (R, S) in which the
coetficients of R are small and those of S large. For the special case when m = 1 and
a = M1p1 + M2p2 with pl, p2 small and M, M; large, they show that S contains
a single column and the corresponding variable A,_,, is an important variable for
branching. They have also derived strong lower bounds on the Frobenius number
when M, = 1 and p' € Z",. Computationally it has been shown in several papers
[1,3, 18] that the reformulation 1s much more effective than the original formulation
for certain hard integer programs when using a commercial branch-and-bound system
or a specialized enumeration algorithm. Another viewpoint is that branching on one
of the new variables i1s equivalent to branching on an easily calculated hyperplane in
the original space. Interesting tests of branching on hyperplanes arising from Gomory
mixed 1nteger cuts have been carried out recently by Karamanov and Cornuéjols [13].

Here we pursue the viewpoint of reformulating with reduced bases, but from a
somewhat different angle. To motivate our approach, consider the set

(x € Z% | 1003x; — 7004x7 + 998x3 — 1999x4 = 27001}

Given the coefficients, a natural i1dea 1s to separate the multiples of 1000 from the
multiples of 1 leading to the equivalent set

x1 — Txo + x3 — 2x4 = 27 + MU
3x1 — 4x» — 2x3 -+ X4 = 1 — 1000u

xeZt nueZz

Here the new integer variable wu 1s a natural candidate for branching as any nonzero
value of u immediately forces some of the x-variables to take large values.
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Lattice based extended formulations for integer linear equality systems 339

This suggests three questions:

. Giventheset X = {x € Z" | Ax = Ax"}, how can we find reformulations of the
form

(x eZ" | Px = PxO—I-T;L, ez’

involving just a small number s ‘of new variables?
2. Can we detect when the matrix A has “special” structure as in the example above,
so that we can produce a reformulation in which the coefficients of P are small

relative to those of T and one can see directly that branching on the p-variables
has a significant impact?

. Can we measure this impact explicitly ?

2

We now describe the contents of this paper. In the rest of this section, we present
some links between lattices in Z"” and the feasible regions of integer programs.

In Sect. 2 we show that questions 1 and 2 have simple answers, and that the existence
of special structure corresponds almost exactly to the structure observed by Aardal
and Lenstra [3], 1.e., O = (R, S) with R consisting of short vectors and S of long
vectors. One consequence is that for knapsack constraints when m = 1 we can detect
when @ can be written in the form a = M p' + M, p* with p!, p? short relative to a.

In Sect. 3 we consider this special case with m = 1 explicitly. We reformulate it with
two constraints and one additional variable ©, and we then calculate the width of the

underlying polyhedron in the direction of w. This allows us to simplify and generalize

aresult of Aardal and Lenstra and leads also to lower bounds on the Frobenius number
of a.

For lattice reformulations to be useful as a tool in preprocessing, it is an open ques-
tion whether the reformulations should only involve a small number of new variables.

In Sect. 4 we carry out some preliminary tests to see whether reformulations with a
small number of new variables, as opposed to the n —m appearing in the reformulations

of Aardal et al. [2], can have a significant effect in reducing the size of enumeration
trees.

1.1 Preliminaries

The set of nonnegative (positive) integers in R” is denoted by Z” (ZZ ). Similar
notation 1s used for the nonnegative real numbers.

The Hermite Normal Form of a matrix A € Z™*" of full row rank, HNF(A),
1s obtained by multiplying A by an n X »n unimodular matrix U to obtain the form
(D, 0), where D € Z™>™ is a nonsingular, nonnegative lower triangular matrix with
the unique row maximum along the diagonal. Note that when D % I, the matrix
D! A is integral and HNF(D~14) = (1, 0).

Letb!, ... b be linearly independent vectors in R”. The set

L(B)={xeR"|x =B\, A eZ)
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340 K. Aardal, L. A. Wolsey

is called a lattice. The set of vectors {b', ..., b’ } 1s called a lattice basis. B’ is an
alternative basis of L(B) if and only if B = BU where U is an [ x [ unimodular

matrix. The rank of a given lattice L, rk L, is equal to the dimension of the Euclidean
vector space generated by a basis of L.

From now on, we assume that B is an integer matrix. If the lattice contains every
Integer point in the subspace generated by B, ie., L(B) = {x e R" | x = Bz, z €
R’} N Z", then the lattice is called a pure sublattice of 7.".

The following observations all have a short proof, or follow immediately from the
above definitions.

Observation 1 L(B) is a pure sublattice of Z" if and only if HNF(B1) = (I, 0).

Suppose A 1s an m X n integer matrix of full row rank. We use the notation kerz A to
denote the lattice {x € Z" | Ax = 0}.If Q € Z"*("=™) i5 a basis of kery A, then we
can write

kerzyA ={x € Z" |Ax =0} ={x eR" |x=0A, A €Z" ™"} =L(0).

Observation 2 keryz A is a pure sublattice of Z" and hence HNF( QT) = (I,0).

Now we consider when one can go from the basis formulation L( Q) to an IP formu-
lation kerz A.

Observation 3 If Q € Z""" with rk(Q) = r, there exists an integer (n — r) X n
matrix A such that L(Q) = kerz A ifand only if HNF(QT) = (I, 0) (L(Q) is a pure
sublattice of ). In addition, there exists an A with HNF(A) = (I, 0).

Observation 4 If L(Q) = kery A with HNF(A) = (I, 0) and HNF(QT) = (I,0),
then L(AT) = kery Q7.

Observation 5 If Q is a lattice basis, HNF(Q") = (I, 0) and 0O = (R, S), then
HNF(R") = (1, 0).

A reduced basis B' of L(B) is a lattice basis in which the columns are relatively
short and orthogonal. See Lenstra, Lenstra, and Lovasz [14] for precise definitions.
For a more detailed exposition of lattices and the importance of reduced bases, see for
instance Cassels [8], Lovasz [17], Kannan [11] and Lenstra [15, 16].

An algorithm [14], known as the LLL algorithm, calculates a reduced basis in
polynomial time. Using this algorithm 1t 1s also possible to find a reduced basis Q of
kerz A 1in polynomial time, see [2]. The Hermite Normal Form can also be calculated

in polynomial time using for instance the LLL algorithm [21], or the algorithm of
Kannan and Bachem [12].

2 Alternative formulations and hidden structure
The basic set that we consideri1s X = {x € Z" | Ax = b} where A ¢ Z"™*" with full
row rank, and b € Z™. We assume that X # @. For any vector x’ € X we can write

b= AxY and

XxH ={xeZ"| Alx —x%) =0} = {x°} + kerz A.
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Lattice based extended formulations for integer linear equality systems 341

Later, the reformulations of kerz A that we obtain below will be used in testing feasi-
bility or optimizing over the set

X;x=Xx"HN{x|x=0). (1)

Since A has full row rank, rk kerzA = n — m. In Sect. 2.1 we derive a family
of reformulations of kerz A of the form {x € Z" | Px = Tu, n € Z*}, where
P e zmtsixn o gm+s)Xs for 0 < s < n — m, and 1n Sect. 2.2 we give a
polynomial time algorithm to compute P and T for any value of s. Notice that s = 0

corresponds to the case Ax =0, and s = n — m tothe case Ix = Qu where Q is a
basis for kerz A.

2.1 A family of extended formulations

Given A and Q, a basis of kerz A, our goal in this subsection is to derive alternatives
to the reformulation {x € R" | x = QA, A € Z"™"} of kerz A.

Theorem 1 Let Q be a basis of keryA and (R, S) a partition of Q with R €
7Zr=<r S e Z"S and r +s = n — m. Moreover. let PT ¢ 7"%Xm+S) be a4 basis
for the lattice kerz RT . Then,

kerzA ={x € Z" | Px = PSu, n € Z*).

Proof From Observation 2 it follows that HNF(P) = (I, 0) and from Observations 2

and 5 that HNF(R') = (1, 0). As kery RT = L(PT), we obtain from Observation 4
that kery P = L(R).
Now{x €¢Z" | Px = PSu, n € Z°}

={xeZ" | Px—Su)=0, un € Z*)

={xeZ"|x—~Su=R\ peZ, AeZ" ")

={xeZ" | x=Rr+Su, p € Z*, 1 € Z""m=5)

= Keryz A. ]

We now show that if we have a reformulation of keryz A of the form {x € Z" |

Px =Tup, p € 2’} with P, T integer matrices and with HNP(P) = (I, 0), it is
necessarily of the above form.

Proposition 1 [fkerzA ={x € Z" | Px = Tu, u € Z'} with P € Zm+s)xn_ ¢

Zm+)Xt pk(P) = m + s, rk(T) = t, and HNF(P) = (1,0), thens =t and P is
generated as in Theorem 1.

Proof Let U € Z"*" be the unimodular matrix used to bring P in Hermite Normal
Form, 1.e., P(U,U>,) = (I, 0). Then
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342 K. Aardal, L. A. Wolsey

Now O = U*, U! I') must be a basis of kerz A and thus s = . Taking R = U? and
S=U'T, PU?*=0and PS = PU'T = T and the claim follows. u

2.2 Using reduced bases to find structure

Here we present an algorithm for determining a matrix P as described in the previous
subsection for varying values of s. Notice that since A € kery QT ,then A € kerz R' .
Then, as kerZRT = L(P'), we can write A = M P for some m X (m 4+ s) Integer
matrix M.

(1) Find a reduced basis Q of kerz A.
(11) Suppose Q consists of s long vectors and r = n—m —s short ones. How to define
“long™ and “short” 1s up to the user. (If all vectors of O are of approximately

the same length we set s = n — m.) We define R to be the set of short vectors
of O and § to be the set of long ones.

(iii) Find a (reduced) basis P7 of kery R' .
(iv) Solve the system of equations MP = A, M e Z"™*"+5) {0 find the matrix of
multipliers M 1t an explicit decomposition of A is desired.

We can establish the following relationship between M and the matrix PS.

Proposition 2 Given A, suppose P is obtained as in Theorem | and M as in step iv)
of the above algorithm. Then PS is a basis of kery M .

Proof LetT = PS. Wehave 0 = A(x — xY) = MP(x — x°) = MTu for w ez,
Hence, the columns of T lie in kery M . Suppose that they do not form a lattice basis.
Then there exists an element ¢* € kery M that is not in L(T). By Observation 2 we
have HNF(P) = (I, 0), and hence there exists a vector x* such that Px* = ¢t*. Now
the vector y* = x4+ x* liesin X (x?) as Ay* — Ax? = Ax* = M Px* = Mt* = 0.
Moreover, P(y* — x%) = Px* = t*. By the assumption that ¢* ¢ L(T) we have
P(y* — x%) £ T u for any u € Z°, contradicting Theorem 1. O]

The choice of areduced basis Q at the beginning of our algorithm, and the choice of
R as the set of ““short” basis vectors of Q determines the set of interesting branching
variables x. Then any basis P! of kerzR” will lead to a reformulation with w as
additional variables. However if R consists of short vectors, then there exists a basis
P! consisting of relatively short vectors. Therefore choosing a reduced basis P’
brings out the real structure of A, namely A = M P with P having small, and M
potentially large elements. This is illustrated in the following example.

Example 1 We consider a matrix A consisting of one row a only:

a = (12223 12224 36674 61119 85569).
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Lattice based extended formulations for integer linear equality systems 343

and b = 890643481. This is instance cuwwl from Cornuéjols et al. [10]. Here we
derive a reformulation using m +s = 2 constraints and n 4+ 1 = 6 variables, and show
how 1ts hidden structure can be uncovered.

The vector (x”)? = (—635, 30, 1428, —511, 887) satisfies ax® = b. A reduced
basis of kerza 1s equal to

0 -3 —1 2059

+ 1 1-3 157
Q=|-1-1-1-3336

~1 1 0 2687

1 0 1 —806

Here we observe that the last column of the reduced basis @ is much longer than the
other columns. Taking r = 3 and s = 1, R will consist of the first three columns of
0, and S will consist of the last column of Q. A reduced basis P? the of kerz R is

— ]

0

Pl = 2
— |

|

O\ O\ — — DO

A reformulation of X (x") is given by the set of nonnegative integer x satisfying
—X1 +  2x3 - X4 + x5 = 4889 — 12224u

2x1 + x»  + X3 + 6xq4 -+ 6x5 = 2444 -+ 1222511
for some integer L.

Notice also that the vector (M, M) = (12225, 12224) solves M P = a, so we

can write @ = 12225p! + 12224 p?, with p' being the first row of P, and p* being
the second row of P. 0

3 Knapsack sets replaced by two equations

Recall the set (1)

XexD)={xeZ" | Ax —x% =0} N{x | x>0}

where xY is an integer vector satisfying Ax® = b for given b € 7" Using our

reformulation of kerz A for a given choice of P we obtain the following formulation
of the set (1):

Xyx?, P)={x eZ' | P(x —x°) = PSu, u e Z°}.

Here we analyze the case m = 1 and s = 1 in more detail. We suppose that
aj > Oforalll < j < n and that gcd(ay, ...,a,) = 1. We generate P € Z2x"
and M = (M, M) using the algorithm in Sect. 2.2, with a possible adjustment of
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344 K. Aardal, L.. A. Wolsey

the signs so that M, M, > 0. Notice that HNF(P) = (I, 0) from Observation 2,
and that gcd(M, M) = 1, which implies the existence of integers ¢ € 7 with
Mg, + Mag> = 1. Suppose ¢’ € Z? satisfies Miq|, + Maq, = 1. The set of all valid
(q1, g2)" can be written as

1 ' — Mo \
(C] ) = (6]: ) + A( B
q2 q, My )

Now we can derive specific values for p‘x’ pi S i = 1,2. Choose q e Z? such
that M1q1 +M2£]9 = 1. Becauseax —b = M](p x! —-—qlb)-l—Mo(p X -*qzb) = ()
we can take p'xY = q,b fori =1, 2 By Proposition 2, P S forms a basis of kery M.
Hence, we can set p'S = M, and p?S = —M;.

Using these specific values of p'x", p’S, i = 1,2, and rearranging the terms,
yields the following reformulation of X +(x0).

(2)

Xy (x°, P)={xeZ), peZ (3)
plx—Mgum:qlb (4)
p’x + Miu = g2b}. (5)

The linear relaxation of X1 (x°, P) is denoted by Y. (x°, P).
We derive two results. The first concerns the width of the polyhedron Y, (xY, P) in
the direction . The second uses the width to derive a lower bound on the Frobenius

number, simplifying and generalizing a result of Aardal and Lenstra [3] that is valid
under the assumptions that p! € Z. g and M, = 1.

3.1 The integer width

The integer width of a rational polytope P in the integer direction d, w; (P, d), is
defined as

wy(P,d) = Lmax{de | X € P}J — '_min{de | x € P}—l + 1,
and 1s equal to the number of parallel lattice hyperplanes in direction d that are inter-

secting P.
Our goal is to calculate the integer width of

Y+(x0, P)={(x,n) e R. xR | plx — Moy = q1b, pzx + M = grb}
1n the direction of the variable 1. To do this, let
Vi@ P)={(x,n) eRL xR | p'x — Mau =q1, p°x+ Miu=qs} (6)

be the scaled down version of this polyhedron with b = 1.
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Lattice based extended formulations for integer linear equality systems 345

Below we derive the values z = max{u | (x, i) € Y+(x0 P)} and z = min{u |
(x, ) € Y+ (xo P)}. Once we have the values z and z it will be straightforward to

compute the width w; (Y4 (xY, P), e" 1) as |bz] — [bz] + 1.

Lemma 1 Given the polyhedron Yi(x0, P), let

j = argmin{i|p; /a;}
kK = arg m.aux{ilg:v,«1 /a;}.

Then,

| l _
Pk a1 and z = 4
M- ay M’) - Mgaj M>

7 =

Proof Consider the linear program Z = max{u | (x, 1) € Y+ (x%, P)}, and let y be
the corresponding LLP-dual variables.
The dual problem is:

Z=min q1y1 + Q2 (7)
st pivi+piva>0, 1<i<n, (8)
—Moy) + Myys = 1, (9)
y € R
From constraint (9) we obtain y; = M—‘-ﬁ%:l Substituting for y; in the dual objective
function (7) gives
_ q1 V2 q1
= —(q1 M M»3) — = —— — 10
Z = min Mo 2 (@1 M1 + qaM>) M, = min A (10)

where the last term is a constant. Since M»> > 0 we want to find the minimum value
of y». Constraints (8) now yield D; (Mm"”l) + pl 2 >0, 1<i<n.
Rewriting gives yg(pl + p; (Ml/Mz)) — P; LMy = 1/Mo[yc:(p, M\ + p; 2M,) —

] > 0, or yp > Zi , 1 < 1 < n. From the definition of the index k£ we obtain

Y2 = z/’: Finally, we substitute for y, in the rewritten dual objective function (10)
yielding the optimal dual objective value

]

~ Py, Qi .
—. 11
© = M»ay, M 2 (h
The calculation of z is almost identical. O

Immediately we obtain the integer width.
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346 K. Aardal, L. A. Wolsey

Theorem 2

. . bpl b bp: b
wi (Y4 (x°, P), e""!) = LMffzk - WA%-J - l'Mzcjz- B “Ag%] +1,
2 Z J &

where the indices j and k are defined as in Lemma 1.

Notice that Z and z, and hence w; (Y4 (x?, P), ¢"t1), can be expressed 1n several
ways by using various equations. An expression for Z (and similarly for z) that does
not contain M or M5 is obtained by using Mg + M>g> = 1 and a;, = M, p,} -+ Mgp,%
In (11). We then obtain z = (p,lqg — p,%ql)/ak.

Example 1, cont. Consider the instance of Example | and its decomposition. Now we
apply Theorem 2 to this example. We have j = 1, k =3, g1 =1, g, = —1. We

obtain
_ ﬂ bp,  bq bp; b
Y XO, P ; i+l — LS L - — I
wy (Y ( ), ") I . Vi J [M:)_aj M> T

_ | bps _bar || bpi _bai |
M»aj M> Msa; M>

| 89643481 2 |

- 12224 36674

89643481 -1 ,
— | — - 1) +1
12224 12223 '

= | —7333.00003] — [—7333.9999]

+1 = —-7334+ 7333 +1 = 0.

It follows that X (x%, P) = @. Applying branch-and-bound, and branching first on
the u variable, this infeasibility would immediately be apparent. This is not the case
using branch-and-bound starting from the original formulation {x & Z, | ax = b}.
In particular Cplex fails to prove infeasibility within 500 million nodes. [
A natural question is whether the integer width differs if we use a different member
of the family of extended formulations. Consider the two sets

Yix? I)={(x,n) e R" x R**" | Ix = Ix® + SuS + RuR}, and
Yi(x?, P)={(x,pn) e R" xR* | Px = Px*+ PSuS}.

Observation 6

(i) Fors = 1, the width of Y. (x°, P) in direction W ts independent of the choice
of xY (or q).

(ii) For fixed R, the width of Y, (xY, P) in the direction of any of the p-variables
is independent of which basis P! of kerg RT is chosen.
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Lattice based extended formulations for integer linear equality systems 347

(il))  proj, sV (x%, I) =Y (x°, P), and thus the width of the polytopes Y4 (x9, I)
and Y, (x°, P) in any direction d over the (x, p°) variables is identical.

Note however that the multipliers M|, M as well as the values q1, g2 do change with
different choices of P.

3.2 A lower bound on the Frobenius number

The Frobenius number of a, F(a), is the largest integer value of b such that ax = b
does not have a nonnegative integer solution. Without loss of generality we choose g
such that |gi| < M»>/2. So, if |qu > M, /2, we can determine new valid values of
41, g2 suchthat |q;| < M»/2 by identifying an appropriate value of A in Expression (2).

Theorem 3 Leta = M p' + M, p? with a, M|, M>, pl, p? satisfying the assump-

tions given in the beginning of Sect. (3). Moreover, let z, Z and the indices j and k be
as defined in Lemma 1.

If (—M2/2) < q1 <0and

pl.
(1a) gf > g

]
(2a) £ < My + g

a
(32) (7Z£)z ¢ Z
then
a;ar(M>r + — pla; M
Flayz YU 1D) = Pj Mz 12
a¢ N 'ak '] .
orif 0 < q1 < M/2 and
]
Jb) % p --—Mg + g1
(2b) 2 < g,
ay
1427« -
(3b) )¢ Z.
then
ajar(My —q1) + Pl'ak M
F(a) > _J_........._.___..i....._._____l..._._.__...!w + . 2 '

Proof We have already determined the width of Y. (x°, P) in the direction of u

corresponding to b = 1 in the proof of Lemma 1. Specifically we have shown that u
lies in the interval [1j, Ir], where
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348 K. Aardal, L. A. Wolsey

whose width is

1 1
, . ajpy — akp;
D=5 -1 =-"% ""J .y
‘ M;_»_ajak
Any integer right-hand side value b = ¢ for which the corresponding interval

111, t1;]does not contain an integer is a lower bound on the Frobenius number F (a).
Below we will show that

. ajar(M> + q1) — pja; M
o U v e
pka,] “*pjak E'LMCI]
dj 4

Is such a lower bound in the case that —M»>/2 < g1 < 0. A sketch of the proof for the
case O < g1 < M>/2 is given in Appendix 1.

It g1 < 0, Assumptions 1a and 2a imply that 0 < I; < I < 1. Moreover, since
q, = —M,/2 weobtain I}, < p,l/(Mgaz)—l— 1/2. Lets = l"b]“ .Noticethat]l —/; >0
since I; < 1. The interval [s1;, sli] has l.ength I — Ir. Notice that s/; € Z due to

Assumption 3 of the theorem. Define ¢ : = |s/;] and " := £/ ;. The number s’

satisfies s — 71- < §' < s, and yields the interval [1’ I'] = [S’IJ, s"Ix], with 1’

mtegral The length of [I ’ I ] 1s less than the length 1 — [ of [s];, sl;]. Therefore

(1, I} + Ix] has length less than 1, and since I" is integral it follows that (1, I] + Ii]
does not contain an integer.

Now, define s* := |s’| + 1 and the interval [1* I7] = [s*1;, s*Ix]. We have
1’ < I* < 1’ + I; and I’ < I < 1’ + I;. The result that [1* I7'] does not contain

an mteger follows from the observatlon that (I S does not contain an integer.
We finally observe that

1 1 1
s*=s|+l>|s——]+1>s———=14+1=85 — —,
l; {; I;
SO we can conclude that s — 71}- = --1--“-5!—’-‘5- — —]-1:-,- yields a lower bound on the Frobenius
number F'(a). Rewriting —!—’*- — _11_ results in the expression
J
Py
1—-5 1 1= Mzak+ 7 l
D Ii  ajpi—ap) P q
Maa ;ay Mja; M>
_aja(Mx+q) — praj M,
N L T
a, — p.a D

O

We notice the similarity with the expression for the lower bound on the Frobenius
number derived by Aardal and Lenstra [3] for the case that M» = 1 and p! & 7. . If
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we set My = 1 and g = O in Expression (12) we obtain

e . .

] ] 1
Prdj — P jdk P;

The only difference In the two expressions is in the numerator of the first term, where
we have pkaj instead of 2p ay 1n [3]. This 1s a result of a different choice of the

number s 1n the proof. In [3] s was chosen as s = (1 — 2/; j)/D under a constraint on
the relationship between I; and Ii.

4 Computation: feasibility testing and quality of the Frobenius bound

We tested the quality of the extended formulations {x € Z" | P(x—x") = PSu, u
7> } for different choices of s on some instances of integer equality knapsacks and the
Cornué€jols-Dawande market split problem. We use our algorithm presented in Sect. 2.2
to determine P and S for each chosen s. In particular, the reduced bases Q and P in
Steps i and iii of the algorithm, and the vector x°, are computed using the algorithm
of Aardal et al. [2].

The integer knapsack instances were taken from Aardal and Lenstra [3].
Instances probl—4 are such that the vector a decomposes with short p!, p?,
whereas for the instances probl1-14 the a-coefficients, randomly generated from
U[10, 000, 150, 000], are of the same size on average as in prob1—4. Instances prob1 1—
14 have no apparent structure, and the columns of a reduced basis Q of kerz A are
of approximately the same length. We use the Frobenius number of the vector a as
right-hand side coefficient for all knapsack instances. Instances probl—4 have eight
variables and prob10-14 have ten variables. For details of the instances, see [3].

The market split instances [9] are multiple row equality knapsack problems in
{0, 1}-variables with m rows and n = 10(m — 1) variables. The elements of a’ for
each row 1 are generated randomly from U[0, 99], and the right-hand side coefficients
are calculated as b; = L(Z"ml a, ) /2]. We generated two sets of market split instances
with 4 constraints and 30 varlables and 5 constraints and 40 variables respectively.

In Tables 1-2 we report on the number of nodes used by the integer programming
solver Xpress Version 16.01.01 [22] to solve the various reformulations. Column “orig”
refers to the original formulation in x-variables. Column “AHL” refers to the Aardal-
Hurkens-Lenstra lattice reformulation in which the x-variables have been removed
from the formulation, i.e., the formulation { € Z"~! | Qu > —x°} in the knapsack
case and the formulation {g € Z" ™ | —x" < Qu < 1 — 0} 1n the market split case.
For formulations X 4 (x?, P) we report on results for different values of s. Notice that
the formulations AHL and X . (x°, P)fors = n—m are mathematically equivalent, but
the X . (x°, P)-formulations contain the x-variables with the 1dentity matrix as coeffi-
cients. Since the solver reacts differently to the presence of the redundant x-variables,
this leads to slight deviations in the number of enumeration nodes needed.

Instances probl—4, which decompose in short p!, p?, are very difficult to tackle
with branch-and-bound applied to the original formulation. The Frobenius numbers
for these instances are also large, see Table 3. None of the instances could be solved
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Table 1 The number of branch-and-bound nodes: knapsack instances

Instance  Orig AHL s=1 s =2 s=3 s=4 s=5 s§=6 s=7 s=09
probl > 108 1_ 59 15 3 3 1 1 1 -
prob2 > 108 3 23 7 3 1 ] 1 1 =
prob3 > 108 13 37 29 5 7 11 9 5 -
prob4 > 108 3 13 S 1 1 1 1 1 _
probll 100,943 61 2,237 7,683 317 39 51 69 49 61
probl2 160,783 93 10,981 1,105 967 523 179 105 117 71
probl3 188,595 91 10,205 12,261 239 321 35 57 39 59
probl4 140,301 87 2,443 627 689 389 283 115 105 87

Table 2 The number of branch-and-bound nodes: CD-instances 4 x 30 and 5 x 40

Instance Orig AHL s = 1 s =23 s =10 s=15 §s=20 s=26
4301 157569 281 124.695 71.641 3.033 1,397 1,021 607
4302 169455 167 154,505 51,989 3.794 1,487 610 535
4 %303 209741 325 178,697 181,373 32.367 1.831 1,025 845
4 %30 4 202513 199 156,047 4.685 3.583 829 493 9,527
4%x305 115173 311 73.151 17.201 1,197 391 353 3,135
Instance orig AHL s=5  s=10 s =20 § =30 s =35 '
5%x40 1 > 107 5873 > 107 3,144,737 160,701 32,507 32.099
5x40 2 > 107 1,643 > 107 2.821.042 128,707 30,302 12,734
5x40 3 > 107 7349 > 107 8.264.955 86,483 28491 25541
5x40 4 > 107 6,870 > 107 1,854,280 70,949 19,616  16.557
5x40 5 > 107 6651 > 107 7,805,023 1,107,713 35,989  36.897

Table 3 The value of the lower

bound of the Frobenius number. Instance _ Fa) lowr bound on Fa) _
probl 33,367,335 26,061,675
prob?2 14,215,206 10,894,273
prob3 58,424,799 31,510,625
prob4 60,575,665 56,668,034
probll 577,134 98,774
probl2 944,183 113,114
probl3 765,260 67,752
probl4 680,230 60,476

within 100 million nodes. As could be expected, the X (x°, P)-formulation with
s = 1, which i1s a formulation with the x-variables and one variable u, is easy to
solve and comparable to the AHL-formulation. In contrast, instances probl1-14 are
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solvable using the original formulation, mainly due to the smaller value of the right-
hand side coefficients. Here, one could expect that we would need to set s = n — m
to see a noticeable improvement compared to the original formulation, but in fact
even taking s = | reduces the number of enumeration nodes by at least an order of
magnitude, and with s around 5 we obtain results comparable to those obtained with
the AHL.-formulation.

For the market split instances, which have no clear structure of the Q-matrix, we
notice similar results to those obtained for the knapsack instances probl1-14. The
algorithm of Sect. 2.2 prescribes s = n — m for these types of instances. The compu-
tational results suggest that smaller values of s already yield significant computational
Improvement.

In Table 3 we report on the value of the Frobenius number as well as the value
produced by the lower bound given in Theorem 3. For instances probl—4, the lower
bound 1s of the same order of magnitude as the Frobenius number, whereas for instances

probl1-14 the bound is off by an order of magnitude. The bound might be improved
by a different choice of the value s in the proof of the theorem.

Appendix 1

Proof of Theorem 6 for the case 0 < q1 < (M2/2). If 0 < q1 < (M>/2), Assump-
tions 1b and 2b imply that —1 < I; < [y < O, so the interval [/;, I;] does not
contain an integer. In addition, I; > p;/(Maa;) —1/2.

[ets ‘= 1-I£-)I,i . The length of the interval [s/ j» slkl1sequal to 1+ 7;, and since

—] < IJ,- <Owehavethat0<1+lj < 1.

Notice that sy € Z due to Assumption 3b of the theorem. Define £ := [sI;]
and s’ := £/I;. The number s’ satisfies s + -I-l-; < s’ < s, and yields the interval

[17, I[] := [s"I}, s"I;], with I} integral. The length of [, I/] is less than the length
1 4+ 1; of [sI;, sI;]. Therefore, [Ij’l + I, I;] has length less than 1, and since I is
integral 1t follows that [/ J’ + 1, 1 ,‘;) does not contain an 1nteger.

Now, define s* := |s’] 4+ 1 and the interval [1}3‘, I7] == [s*1;, s*I;]. We have
I} +I; < I}f‘ < 1} and I, + Iy < I} < I;. The result that [I;f‘, I;'] does not contain

an integer follows from the observation that [/ J’ + 1, I;) does not contain an integer.
We finally observe that

] ]
s =1s"]4+1>s+—]+1>2s+——14+1=5+ —,

k k Iy

1+1; . .
so we can conclude that s + 71: = --'-"D--L ~+ 7-1; yields a lower bound on the Frobenius
number F(a). Rewriting L'-gl + 71; results 1n the expression

I
P 1
1+Ik 4 1 ___1+M2dj_%§ n | ajak(MQMQI)_}_p}ak n M2
D Iy a; py ""““’1{ _Pr_ — 4L pl?:af ""p}ak Pe _ q1 |
Maajay ra,  M> dk
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