
Journal of Computational and Applied Mathematics 27 (1989) 411-420
North-Holland

Letter Section

Note on explicit parallel multistep
Runge-Kutta methods

P.J. VAN DER HOUWEN, B.P. SOMMEIJER and P.A. VAN MOURIK
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Received 14 November 1988
Revised 24 February 1989

411

Abstract: This paper investigates a family of explicit two-step, two-stage Runge-Kutta methods in which the two
right-hand side evaluations can be computed in parallel, so that effectively only one right-hand side evaluation per
step is required. This family is compared with the family of explicit linear two-step methods of Adams type and
examples of methods with increased stability intervals and methods with increased order of accuracy are given. These
methods are applied to test problems taken from the test sets of Hull et al. and Enright et al., and compared with
conventional linear multistep methods. In addition to the family of two-step, two-stage Runge-Kutta methods, we
describe a rather general class of k-step, m-stage Runge-Kutta methods in which the m right-hand side evaluations
can also be computed in parallel. For this class we indicate how the order equations and stability region can be
derived.

Keywords: Numerical analysis, Runge-Kutta methods, stability, parallelism.

1. Introduction

In the literature, multistep, multistage Runge-Kutta methods (briefly MRK methods) for the
initial-value problem

y'(t) = /(y(t)), y(t0) =Yo,

have been proposed in order to obtain methods with larger stability regions or with higher orders
of accuracy than possessed by linear multistep (LM) methods or Runge-Kutta (RK) methods.
These methods belong to a general class of integration methods, nowadays termed general linear
methods. An excellent reference for general linear methods, and in particular MRK methods, is
the recent monograph of Hairer, N0rsett and Wanner (3, p.385], where examples of and further
references to special families of such methods can be found. When compared with LM methods,
MRK methods require more right-hand side evaluations per step, and, when compared with RK
methods, MRK methods require more storage and additional starting values.

0377-0427/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

412 P.J. van der HflUwen et al. /Parallel multistep Runge-Kutta methods

In this note, we propose a class of explicit MRK methods which is designed in such a way that
all stages in each step can be computed in parallel, so that on computers with as many processors
as there are stages, the computation time is comparable with that of LM methods, that is, they
require effectively only one right-hand side evaluation per step. However, the number of storage
arrays may be larger. In Section 2, we analyze in some detail a family of two-step, two-stage RK
methods of Adams type and we show that it is possible indeed to construct methods which have
either larger stability intervals or higher orders of accuracy than is possible within the family of
conventional linear two-step methods of Adams type. The starting procedure for these methods
is of the same complexity as that for conventional linear two-step methods. In Section 3, the
general k-step, m-stage case is defined, and in Section 4 we indicate how the order equations and
the stability regions can be derived. Section 5 presents numerical results by comparing the
stability and accuracy of the example methods of Section 2 with that of conventional linear
two-step methods for two test problems taken from the test sets of Hull et al. [5] and Enright et
al. [2}. These results justify a more thorough investigation of the general class of '"parallel MRK
methods" proposed in this note.

2. Two-processor algorithms

In this section, we analyze the family of two-step, two-stage RK methods of Adams type:

(2.1)

Here, Yn denotes a numerical approximation to y(tn), h = tn+l - tn, and In:= j(yn).
If c .P 0, then these methods require two right-hand side evaluations per step. For c = 0 the

method reduces to the two-step Adams-Bashforth type method

(2.2)

and requires only one right-hand side evaluation in each step. For all values of the parameters a i•

b; and c the methods (2.1) are zero-stable.
The family (2.1) is chosen in such a way that it is suitable for computations on parallel

computers. By writing (2.1) in the form

In= J(yn),
gn = f(a1Yn + a2Yn-1 + b3hfn_,),

Yn+t = Yn + h[bifn + bifn-1 + cgn],

(2.1')

and assuming that the bulk of the numerical integration consists of the evaluations of the
function/, we see that one processor can compute fn, while at the same time the other processor
can compute g". Hence, on two processors, the method (2.1) requires about the same computa
tional time as the explicit linear two-step method (2.2).

The crucial point now is whether (2.1) has advantages over (2.2). For instance, do there exist in
the family (2.1) methods of higher order than there are in the family (2.2) or does (2.1) contain
more stable methods than (2.2)?

P.J. van der Houwen et al./ Parallel multistep Runge-Kutta methods 413

In order to answer these questions we need the order conditions for (2.1). It can be shown that
these conditions read (cf. [4, p.196]):

p ~ 1: C0 := a1+a2 =1, C1 := b1+b2 +c=1.

p ";:t; 2: C2 := -b2 + c(b3 - a 2) = 1-
P ";:t; 3: C3 := tb2 + tc(a2 - 2b3) = i-, -a2 + 2b3 + (b3 - a 2) 2 = 0.

In the case of the LM method (2.2), the quantities C1 - l/j! represent the error constants of the
method.

Furthermore, we shall need the characteristic polynomial of (2.1) which is given by

r2 -S(z)t+P(z), S(z):=l+(b1+Ca1)z, P(z):= -z[b2+Ca2+Cb3zJ,

where z runs through the eigenvalues of the matrix ha/jay. For a given real value of z, this
polynomial has its roots on the unit disk if the Hurwitz inequalities P(z) ~ 1 and I S(z) I~ P(z)
+ 1 are satisfied.

Finally, we remark that the storage requirements needed to implement (2.1) are reduced if we
choose a2 = 0. We observe that if b1 also vanishes in (2.1), then the "two-processor" methods
(2.1) can be implemented in such a way that (2.1) and (2.2) require the same amount of storage.

2.1. First-order methods with increased real stability interval

We start with first-order methods. Imposing the corresponding order conditions we find that,
within the family (2.2), the real stability interval is determined by the Hurwitz inequalities
b2 z ~ -1 and (1 - 2b2)z ~ -2. An elementary calculation reveals that for b2 = l, that is, for the
method

(2.3)

the real stability interval is maximized and is given by [-4, OJ. Furthermore, the error constant is
given by C2 - ! = - i. Thus, we are faced with the task to show that the family (2.1') contains
first-order methods with larger stability intervals and comparable error constants.

Theorem 1. The two-parameter family of methods

fn = f(yn),

gn=f(a1Yn+(l-a1)Yn-1+ ;chfn-1)• c=#=O,

Yn+1 = Yn + h [(t - ca1)fn + (1 - c + ca1)fn-1 + cg"),

is first-order accurate with error constant

C2 - t = - ~:.

and it possesses the largest possible real stability interval [-6, O], for all values of a1 and c.

(2.4)

Proof. By imposing the first-order conditions we eliminate a 2 and b2 from the polynomials S(z) ·
and P(z) defined above. Let us write

S (z) = 1 + qz, P (z) = - z [1 - q + rz], q := b1 + ca1 , r := cb3,

414 P.J. van der Houwen et al. /Parallel multistep Runge~Kutta methods

showing that there are two independent parameters for maximizing the real stability interval. We
shall simplify this optimization problem by imposing two assumptions which will be verified
afterwards. The first assumption is r > 0. The second assumption is suggested by considering the
Hurwitz conditions. Geometrically, the second Hurwitz condition IS I ~ P + 1 means that the
graphs of the parabolas defined by P(z) + 1 and - P(z) - 1 have to enclose the graph of the line
presented by S on the stability interval. This interval should be as large as possible while
satisfying the second Hurwitz condition P ~ 1. Intuitively, the stability interval is maximal if
P(z) actually assumes the value 1. This second assumption leads us to the relation

r=(q;lf.
Let z0 denote the point on the z-axis where the line S intersects either the parabola P(z) + 1 or
the parabola - P(z) -1. Then the stability boundary f3 equals -z0 , i.e.,

_ () _ . I l 1 _ 2q + J6q 2 - 8q + 3 l /3-/3 q -2mm 2 , 2 •

(q-1) (q-1)

The value of {3(q) is maximized for q = t resulting in f3 = 6 and error constant - fs. Next we
have to verify whether our two assumptions are correct. These assumptions have been confirmed
by a numerical search in the two-parameter space spanned by q and r. D

From this theorem, it follows that the error constant C2 is independent of the parameters a 1

and c, and therefore it is not possible to increase the accuracy by a judicious choice of these
parameters. An alternative is to exploit the freedom of the two parameters for reducing the
storage requirements. For example, by choosing a1 = 1 and c = 1, we obtain the method

In= /(y,.),

gn=f(yn+ ~hfn-1), (2.5)

Yn+l =yn+ ~h[2fn-1 +gn].

2.2. Second-order methods with increased real stability interval

Next we turn to second-order methods. The family (2.2) contains just one second-order
method and this method is the Adams-Bashforth method

Yn+I = Yn + th[3fn -fn-1] · (2.6)

The Adams-Bashforth method possesses the real stability interval [-1, OJ and the error constant
- n. We shall show that the family (2.1) contains a two-parameter family of second-order
methods with negative stability interval [- ~, OJ.

It is elementary verified that by imposing the conditions for second-order accuracy, the
Hurwitz inequalities assume the form

cb3z 2 + (cb3 -1)z + 1~0, cb3z 2 + z ~ 0, cb3z 2 + 2(cb3 - l)z - 2 ~ 0,

and that the largest interval of negative values of z satisfying these inequalities is obtained for
cb3 = ~ and is given by [- ~, OJ. Thus, choosing a 1 and c as free parameters, we have the result
as formulated in the next theorem.

P.J. van der Houwen et al./ Parallel multistep Runge-Kutta methods 415

Theorem 2. The two-parameter family of methods

In= f(yJ,

gn = 1(alyn + (1- ai)Yn-1 + 1chfn-1). c * 0, (2.7)

Yn+I = Yn + h[(~ - Ca1)fn + (i - C + Ca1)fn-1 + cgn],
is second-order accurate and possesses the real stability interval [- 1. O].

It is not possible to exploit the freedom of the two free parameters for raising the order of the
method. However, by choosing these parameters such that the second third-order condition is
satisfied, we can compute an error constant C3 - i, so that we obtain a measure for the accuracy.

A simple calculation reveals that this condition is satisfied for

a = _! [1 -]__ + J 1 - l]
1 2 2c - · c '

to obtain the error constant C3 - 1 = - i! which is about twice as large as the error constant of
(2.6).

As observed earlier, by choosing a1 = 1, we reduce the storage requirements of the algorithm.
Setting c = ~, we obtain the simple method

fn = J(yn),

gn = f(Yn + hfn-1), (2.8)

Yn+l =yn+ ih[fn-1 +3gn]•

2.3. Third-order methods

It is well known that zero-stable, explicit linear two-step methods cannot have order p greater
than 2, so that methods of type (2.2) are at most second-order accurate. Next, we consider the
attainable order of (2.1). From the order conditions given above it follows that for third-order
accuracy five conditions are to be satisfied. Since there are six free parameters there is one
parameter left. We shall choose c as the free parameter. It turns out that we cannot choose c
such that the three additional conditions for fourth-order accuracy are satisfied. Thus, the
attainable order of (2.1) is p = 3.

Unfortunately, the parameter c cannot be used for increasing the stability region of the
method. This follows immediately from the Hurwitz inequalities used in the preceding subsec
tion. These inequalities were derived under the condition of second-order accuracy leaving cb3 as
a free parameter. It can be shown that for third-order accuracy the value of cb3 should equal
- ~, so that the Hurwitz inequalities are fixed for all third-order methods. This leads us to the
following theorem.

Theorem 3. The one-parameter family of methods

1 5 1 ~
fn = f(yJ, al== 2 + 6c ± 2 V 1 + k'

gn=f(a1Yn+(l-a1)Y,,-1-ichfn-1)• c*O,
(2.9)

Yn+I = Yn + h((1- Ca1)/,, + (- j - C + cai)fn-1 + cg,,),
is third-order accurate and possesses the real stability interval [- hll - J6f), OJ.

416 P.J. van der Houwen et al. /Parallel multistep Runge-Kutta methods

As before, we consider the storage economic case where a1 = 1. It is easily verified that this
can be achieved by choosing c = 152 • The corresponding scheme is given by

fn = J(yn),
gn = J(Yn - 2hfn-I), (2.10)

3. m-processor algorithm

The algorithms described above can be generalized for use
Consider the special explicit, multistep RK method

on m-processor computers.

k [m l m
Yn+l = L ajYn+I-1 + h L bij!n+1-j,i + h L bJn+l,i•

j=l i=l i=l

(3.la)

where the right-hand side values ln+l,i are defined according to the formula

ln+I,s'=f(t [csJYn+l-j+h.Edsijfn+1-J,i]), s=l, ... ,m.
j=l 1=1

(3.lb)

Evidently, the evaluation of the values In+ 1,1, ... , In+ 1.m can be done independently of each
other. Thus, if m processors are available, then the required computation time for executing one
step roughly corresponds to just one /-evaluation.

3.1. Linear multistep version

Let us introduce the l X m-matrices B0 == (b;) and BJ== (b;1), them x 1-matrices CJ:= (ciJ),
the m X m-matrices D1 == (d9 ;1), and the (column) m-vectors fn :=Un,;), where j = 1, ... , k.
Then the algorithm (3.1) can be written in the more compact form

k

Yn+l = L [aJYn+l-j+hBjfn+l-j) +hBofn+1•
}=1

ln+1 ==J(t [C1Yn+1-J+hD1fn+l-JJ),
1=1

where, for any given vector v = (v1), f (v) denotes the vector with entries f (v).

(3.2a)

(3.2b)

Suppose that y11 , ••• ,Yn+I-k and fn, ... ,fn+I-k have already been computed, then (3.2)
defines the computation of Yn+i and ln+t· Thus, (3.2) represents a k-step method for computing
successively the vectors (y,,, f,,T) for n = k, k + 1, By introducing the polynomials

a(r} := rk - a1rk-l - a2rk-2. - ... -ak,

/3(0 := Botk + B1rk-l + B2rk- 2 + ... +Bk,

'Y(r) •= c1rk-l + C2sk- 2 + · · · +Ck,

P.J. van der Houwen et al. / Parallel multistep Runge-KuJta methods 417

the k-step method (3.2) can be presented in the linear multistep fashion

a(E)E-kyn -h/3(E)E-k/,, = 0, /,, := /(y(E)E-kyn +h8(E)E-kf,,), (3.3)

where E denotes the forward shift operator E defined by Eyn == Yn+t· The resemblance with the
conventional LM method

p(E)yn - hcr(E)Jn = 0, fn = J(yn),

is clear. Both methods employ, in addition to the recursion for the numerical solution Yn• an
''auxiliary" recursion. In the linear multistep case this auxiliary recursion for fn is sort of trivial,
whereas in the case (3.3) the recursion for fn is an essential part of the algorithm.

The method (2.1') is a special (k = 2, m = 2) case of (3.3). Writing (2.1') in the form

Yn + 1 - Yn - h [(h2, 0) (;: =:) + (bi, C) (;:)] = 0,

(;:) =J((;JYn+ (~i)Yn-1 +h(i3 ~)(;:=:))•
we see that the polynomials a, /3, y and 8 are given by

a(r) = K2 - K. fJ(K) = (b1K2 + b1K. ct2),

y(r)= (a 1t~aJ' S(K)= (b~K ~)·
3.2. Starting values

In order to start the recursion (3.2), we need k starting vectors (yn, fnT). Let us try to
approximate the vector /,, by means of y-values only. From (3.3) we deduce

fn := /(y(E)E-kyn + h8(E)E-k/,,)

= J(y(E)E-kyn + h8(E)E-kJ(y(E)E-kyn + h8(E)E-kt,,))

= !(y(E)E-kyn + h8(E)E-kf(y(E)E-kyn + h8(E)E-kf(y(E)E-kyn

+h8(E)E-kfn)}) = .. .,

from which it follows that

In=!(y(E)E-kyn) + O(h),

In= J(y(£)£-kyn + h8(E)E-kj(y(E)E-kyn)) + O(h 2),

/,, = !(y(E)E-kyn + h8(E)E-kf(y(E)E-kyn + h8(E)E-kf(y(E)E-kyn)))

+O(h 3),. ...

Evidently, the number of y-values needed to approximate /,, can be reduced by choosing zero
matrices for Ck, Ck_ 1,. .. , and Dk, Dk_ 1 , ... • For instance, if all matrices Cj and D1 vanish
except for C1 and D1, then

In=/(C1Yn-1) + O(h),

In=!(C1Yn-1 + hDd(C1Yn-2)) + O(h 2),

/,, = /(C1Yn-l + hDd(C1Yn-2 + hDd(C1Yn-3))) + O(h 3), ••••

418 P.J. van der Houwen et al./ Parallel multistep Runge-Kutta methods

In this way, a pth-order approximation to In can be obtained by means of the values
Yn-I• ... , Yn-p· As for every linear multistep method, these starting values are to be obtained by
some self-starting method (e.g., a one-step method).

An alternative way of computing starting vectors In is possible in the case of strictly lower
triangular matrices Di. In that case, we deduce from (3.lb) that /,, can directly be expressed in
terms of y-values:

fn,1 := /(t C1jYn-j) •
j=l

4. Accuracy and stability

4.1. Accuracy

The order of accuracy of the method (3.1) is said to be p if the residue left on substitution of
the exact solution y(t) into (3.1) is of order hP+ 1• We shall indicate how the order equations can
be obtained in terms of the polynomials a, {J, y and 8. Using the representation (3.3), we can
write the order condition in the form

a(E)y(tn) - h/3(E)J(y(E)E-ky(tn) + h8(E)E-k/(y(E)E-ky(tJ + · · ·))
= O(hP+ 1). (4.1)

Assuming that y(t) is sufficiently differentiable, we have E = exp(h d/dt); hence, by using the
abbreviations

a(E)=a(exp(h :t))=a(h :1),

y(E) = c (h :t),
/3 (E) = b (h :t) ,
8 (E) = d (h :t) ,

and putting c(O) = e := (1, 1, ... , l)T, we can expand (4.1) in powers of h. For instance,

a(O)y(tn) + h[a'(O) - b(O)e]y'(tn)

+h 2 (ta" (0) - b(O)(c'(O) + d(O)e - ke) - b'(O)e) y"(t,,) + O(h 3) = O(hp+I).

(4.1')

By expressing the various derivatives of the functions a, b, c and d again in terms of the
polynomials a, /J, y and 8 we finally obtain the order equations. For example, on substitution of
a(O) = a(l), a'(O) = a'(l), a"(O) = a'(l) + a"(l) into (4.1'), and similar expressions for the
other coefficient functions, we find the order equations:

p~l: y(l)=e, a(l)=O, a'(l)-/J(l)e=O.

p~2: Ha'(l)+a"(l)]-.B(l)[y'(1)+8(l)e-ke]-,B'(l)e=O.

P.J. van der Houwen et al. /Parallel multistep Runge-Kutta methods 419

4.2. Stability

Next we derive the linear stability condition for the method (3.1), that is, we apply the method
to the linear test equation y' = Ay. Again using the representation (3.3), we obtain the recursion

a(E)yn - /3(E)h/n = 0, >..hy(E)yn - [Ek - >..ho(E)] hf,, = 0, (4.2)

or equivalently,

. a(E)

(>..hy(E)
-/3(E))(Yn ') (0)

-EkJ + A.ho(E) hfn = 0 ·

We now use the following lemma (cf. (1, p.428]):

{4.2')

Lemma 4. Let the sequence of vectors { vn} satisfy the difference equation G(E)vn = 0, where the
entries of the constant matrix G(n are polynomials in ~- Then each component of vn satisfies again
a homogeneous difference equation with characteristic polynomial det[G(n].

Application of this lemma to (4.2') reveals that Yn satisfies a difference equation with
characteristic polynomial

(
a(t) cu·· "Ah):= det

' A.hy(t)
(4.3)

Following the linear stability theory for multistep methods, we define the stability region S by
the set of points in the complex z-plane where the polynomial C(t; z) has its roots on the unit
disk, and require that Ah lies in S when A runs through the eigenvalues of the matrix af /3y.

5. Numerical experiments

Of the various two-step methods discussed in the preceding sections, we compare methods
where all free parameters are used for maximizing the real stability interval and methods where
these parameters maximize the order of accuracy. The main characteristics of these methods are
once again listed in Table 1. The methods (2.3) and (2.6) are "one-processor" algorithms, and
(2.5) and (2.10) are "two-processor'' algorithms. The methods were applied to test problems
taken from [2] and [5], and are specified in Tables 2 and 3. The maximum absolute errors
produced at the end point t = Tare denoted by e 1 for the "one-processor" algorithms and by e2

for the "two-processor" algorithms. Asterisks indicate development of instabilities. Table 2

Table l
Methods used in the experiments

Method (2.3) (2.5) (2.6) (2.10)

Order 1 1 2 3
Stability interval [-4, OJ [-5.8, OJ [-1, O] [-0.64, OJ
Starting values Yo, Y1 Yo, Yi Yo· Y1 Yo. Y1

420 P.J. van der Houwen et al./ Parallel multistep Runge-Kuita methods

Table 2
Stability test for Problem D1 [2]: y{=0.2(y2 -y1), y;=l0y1 -(60-~y3)y2 +h3 • y{=l, y1(0)=0, Ji(O)=O,
y3(0) = 0, T= 400

h- 1 =8 h- 1 =10 h- 1 =12 h- 1 =14 h- 1 =16 h- 1 =18

(2.3): e1 :::: ... * ... *
10-1.2 10-1.2

(2.5): e2 == "'
10-0.83 10-0.91 10-1.0 10-1.0 10-1.l

Table 3
Accuracy test for Probiem B5 [5]: y{ = Yih y{ = - y 1y3 , y{ = -0.51y1y2 , y1(0) = 0, y2 (0) =1, y3 (0) =l, T= 20

(2.6): e1 =
(2.10): e1/e 1 ""

h- 1 =32 h- 1 =64 h- 1 =128 h- 1 =256

10-2.5

11

10-3.2

22

10-3.8

43

10-4.4

84

presents results for the first-order methods (2.3) and (2.5) showing the improved stability of the
"two-processor" method. Table 3 presents similar results for the second-order Adams-Bashforth
method (2.6) and the third-order "two-processor" method (2.10). We recall that on two-processor
computers, all methods require one right-hand side evaluation per step.

Acknowledgement

We are grateful to the referee for drawing our attention to a deficiency in the original version
of Theorem 1 which resulted in a larger stability boundary than found initially.

References

[1] H. Brunner and P.J. van der Houwen, The Numerical Solution of Volterra Equ.ations, CWI Monograph No. 3
(North-Holland, Amsterdam, 1986).

[2] W.H. Enright, T.E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of ODEs, BIT 15
(1975) 10-48.

[3] E. Hairer, S.P. N0rsett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems (Springer,
Berlin, 1987),

[4] P.J. van der Houwen, Construction of Integration Formulas for Initial Value Problems (North-Holland, Amsterdam,
1977).

[5] T.E. Hull, W.R. Enright, B.M. Fellen and A.E. Sedgwick, Comparing numerical methods for ordinary differential
equations, SIAM J. Numer. Anal. 9 (1972) 603-637.

