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Abstract. For Runge-Kutta methods, linear multistep methods and other classes of general
linear methods much attention has been paid in the literature to important nonlinear stabil-
ity properties known as total-variation-diminishing (TVD), strong stability preserving (SSP) and
monotonicity. Stepsize conditions guaranteeing these properties were studied by Shu & Osher
(1988) and in numerous subsequent papers. Unfortunately, for many useful methods it has turned
out that these properties do not hold. For this reason attention has been paid in the recent
literature to the related and more general properties called total-variation-bounded (TVB) and
boundedness.

In the present paper we focus on stepsize conditions guaranteeing boundedness properties of
a special type. These boundedness properties are optimal, and distinguish themselves also from
earlier boundedness results by being relevant to sublinear functionals, discrete maximum principles
and preservation of nonnegativity. Moreover, the corresponding stepsize conditions are more easily
verified in practical situations than the conditions for general boundedness given thus far in the
literature.

The theoretical results are illustrated by application to the two-step Adams-Bashforth method
and a class of two-stage multistep methods.
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1 Introduction

1.1 Bounds for numerical approximations

In this paper we deal with the numerical solution of initial value problems of the form

d

dt
u(t) = F (t, u(t)) (t ≥ 0), u(0) = u0.(1.1)

We shall study a wide class of numerical methods, for solving (1.1), via the analysis of an
abstract generic numerical process of the type

(1.2) yi =
l∑

j=1

sij xj + ∆t ·
m∑

j=1

tij Fj(yj) (1 ≤ i ≤ m).

Here ∆t > 0 denotes the stepsize, the vectors xj (1 ≤ j ≤ l) are the input vectors of the
process, and yi (1 ≤ i ≤ m) the output vectors. In applications to concrete numerical
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methods, the output vectors usually stand for approximations to the exact solution u(t) of
(1.1) at certain time levels t̄i, that is, yi ≈ u(t̄i) (1 ≤ i ≤ m), and Fi(yi) = F (t̄i, yi).

Process (1.2) is highly relevant to the important and very large class of general linear
methods (GLMs), introduced by Butcher [1], cf. also e.g. Butcher [2, 3], Hairer & Wanner
[7], Hairer, Nørsett & Wanner [8]. This class comprises, e.g., all Runge-Kutta methods,
linear multistep methods and multistep-multistage variants thereof.

We can represent N ≥ 1 consecutive steps of any GLM canonically by a process of type
(1.2) with m = N(s + r), where s is the number of internal stages and r the number of
external stages computed at each step of the GLM. In this situation, the vectors xj (1 ≤ i ≤
l) stand for the starting vectors of the GLM, whereas the vectors yi (1 ≤ i ≤ m) represent
the N · s internal and N · r external stage approximations computed during the N steps.
Furthermore, the parameter matrices S = (sij) ∈ Rm×l, T = (tij) ∈ Rm×m, corresponding
to (1.2), are determined by the number of steps N as well as by the coefficients of the given
GLM. Detailed examples of such representations, as well as alternative representations
of actual multistep-multistage methods, can be found in Spijker [22] for N = 1 and in
Hundsdorfer, Mozartova & Spijker [13] for N > 1; cf. also Section 4 of the present paper.

We denote by V the vector space on which the differential equation is defined, and by
|| · || a real functional on V, i.e. ||v|| ∈ R for all v ∈ V. In the rest of the present section, we
assume || · || to be a convex functional, i.e.

(1.3) ‖λv + (1 − λ)w‖ ≤ λ ‖v‖ + (1 − λ) ‖w‖ (for 0 ≤ λ ≤ 1 and v, w ∈ V).

In applications, || · || will often be a norm or seminorm, see (2.9) below. But, more general
convex functionals are useful as well, notably in connection with discrete maximum prin-
ciples and preservation of nonnegativity; cf. e.g. Spijker [22] and Section 3.4 of the present
paper.

For the general process (1.2), as well as for special instances thereof, much attention
has been paid in the literature to the derivation of suitable upper bounds for ||yi||, in terms
of the input vectors xj , under the assumption that for given τ0 > 0

(1.4) ‖v + τ0 Fi(v)‖ ≤ ‖v‖ (for 1 ≤ i ≤ m, and v ∈ V);

cf. e.g. Ferracina & Spijker [4], Gottlieb, Ketcheson & Shu [5], Gottlieb, Shu, & Tadmor
[6], Higueras [9, 10], Hundsdorfer & Ruuth [14, 15], Hundsdorfer, Ruuth & Spiteri [16],
Shu & Osher [20], Spijker [22].

In most papers, the focus has been on the situation where (1.2) stands for just one step
(N = 1) of a GLM and

(1.5) si 1 + si 2 + · · · + si l = 1 (1 ≤ i ≤ m).

Under assumption (1.5), the neat bound

(1.6) ‖yi‖ ≤ max
1≤j≤l

‖xj‖ (for 1 ≤ i ≤ m)

has been studied extensively. Process (1.2) has been called monotonic or strongly stable (for
given stepsize ∆t, vector space V, functional ‖ · ‖ and functions Fi : V → V) if inequality
(1.6) holds whenever xi and yi satisfy (1.2). Algebraic characterizations were derived of
stepsize-coefficients γ with the following important property:

Condition 0 < ∆t ≤ γ · τ0 implies monotonicity, whenever V is a vector space,
‖ · ‖ a convex functional on V, and the functions Fi : V → V satisfy (1.4);(1.7)

see e.g. Spijker [22] and the references therein.
Unfortunately, for many useful GLMs there exists no γ > 0 such that (1.7) holds, when

one step of the method (N = 1) is represented in the form (1.2); some examples are given
in Section 4 of this paper. Furthermore, in important cases where (1.2) stands for N > 1
consecutive applications of a GLM, not even assumption (1.5) is fulfilled; cf. Section 4.
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These difficulties have led various authors to study bounds for ‖yi‖ that differ from
(1.6) by a factor µ ≥ 1, i.e.

(1.8) ‖yi‖ ≤ µ · max
1≤j≤l

‖xj‖ (for 1 ≤ i ≤ m).

Such general bounds are formally weaker than (1.6) but still useful because they can reveal
essential boundedness properties of the numerical methods under consideration, like the
property of being total-variation bounded - for this important concept see e.g. LeVeque [18].
Stepsize conditions corresponding to general bounds (1.8) were derived, e.g., in Ruuth &
Hundsdorfer [19], Hundsdorfer, Mozartova & Spijker [13].

The general bounds obtained thus far in the literature are relevant in cases where (1.7)
is violated or even (1.5) is not in force. On the other hand, these bounds suffer still
from the following two inconveniences: (1) the corresponding stepsize conditions, of type
0 < ∆t ≤ γ · τ0, involve complicated conditions on γ which are often difficult to check in
practise; (2) the general bounds are relevant to seminorms but not to any wider class of
functionals satisfying (1.3).

1.2 Scope of the paper

The main purpose of the present paper is to establish stepsize conditions guaranteeing
special bounds for the generic process (1.2), thereby circumventing the two inconveniences
just mentioned above. We shall find special bounds which can still be present in cases
where (1.5) or (1.7) is violated and which are best possible in a definite sense. Moreover,
these special bounds are relevant to a class of functionals || · || that is wider than the class
of seminorms. Finally, and most importantly in view of applications, the corresponding
stepsize conditions 0 < ∆t ≤ γ · τ0 involve a condition on γ which is easier to check in
practise than the conditions relevant to the general bounds given in the literature.

In Section 2 of this paper, we review and extend bounds and monotonicity results for
process (1.2), as given thus far in the existing literature. In Section 2.2, we first give a brief
review of known monotonicity results for process (1.2). Next we consider a property which
is a-priori more refined than pure monotonicity and we characterize in Theorem 2.4 stepsize
conditions guaranteeing this property. In Section 2.3, we specify two generalizations of (1.6)
which are relevant to process (1.2) in cases where (1.5) need not be fulfilled. Theorem 2.5
characterizes stepsize conditions guaranteeing these generalizations.

Section 3 contains the main theoretical findings of the paper. In Section 3.1, we for-
mulate explicitly, for process (1.2), the special bounds mentioned above (for ||yi|| in terms
of ||xj ||), and mention three features which distinguish them from more general standard
bounds (1.8). In Section 3.2, we study, in the situation of these special bounds, the char-
acterizations provided by Theorem 2.5. We find the simplified version (3.4)-(3.7) of these
characterizations. In Section 3.3, we study the special bounds for the case of seminorms
|| · ||; we find that these bounds are best possible in the sense specified by Theorem 3.4.
The main theorem of Section 3.3, Theorem 3.5, gives simplified criteria for stepsize condi-
tions guaranteeing the special bounds. Section 3.4 deals with the special bounds for the
case of a natural class of functionals – the so-called sublinear functionals – which is essen-
tially larger than the class of seminorms. Theorem 3.8 reveals the surprising fact that the
special bounds are the only bounds which make sense in the context of general sublinear
functionals. The main theorem of Section 3.4, Theorem 3.9, gives among other things
a mild condition under which the simple condition (2.3) characterizes stepsize conditions
guaranteeing the special bounds for sublinear functionals.

In Section 4 we illustrate the significance of the special boundedness theory by applying
it to some concrete numerical methods. For most of these methods, the monotonicity
results, as given in the literature, see e.g. [5, 22], are not (directly) applicable. Moreover,
the boundedness theory, as given e.g. in [13] would lead to very complicated conditions.
In Section 4.2 we study the two-step Adams-Bashforth method. When writing one step of
the method in a standard fashion as a process of type (1.2), there is no γ > 0 such that
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the monotonicity property (1.7) is present. But, by writing N ≥ 1 steps of the method
judiciously in the generic form (1.2), it turns out that Theorems 3.5, 3.9 yield conclusions
which can nicely be interpreted in terms of boundedness and nonnegativity preservation
of the method. In Section 4.3 we analyse a large class of k-step methods, containing both
predictor-corrector methods and hybrid multistep methods. The monotonicity results,
known from the literature, are not valid for many popular schemes of this class. By applying
Theorem 3.9, we will show that for many methods of practical interest relevant boundedness
properties are valid.

2 Reviewing and extending results from the literature

2.1 Preliminaries

Let I stand for the identity matrix of order m, and let S = (sij), T = (tij) denote the
coefficient matrices corresponding to (1.2). For values γ > 0 such that

(2.1) I + γ T is invertible,

we write, similarly as in [13], [22],

(2.2) P = (pij) = (I + γ T )−1(γT ), R = (rij) = (I + γ T )−1S.

In the following we will always assume (2.1). To show that this assumption can be made
with no loss of generality, we formulate the following lemma, which is an analogue of a
result from [22, Lemma 4.2]. The proof of this lemma is compact, so we repeat it here.

Lemma 2.1 (Invertibility of I + γ T ). Let τ0 > 0, γ > 0 be given and ∆t = γ · τ0. Let
V = R, || · || = | · | and assume µ is a constant such that (1.8) holds whenever Fi : V → V
fulfil (1.4) and yi, xj ∈ V satisfy (1.2). Then (2.1) holds.

Proof. Let η = [ηi] ∈ Rm such that (I + γ T ) η = 0. We shall prove η = 0.
We define Fi(v) = −(1/τ0) v (for all v ∈ V), so that (1.4) is fulfilled with ‖ · ‖ = | · |.

Clearly, (1.2) is satisfied, with ∆t = γ · τ0, by the vectors xi = 0 (1 ≤ i ≤ l) and
yi = ηi (1 ≤ i ≤ m). By applying (1.8), there follows |ηi| = |yi| ≤ µ · maxj |xj | = 0,
therefore η = 0. 2

We consider the following simple condition on γ:

(2.3) P ≥ 0, R ≥ 0.

These two inequalities – as well as any other inequalities between matrices appearing be-
low – should be interpreted entry-wise. Condition (2.3) will play a prominent part in the
following.

2.2 Monotonicity with arbitrary convex functionals || · ||
We recall shortly some concepts and results from the literature which are related to the
monotonicity property (1.7). The next two theorems follow directly from [22, Theorems 2.2,
2.4].

Theorem 2.2 (Criterion for monotonicity with arbitrary convex functional || · ||). Assume
(1.5) and let γ > 0. Then process (1.2) has the monotonicity property (1.7) if and only if
γ satisfies condition (2.3).

In the following, we use, for any given matrix A = (aij), the notation Inc(A) to denote
the incidence matrix of A, given by

Inc(A) = (âij), where âij = 1 (if aij 6= 0), âij = 0 (if aij = 0).
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Theorem 2.3 (Conditions on S, T ). Assume (1.5). Then there is a γ > 0 satisfying (2.3)
if and only if S ≥ 0, T ≥ 0, Inc(TS) ≤ Inc(S) and Inc(T 2) ≤ Inc(T ).

Clearly, for given matrices S, T, it is rather easy, by applying Theorems 2.2 and 2.3 to see
whether there is a γ > 0 such that (1.7) holds.

Under conditions (1.5), (2.3), we shall prove an interesting variant of (1.6), viz.

(2.4) ‖yi‖ ≤
l∑

j=1

|sij | ‖xj‖ (1 ≤ i ≤ m).

Note that, when all sij are nonnegative, the last bound is of particular interest because
it is more refined and gives, in general, more information than (1.6). Clearly, all sij are
nonnegative as soon as (1.7) holds for some γ > 0; cf. Theorems 2.2, 2.3.

We shall say that process (1.2) satisfies the bound (2.4) (for given stepsize ∆t, vector
space V, functional ‖ · ‖ and functions Fi : V → V), if (2.4) holds whenever xi and yi ∈ V
satisfy (1.2). The following property is an obvious variant of (1.7).

Condition 0 < ∆t ≤ γ · τ0 implies the bound (2.4), whenever V is a vector
space, ‖ · ‖ a convex functional on V, and the functions Fi : V → V satisfy
(1.4).

(2.5)

The following theorem shows that the (refined) property (2.4) is present under the same
conditions as property (1.7).

Theorem 2.4 (Criterion for (2.5)). Assume (1.5) and let γ > 0. Then process (1.2) has
property (2.5) if and only if γ satisfies condition (2.3).

Proof. 1. Assume (2.3), (1.4) and 0 < ∆t ≤ γ · τ0. We denote by Ek the k × 1 matrix
with all entries equal to 1. Note that, since R = (I − P )S and SEl = Em, we have
REl + PEm = Em, i.e.

∑l
j=1 rij +

∑m
j=1 pij = 1.

We rewrite process (1.2), using notations (2.2), in the form

yi =
l∑

j=1

rij xj +
m∑

j=1

pij

(
yj + θτ0Fj(yj)

)
(1 ≤ i ≤ m), θ =

∆t

γτ0
.

We denote the column vector in Rl with components ||xi|| by [||xi||], and we use a similar
notation with regard to yi and Fi(yi). Using the convexity property of the functional
‖ · ‖, there follows [||yi||] ≤ R[||xj ||] + P [||yi + θτ0Fi(yi)||]. In view of (1.4) we have
P [||yi + θτ0Fi(yi)||] = P [||θ(yi + τ0Fi(yi)) + (1 − θ)yi||] ≤ P [||yi||], so that

(2.6) [||yi||] ≤ (I + γ T )−1S[||xj ||] + (I − (I + γ T )−1)[||yi||],

i.e. (I + γ T )−1[||yi||] ≤ (I + γ T )−1S[||xj ||]. In view of Theorem 2.3, the matrices S and
I + γ T are nonnegative, so that (2.4) follows. Statement (2.5) has thus been proved.

2. Conversely, assume (2.5). We shall use the notation

sgn(α) = 1 (for α ≥ 0), sgn(α) = −1 (for α < 0).

Applying (2.5) with V = R, ||v|| = v, Fi = 0, xj = sgn(si0j), we see from (2.4) that∑
j |si0j | ≤

∑
j |si0j | sgn(si0j), so that si0j ≥ 0. Hence, all sij ≥ 0.

For any given xj , yi, property (2.4) thus implies (1.6). It follows that (2.5) implies (1.7)
and – by Theorem 2.2 – also (2.3) 2
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2.3 General bounds with seminorms || · ||
With an eye to cases where (1.5) or (1.7) (with γ > 0) is violated, we shall review and
extend, in this section, some results from the literature about bounds which are more
general than (1.6) or (2.4). We shall focus on the general bounds

(2.7) ‖yi‖ ≤ µi · max
1≤j≤l

‖xj‖ (for 1 ≤ i ≤ m),

(2.8) ‖yi‖ ≤
l∑

j=1

µij ‖xj‖ (for 1 ≤ i ≤ m),

where for the time being µi and µij denote arbitrary coefficients. Note that (1.6) or (2.4)
can be viewed as special cases of (2.7) and (2.8), respectively.

In this section, we focus on the situation where || · || is a seminorm, i.e.

(2.9) ||v + w|| ≤ ||v|| + ||w|| and ||λ v|| = |λ| ||v|| (for all real λ and v, w ∈ V).

We shall say that process (1.2) satisfies the bound (2.7) or (2.8) (for given stepsize ∆t,
vector space V, seminorm ‖.‖ and functions Fi : V → V), if (2.7) or (2.8), respectively,
holds whenever xi and yi ∈ V satisfy (1.2). The following two statements are obvious
variants of (1.7), (2.5), respectively.

Condition 0 < ∆t ≤ γ · τ0 implies that process (1.2) satisfies the bound
(2.7), whenever V is a vector space, ‖ · ‖ a seminorm on V, and the functions
Fi : V → V satisfy (1.4).

(2.10)

Condition 0 < ∆t ≤ γ · τ0 implies that process (1.2) satisfies the bound
(2.8), whenever V is a vector space, ‖ · ‖ a seminorm on V, and the functions
Fi : V → V satisfy (1.4).

(2.11)

In formulating conditions on γ for (2.10) or (2.11) to be fulfilled, we need some notations.
For any matrix A = (aij), we define the matrix |A| by |A| = (|aij |). For square matrices
A, we denote the spectral radius by spr(A). Furthermore we introduce the m × 1 matrix

(µi) = (µ1, µ2, · · · , µm)T

and the m × l matrix

(2.12) (µij) =

µ11 · · · µ1l

...
...

µm1 · · · µml

 .

We shall relate (2.10) and (2.11), respectively, to the following conditions on γ:

(2.13) spr(|P |) < 1 and (I − |P |)−1 |R|El ≤ (µi);

(2.14) spr(|P |) < 1 and (I − |P |)−1 |R| ≤ (µij).

The following theorem is a variant of a result given earlier in the literature, see [13]. In
fact, when all µi are equal to each other, part (I) of the theorem is an immediate corollary
to Theorem 2.2 in the paper just mentioned.

Theorem 2.5 (Criteria for (2.10), (2.11)). Consider process (1.2). Let γ > 0 and arbitrary
µi, µij be given. Then the following two propositions are valid.
(I) Property (2.10) is present, if and only if γ is such that condition (2.13) is fulfilled.
(II) Property (2.11) is present, if and only if γ is such that condition (2.14) is fulfilled.
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Proof. Conditions (2.13), (2.14) imply (2.10) and (2.11), respectively, by similar arguments
as used in part 1 of the proof of Theorem 2.4. Using the arguments of the mentioned
proof and (2.9), we get now [||yi||] ≤ |R|[||xj ||] + |P |[||yi||] instead of (2.6). There follows
[||yi||] ≤ (I − |P |)−1 |R|[||xj ||]. By (2.14) we arrive at (2.11). Since (I − |P |)−1 |R|[||xj ||] ≤
(I − |P |)−1 |R|El · maxk ||xk||], by (2.13) we arrive at (2.10).

The necessity of the conditions (2.13) and (2.14) can be proved by almost the same
arguments as already given in [13, Section 4.2]. 2

Theorem 2.5 has a wider scope, certainly, than the theorems of Section 2.2, in that µi

and µij are arbitrary coefficients and assumption (1.5) is not needed.
On the other hand, it is in general much more difficult to see whether conditions (2.13),

(2.14) are fulfilled than to check criterion (2.3). Moreover, unlike the theorems in Sec-
tion 2.2, Theorem 2.5 is only relevant to seminorms and not to arbitrary functionals sat-
isfying (1.3). These obvious weaknesses of Theorem 2.5 are among the reasons for dealing
in Section 3 with bounds of a very special form.

3 Bounds of a special form

3.1 Special choices for µi, µij

Consider the special choices

(3.1) µi =
∑

j |sij | and µij = |sij |.

Below we shall study the bounds (2.7), (2.8) with these special choices, respectively, i.e.

(3.2) ‖yi‖ ≤
( l∑

j=1

|sij |
)
· max
1≤j≤l

‖xj‖ (1 ≤ i ≤ m),

(3.3) ‖yi‖ ≤
l∑

j=1

|sij | ‖xj‖ (1 ≤ i ≤ m).

We are led to studying these special bounds by the following three considerations.
First of all, property (2.10) with µi =

∑
j |sij |, as well as property (2.11) with µij = |sij |,

can be interpreted as an extension, to all Fi satisfying (1.4), of a bound which is trivially
fulfilled when Fi(v) ≡ 0. In fact, in the subsequent Theorem 3.4, we shall see that the
bounds (2.7), (2.8) with coefficients (3.1) are best possible in the sense that, for any γ > 0,
properties (2.10), (2.11) cannot be valid with coefficients smaller than (3.1).

Secondly, Theorem 3.8 below shows that the equalities µi =
∑

j |sij | are necessary in
order that any bound (2.7) holds for a natural class of functionals || · || (satisfying (1.3))
that is larger than the class of seminorms. The theorem shows also that the equalities
µij = |sij | must be fulfilled in order that any bound (2.8) holds for the class of functionals
|| · || just mentioned.

Finally and most importantly in view of applications, the above criteria (2.13) and
(2.14), respectively, will turn out to reduce to much simpler forms when µi =

∑
j |sij | or

µij = |sij |.

3.2 Simplifying (2.13) and (2.14) when µi =
∑

j |sij| and µij = |sij|
In this section we shall analyse and simplify the above conditions (2.13), (2.14) in the
situation (3.1). Our first result is as follows:

Lemma 3.1 (Conditions (2.13), (2.14) with µi =
∑

j |sij | and µij = |sij |, respectively).
Condition (2.13) with µi =

∑
j |sij | is equivalent to (2.14) with µij = |sij |.
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Proof. To prove the lemma, we assume spr(|P |) < 1 and (3.1).
Suppose (2.13) is fulfilled. Since (µi) = |S|El = |(I − P )−1R|El ≤ (I − |P |)−1|R|El,

condition (2.13) is equivalent to |S|El = (I − |P |)−1|R|El, which can be rewritten as
|S|El = |P ||S|El + |R|El. Because of the last equality and |S| = |R + PS| ≤ |R| + |P ||S|,
it follows that

|S| = |P ||S| + |R|.

Hence, (I − |P |)−1|R| = |S| = (µij), which implies (2.14).
Conversely, (2.14) implies (I − |P |)−1|R|El ≤ |S|El, i.e. (2.13). 2

Below, we shall specify situations in which conditions (2.13) and (2.14) with the choice
(3.1) can be simplified to one of the subsequent four requirements:

(3.4) spr(|P |) < 1 and |P S| = |P | |S| ≤ |S|, |R| ≤ |S|;

(3.5) spr(|P |) < 1 and P S = |P |S, R ≥ 0;

(3.6) spr(P ) < 1 and P ≥ 0, R ≥ 0;

(3.7) P ≥ 0, R ≥ 0, S ≥ 0.

Lemma 3.2 (Simplifications of (2.13) and (2.14), with the choice (3.1)).
(I) Condition (2.13) as well as condition(2.14), with the choice (3.1), is equivalent to

(3.4).
(II) If S ≥ 0 then condition (3.4) is equivalent to (3.5).
(III) Assume S has no row equal to zero. Then the three conditions (3.5), (3.6) and (3.7)

are equivalent to each other.

Proof. (I) In view of Lemma 3.1, it is enough to show that (2.14) with µij = |sij | is
equivalent to (3.4).

From the proof of Lemma 3.1 it is evident that condition (2.14), with µij = |sij |, is
equivalent to

(3.8) spr(|P |) < 1 and |S| = |P ||S| + |R|.

The last equality implies |P | |S| = |P S|, because |S| = |PS+R| ≤ |PS|+|R| ≤ |P ||S|+|R|.
Furthermore, because S = PS + R, we have

|S| = |PS| + |R|

as soon as |PS| ≤ |S| and |R| ≤ |S|. It follows that condition (3.8) is equivalent to (3.4).
(II) Assume S ≥ 0. In order to prove the equivalence of (3.4) and (3.5), assume

spr(|P |) < 1.
Suppose (3.4) is fulfilled. Since R = S − PS and |S| = |S − PS| + |PS|, we have

|R| + |PS| = S = R + PS ≤ R + |PS| = R + |P |S,

which implies R ≥ 0 and P S = |P |S. Therefore we have (3.5).
Conversely, from (3.5) and S = R + PS we have

|P ||S| + |R| = |S| = |PS + R| ≤ |PS| + |R| ≤ |P ||S| + |R|.

Hence, (3.5) implies (3.4).
(III) Assume S has no row equal to zero. We shall prove successively that (3.5) ⇒ (3.6)

⇒ (3.7) ⇒ (3.6) ⇒ (3.5).
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Assume (3.5). Since (I − |P |)S ≥ 0, we have S = (I − |P |)−1(I − |P |)S ≥ 0. Denoting
by σi the entries of SEl, we have σi =

∑
j sij > 0 (for 1 ≤ i ≤ m). Since (|P | − P )S = 0,

we have (|P | − P )SEl = 0 and thus
∑

j (|pij | − pij)σj = 0. Hence, P ≥ 0, and therefore
we have (3.6).

Furthermore, (3.6) implies that S = (I − P )−1R = (I + P + P 2 + . . .)R ≥ 0, so that
(3.6) implies (3.7).

In order to prove that property (3.7) leads to (3.6), it is enough to show that spr(P ) < 1.
Introducing D = Diag(σ1, . . . , σm) with σi =

∑
j sij , we have

D−1PDEm = D−1PSEl = D−1(S − R)El ≤ D−1SEl = Em.

It follows that spr(P ) = spr(D−1PD) ≤ 1. Since P = I−(I +γT )−1 ≥ 0 has no eigenvalue
1, we conclude from the Perron-Frobenius theory (see e.g. [11, p. 503]) that spr(P ) < 1.

It is easy to see that (3.6) leads to (3.5). 2

Remark 3.3. Let γ > 0. Then (3.6) is equivalent to

(3.9) P ≥ 0, R ≥ 0, T ≥ 0.

In order to show this, first assume (3.6). Then I+γ T = (I−P )−1 = I+P +P 2+. . . ≥ I,
which yields (3.9).

Next suppose that (3.9) is fulfilled. Applying the Perron-Frobenius theory as presented
e.g. in [11, p. 503], it follows that there is a vector x ∈ Rm with 0 ≤ x 6= 0, such that
Px = λx where λ = spr(P ). Clearly, (I + γT )−1x = (I − P )x = (1 − λ)x, and therefore

x = (1 − λ)(I + γT )x.

Because Tx ≥ 0, the assumption that λ ≥ 1, would lead to:

0 ≤ x = (1 − λ)x + γ(1 − λ)Tx ≤ (1 − λ)x ≤ 0.

This would imply x = 0, which is a contradiction; therefore spr(P ) < 1. 2

3.3 Special bounds with seminorms || · ||
Clearly, with the choice (3.1), the properties (2.10), (2.11), respectively, reduce to

Condition 0 < ∆t ≤ γ · τ0 implies that process (1.2) satisfies the bound
(3.2), whenever V is a vector space, ‖ · ‖ a seminorm on V, and the functions
Fi : V → V satisfy (1.4).

(3.10)

Condition 0 < ∆t ≤ γ · τ0 implies that process (1.2) satisfies the bound
(3.3), whenever V is a vector space, ‖ · ‖ a seminorm on V, and the functions
Fi : V → V satisfy (1.4).

(3.11)

In this section we shall analyse these two properties, and arrive at relatively simple condi-
tions on γ for the properties to be present.

But, we present first Theorem 3.4, which shows a crucial feature of (3.10), (3.11): the
theorem tells us that the estimates (3.2), (3.3), occurring in (3.10), (3.11), are best possible
in that – for any γ > 0 – properties (2.10), (2.11) cannot be valid with smaller choices for
µi and µij than (3.1). We have

Theorem 3.4 (Lower bounds for µi and µij).
(I) If γ > 0 and µi are such that (2.10) holds, then µi ≥

∑
j |sij | (for 1 ≤ i ≤ m).

(II) If γ > 0 and µij are such that (2.11) holds, then µij ≥ |sij | (for 1 ≤ i ≤ m, 1 ≤ j ≤ l).

Proof. In order to prove statement (I), assume (2.10) holds with γ > 0 and µi0 <
∑

j |si0j |
for some index i0. Then, in the situation where V = R, ||v|| = |v|, Fi = 0 and xj = sgn(si0j),
we have ∥∥∑

jsi0jxj

∥∥ ≤ µi0 · max1≤j≤l ‖xj‖ <
∑

j |si0j | =
∥∥∑

jsi0jxj

∥∥.
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This yields a contradiction, so that (I) must be true.
To prove statement (II), assume (2.11) holds with γ > 0 and µi0j0 < |si0j0 | for some

pair (i0, j0). Then, applying (2.11) to the situation where V = R, ‖v‖ = |v|, Fi = 0,
xj = sgn(si0j) (for j = j0) and xj = 0 (for j 6= j0), we arrive at

‖si0j0xj0‖ ≤ µi0j0‖xj0‖ < |si0j0 | = ‖si0j0xj0‖.

This yields again a contradiction, so that (II) must be true. 2

Our main result about properties (3.10), (3.11) will be formulated in Theorem 3.5.
The theorem shows that criteria for the properties are possible which are in general much
simpler than (2.13) and (2.14).

Theorem 3.5 (Simplified criteria for (3.10) and (3.11)). Consider process (1.2), and let
γ > 0. Then the following propositions are valid
(I) Condition (3.4) is necessary and sufficient for property (3.10) as well as for property

(3.11).
(II) If S ≥ 0, then condition (3.5) is necessary and sufficient for property (3.10) as well

as for property (3.11).
(III) If S ≥ 0 has no row equal to zero, then condition (2.3) is necessary and sufficient for

property (3.10) as well as for property (3.11).

Proof. Part (I) follows from a combination of Theorem 2.5 and Lemma 3.2.
Part (II) follows from part (I) and Lemma 3.2.
In order to prove statement (III), assume S ≥ 0 has no row equal to zero. Com-

bining part (II) of Theorem 3.5 and part (III) of Lemma 3.2, it follows that (3.10) as well
as (3.11) is equivalent to (3.7). Because S ≥ 0, condition (3.7) is equivalent to (2.3). 2

Property (3.11) is a-priori stronger than (3.10). Therefore the essence of the above
theorem is that conditions (3.4), (3.5) and (2.3), under the appropriate assumptions on S,
imply the strong statement (3.11), whereas already the weaker statement (3.10), under the
same assumptions on S, implies conditions (3.4), (3.5) and (2.3).

3.4 Special bounds with general sublinear functionals || · ||
In this section we shall derive conditions for bounds of type (2.7), (2.8) where the functional
|| · || is not necessarily a seminorm. The following two examples provide some motivation
for dealing with such bounds.

Example 3.6. Consider the functionals ‖v‖ = ‖v‖+ and ‖v‖ = ‖v‖− defined by

(3.12) ‖v‖+ = max
i

vi , ‖v‖− = −min
i

vi (for v = (v1, v2, . . . , vM )T ∈ V = RM ).

These two functionals are no seminorms. But, they are highly relevant to discrete maximum
principles for actual numerical processes, cf. [17, p. 118], [22, p. 1235]. 2

Example 3.7. Another useful functional, violating (2.9), is given by

(3.13) ‖v‖0 = −min{0, v1, . . . , vM} (for v = (v1, v2, . . . , vM )T ∈ V = RM ).

For this non-negative functional we have ||v||0 = 0 if and only if v ≥ 0, where this inequality
is to be interpreted component-wise. One sees that any boundedness property maxi ‖yi‖0 ≤
µ · maxj ‖xj‖0 implies the preservation-of-nonnegativity property: yi ≥ 0 (for 1 ≤ i ≤ m)
whenever all xj ≥ 0. For the practical relevance of this property, e.g. in the numerical
solution of reaction-diffusion-convection equations, one may consult e.g. [17]. 2

10



Since the functionals in (3.12) and (3.13) violate condition (2.9), the material of Sec-
tions 2.3 and 3.3 does not apply. It is therefore natural to look for versions of Theorems 2.5,
3.4 and 3.5 which are relevant to classes of functionals which are larger than the one spec-
ified by (2.9). Below we shall focus on functionals || · || which are only required to be
sublinear, i.e.

(3.14) ||αv + βw|| ≤ α||v|| + β||w|| (for all α, β ≥ 0 and v, w ∈ V).

Note that (3.14) is equivalent to ||v + w|| ≤ ||v|| + ||w||, ||λ v|| = λ ||v|| (for all λ ≥ 0 and
v, w ∈ V). The functionals in (3.12) and (3.13) satisfy (3.14).

In line with the above, we shall study the question for which values γ > 0 process (1.2)
has either of the following two properties:

Condition 0 < ∆t ≤ γ · τ0 implies the bound (2.7), whenever V is a vector
space, ‖ · ‖ a sublinear functional on V, and the functions Fi : V → V satisfy
(1.4).

(3.15)

Condition 0 < ∆t ≤ γ · τ0 implies the bound (2.8), whenever V is a vector
space, ‖ · ‖ a sublinear functional on V, and the functions Fi : V → V satisfy
(1.4).

(3.16)

The following theorem may be viewed as a variant of Theorem 3.4 tuned to sublinear
functionals. It shows, somewhat surprisingly, that we loose nothing by focusing on bounds
with the coefficients (3.1).

Theorem 3.8 (Expressions for µi and µij).
(I) If γ > 0 and µi are such that (3.15) holds, then µi =

∑
j |sij | (1 ≤ i ≤ m) and S ≥ 0.

(II) If γ > 0 and µij are such that (3.16) holds, then µij = |sij | (1 ≤ i ≤ m, 1 ≤ j ≤ l)
and S ≥ 0.

Proof. (I) It follows from Theorem 3.4 that

(3.17)
∑

j |sij | ≤ µi (for 1 ≤ i ≤ m).

Applying (3.15) to the situation where V = R, ||v|| = v, Fi(v) ≡ 0, and choosing succes-
sively all xj = 1 and all xj = −1, we find

∑
j sij ≤ µi and (−

∑
j sij) ≤ (−µi), respectively.

Hence

(3.18) µi =
∑

j sij (for 1 ≤ i ≤ m).

Combining (3.17) and (3.18), we arrive at proposition (I).
(II) It follows from Theorem 3.4 that

(3.19)
∑

j |sij | ≤
∑

jµij (for 1 ≤ i ≤ m).

Applying (3.16) to the situation where V = R, ||v|| = v, Fi(v) ≡ 0, we conclude that∑
j sijxj = yi ≤

∑
j µijxj (1 ≤ i ≤ m), for all real values xj . This implies

(3.20) µij = sij (for 1 ≤ i ≤ m, 1 ≤ j ≤ l).

Combining (3.19) and (3.20), we arrive at proposition (II). 2

Theorem 3.8 shows that the bounds (3.2), (3.3), respectively, are the only bounds of
type (2.7), (2.8) which make sense in the context of general sublinear functionals ‖ · ‖.
Accordingly, we shall focus on the following variants of (3.15) and (3.16), respectively:

Condition 0 < ∆t ≤ γ · τ0 implies that process (1.2) satisfies the bound
(3.2), whenever V is a vector space, ‖ · ‖ a sublinear functional on V, and the
functions Fi : V → V satisfy (1.4),

(3.21)
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Condition 0 < ∆t ≤ γ · τ0 implies that process (1.2) satisfies the bound
(3.3), whenever V is a vector space, ‖ · ‖ a sublinear functional on V, and the
functions Fi : V → V satisfy (1.4).

(3.22)

Our main result about properties (3.21), (3.22) has been formulated in Theorem 3.9.
The theorem can be regarded as a neat version of Theorem 3.5, parts (I) and (III), adapted
to sublinear functionals.

Theorem 3.9 (Criteria for (3.21) and (3.22)). Consider process (1.2), and let γ > 0. Then
the following propositions are valid
(I) Condition (3.6) is necessary and sufficient for property (3.21) as well as for property

(3.22).
(II) If S ≥ 0 has no row equal to zero, then condition (2.3) is necessary and sufficient for

property (3.21) as well as for property (3.22).

Proof. (I) We prove necessity and sufficiency of (3.6) separately.
1 (Sufficiency). It is easy to see that property (3.22) implies (3.21). Therefore, it is

enough to prove that condition (3.6) implies (3.22). The last implication can be proved
by almost the same arguments as used in part 1 of the proof of Theorem 2.4 in Section 2.
Note that again the inequalities I + γ T ≥ 0 and S ≥ 0 are needed, which follow now from:
I + γ T = (I − P )−1 = I + P + P 2 + . . . ≥ 0 and S = (I − P )−1R ≥ 0.

2 (Necessity). For proving the necessity it is enough to show that: (3.21) implies (3.6).
To prove this implication, we (only) assume (3.21) to hold in the situation where

V = Rm, ||v|| = maxk v[k] (for v ∈ V with components v[k] (1 ≤ k ≤ m)).

We define functions Fj : V → V by

Fj(v) = τ−1
0 (−yj + zj) (for v = yj), Fj(v) = 0 (otherwise),

where yj , zj are vectors in V - to be specified below - satisfying

(3.23) ‖zj‖ ≤ ‖yj‖ (1 ≤ j ≤ m)).

Clearly the functions Fj defined in this fashion satisfy (1.4).
We consider the matrices P = (pij), R = (rij) (cf. (2.2)) and define the components of

xj , zj ∈ V by x
[k]
j = −1 (if rkj < 0), x

[k]
j = 0 (otherwise), and z

[k]
j = −1 (if pkj < 0),

z
[k]
j = 0 (otherwise). We define the vectors yi ∈ V by yi =

∑l
j=1 rijxj +

∑m
j=1 pijzj (1 ≤

i ≤ m). A short calculation shows that xi, yi satisfy (1.2) with the functions Fj as defined
above and ∆t = γτ0.

We denote by ρi the sum of the absolute values of the negative entries in the i-th row
of R, and by πi the sum of the absolute values of the negative entries in the i-th row of P .
By the definition of yi, we have ||yi|| ≥ y

[i]
i = ρi + πi (1 ≤ i ≤ m). Because ||zi|| ≤ 0, the

inequalities (3.23) are in force, so that (1.4) is valid.
Applying (3.21) to the situation at hand, there follows

ρi + πi ≤ ||yi|| ≤
(∑

j |sij |
)
· maxj ||xj || ≤ 0 (1 ≤ i ≤ m),

which proves P ≥ 0, R ≥ 0. The remaining inequality, spr(P ) < 1, follows e.g. by applying
Theorem 3.5, part (I).

(II) Let condition (2.3) be fulfilled. Then (3.7) holds as well. So, by Lemma 3.2,
part(III), condition (3.6) is fulfilled. From part (I) (of Theorem 3.9) we conclude that
(3.21) and (3.22) hold.

Conversely, assume (3.21) or (3.22). By Theorem 3.5, part(III), we arrive at (2.3). 2

Since property (3.22) is a-priori stronger than (3.21), the essence of the above theorem
is that conditions (3.6), (2.3) (under the appropriate assumptions on S) imply the strong
statement (3.22), whereas already the weaker statement (3.21) implies (3.6) and (2.3)(under
the same assumptions on S).
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3.5 Various natural questions

In this section we ask and answer five natural questions about possible simplifications or
extensions of Lemma 3.2 and Theorems 3.5, 3.9. For each of these questions we will provide
counterexamples.

Question 3.10. Because (3.5), (3.6), (3.7) and (2.3) are more simple in appearance than
(3.4), the question arises of whether condition (3.4) can be replaced by one of these four
conditions in Lemma 3.2 (part (I)) or in Theorem 3.5 (part(I)).

To answer this question, consider (1.2) with l = 2, m = 1 and s11 = −2, s12 = 1,
t11 = 1. Let γ > 0. It is easy to see that condition (3.4) is fulfilled. Hence, (3.10) and
(3.11) are valid. But, we do not have R ≥ 0, so that (3.5), (3.6), (3.7) and (2.3) are violated.
Therefore, none of the last four conditions can replace condition (3.4) in Lemma 3.2 (part
(I)) or in Theorem 3.5 (part(I)). 2

Question 3.11. Because (3.6), (3.7) and (2.3) are more simple conditions than (3.5), the
question arises of whether condition (3.5) can be replaced by one of these three conditions
in Lemma 3.2 (part (II)) or in Theorem 3.5 (part(II)).

The following counterexample proves that such replacement is not possible. Consider
process (1.2) with l = m = 1 and s11 = 0, t11 = −1. Let γ = 0.25. One easily sees that
condition (3.5) is fulfilled, so that (3.10) and (3.11) are valid. But, we do not have P ≥ 0,
so that (3.6), (3.7) and (2.3) are violated. Therefore, none of the last three conditions can
replace condition (3.5) in Lemma 3.2 (part (II)) or in Theorem 3.5 (part(II)). 2

Question 3.12. Because (2.3) is more simple a condition than (3.6), the question arises
of whether condition (3.6) can be replaced by (2.3) in Theorem 3.9 (part(I)).

The following counterexample proves that such replacement is not possible. Consider
process (1.2) with l = m = 1 and s11 = 0, t11 = −1. Let γ = 2. One easily sees that
condition (3.6) is violated, so that (3.21) and (3.22) are not valid. But (2.3) is fulfilled.
Therefore, condition (2.3) cannot replace (3.6) in Theorem 3.9 (part(I)). 2

Question 3.13. One may ask whether the condition S ≥ 0 can be omitted in Theorem 3.5
(part(III)) or in Theorem 3.9 (part(II)).

To answer this question, consider (1.2) with l = m = 1 and s11 = −1, t11 = −1. Let
γ = 2. It is easy to see that we have condition (2.3) but not (3.4) or (3.6). Hence, (3.10),
(3.11), (3.21), (3.22) are not valid but (2.3) holds. Therefore, the condition S ≥ 0 cannot
be omitted in Theorem 3.5 (part(III)) or in Theorem 3.9 (part(II)). 2

Question 3.14. Finally, we consider the question of whether the condition of S having
no row equal to zero, can be omitted in Theorem 3.9 (part(II)). A negative answer to this
question easily follows from the counterexample used above in resolving Question 3.12. 2

4 Applications of the theory

4.1 Preliminaries

Below we shall illustrate the preceding theory by applying it to some well-known numerical
methods. In these applications, we will restrict ourselves, for ease of representation, to
autonomous problems, i.e. F in (1.1) is independent of t, and Fj = F in (1.2). Condition
(1.4) thus reduces to

(4.1) ‖v + τ0 F (v)‖ ≤ ‖v‖ (for all v ∈ V).

In Section 4.2 we shall deal with the two-step (k = 2) Adams-Bashforth LMM and in
Section 4.3 with a class of k-step 2-stage methods. All of these methods generate vectors
un ∈ V (for n ≥ k) from starting vectors u0, . . . , uk−1 ∈ V, where un ≈ u(n · ∆t) and k is
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fixed. We call a k-step method bounded with factor µ (for given stepsize ∆t, vector space
V, functional || · || and function F ) if

(4.2) ‖un‖ ≤ µ · max
0≤j≤k−1

‖uj‖ (k ≤ n ≤ k − 1 + N),

whenever N ≥ 1 and un ∈ V (k ≤ n ≤ k− 1+N) are generated from any u0, . . . , uk−1 ∈ V
by N successive applications of the method. Boundedness with factor µ = 1 will be referred
to as monotonicity of the method.

We recall that boundedness and monotonicity with the so-called total-variation-seminorm
(defined by ||x|| = ||x||TV =

∑
i |ξi+1 − ξi| for vectors x with components ξi) correspond

to the important concepts total-variation-bounded and total-variation-diminishing, respec-
tively, cf. e.g. [17, 18].

In the following we shall focus on the situation where the functional || · || is a seminorm.
We shall consider stepsize-coefficients γ > 0 and factors µ such that

Condition 0 < ∆t ≤ γ · τ0 implies boundedness with factor µ, whenever V is
a vector space with seminorm ‖ · ‖, and F : V → V satisfies (4.1).(4.3)

In case γ, µ satisfy (4.3), we will say that γ is a stepsize-coefficient for boundedness of
the method with factor µ; in case γ satisfies (4.3) with µ = 1, we will call it a stepsize-
coefficient for monotonicity. Below we shall look for stepsize-coefficients with property
(4.3) by considering representations (1.2) of N consecutive steps of the method under
consideration.

4.2 The two-step Adams-Bashforth method

The well-known 2-step Adams-Bashforth method reads

(4.4) un = un−1 + ∆t
[

3
2
F (un−1) − 1

2
F (un−2)

]
;

it yields approximations un ≈ u(n∆t) (n = 2, 3, . . .), starting from u0 and u1 ≈ u(∆t). In
this section we shall look at the relevance of Theorems 2.2, 2.4, 3.5, 3.9 in the analysis of
this method, thereby representing N consecutive steps of (4.4) in two different ways as a
process of type (1.2).

In order to describe our first, and most natural, representation of (4.4) in the form (1.2),
we put l = 2, m = N + 2, and x1 = u0, x2 = u1, yi = ui−1 (1 ≤ i ≤ m). Clearly, (4.4)
holds for 2 ≤ n ≤ N + 1 if and only if

y1 = x1,

y2 = x2,

yi = x2 − 1
2
∆t F (y1) + ∆t

∑i−2
j=2F (yj) + 3

2
∆t F (yi−1) (3 ≤ i ≤ m) .

(4.5)

These relations are the same as (1.2) with m × 2 coefficient matrix S = (sij) and m × m
coefficient matrix T = (tij) defined by:

S =


1 0
0 1
...

...
0 1

 , T =



0
0 0
−1

2
3
2 0

−1
2 1 3

2 0
...

...
. . . . . . . . .

−1
2 1 · · · 1 3

2 0


.

With these definitions, the relations (4.4) (for 2 ≤ n ≤ N +1) thus hold if and only if (1.2)
is fulfilled.

For the matrix T at hand, we have (2.1) for all γ > 0. Furthermore, because (1.5) is
fulfilled, one might hope to be able to prove (1.7) or (2.5), for some γ > 0, by applying
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Theorem 2.2 or 2.4, respectively. If this were possible, such a γ would be a stepsize-
coefficient for monotonicity in the sense specified in Section 4.1.

However, a short calculation shows that the matrix P = (I +γT )−1(γT ) has a negative
entry (for any γ > 0 and all N ≥ 1), so that we cannot conclude, by applying Theorem 2.2
or 2.4, that there is γ > 0 for which (1.7) or (2.5) holds. Similarly, Theorems 3.5, 3.9 cannot
be applied here so as to arrive at (4.3) with positive γ. In fact, the following statement can
be proved, e.g. by applying the material in [21, Theorem 3.3].

Statement 4.1. For method (4.4) there exists no positive stepsize-coefficient for mono-
tonicity.

In spite of this statement, we shall see below that a positive stepsize-coefficient for
boundedness can be determined by applying Theorem 3.5 and representing (4.4) (for 2 ≤
n ≤ N + 1) in the form (1.2) with less obvious matrices S, T than used above.

We consider the representation in the form (1.2), with l = 2, m = N, yi = ui+1

(1 ≤ i ≤ m) and input vectors

(4.6) x1 = u1 + 3
2
∆t F (u1) − 1

2
∆t F (u0) , x2 = −1

2
∆t F (u1) .

Clearly, (4.4) (2 ≤ n ≤ N + 1) amounts to

y1 = x1,

yi = x1 + x2 + ∆t
∑i−2

j=1F (yj) + 3
2
∆t F (yi−1) (2 ≤ i ≤ m) .

(4.7)

N steps of (4.4) can thus be represented by (1.2), with l = 2, m = N and

(4.8) S =


1 0
1 1
...

...
1 1

 , T =


0
3
2 0
1 3

2 0
...

. . . . . . . . .
1 · · · 1 3

2 0

 .

Note that this matrix S violates (1.5), so that the monotonicity theory of Section 2.2 is
not relevant here. But, the special boundedness theory of Section 3 still applies.

To be able to apply Theorem 3.5, we shall determine expressions for P and R corre-
sponding to (4.8). A short calculation shows that

(I + γT )−1 =


q0

q1 q0

...
. . . . . .

qm−1 · · · q1 q0

 ,

where q0 = 1, q1 = − 3
2γ and qi = (1 − 3

2γ)qi−1 + 1
2γ qi−2 for i ≥ 2. It follows that

R =


r0 0
r1 r0

...
...

rm−1 rm−2

 , P = −


0
q1 0
...

. . . . . .
qm−1 · · · q1 0

 ,

where ri = q0 + q1 + · · · + qi. Using the recurrence relation satisfied by qi, one finds for
0 < γ ≤ 4

9 and i ≥ 1 that qi ≤ 0 and γ · ri = −[(1 − γ)qi + γ
2
qi−1] ≥ 0. Hence, (2.3) holds

for any γ ∈ (0, 4
9 ]. In the rest of this section we assume γ = 4

9 .
From proposition (III) of Theorem 3.5, we conclude that process (1.2) has property

(3.11). Using this property and (4.6), it follows that condition 0 < ∆t ≤ γ · τ0 implies:

(4.9) ‖un‖ ≤ ‖u1 + 3
2
∆t F (u1) − 1

2
∆t F (u0)‖ + ‖ − 1

2
∆t F (u1)‖ (2 ≤ n ≤ N + 1),
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whenever un is generated by applying (4.4) under assumption (4.1), where || · || is an
arbitrary seminorm on the vector space V.

For 0 < ∆t ≤ γ · τ0 and any seminorm || · ||, we have

‖∆tF (v)‖ = (∆t/τ0)‖ − v + (v + τ0F (v))‖ ≤ 2γ‖v‖,

which can be seen to imply

‖u1 + 3
2
∆t F (u1) − 1

2
∆t F (u0)‖ ≤ ‖u1‖ + γ‖u0‖;

hence,

(4.10) ‖u1 + 3
2
∆t F (u1) − 1

2
∆t F (u0)‖ + ‖ − 1

2
∆t F (u1)‖ ≤ (1 + γ)‖u1‖ + γ‖u0‖.

Combining (4.9) and (4.10) we arrive at the following:

Statement 4.2. The value γ = 4/9 is a stepsize-coefficient for boundedness of (4.4) with
factor µ = 17/9.

By applying Theorem 3.9, instead of Theorem 3.5, we find similarly as above that (4.9)
holds, whenever un (2 ≤ n ≤ N +1) is generated by applying (4.4) under assumption (4.1),
where || · || is now an arbitrary sublinear functional on the vector space V. But, in the
general situation of sublinear functionals, we cannot derive similarly as above that (4.10)
is valid.

To give a simple illustration of (4.9), with a sublinear functional || · || which is no
seminorm, we consider V = RM with functional (3.13). Applying Theorem 3.9 to the
situation at hand, and defining v ≥ 0 by nonnegativity of all components of v ∈ V, yields:

Statement 4.3. Consider V = RM with functional || · || = || · ||0, (3.13), and assume
F : V → V satisfies (4.1). Then condition 0 < ∆t ≤ 4

9τ0 implies

un ≥ 0 (2 ≤ n ≤ N + 1),

whenever un is obtained via (4.4) from u0, u1 with u1+
3
2
∆t F (u1) ≥ 1

2
∆t F (u0), F (u1) ≤ 0.

We note that, for method (4.4) and any γ > 0, property un ≥ 0 (2 ≤ n ≤ N +1) cannot
be proved for 0 < ∆t ≤ γ · τ0, under the more natural assumption that

u0 ≥ 0, u1 ≥ 0 and v + τ0 F (v) ≥ 0 (for all v ∈ RM with v ≥ 0).

This can be seen, for example, by considering V = R, F (v) ≡ v and u0 = 1, u1 = 0.

4.3 Predictor-corrector methods and hybrid multistep methods

4.3.1 Notations

Using an explicit linear multistep method (LMM), with coefficients âj , b̂j , as a predictor
for an implicit LMM, with coefficients aj , bj , results in a numerical process of type

vn =
k∑

j=1

âjun−j + ∆t

k∑
j=1

b̂jF (un−j) ,(4.11a)

un =
k∑

j=1

ajun−j + ∆t
k∑

j=1

bjF (un−j) + ∆t b0F (vn) ,(4.11b)

where k ≥ 1 is fixed and n = k, k + 1, . . . , cf. e.g. [3, 8, 12]. The starting values for this
method are u0, u1, . . . , uk−1 ∈ V.
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Throughout this section we assume b0 > 0,
∑k

j=1 âj = 1,
∑k

j=1 aj = 1, as well as

zero-stability, i.e. all roots of the equation ξk =
∑k

j=1 ajξ
k−j have a modulus |ξ| ≤ 1, and

the roots with |ξ| = 1 are simple.
Methods of type (4.11) are called predictor-corrector methods if un and vn, respectively,

are final and tentative approximations to the solution at tn = n∆t. If a predictor (4.11a)
corresponds to a method with order of accuracy k, and a corrector (4.11b) to a method
with order k + 1, then the predictor-corrector method (4.11) has order k + 1. The most
popular schemes of this type are obtained by combining the explicit Adams-Bashforth and
implicit Adams-Moulton methods, cf. the literature mentioned above.

The formulas (4.11) can also stand for so-called hybrid multistep methods, also known
as modified linear multistep methods, where vn approximates the solution at a point t̄n =
(n − κ)∆t, with an extra parameter κ 6= 0; cf. the above literature.

We shall represent N ≥ 1 steps of the general method (4.11) as a process of type (1.2),
were y = [yi] ∈ Vm, m = 2N , with

(4.12) yi = uk−1+i , yN+i = vk−1+i for 1 ≤ i ≤ N .

For the input vector we take x = [xj ] ∈ Vl, l = 2k, defined by

xi =
k∑

j=i

ajuk−1+i−j + ∆t

k∑
j=i

bjF (uk−1+i−j) (1 ≤ i ≤ k),(4.13a)

xi+k =
k∑

j=i

âjuk−1+i−j + ∆t
k∑

j=i

b̂jF (uk−1+i−j) (1 ≤ i ≤ k).(4.13b)

To write the relations (4.11), (4.12) specifying y1, y2, . . . , ym in a compact way, we give
the following definitions. For any m×r matrix S = (sij) we denote by the boldface symbol
S the corresponding linear map from Vr to Vm , that is, y = Sx if yi =

∑r
j=1 sijxj ∈ V

(1 ≤ i ≤ m). Let I be the N×N identity matrix. Let J0 ∈ RN×k be the matrix that consists
of either the first N rows of the k × k identity matrix (when 1 ≤ N < k), or the first k
columns of I (when N ≥ k). Furthermore, let A0 ∈ RN×N be the lower triangular Toeplitz
matrix with diagonal entries 0, entries aj on the j-th lower diagonal (1 ≤ j ≤ min{k, N−1})
and with the remaining entries 0 again. The matrices B0, Â0, B̂0 ∈ RN×N are defined
likewise with coefficients bj , âj , b̂j (1 ≤ j ≤ min{k,N − 1}), respectively (the coefficient b0

does not enter into the matrix B0).
It is easy to see that the relations (4.11) (for k ≤ n ≤ k − 1 + N) are equivalent to

(4.14) y = Jx + Ay + ∆tBF (y) ,

where F (y) = [F (yj)] ∈ Vm, and J ∈ Rm×l, A, B ∈ Rm×m are given by

(4.15) J =
(

J0 0
0 J0

)
, A =

(
A0 O

Â0 O

)
, B =

(
B0 b0I

B̂0 O

)
.

The generic form (1.2) is thus obtained with coefficient matrices (sij) = S = (I − A)−1J
and (tij) = T = (I − A)−1B.

4.3.2 Monotonicity for (4.11)

Let us first take a brief look at standard monotonicity with respect to the starting vectors
u0, . . . , uk−1. For this, it is convenient to introduce ǎj = aj − γb0âj and b̌j = bj − γb0b̂j

(for j = 1, . . . , k). The relations (4.11) imply that

un =
k∑

j=1

ǎjun−j + ∆t

k∑
j=1

b̌jF (un−j) + γb0

(
vn + ∆t

γ F (vn)
)
.
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By combining this equality with (4.11a), we arrive at the following theorem; see also e.g.
[6, 22, 12].

Theorem 4.4. Assume (4.11) holds for n = k, k + 1, . . . , k − 1 + N . Assume (1.3), (1.4),
and let γ > 0 be such that

(4.16) âj ≥ γb̂j ≥ 0 , ǎj ≥ γb̌j ≥ 0 (j = 1, . . . , k).

Then the stepsize restriction 0 < ∆t ≤ γ · τ0 implies that

(4.17) ‖un‖ ≤ max
0≤j≤k−1

‖uj‖ (k ≤ n ≤ k − 1 + N).

Note that, under a weak irreducibility assumption, condition (4.16) is not only sufficient
but also necessary for (4.17), see [22].

However, the methods (4.11) satisfying (4.16) form a small class, excluding popular
schemes, for instance obtained by combining explicit and implicit Adams-type methods as
indicated above. Furthermore, in view of results for LMMs of [19], one can expect that
the stepsize requirement ∆t ≤ γ · τ0 (with γ such that (4.16) holds) may be unnecessarily
restrictive if γ is only required to be a stepsize-coefficient for boundedness (in the sense of
Section 4.1).

Below we apply the theory of Section 3 in an analysis of (4.11) which is also relevant
in cases where (4.16) is violated.

4.3.3 Special bounds for (4.11)

Below we shall look for stepsize-coefficients for boundedness using the representation of
(4.11) in the form (1.2) with the matrices S, T specified in Section 4.3.1.

For the matrix T we have (2.1) (for all γ > 0). To prove this, we consider the alternative
ordering

(4.18) y2i−1 = vk−1+i, y2i = uk−1+i (1 ≤ i ≤ N),

which yields a representation of type (4.14) with strictly lower triangular matrices, say,
A, B. The corresponding matrix T = (I−A)−1B is also strictly lower triangular. With our
original ordering, viz. (4.12), we thus have a matrix T = V TV −1, where V is a permutation
matrix, and therefore (2.1) holds. To derive boundedness results it will be convenient to
use the original ordering (4.12).

Substituting in (2.2) the expressions for S and T , we arrive at

(4.19) R = KJ , P = γKB , K = (I − A + γB)−1 .

Because P = V PV −1, with P = γT(I + γT)−1 and spr(P) = 0, we have also spr(P ) = 0.
Let Ǩ0 = (I − Ǎ0 + γB̌0)−1, Ǎ0 = A0 − γb0Â0, B̌0 = B0 − γb0B̂0. It can be seen that

K =
(

I − A0 + γB0 γb0I

−Â0 + γB̂0 I

)−1

=
(

Ǩ0 −γb0Ǩ0

(Â0 − γB̂0)Ǩ0 (I − A0 + γB0)Ǩ0

)
.

This gives

(4.20) R =
(

Ǩ0J0 −γb0 Ǩ0J0

(Â0 − γB̂0) Ǩ0J0 (I − A0 + γB0) Ǩ0J0

)
.

Using the fact that lower triangular Toeplitz matrices commute, it is found that

(4.21) P = γ

(
(B0 − γb0B̂0) Ǩ0 b0 Ǩ0(

(I − A0)B̂0 + Â0B0

)
Ǩ0 b0(Â0 − γB̂0) Ǩ0

)
.
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We have

S =
(

(I − A0)−1J0 O

Â0(I − A0)−1J0 J0

)
.

By considering the upper-right blocks of R, P, S and PS, |P |S it can be seen that none
of conditions (3.4)–(3.7) is fulfilled (for any γ > 0 and all N ≥ 1). Hence, Theorem 3.5
cannot be applied here directly so as to arrive at (4.3) with positive γ. However, we shall
see below that a positive stepsize-coefficient for boundedness can be found by modifying
the matrix S and applying Theorem 3.9.

Let

(4.22) x̃i = xi − γb0xi+k , x̃i+k = xi+k for i = 1, . . . , k .

Then x = V x̃ with V =
(

I γb0I
O I

)
. Below we shall deal with process (4.14) written in

the equivalent form

(4.23) y = S̃x̃ + ∆tTF (y) ,

where S̃ = (s̃ij) = (I − A)−1JV = SV . Defining R̃ = (I + γ T )−1S̃ (cf. (2.2)) we get in
view of (4.19)

(4.24) R̃ = K J V =
(

Ǩ0J0 O

(Â0 − γB̂0) Ǩ0J0 J0

)
.

We now have R̃ ≥ 0 (for all N ≥ 1) whenever

(4.25) P ≥ 0 (for all N ≥ 1).

This leads directly to the following result.

Lemma 4.5. Consider N consecutive steps of process (4.11) written in the form (4.23).
Assume (3.14) and let F satisfy (4.1). Assume γ > 0, (4.25) and 0 < ∆t ≤ γ · τ0. Then
the output vectors yi defined by (4.12) satisfy

‖yi‖ ≤ µ̃i · max
1≤j≤l

‖x̃j‖ (1 ≤ i ≤ 2N) ,

with µ̃i =
∑

j |s̃ij |.

Proof. To prove this lemma, we apply part (I) of Theorem 3.9 with S replaced by S̃.
2

Consider µ̃ = maxi µ̃i = ‖S̃‖∞. Using (4.15) and (4.24), there follows after a little
calculation that

S̃ =
(

I γb0I

Â0 I − Ǎ0

) (
S0 0
0 S0

)
,

with S0 = (I−A0)−1J0. We find that µ̃ ≤ ‖(I−A0)−1J0‖∞ ·max
{
1+γb0, 1+

∑k
j=1

(
|âj |+

|ǎj |
)}

. Due to the assumption of zero-stability we have supN≥1 ‖S0‖∞ < ∞, so that µ̃
can be bounded, uniformly with respect to N.

Consider γ > 0 such that (4.25) holds and let 0 < ∆t ≤ γ · τ0. Then from Lemma 4.5
and (4.13), (4.22), it follows that

(4.26) ‖un‖ ≤ µ̃ · max
{ k∑

j=1

(
|ǎj − γb̌j | + |γb̌j |

)
,

k∑
j=1

(
|âj − γb̂j | + |γb̂j |

)}
· max
0≤j≤k−1

‖uj‖

for k ≤ n ≤ k− 1 + N , whenever un is generated from u0, . . . , uk−1 ∈ V by applying (4.11)
under assumption (4.1), where || · || is a seminorm on the vector space V. Thus we arrive
at the following theorem.

Theorem 4.6. Assume γ > 0 is such that (4.25) holds. Then γ is a stepsize-coefficient
for boundedness of (4.11) (in the sense of Section 4.1).
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4.3.4 Results for third order explicit two-step methods of the form (4.11)

In this section we study method (4.11) with k = 2, un ≈ u(n∆t), vn ≈ u((n − κ)∆t).
Requiring order p = 3 leaves 3 free parameters a1, â1, κ and the remaining coefficients can
be computed by the formulas: a2 = 1−a1, b0 = (4+a1)/(6(1−κ)(2−κ)), b1 = (8− 12κ−
(4− 3κ)a1)/(6(1−κ)), b2 = (4− (5− 3κ)a1)/(6(2−κ)), â2 = 1− â1, b̂1 = 2− â1

2 − 2κ+ κ2

2 ,

b̂2 = − â1
2 + κ − κ2

2 . The method is zero-stable if and only if a1 ∈ [0, 2).
For these methods we will compute the maximal values of γ such that P ≥ 0 for all

N = 1, . . . , 1000; it was verified that with larger N the results did not differ anymore
noticeably.

First we study the methods with κ = 0, corresponding to the classical two-step predictor-
corrector methods. The result is shown in the left panel of Figure 1. We note that there are
no methods in this class for which the monotonicity condition (4.16) holds with γ > 0. The
displayed values of γ for boundedness with these predictor-corrector methods are rather
low; the maximal value is approximately 0.36, corresponding to a1 ≈ 0.765, â1 ≈ 1.673.
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Figure 1: Maximal values γ > 0 such that P ≥ 0 for the methods (4.11) with k = 2 of order p = 3,
with parameters a1 ∈ [0, 1.5] horizontally and â1 ∈ [−0.1, 1.95] vertically. Left panel: standard
predictor-corrector methods, κ = 0. Right panel: hybrid methods with κ = 1 − 1

3

√
3. Contour

levels at j/20, j = 0, 1, . . .; for the ‘white’ areas, there is no positive γ.

A numerical search revealed that larger values of γ can be found by allowing κ 6= 0.
The right panel of Figure 1 shows the values of γ with κ = 1− 1

3

√
3 . The largest γ ≈ 0.73

is found with a1 ≈ 0.392, â1 ≈ 0.667 and this γ is optimal within the whole class (4.11)
with k = 2, p = 3.

Rather surprisingly, this method coincides with the method found in [22, Section 3.2.3]
which is optimal with respect to the monotonicity condition (4.16). The latter method
corresponds to a1 = 6

√
3 − 10, â1 = 2

3 . These parameters coincide (up to four decimal
digits) with the values for a1, â1 obtained numerically by our search using condition (4.25),
corresponding to the right panel in Figure 1. In fact, if â1 ≤ 2

3 the monotonicity condition
(4.16) seems to give the same γ as the boundedness condition (4.25). If â1 > 2

3 then the
method has some negative coefficient, so then there is no positive γ for monotonicity with
arbitrary starting values. But, as shown by Figure 1, for such â1 we can still have positive
stepsize-coefficients γ for boundedness.
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