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SMOOTHED PREDICTOR-CORRECTOR METHODS FOR SOLVING PARTIAL 

DIFFERENTIAL EQUATIONS 

P. J. van der Houwen & B. P. Sommeijer 

Abstract. Special predictor-corrector methods employing residue 

smoothing for solving semidiscrete partial differential equations 
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are analysed. By the technique of residue smoothing the stability 

condition is relaxed to such an extent that the (explicit) PC methods 

can be applied with time steps prescribed by accuracy considerations 

rather than by stability considerations. The additional computational 

effort involved by the explicit smoothing technique used here is 

rather low when compared with its stabilizing effect. However, the 

overall accuracy may be decreased. This paper investigates the 

effect of residue smoothing on the accuracy. 

1. INTRODUCTION 

We consider the numerical solution of the initial-value problem for 

systems of (nonlinear) ordinary differential equations (ODEs) of the form 

dvy(~) - f(t,y(t)), v - 1,2, (1) 
dt 

which arise when time-dependent partial differential equations (PDEs) are 

semidiscretized in space. We shall assume that the Jacobian matrix 8f/8y 

has eigenvalues located in a negative interval [-R,0). In dealing with such 

systems of ODEs, we have to take into account that the spectral radius R is 

usually extremely large. Therefore, we need an integration method with a 

large real stability boundary. Restricting our considerations to the class 

of linear multistep methods, we are led to implicit methods and as a con-
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sequence we are faced with the problem of solving in each integration step 

the implicit equation 

(2) 

where r denotes the integration step, Yn+l-i presents an approximation to 

the exact solution y(t) at t - tn+l-i and the coefficients ai and bi define 

the linear multistep method. The solution of this equation provides a 

numerical approximation to y(t) at t - tn+l" In practice, equation (2) is 

only approximately solved and this approximate solution is accepted as the 

numerical approximation Yn+l to y(t) at t - tn+l" 

In this paper, we pursue our earlier investigation of the smoothed 

generalized predictor-corrector (SGPC) methods for finding approximate 

solutions to equation (2). These methods were proposed in [2] for the 

first-order case v - 1, and we here we will extend them to the case v - 2. 

Furthermore, we analyse the effect of the relaxation parameters occurring in 

the SGPC scheme on the accuracy and the stability of the SGPC method for 

more general problems than the model problem considered in [2]. 

2. SGPC METHODS 

We consider SGPC methods of the form 

y(j) - y(j-l) - r(j)S[y(j-l) - b0rvf(tn+l'y(j-l)) - ~n], j - 1,2, ... ,m, (3) 

where the r(j) are relaxation parameters, S is a smoothing matrix, and y(O) 

is an initial approximation which will be assumed to be obtained by an 

(explicit) linear k-step method. Evidently, if this method converges for 

Notice that the con-m ~ ~. then it will converge to the solution of (2). 

ventional PC method is obtained if we set r(j)S - I. Following the termino­

logy used in PC methods, we shall call (3) an SGPC method in P(ESC)mE mode. 

The method (3) may be considered as a two-level iteration scheme for 

approximating the solution of equation (2). In [2] the more general multi­

level SGPC methods have been considered, but, for the sake of transparency, 

we shall confine our considerations to the two-level version (3). However, 

from an implementational point of view, the two-level version is sometimes 

less attractive, so that in our numerical experiments multi-level versions 

of (3) are used (see Section 7.1). 
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As we shall explain below, the matrix S will be chosen such that 

applying S to a given vector v - (vi) has the effect that large differences 

in successive components of this vector are reduced so that the resulting 

components vary smoothly as a function of i. We assume that the matrix S is 

normalized in the sense that its eigenvalues do not exceed 1 in magnitude. 

In order to see the effect of smoothing on the residue in (3), we 

consider the linearized equation for the SGPC error 

e (j-l) _r(j)S[I-b Z]e(j-l) . 1 2 0 J - ' ' ... ,m; ( 3' ) 

z :-

where~ denotes the exact solution of (2). Suppose that e(j) is expanded in 

a discrete Fourier series. Since 8f/8y is a discrete differential operator, 

it will amplify high frequencies and the matrix : - b 0z will therefore 

amplify the high frequency modes occurring in e(J), unless r is extremely 

small, i.e., unless r is of magnitude l/R (recall that -R denotes the 

largest negative eigenvalue of 8f/8y which is extremely large in magnitude 

in the case of semidiscrete partial differential equations). Since we want 

to use integration steps of realistic size, the iteration process will cause 

severe instabilities unless the matrix r(j)S is such that the high frequen­

cies in [I - b0Z]e(j) are damped. Moreover, assuming that Z has negative 

eigenvalues, we will require that b0 > 0 and that r(j)S has nonnegative 

eigenvalues. 

From the above discussion it is clear that the conventional PC method 

(where r(j)S - I) is not appropriate for approximating the solution of 

equation (2). In this paper, we derive various families of SGPC methods by 

more suitable choices of the relaxation parameters. We distinguish : 

SCPC methods : Smoothed Conventional PC methods which arise by 

choosing r(j)S - S. 

SSPC methods Smoothed Stabilized PC methods which arise by 

choosing the relaxation parameters such that the real 

stability boundary is more or less optimal. 
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SMPC methods: Smoothed Minimax PC methods which arise by choosing 

the relaxation parameters such that the low frequencies 

in the predictor error are .strongly damped. 

The idea of improving the stability of PDE solvers by means of 

smoothing techniques is well known in numerical analysis. For example, in 

1957 Shuman [5] already used special 'Shuman filters' for stabtlizing 

weather prediction methods. More recently, residue smoothing techniques 

have been used by Lerat [4], Jameson (3) and Turkel [6]. Unlike the 

implicit smoothing techniques developed in these papers, the techniques used 

in this paper are completely explicit so that the smoothing matrix S can be 

precomputed (or more precisely, expressed in terms of precomputed matrices). 

The approach of constructing explicit smoothing matrices goes back to the 

work of Wubs [7] where such matrices were applied for stabilizing shallow 

water equations solvers. 

3. SMOOTHING MATRICES 

The special smoothing matrices to be used in this study were 

developed as a generally applicable technique in (l]. Following this paper, 

we assume S of the form 
S - Q(D), 

where Q(z) is a polynomial satisfying the condition Q~O) - 1 and D is a 

difference matrix with eigenvalues in the interval [-1,0) defined by 

1 
D - 4 

0 

1 -2 
' 

1 

1 -2 1 

0 

(4) 

The eigenvalues of S can be monitored by choosing the polynomial Q(z) appro­

priately in the interval [-1,0). By observing that the Fourier components 

are just the eigenvectors of D and that Fourier components of high frequency 

correspond to eigenvalues close to -1, we are led to polynomials Q(z) which 

equal 1 in z - 0 and become smaller ~n magnitude as z varies from 0 to -1. 

Moreover, Q(z) should assume nonnegative values· in [-1.,0) in order to obtain 

nonnegative eigenvalues for S. There· are of course many possibilities to 

achieve this. Again following [l), we shall employ polynomials of the form 



Tk+l(l+2z)-l 

2(k+l) 2z 
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(5) 

This polynomial is of degree k and satisfies the above requirements. In the 

interval (-1,0], it is bounded by 0 and min(l,-l/[(k+l) 2z]). We shall define 

T2q(I+2D)-I 
s :-

22q+lD 
(6) 

By virtue of our choice k+l - 2q and certain factorization properties of 

Chebyshev polynomials, this matrix S allows an efficient implementation on a 

computer. It can be shown that 

S - Fl.F2 ..... Fq' 

where the factor matrices F. are generate'd according to the recursion 
l 

F0 - I, Fi+l - (I-2Fi] 2 . Thus, the smoothing operator defined by (6) is a 

polynomial operator of degree 2q-l in D and its application to some vector v 

requires only q matrix-vector multiplications by the factor matrices Fi. 

We shall call q the degree of smoothing. The beauty of this factorization 

lies in the fact that the matrices Fi are of a simple structure so that the 

application of the smoothing matrix S is relatively cheap. Moreover, the 

actual implementation of this smoothing procedure requires only a few 

FORTRAN lines [2]. 

4. ACCURACY AND STABILITY 

4.1 ACCURACY 

Substitution of the smoothing matrix (6) into the error equation (3') 

yields 
e(j) - a.(D,Z)e(j-l) - P(j)(D,Z)e<O>, j - 1,. .. ,m, (7) 

J 
where the amplification matrices a.(D,Z) and P(j)(D,Z) are polynomials in D 

J 
and Z defined by 

P(j) (D,Z) -
j 
II ai(D,Z), j-1,. .. ,m, 

i-1 

aj(D,Z) :- I - r(j)S[I-boZl - I - r(j) 

T (I+2D)-I 
2q 

(8) 

In the reduction of the low frequencies in the SGPC error, the first few 

Taylor terms of the amplification factors aj(D,Z) play a central role. 

is easily verified that 

It 
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From this expression we conclude that it is essential that at least one of 

the relaxation parameters equals 1. 

Furthermore, by expanding [I-b0Z]e(j-l) in terms of the eigenvectors 

of S we see from (8) that those eigenvectors which correspond to zero eigen­

values of S will never be damped. For larger values of q, these eigenvectors 

are both of high and low frequency so that high degree smoothing may cause a 

drop in accuracy and we should not expect that the local error of the method 

(3) converges to the local error of the corrector. This unfavourable pro­

perty of SGPC methods can be partly compensated by performing an additional 

iteration which has an amplification factor less than 1 for all frequencies. 

For instance, we may add a Jacobi iteration to the SGPC method (3) : 

(m+l) (m) 
y - y - [y<m)_b r 11f(t y(m)) - L] 

11 0 n+l' n ' l+b0r R 
(9) 

to obtain an SGPC method in P(ESC)m(EJ)E mode. The amplification matrix of 

this Jacobi iteration is given by 

w 
am+l (Z) :- I - 11 [I - b0z], 

l+b0 r R 
0 < w < 2, 

which has all its eigenvalues less than 1 in magnitude. This additional 

iteration does not greatly reduce the SGPC error, but it compensates the 

zero eigenvalues of the smoothing matrix. 

We shall call P(m)(x,z) the B111plification polynomial of the SGPC 

method since this polynomial determines the damping (or magnification) of 

the predictor error. Furthermore, the polynomial 

P (z) :- P(m)(O,z) 
m 

(lOa) 

will be called the generating polynomial of the SGPC method because, given 

this polynomial, the amplification polynomial follows from the relation 

(m) r 1 ( 
P (x,z) - Pmlbo 1 -

T (1+2x)-l 
2q 

(lOb) 



In particular, we have that the relaxation parameters r(j) are 

obtained from the zeros z(j) of P (z) by means of the relation 
r(j) = [l-b z(j)]-l m 

0 

4.2 STABILITY 
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As in the accuracy of SGPC methods, the amplification polynomial also 

plays a central role in the stability of these methods. We assume that the 

predictor and corrector are respectively generated by the polynomials (p,a) 
and [p,a) with a0 = a 0 = 1. The characteristic polynomial of the PC method 

(3) in P(ESC)mE mode is now given by (cf. [2]) 

C(\;Z,P(m)(D,Z)) - [Ip(\) - Za(\)]lk ( lla) 

- [(I-boZ)P(m)(D,Z)][P(m)(D,Z)]-I]-l[Ip(\)-Za(\)]lk 

* By means of the polynomial C we can define in the real (z,z )-plane the 

stability domain 

* * ID :- [(z,z ): C(\;z,z) has no roots outside the unit circle}. (llb) 

We emphasize that ID is completely determined by the PC pair and does 

not depend on P(m)(D,Z). In [2] plots of stability domains associated with 

PC pairs for first-order ODEs can be found. In the following example we 

give the stability domain of a family of PC pairs for second-order ODEs. 

EXAMPLE 1. Consider the PC pair 

- 2 - 2 2 
{p(I) - (\-1) , a(I) - OJ, {p(I) - (\-1) , a(I) - I+ b0 (1-l) l 

for integrating equations of the form y" - f(t,y). The predictor [p,aJ is 

of zero order and the corrector {p,a) is of second order for all b0 ~ 1/12. 

If b0 - i;12, 

characteristic 

then we obtain the fourth-order Numerov corrector. 

* polynomial C(\;z,z ) is given by 

* * 2 [ z(z -1) 
C(\;z,z ) - I - 2 - l-boz ] \+l. 

The 

From this expression it can be derived that in the left-hand part of the 

* * (z;z )-plane the stability domain is bounded above by the line z - 1 and 

* below by the curve z - 1 - 4b0 + 4/z. 0 
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5. MODEL PROBLEM 

The preceding subsections show that the amplification polynomial 

determines both the accuracy and stability of SGPC methods. In order to 

obtain criteria how we should choose the relaxation parameters in the ampli­

fication polynomial we consider a class of model problems for which the 

matrix Z can be presented in the form 

v 8f(tn+l''1) 
z :- ,. ay v * * r [RD+R D ] • (12) 

* Here, R is the spectral radius of 8f/8y at (tn+l''1), R is a nonnegative 

number and o* is a matrix with the same eigensystem as the difference matrix 

* D and with eigenvalues in the interval [-1,0]. Assuming that R << R we may 

* * consider the matrix R D as a perturbation matrix. In our earlier investi­

* gations, we always considered the case D - O. However, in order to apply 

SGPC methods to strongly nonlinear problems, it is of interest to consider 

nonzero perturbation matrices. 

* Given the matrix D , either Z or D can be eliminated from the ampli-

fication polynomial and the stability condition (11) by means of relation 

(12). 

5 .1. THE AMPLIFICATION POLYNOMIAL 

In accuracy considerations, it is convenient to express the various 

formulas in terms of the matrix D. From (7) it follows that the iteration 

error in the SGPC method (SGPC error) is given by 

(7') 

Th v ** e eigenvalues of the amplification matrix Qj(D,r [RD+R D ]) are given by 

T (1+2x)-l 
2q 

v * * [1-b0r [Rx+R x ]], (8") 

where x and x* run through the eigenvalues of D and n*, respectively. It is 

convenient to introduce the variable 

T (1+2x)-1 
* 2q X - X(x,x ) :- ~~--::~~ 

22q+lx 
v * * [1 - b0r [Rx+R x ]], * -1 :S x, x :S 0, (13) 



so that for the model problem (12) the amplification polynomial can be 
presented in the form of a polynomial ~(X) of degree m in X 

(m) * m (.) * P (x,z) - ~(X(x,x )) :- II (1 - r J X(x,x )] . 
j-1 
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(14) 

Here, we have for the moment ignored the Jacobi iteration (9). In this 
connection, we recall that we cannot have convergence of the SGPC error 
to zero because the amplification polynomial P(m)(x,z) equals 1 whenever 
X - 0. However, by virtue of the Jacobi iteration (9) we achieve that the 
corresponding eigenvector components are also damped. 

* The function X(x,x ) is always positive and its maximal value is 
assumed either at x - 0 or at a point xmax :- (l-o)[cos(2-q~)-l]/2, where S 

* is a small positive parameter depending on x . Neglecting second-order 
o-terms we find 

v * * 
* v * * * X(O,x ) - 1 - b0 r R x , X(xmax'x ) 

1 (l-b0 r Rx )(l+o) 
z - [b0rvR + 2 ]. (15) 

4q 1 - cos(2-q~) 

Thus, the range of X-values is given by [O,Xmax] with 

(16) 

* * where 6 denotes the maximum value of 0 for -1 :S x :S 0. For small values 

of q, we usually have 
v * 1 v x "' max( l+b0 r R - b0 r Rl, max 4q 

(16') 

and for larger values of q 

v * 1 v 4 v * *) x "'max(l + b0 r R, - b0 r R + - 2 (l+b0 r R )(l+o J. max 4q ~ 
(16") 

In this latter case, the first term at the right-hand side plays a crucial 
* role. In Figure 1, the behaviour of the function X(x,x ) is plotted for 

q-4, Sand6. 

Of particular interest is the location of X-values that correspond to 
the dominating frequencies in the predictor error. Usually, the eigenvalues 

· t i e(O) correspond to the lowest frequencies of the dominating eigenvec ors n 
(0) 1 Let us consider the function in e , that is, to x-values c ose to zero. 
* 1 f (cf. (8')) ·. X(x,x ) for small va ues o x 
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* JI ** 1 q X(x,x ) ~ 1 - b0r [Rx+R x ] + 3 (4 -l)x. 

From this expression and the above considerations it follows that, 

if 
JI 1 q b0r R > 3 (4 -1), (17) 

then, for decreasing values of x, the function X(x,x*) first increases mono-

* * * tonically from X(O,x) to X(x ,x ), next it decreases from X(x ,x) to 
max * max 

X - 0, etc. 

* 
If (17) is not satisfied, then X(x,x ) first decreases from 

X(O,x ) to X - 0, etc. Thus, the lowest frequencies are either directly to 

* the left or directly to the right of X - X(O,x) (see also Figure 1). The 

location of the lowest frequencies plays an important role in the construc­

tion of accurate SGPC methods. 

5.2. THE REAL STABILITY BOUNDARY 

Next we consider the stability of SGPC methods when applied to the 

model problem. Here, it is more convenient to express the stability 

conditions in terms of the matrix Z because the stability domain refers to 

z. * Since the matrices Z, D and D share the same eigensystem, the stability 

condition is given by 

* [ JI * * ] (z,z ) E Bl for all pairs of eigenvalues (z,z*) of Z,P(m) (Z·:v: D ,Z) . (18) 

The largest value of p such that this condition is satisfied for 

0 s rJIR S ~ defines the real stability boundary of the SGPC method. 

EXAMPLE 2. Consider the one-stage 

pair given in Example 1 and set r(l) - l, 

SGPC method generated 

q ,.. 0. Then 

JI * * T (1+2(z/r R-R x /R))-1 
2q (1) JI * * P (z/r R-R x /R,z) - 1 -

by the PC 

The stability boundary is determined by the set of r 2R-values for which the 

points (z,P(l)(z/rJIR·R*x*/R,z)} ,with -r 2R s z s 0 and -1 s x* s 0, are in 

* the domain bounded above by the line z - 1 and bounded below by the curve 

l - 4b0 + 4/z (see Example 1). For example, it can be shown that for 

0 the stability boundary is given by p - 4q+l for all values of b0 . D 
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If large stability boundaries are desired, then the stability domain 

should satisfy certain conditions. From (8) we deduce that for large nega­

tive values of z the amplification polynomial behaves as 

(m) 11 * * m P (z/r R-R x /R,z) - Il II * * aj(z/r R-R x /R,z), 

II * * a.(z/r R-R x /R,z) 
J 

j-1 
T (1+2z/r11R)-l 

""1 + r(j)(l+b0 r 11R) -2q---..,-~--
22q+l 

This implies that for large negative values of z the stability domain is 

required to contain the strip 
m 

- rr [l-4-qr(j)(l+b0 T 11R)]. 
j-1 

(19) 

If the stability domain does contain such a strip, then the stability 

condition for SGPC methods usually reduces to prescribing an upperbound for 

the value of Xmax which leads to an explicit expression for the stability 

boundary. The following theorem is easily proved (cf. (16)). 

THEOREM 1. Let the stability condition of the SGPC method be of the 

form Xmax s cm' where cm may depend on m. Then the SGPC method possesses 

the stability boundary 

/3 - bl Min{ c:-1 , 
0 R /R 

D (20a) 

For large values of q the stability range is approximately given by 

the interval [0,/3], where 

f3 - ~Min { c:-l 
bO R /R 

4 II * * q} , [cm - ~ (l+b0r R )(1+6 ))4 . 
71" 

( 20' a) 

This expression shows that the stability boundary is quite substantial for 
* II * small values of R /R and r R . At the same time, the stability boundary 

* * depends critically on correct estimates of R and 6 unless cm is much 

larger than 1. We shall call cm the stability constant of the method. 

In terms of the stepsize the stability condition reads 

(20b) 

In the following subsections we discuss several choices of the ampli­

fication polynomial and the associated stability constants. 
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6. VARIOUS SGPC METHODS 

In this section, we present various SGPC methods by considering a few 

natural choices of the generating polynomial Pm(z). The first two sub­
sections deal with SGPC methods in P(ESC)mE mode, that is, without the 

Jacobi iteration defined by (9). In subsection 6.3, we consider the effect 

of the additional iteration (9). 

6.1. SCPC METHODS 

We first recall that conventional PC methods are obtained when we set 
r(j)S - I in the SGPC method (3). Smoothed conventional PC methods (SCPC' 

methods) are obtained by choosing r(j)S - S, where Sis defined by (6). The 

generating polynomial of SCPC methods is given by 

(21) 

According to (10) and using the variable X we can express the amplification 

polynomial in the form 

(22) 

* For a given problem, that is for given values of R and R , it is of interest 
to compare the behaviour of this polynomial for a small and large value of 
q. Choosing m fixed and the step size such that (20b) is just satisfied, 

v i.e. b0r R - b0fi, we find for large q a considerably larger maximum time 
step than for small values of q. However, the damping of the lower fre­
quencies is considerably less than the damping for a small value of q. In 

Figure 2a and 2b, this feature is illustrated by plotting the amplification 

polynomial as a function of x in the interval ( - . 2, 0] . In both figures this 
interval corresponds to eigenvalues of the Jacobian matrix Bf/By in the 
interval [-.2R,O]. Furthermore, we see that a nonzero perturbation matrix 
decreases the damping power of the SCPC method. 

The stability condition of SCPC methods is determined by the point 
where the amplification polynomial 'leaves the stability domain'. According 
to (19), we shall assume that the stability domain contains the strip 

* v * * -D1 s z :S 1, z :- r (Rx+R x ) s 0. For ·even values of m we see that 
(m) (m) P (x,z) leaves this strip at the point where P (x,z) - 1, that is where 
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* X(x,x ) 2. This leads us to the condition X ~ 2. Similarly, for odd 
max 

values of m we are led to the condition X ~ 1 - (-D )l/m By virtue of 
max l 

Theorem 1 the stability boundary is given by (20a) with stability constant 

cm - 2 form even and cm - l-(-D1)l/m form odd. Because of these 

relatively small c -values the stability boundary of SCPC methods is rather 
m * * sensitive to changes in R and o . 

6.2 SSPC AND SMPC METHODS 

where 

Consider the generating polynomial 

1 
Pm(z) :- 2 [d2-d1+(d2+d1)Tm(w0+w1(d1 ,d2)b0z)], 

and where w0 , d1 and d2 are free parameters (here, Tl/m denotes the 

Chebyshev polynomial of fractional degree l/m). The amplification 

polynomial can be expressed in the form 

(m) v * * * P (x,r (Rx+R x )) - ~(X(x,x )) 

(23a) 

(23b) 

- ~ [ d2-d1 +( d2+d1)Tm ( w0+w1 ( dl, d2) [ 1-X(x, x *) J)] . (24) 

This polynomial equals 1 at X - 0 (as it should do), it has its first zero 

at 

[ 
2-d2+dl J [ dl-d2 J 

Tl/m d2+d1 - Tl/m ~ 
x - 2-d +d ' 

Tl/m[ d2~dll J - WO 

(25) 

and it is bounded by d2 and -d1 in the interval 

O ~ X ~ (l+w0+w1(d1 ,d2))/w1 (d1 ,d2). 

In view of our discussion of expression (8'), we choose the zero (25) at 

X - 1 so that at least one relaxation parameter equals 1. Thus, 

[ dl-d2 ] (23c) 
WO - wo(dl,d2) :- Tl/m dl+d2 . 

One criterion for determining the remaining parameters d1 and d2 is 

the maximization of the real stability boundary. Assuming that the stability 
* I/ ** ld domain contains the strip -D1 ~ z ~ 1, z :- r (Rx+R x ) ~ 0, we are e to 
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the values dl - Dl and d2 - 1 (cf. [2]). The stability boundary for these 

methods follows from the condition 

x :::S max 

1 + w0(D1,l) + w1 (D1 ,l) 

w1(D1 ,l) 

that is, it is given by (20a) with stability constant 

c 
m 

2 

1 - cos(~ arccos ~~ ~~] [ D -1] 2 
arccos D~+l 

as m -> "' (26) 

This value is much larger than the stability constant obtained for the SCPC 

methods. We shall call the resulting method a smoothed stabilized PC method 

(SSPC method). 

In Figure 3 the analogue of Figure 2 for SSPC methods is plotted. 

Figure 3a reveals that the damping of the SSPC method in the interval 

(-.2,0] is rather strong in spite of the fact that we did not try to 

minimize the magnitude of the amplification polynomial and only tried to 

maximize the stability boundary permitted by the condition 
(m) II * * * -D1 :::S P (x,r (Rx+R x )) :::S 1 in the region -1 :::S x, x :::S 0. However, the 

situation changes when the value of q increases. Then, amplification 

factors of magnitude 1 quickly enter the low frequency interval. This may 

cause a drop of accuracy. In such cases, we may try the parameter values 

d1 - d2 - d where d is sufficiently small. We shall call the resulting 

method a smoothed minimax PC method (SMPC method). 

In Figure 4 the analogue of the Figures 2 and 3 is plotted for SMPC 

methods. A comparison of the Figures 3a and 4a reveals that, in this case 

of second-degree generating polynomials, the damping power of the SSPC 

method is not much less than that of the SMPC method. 

Next we turn to the stability of SMPC methods. Again assuming that 

* ,, * * the stability domain contains the strip -D1 :::S z :::S 1, z :- r (Rx+R x ) :::S 0, 

the stability boundary follows from the condition 

1 + wo(d,d) + wl(d,d) 
Xmax:::S w1(d,d) 'd:::SDl' 

that is, it is given by (20a) with stability constant 



c 
m 

1 2 
[arccosh(d)] 

2 
'If 

+4 
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as m - > ""· (27) 

Although this value is smaller than the stability constant obtained for the 

SSPC methods, it is much larger than that of the SCPC methods. 

6.3 JACOBI CORRECTION 

Due to the zero eigenvalues of the smoothing matrix S, there may be 

eigenvector components in the predictor error that will never vanish. By 

adding the Jacobi iteration (9), that is, by applying the SGPC method in 

P(ESC)m(EJ)E mode, these components are to some extent removed. 

In order to illustrate the effect of this iteration on the behaviour 

of the amplification polynomial, we have plotted in Figure 5 for the SSPC 

method the polynomial 

P (X,T (Rx+R X )) 1 (2) 11 * * [ (28) 

11 * * with q - 5, and d1 - 1/3, d2 - 1, b0r R - 2867 and Rx /R - 0 for w - 0 (no 

Jacobi correction) and w - 1 (with Jacobi correction). 

7. IMPLEMENTATION OF SSPC AND SMPC METHODS AND NUMERICAL EXPERIMENTS 

7.1 IMPLEMENTATIONAL DETAILS 

From an implementational point of view, it is more attractive to 

generate the SSPC and SMPC methods by employing the three-terms recursion 

satisfied by the generating polynomial, rather than to derive explicit 

expressions for the relaxation parameters r(j). It can be verified that the 

SSPC and SMPC methods, including the Jacobi correction iteration (9), are 

equivalent to the scheme : 

If m ~ 2 then 

(1) 
y 
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(m) 
Yn+l - y 

(29) 

"' R(m) 
v ' 

1 + b 0r R 

where w0 and w1 are defined in (23c) and (23b), respectively, and where we 

introduced the quantities 

) (j) ·.- (w0+w1 )y(j) - w1sR(j), ~j :- Tj(w0+w1 , F 

R(j) :- y(j) - b 0 r 11 f(t y<j» - :E • 
n+l' n 

The smoothing matrix Sis defined by (6) and (4), and the method parameters 

d1 and d2 are to be chosen on the basis of the stability domain of the 
underlying PC pair. If the parameter c..i equals zero, then no Jacobi correc­

tion is performed. If d2 - 1, then all coefficients ~j equal 1. For 
implementational details of the semidiscretization of the PDE at boundary 

points we refer to [2). 

7.2. PARABOLIC PROBLEM 

In all experiments, the grid used was defined by equally spaced grid 

points and it turned out that the time step could be chosen such that the 

* * stability condition (20) was satisfied for R - 6 - 0, that is, with zero 

* perturbation matrix D . 

In our first experiment we applied the method to the symmetric, 
three-point spatial discretization of the linear parabolic problem 

ut - uxx + g(t,x), 0 s x s 1, 0 s t s T, 

with source function g, initial condition and Dirichlet boundary conditions 

taken from the exact solution u(t,x) - 1 + x3t 3 . The grid used was defined 
by the equally spaced grid points xj - j/64 and the time step r 1/64. In 
order to satisfy the stability condition we adapted the number of itera­
tions. We tested the PC pair consisting·of the linear extrapolation 

predictor and the second-order backward differentiation corrector. The 
stability domain of this PC pair requires d1 s 1/3 and d2 :s 1. Furthermore, 
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the relaxation parameter w should satisfy the condition o s w s 4/3 in order 

to guarantee that the amplification polynomial stays within the stability 

domain. 

In the tables below we present for a few values of q and w the 

maximum absolute error at t - T and the number N of right-hand side 

evaluations involved. 

Table la. Results obtained by SSPC methods for d1 - 1/3 and d2 - l at T - l. 

q - 0 q - l q - 2 
w N error N error N error 

0 882 10-3.2 441 10·3.2 252 lo·3.3 

l 945 10-3.3 504 lo·3.3 315 10·3.3 

4/3 945 lo·3.3 504 10·3.3 315 lo·3.3 

Table lb. Results obtained by SSPC methods for d 
1 

q - 0 q - 1 q - 2 

w N error N error N error 

0 8946 10- 1. 9 4473 10·2.0 2556 io·1.1 

1 9585 10·2.3 5112 io·2.3 3195 10·2.3 

4/3 9585 10·2.3 5112 io·2.3 3195 10-2.3 

q - 3 q - 4 

N error N error 

126 10·3.3 63 10·2.9 

189 10·3.3 126 10·3.3 

189 10·3.3 126 10·3.3 

1/3 and d2 - 1 at T -10. 

q - 3 q - 4 

N error N error 

1278 10·1.0 639 10·0.l 

1917 10·2.3 1278 10·2.3 

1917 io·2.3 1278 10·2.3 

The improvement of the accuracy by performing the additional Jacobi 

iteration is particularly clear in the second table where the integration 

interval is relatively large. Instead of adding the Jacobi iteration, we 

can also switch to the SMPC method by decreasing the values of the para­

meters dl and d2 . The accuracy slightly improved indeed, but this did not 

justify the additional work caused by a larger value of m. The accuracies 

obtained for w ~ 0 cannot be improved by decreasing d1 and d2. This is not 

surprising because the error obtained by iterating the corrector to con­

vergence is just 10-3·3 and 10-2·3 in the respective cases presented by the 

Tables la and lb. 
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7.3 HYPERBOLIC PROBLEM 

Again we used equally spaced grid points and the time step was 
* * chosen such that the stability condition (20) is satisfied for R - 6 - 0, 

* that is, with zero perturbation matrix D . 

We applied the method (29) with the PC pair of Example 1 to the 

symmetric, three-point spatial discretization of the nonlinear hyperbolic 

problem 
2 Utt - U UXX + g(t,x), 0 ~ X ~ 1, 0 ~ t ~ T, 

with source function g and initial and Dirichlet boundary conditions taken 

from the exact solution u(t,x) - e-t sin(4wx). The grid used was defined by 

the equally spaced grid points xj - j/256, and the time step was chosen as 

large as allowed by the stability condition. According to Example 1 we set 

d1 - 1 - 4b0 and d2 - 1. It turned out that performing the additional Jacobi 

correction iteration did not improve the accuracy, hence we set w - 0. 

In the following tables, we present the maximum absolute error at the 

end point T - 1 for various values of q and b0 , and form - 1 and m - 2. 

Table 2a. Results obtained by SSPC methods for m - 1 at T - 1. 

q - 0 q - 1 q - 2 q - 3 q - 4 q - 5 

bo r error r error f' error r error r error ., error 

1/12 1/256 lo·4.5 1/128 10·4.8 1/64 10·4.8 1/32 10·4.l 1/16 lo·3.2 1/8 10·2.s 

l/4 1/256 10·4.5 1/128 lo·4.7 1/64 10·4.9 1/32 lo·4.l l/16 lo·2.9 1/8 10·2.4 

1/2 l-/256 10·4.5 1/128 io·4.7 1/64 lo·4.7 l/32 io·4.o 1/16 io·2.6 l/8 io·l.5 

l l/256 10·4.5 1/128 lo·4.5 1/64 lo·4.3 1/32 io·3.5 1/16 lo·2.3 1/8 10·1.0 

Table 2b. Results by SSPC methods for m - 2 at T - 1. 

q - 0 ,q - l q - 2 q - 3 q - 4 q - 5 
bo ., error .;· error r error r error r error ., error 

l/4 l/256 lo·4.5 1/128 lo·4.7 l/64 10·5.o 1/32 lo·4.B lo·3.6 10~2.~l 
1/2 1/150 10·4.4 lo·4.4 10·4.2 

1/16 1/8 
1/75 1/38 1/19 io·3.4 lo·2.6 la·L 3 

lo·4.3 
1/10 1/5 

1 1/138 1/69 lo·4.2 1/35 lo·3.8 1/18 lo·2.9 10 • l. 3 l0-0.l 1/9 1/5 
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In this experiment the error produced by iterating the corrector to con­

vergence varies from 10-4 .0 to lo- 4 · 5 if the stepsize increases from 1/5 to 

1/256. 
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X(x,x·) 
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Figure 1. The fun:tion X(x,x") forq=4, 5, 6 with bo~"R=500 and R*x*IR=O. 
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Figure 2a. The function p(2)(x;rv(Rx+R*x*)) for q=2 with bo1:"R=l 9.2, and R*x*IR=O and -.01. 
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Figure 2b. The function p(2)(x;t:Y(Rx+R*x*)) for q=5 with boi:vR=l228 and R*x*IR=O. 
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Figure 3a. The function p(2l(x,i:Y(Rx+R*x*)) for q=2 with bot"R=44.8, and R *x*IR=O and -.01. 
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Figure 31>. The function p(2l(x;tv(Rx+R*x*)) for q=5 with boi:VR=2867 and R*x*IR=O. 
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Figure 4a. The function p(2l(x,tV(Rx+R*x*)) for q=2 and d1=d2=115 

with bot"R.=35 and R *x*=O and -.01. 

Figure 4b. The function p(2l(x,tY(Rx+R*x*)) for q=5 and d1=d2=1/5 

with botVR=2238 and R*x*IR=O. 
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Figure 5. The function (28) for CO=O and CO= l, with q=5, m=2, 

d1=113,d2=l, boi:VR=2867 and R*x*IR=O. 
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