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Abstract: This paper investigates iterated Runge-Kutta methods of high order designed in such a way that the 
right-hand side evaluations can be computed in parallel. Using stepsize control based on embedded formulas a highly 
efficient code is developed. On parallel computers, the 8th-order mode of this code is more efficient than the DOPRI8 
implementation of the formulas of Prince and Dormand. The 10th-order mode is about twice as cheap for comparable 
accuracies. 
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1. Introduction 

Implicit Runge-Kutta (RK) methods for solving the initial-value problem for the system of 
ordinary differential equations (ODEs) 

d~~t) =J(y(t)), (1.1) 

are seldom used in predictor-corrector (PC) iteration, because RK correctors are much more 
expensive than linear multistep (LM) correctors. This is due to the increased number of coupled 
nonlinear algebraic equations. Although RK correctors of order p usually possess smaller error 
constants than LM correctors of comparable order, an accuracy-computational effort graph will 
be in favour of PC methods based on LM methods. However, matters are different when parallel 
computers are used. It is well known that PC iteration, being a form of functional iteration (or 
Jacobi iteration), allows a high degree of parallelism, because, by partitioning the system of 
equations into subsystems of equal computational complexity, we can assign to each processor 
such a subsystem and perform the iteration steps in parallel. The problem is of course the 
partitioning in subsystems of equal computational complexity. In the case of iterating s-stage 
RK methods, there is a natural partitioning based on the s subsystems corresponding to the s 
stages of the RK method. In this way, the computation time involved in applying RK correctors 
can be reduced a great deal on parallel computers. We shall call these "parallel, iterated" RK 
methods PIRK methods. The idea of iterating an implicit RK method to exploit parallelism goes 
back to Jackson and Nmsett [10] and also in [9,11,12] such methods have been debated. Before 
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continuing our discussion on PC iteration, we emphasize that the choice of an implicit RK 
corrector has nothing to do with the excellent stability characteristics such methods usually 
possess, since this property is not preserved when the PC approach is followed. Their choice is 
solely determined by the fact that a high order of accuracy is easily obtained and, particularly, 
because of the potential parallelism exhibited by these methods. Hence, in the sequel we will 
assume that the class of ODEs (1.1) is nonstiff and has to be solved with high accuracy demands. 

If the predictor is itself an (explicit) RK method, then the PIRK method also belongs to the 
class of explicit RK methods. In [9] it was proved that explicit RK methods of order p 
necessarily require at least p effective stages, and in [12) the question was posed whether it is 
always possible to find explicit RK methods of order p using not more than p effective stages, 
assuming that sufficiently many processors are available (an explicit RK method is said to have 
p effective stages if the computation time required for evaluating all right-hand sides in one step 
is p times the computation time required by one right-hand side evaluation). This question 
motivated us to look in the class of PIRK methods for explicit RK methods, the order of which 
equals the number of effective stages; such methods will be called optimal RK methods. We will 
show that PIRK methods generated by any (not necessarily implicit) s-stage RK corrector of 
order p do not require more than p effective stages provided that s processors are available. The 
next question is the least number of processors needed to implement an optimal explicit RK 
method. For example, in [12] a Sth-order, 6-stage RK method of Butcher which can be 
implemented on two processors requiring only 5 effective stages is mentioned. This method is 
clearly an example of an optimal "minimal processor" RK method. So far, we did not succeed in 
answering the question of least number of necessary processors. Therefore, we have looked for 
RK methods of which the number of stages is small with respect to their order. It is well known 
that, within the class of RK methods, those of Gauss-Legendre type require least number of 
stages to obtain a given order; to be more precise, s-stage Gauss-Legendre methods have order 
p = 2s. Hence, for an "optimal" implementation of these methods, we need only s processors. 
Furthermore, the stability regions can directly be derived from known results for truncated 
Taylor series, they allow an extremely simple implementation, and we obtain automatically a 
sequence of embedded methods of varying order which can be used for stepsize control. PIRK 
codes of order 8 and 10 using automatic stepsize control are compared with the code DOPRI8 of 
[5] which is a variable step implementation of the 8th-order explicit RK formula with 7th-order 
embedded formula of [13]. All codes use the same stepsize strategy. By a number of experiments, 
the performance of PIRK codes is demonstrated. Both codes are considerably cheaper than 
DOPRI8 for comparable accuracies. In the Appendix to this paper, we provide a FORTRAN 
implementation of the PIRK methods. This implementation has the feature that the user can 
introduce arbitrary RK correctors by means of their Butcher arrays. 

Instead of using (one-step explicit) RK predictors one may use LM predictors reducing the 
number of effective stages. First results based on LM predictors are reported by Lie [11], using a 
4th-order, 2-stage Gauss-Legendre corrector and a 3rd-order Hermite extrapolation predictor. 
With this PC pair, one iteration suffices to obtain a 4th-order PIRK scheme. We shall briefly 
discuss the use of multistep predictors, in particular for RK correctors of general (nonquadra­
ture) type. Various predictor methods are compared showing that the efficiency of PIRK 
methods using multistep predictors is higher, but the price to be paid for the increased efficiency 
is more storage and a less easy implementation. 

Finally, the methods proposed in the following sections will be described for scalar differential 
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equations of the form (1.1). Their application, however, is straightforwardly extended to systems 
of ODEs. 

2. Optimal RK methods 

Our starting point is the s-stage, implicit, one-step RK method of the form 

Yn+l = Yn + hhTrn+1• 

Where rn+I iS implicitly defined by 

rn 1-1 := f ( Yne + hAr,, + 1) • 

(2.la) 

(2.lb) 

Here, h is the integration step, e is a column vector of dimension s with unit entries, b is an 
s-dimensional vector and A is an s X s-matrix. Furthermore, we use the convention that for any 
given vector v = ( v), /( v) denotes the vector with entries /( v). By iterating the equation for 
rn+ 1 m times by simple functional iteration and using the mth iterate as an approximation to 
rn + 1 • we obtain the method 

r(}) = J(yne + hAr<J-ll), j = 1, ... , m, - + hbT (m) Yn+1 - Yn r . (2.2} 

Since the s components of the vectors rUl can be computed in parallel, provided that s 
processors are available, the computational time needed for one iteration of (2.2) is equivalent to 
the time required to evaluate one right-hand side function on a sequential computer. Hence, the 
total costs of (2.2) per integration step comprise the calculation of the initial approximation rC0l 

plus m right-hand side evaluations. In the following, we always assume that we have s processors 
at our disposal and, speaking about "computational effort per step", we mean the computational 
time required per step if s processors are available. If the computational effort per step equals 
the computation time for performing M right-hand side evaluations, then we shall say that the 
method requires M effective stages. Here, and in the sequel, we have assumed that the costs per 
step are predominated by the time needed to evaluate the derivative function. If this happens to 
be not the case for a particular ODE, then the overhead, which is sequential in essence, will take 
a relative large portion of the total costs per step and, consequently, the parallel evaluation of the 
s (cheap) right-hand side functions will not result in an overall speedup with a factor s. 

We shall call the method providing r<0 l the predictor method and (2.1) the corrector method 
and the resulting parallel, iterated RK method will be briefly called PIRK method. It should be 
observed that in the present case of RK correctors, the predictor and corrector methods do not 
directly generate approximations to Yn+l as is the case in PC methods based on LM methods. 
However, at any stage of the iteration process we can compute the current approximation to Yn+ 1 

by means of the formula 

Y(J) == Yn + hbTr(J), j = 0, 1, .... (2.3) 

Let r(O) be an approximation to r,,+ 1 satisfying the condition 

r<0>=r. +O(hq) 
n+l ' (2.4) 

resulting in y<0l = Yn + 1 + 0( hq+ 1 ). Predictor methods satisfying (2.4) will be called predictor 
methods of order q. 
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Suppose that A and bT are such that the corrector (2.1) is of order p and let the predictor 
method be of order q- 1. Then, it has been proved in [10] that the (global) order of Yn+i as 
defined by (2.2) equals p* == min{ p, q + m}. By using the simple predictor method r<0l := 

f(Yn)e = rn+I + O(h), i.e., q = 1, we immediately have as a corollary of this result the next 
theorem. 

Theorem 1. Let {A, bT} define ans-stage RK method (which need not be implicit) of order p. 
Then the PIRK method defined by 

r(O) = f(yn)e, rU> = f(yne + MrU-ll), j = l, ... , m, Yn+l = Yn + hbTr(m), (2.5) 

represents an (m + l)s-stage explicit RK method of order p* == min{ p, m + 1} requiring m + 1 
effective stages. 

Method (2.5) can also be represented by its Butcher array. Defining the s-dimensional vector 0 
and the s X s-matrix 0 both with zero entries, we obtain 

0 
A 0 
0 A 0 

0 0 A 0 
oT oT oT bT 

We remark that this Butcher tableau represents a direct translation of (2.5), resulting in 
(m + l)s stages. However, written in this form, the 0-matrix in the first row could be replaced 
by a scalar zero, since the prediction r<0> has equal components and, consequently, can be 
produced by one processor. This would lead to an explicit RK method possessing ms+ 1 stages. 

Setting m = p - l, it follows from Theorem 1 that the question posed by N0rsett and 
Simonsen [12] can be answered in the affirmative: any pth-order RK method {A, bT} generates 
an explicit RK method of the form (2.5) of order p requiring only p effective stages. Such 
explicit RK methods will be called optimal RK methods. Of course, within the class (2.5) the 
number of processors needed for the implementation is dictated by the number of stages s of the 
generating corrector. For example, the lOth-order, 17-stage RK method of Hairer [4] generates 
an explicit RK method of the form (2.5) which is also of order 10 if we set m = 9 and which is 
optimal in the above sense. However, the implementation of this method requires 17 processors. 
This suggests the problem of constructing RK methods of order p which are optimal and require 
least number of processors. The Sth-order, 6-stage RK method of Butcher mentioned in [12] is an 
example of such a method: it can be implemented on 2 processors requiring only 5 effective 
stages. From the theory of RK methods based on high-order quadrature methods, such as 
Gauss-Legendre and Radau methods [5], we can immediately deduce a lower bound for the 
number of processors needed to implement optimal RK methods of the form (2.5). 

Theorem 2. RK methods of the form (2.5) are optimal if m = p - 1. For even p the least number of 
required processors equals ~p and the generating RK corrector is the pth-order Gauss-Legendre 
method; for odd p the least number of processors is t( p + 1) and the generating RK corrector is the 
pth-order Radau method. 
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Table 1 
Comparison of sequential RK methods and optimal RK methods of the form (2.5) 

p .;:; 4 5 6 7 8 9 10 

Sequential RK smln p 6 7 9 11 ;;.12 ;;.13 
s p 6 7 9 11 17 

Optimal RK Seri p 5 6 7 8 9 10 
spr 3 3 4 4 5 5 

Thus, optimal RK methods requiring less than l h p + l)j processors cannot be found among 
the methods of the form (2.5). Since (2.5) allows an extremely simple implementation and 
provides automatically a sequence of embedded formulas which can be used for error estimation 
(see Section 5) and order variation, we have not looked for methods requiring less than 
t H p + l)j processors. 

In order to illustrate the significance of Theorem 2, we make a comparison with explicit RK 
methods devised for one-processor computers (sequential methods). In Table 1 the minimal 
number of stages srnin (and therefore the minimal number of right-hand side evaluations) needed 
to generate such methods of order p are listed. In addition, we list the number of stages S for 
which these RK methods have actually been constructed (cf. [5, Section 11.6]), and the numbers 
of effective stages Serr and processors Spr needed by the optimal RK methods of Theorem 2. 

Finally, we remark that if the RK corrector is based on quadrature (or collocation) methods, 
then the initial approximation r<0l can be interpreted as the derivative /( y<0>), where y<0l is an 
approximation to y(t,,e + hAe). Suppose that the components of y<0l are computed (in parallel) 
by using an explicit (q- 1)-stage RK method of order q --1 with stepsizes hAe. The resulting 
PIRK method is still an explicit RK method itself and it is optimal if m = p - q corrections are 
performed. 

3. Multistep predictor methods 

Evidently, we can save computing time by using multistep predictor methods. As observed 
above, such predictors should provide approximations to the derivative values f(y(tne + hAe)) in 
the case where the generating RK method { A, bT} is derived from quadrature formulas. Any set 
of linear multistep methods providing approximations to the components of y( t ne + Me) serves 
this purpose. 

In this paper we briefly discuss the case of arbitrary RK correctors where we cannot give an 
easy interpretation for the initial approximation r<0). In such cases, it is possible to construct 
multistep predictor methods by performing the auxiliary vector recursion 

(3.la) 

where E denotes the forward shift operator, i.e., Efn = l+i· The predictor method is now simply 
defined by 

r (O) :=/, 
n+l · (3.lb) 

Here o(t) is a polynomial of degree k - 1 whose coefficients are matrices of appropriate 
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dimension (cf. [7]). The method defined by (2.2) and (3.1) gives rise to a k-step PC method 
requiring m + 1 right-hand side evaluations per step. Form= 0, this method fits into the class of 
methods investigated in [7]. 

By Taylor expansion of ln+I (or y<0)), conditions for the satisfaction of rn+I - ln+I = O(hq) 
can be derived in terms Of A and o(n. For instance we have the following theorem. 

Theorem 3. Let the corrector defined by {A, br} be of order p, then the k-step PC method 

fn+I = f(yne + h8(E)E-k+IJ,,), 

j= l, ... ,m, 

is of order p* == min{ p, q + m }, where 

q=2 if Ae-8(1)e=O. 

q = 3 if, in addition, A 2e - 82 (l)e + k8(I)e - o'(l)e = 0, 

1A 2e- t8 2 (I)e + ko(l)e - o'(l)e = 0. 

(3.2) 

Example 4. The most simple example is the case where k = 1 and o(n = 0, so that r<0> = f(Yn)e 
and q = 1. This case has been already considered in the preceding section. Next we choose k = 1 
and o(n =A. It is readily verified that the order conditions for the predictor are satisfied for 
q = 2. The algorithm (3.2) assumes the one-step form 

ln+I = J(yne + hAfn), 
(0) -J, r - n+I• (3.3) 

Yn+l = Yn + hbTr(m). 

If the RK corrector has order p, then by performing m = p - 2 corrections this method is also of 
order p and requires p - 1 right-hand side evaluations per step. Formally, the method no longer 
belongs to the class of one-step RK methods. However, in actual applications, the method is 
self-starting if we take / 0 = f(y0 )e. 

Finally, we choose k = 2 and o(f) = 2At - A which satisfy the order conditions for q = 3. The 
algorithm (3.2) assumes the two-step form 

ln+I = J(yne + 2hAJ,, - hA/n-1), 
(0) -f, r - n+I• j=l,. .. ,m, (3.4) 

Y = y + hbTr(m) 
n+l n ' 

If the RK corrector has order p, then by performing m = p - 3 corrections this method is also of 
order p and requires p - 2 right-hand side evaluations per step. 

4. Stability 

We consider linear stability with respect to the test equation 

y' (t) = Ay(t ). (4.1) 
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It is easily verified that application of (2.5) yields the recursion 

Yn+l = [1 + zbTe + z 2bTAe + z 3bTA 2e + · · · +zm+lbTAme] Yn, 

where we have written z =!..h. The stability polynomial is given by 

Pm+ 1(z)=l+zbTe+z 2bTAe+z 3bTA2e+ ··· +zm+lbTAme. 

117 

(4.2) 

(4.3) 

In the particular case where we choose m = p -1, p being the order of the corrector, we obtain a 
stability polynomial of degree p. According to Theorem 1, this PIRK method is of order p so 
that the stability polynomial is consistent of order p, i.e., it approximates exp(z) with pth-order 
accuracy. Thus, we have proved the next theorem. 

Theorem 5. Let the corrector be of order p. If m = p - 1, then the method (2.5) becomes an 
(explicit) RK method with the stability polynomial 

() 12 13 1 
p Z = 1 + Z + -z + -z + • · · +-zP 

p 21 3! p! . 

Using a result on truncated Taylor series (cf. [6,p.236)), we have the next corollary as a 
corollary of this theorem. 

Corollary 6. The method of Theorem 5 is stable in the interval [ /3real, O], where 

/3real :=::: 0.368 (p + 1)(19(p + 1))1/(i(p+l)l_ (4.4) 

Defining [ -i /3imag• i /3imagl to be the interval on the imaginary axis where the method of 
Theorem 5 is stable, we list in Table 2 the values of !3rea1. (and its approximation provided by 
(4.4)) and /3imag for orders p = 1, 2, ... , 10. 

5. Stepsize control 

In this section we will describe a simple strategy to implement the aforementioned methods 
with a variable stepsize in order to control the local truncation error. This strategy is the same as 
the one employed by Hairer, N0rsett and Wanner [5,p.167] in their code DOPRl8, in which they 
have implemented the 13-stage, 8th-order explicit RK method with the embedded method of 
order 7 of Prince and Dormand. 

This strategy is based on the observation that when iterating the equation (2.lb) for r11 + 1 we 
obtain approximations r<j) of successively increasing order, i.e., 

r (J) - .. = O(hmin{p.q+J}) 1· - 1 2 m 
'n + 1 ' - , , · • ·, • 

Table 2 
/3real and flimag for the method of Theorem 5 

p =1 p=2 p=3 p=4 p=S p=6 p=7 p=8 p=9 p=lO 

True value of /3rcal 2.00 2.00 2.52 2.78 3.22 3.55 3.95 4.31 4.70 5.07 
Value according to (4.4) 1.83 2.17 2.53 2.90 3.28 3.65 4.03 4.41 4.78 5.16 
True value of /3i-.g 0.00 0.00 1.73 2.82 0.00 0.00 1.76 3.39 0.00 0.00 



118 P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method 

Thus, apart from our final approximation Yn+t == y12 + hbTr(m), we can easily construct a 
reference solution ( cf. (2.3)) 

(5.1) 

for some k < m. Since· r<k> has already been computed, this does not require additional 
right-hand side evaluations. This reference solution yCkl can be considered as an "embedded" 
solution [5). Now, as an estimate for the local error t: in the step from t12 to t 12 + 1 = t 12 + h, we take 

(5.2) 

for some norm II • 11- Usually, one uses reference solutions y<k> such that the orders of Yn + 1 and 
y<k> differ by 1. Here we follow this approach and choose k = m - l. 

First, we will discuss the case where we restrict our stepsize strategy to methods in which the 
number of iterations m is fixed in each step and is given by m = p - q. Hence, r(m> - r12 + 1 and 
r<m-I> - r12 + 1 behave as O(hP) and O(hP-1), respectively, and, consequently, 

t: = llYn+l -y<m-l)ll = llYn + hbTr(m) _ Yn -hbTr(m-l)ll = O(hP). 

Then t: is compared with some prescribed tolerance TOL and the step is accepted if t: ~ TOL, 
and rejected otherwise. Furthermore, the value of t: allows us to make an estimate for the 
asymptotically optimal stepsize: 

h( T~L rlP' 
which will be taken in the next step (or to recompute the current step in case of rejection). 
However, to give the code some robustness, we actually implemented (cf. [5,p.167]) 

. { {1 (TOL) 11P}} hnew =hmm 6, max J, 0.9 -t:- . (5.3) 

The constants 6 and t in this expression serve to prevent an abrupt change in the stepsize and 
the safety factor 0.9 is added to increase the probability that the next step will be accepted. 

Apart from the variable stepsize implementation mentioned above, the PIRK methods allow 
for a simple extension of the control strategy by which also the order of the method may vary 
from step to step. This can be achieved by abandoning the approach of a fixed number of 
iterations. Referring to the description above, we can construct a sequence of reference solutions, 
i.e., after each iteration the "embedded" solution 

yU> := Yn + hbT r(j) 

is computed. Then, we can use the difference of two successive reference solutions as an estimate 
for the local error, i.e., 

iu> :=II y<n - yu-1) \\. 

If, during the iteration, the tolerance criterion iu> ~ TOL is satisfied for some j =Jo< m, then 
there is no need to proceed with the iteration process and we accept y<Jo) as the numerical 
solution Yn+l· This suggests to try the next step with the value of m defined by m = j 0 • Since 

t:<Jo) = O(hP"), p* = min{ p + 1, q +Jo}, 
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a prediction for the next stepsize can be made according to (5.3), where p is replaced by p* and 
€ by €CJo). 

It may happen that the tolerance condition is not satisfied for j = } 0 ~ m. In such cases, the 
values of m and h predicted in the preceding step were not reliable. One may then decide to 
reject the current value of m and to continue the iteration process. This is particularly 
recommendable if the value of the current p* is less than p. If the continuation of the iteration 
process does not help to satisfy the tolerance condition em~ TOL for j ~ M, where M is some 
prescribed upper bound for the number of iterations per step, then the (relatively costly) 
alternative is rejection of the current value of h, to redefine h according to (5.3) using the most 
recent information on the error, and to perform the present step once again. In this way a 
variable order variable stepsize RK method can be constructed. 

6. Numerical experiments 

We present few examples illustrating the efficiency of PIRK methods on parallel computers. 
The calculations are performed using 14-digits arithmetic. The methods tested were all applied in 
P(EC)mE mode. 

6.1. Comparison of various predictor methods 

In order to examine the effect of various predictor methods on the efficiency of the PIRK 
algorithm we performed a few tests by integrating the equation of motion for a rigid body 
without external forces (cf. [8, Problem B5]): 

' Y1 = Y2Y3, 

y; = -y1y3, 

y; = -0.51 Y1Y2• 

y 1 (0)=0, 

Y2 (0) = 1, 

Y3 ( 0) = 1, 0 ~ t ~ T. 

(6.1) 

In these tests we used the 1 Oth-order Gauss-Legendre corrector and the following predictor 
methods: 

Predictor I: ,.<0> = /(yn)e (cf. (2.5)), q= 1, p = rnin { rn + 1, 10}, 

Predictor II: r<0 ) defined by standard 4th-order RK, q=5, p=min{m+5, 10}, 

Predictor III: r(O) = /(yne + hAf,,) (cf. (3.3)), q=2, p = min{rn + 2, 10}, 

Predictor IV: ,.<0 > =I (yne + 2hAfn - hAf,,_ I) ( cf. (3.4) ), q=3, p = min{m + 3, 10}. 

In Table 3 we have listed the values D\N, where D denotes the number of correct decimal 
digits at the endpoint, i.e., we write the maximum norm of the error at t = T in the form 10-D, 
and where N denotes the total number of effective right-hand side evaluations performed during 
the integration process. Furthermore, we indicated the effective order Perr• that is the order of 
accuracy which is shown numerically. 

Comparing experiments with equal N (notice that this table contains for each h and each 
predictor an experiment with N = 180h- 1) we conclude that in most experiments the 3rd-order 
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Table 3 
Values D\N for problem (6.1) with T= 20 

h - 1 Predictor I Predictor II Predictor III Predictor IV 

m = 8 m = 9 m = 10 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 7 m = 8 

1 5.6\180 6.5\200 6.9\220 5.3\180 7.0\200 6.8\220 4.8\160 5.5\180 7.5\200 4.6\160 5.7\180 
2 8.0\360 9.7\400 9.8\440 7.8\360 10.2\400 9.7\440 7.2\320 8.5\360 9.6\400 7.2\320 8.8\360 
4 10.6\720 13.0\800 12.3\880 10.5\720 13.3\800 12.2\880 9.7\640 11.6\720 12.1\800 10.4\640 12.4\720 

Perr"" 9 10 10 9 10 10 9 10 10 10 10 

predictor IV and the 2nd-order predictor III yield the most accurate values. However, the price 
we pay is more storage and a more complicated implementation because of the auxiliary 
recursion for In· The predictors I and II produce comparable accuracies. As the added storage 
for the predictors III and IV is not offset by comparable reduction in the volume of computa­
tion, we recommend predictor I in actual computations. The resulting PIRK method is a true 
one-step RK method of an extremely simple structure, and consequently allowing an easy and 
straightforward implementation. A FORTRAN code based on this PIRK method can be found 
in the Appendix to this paper. 

6.2. Comparison with the JOth-order methods of Curtis and Hairer 

Curtis [2] and Hairer [4] used the test problem (6.1) for testing and comparing their lOth-order 
RK methods. In Table 4 the results of the experiments performed by Curtis and Hairer are 
reproduced together with results obtained by the PC pairs consisting of the predictors I, II and 
III, and the lOth-order Gauss-Legendre corrector. Again we see that the simple predictor I can 
compete favourable with the predictors II and III. 

6.3. Comparison with the 8(7)-method of Prince and Dormand 

The 8(7)-method of Prince and Dormand [13] is nowadays generally considered as one of the 
most efficient methods with automatic stepsize control for TOL-values approximately in the 

Table 4 
Values D\N for problem (6.1) with T= 60 

Method p 60/h D N 

Runge-Kutta 4 12000 9.6 48000 
Adams-Moulton-Bashforth 4 6000 8.1 12000 
Bulirsch-Stoer: polynomial extrapolation 8.9 5276 
Bulirsch-Stoer: rational extrapolation 9.6 4860 
Runge-Kutta-Curtis 10 240 9.9 4320 
Runge-Kutta-Hairer 10 240 10.1 4080 
(2.2) with predictor I and m = 9 10 156 10.0 1560 
(2.2) with predictor I and m = 10 10 150 10.0 1650 
(2.2) with predictor II and m = 5 10 150 10.1 1500 
(2.2) with predictor II and m = 6 10 156 10.1 1716 
(2.2) with predictor III and m = 8 10 210 10.0 1891 
(2.2) with predictor III and m = 9 10 168 10.0 1681 



P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method 121 

Table 5 
Values of N for problem (6.2) 

Method D=5 D=6 D=7 D=8 D=9 D =10 D=ll 

DOPRI8 595 759 963 1227 1574 1990 2503 
PIRK.8 379 495 623 786 978 1383 1874 
PIRKlO 327 388 490 704 884 977 1078 

range 10- 7 to 10- 13• In this subsection we compare the DOPRI8 code, as given by [5], with the 
PIRK. method based on predictor I and the Gauss-Legendre correctors of orders 8 and 10. To 
let the comparison of the DOPRI8 code and the PIRK codes not be influenced by a different 
stepsize strategy, we equipped the PIRK codes with the same strategy (see Section 5). These 
codes are respectively denoted by PIRK8 and PIRKlO. 

6.3.1. Fehlberg problem 
As a first test problem we take an example from [3]: 

y{ = 2ty1 log(max{y2 , 10- 3 }), Yi(O) = 1, 
0 ~ t ~ 5' ( 6 .2) y;= -2ty2 log{max(y1 ,10- 3 }), y2 (0) =e, 

with exact solution y1(t) = exp(sin(t 2 )), y 2(t) = exp(cos(t 2 )). For tolerances TOL running from 
10- 5 up to 10- 12 we computed the D and corresponding log10(N) values. Instead of presenting 
the polygon graph for these values as was done in [5], we preferred to present the D\N lying on 
this polygon for a number of integer values of D. In Table 5 these values are listed. 

6.3.2. Euler equations 
Next, we apply the codes to Euler's equation for a rigid body (cf. (6.1)). The performance of 

the code is presented in Table 6. 

6.3.3. Orbit equations 
Finally, we apply the codes to the orbit equations (cf. [8, Problem 02]): 

y{ = Y3, Y1 ( 0) = 1 - t:, 

Y; = y4, Y2(0) = 0, 
I -yl 

y3(0) = 0, Y3 = 
( 2 2 )3/2 ' ( 6.3) Y1 +Yi 

I -y2 {fg { = I~, 0 ~ t ~ 20. Y4 = 
( 2 2 )3/2 , 

y4(0) = ' 
Y1 + Y2 

Table 6 
Values of N for problem (6.1) 

Method D=6 D=7 D=8 D=9 D=lO D=ll D =12 
DOPRI8 415 576 728 898 1133 1422 1817 
PIRK.8 294 381 534 728 961 1172 1746 
PIRKlO 252 297 357 426 580 730 920 
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Table 7 
Values of N for problem (6.3) 

Method D=5 D=6 D=1 D=8 D=9 D=lO D=ll 

DOPRI8 615 723 831 1062 1284 1780 2024 
PIRK8 463 559 679 859 1099 1411 1876 
PIRKlO 378 448 540 662 784 911 1076 

The performance of the codes is presented in Table 7. 
An obvious conclusion which can be drawn, is that-at least for these three testexamples-both 

PIRK codes are more efficient than DOPRI8; in the average, PIRK8 requires! of the number of 
/-evaluations that are needed by DOPRI8 to yield the same accuracy, whereas PIRKlO is almost 
twice as efficient. The superiority of PIRKlO, especially in the high-accuracy range, is un­
doubtedly due to its higher order. Therefore, it would be interesting to compare this method with 
an embedded (sequential) Runge-Kutta pair of comparable order. Unfortunately, to the best of 
our knowledge, such formulae have not been constructed in the literature. 

7. Conclusions 

Iterated Runge-Kutta methods of arbitrarily high order have been constructed that are 
capable of efficiently exploiting the parallelism of an MIMD computer architecture. Assuming 
that sufficient processors are available, it is shown how to derive "optimal methods", i.e., 
methods requiring a number of parallelised /-evaluations equal to the order. Within the class of 
optimal methods considered, the required number of processors s is least with respect to the 
order p if the algorithm is based on an iterated Gauss-Legendre RK method and this minimal 
number is given bys= ip. It is known that optimal methods exist requiring a smaller number of 
processors (an example is the 5th-order method of Butcher, mentioned in the Introduction), but 
it is not clear how to formulate a general construction procedure to arrive at such methods for 
arbitrary order. 

A nice feature of the methods proposed is that they provide an embedded reference solution 
without additional /-evaluations. This advantage has been utilized to make a variable step 
implementation which has been compared with the code DOPRl8, nowadays considered as "the 
state of the art" for the automatic integration of ODEs. On the basis of some testexamples, the 
performance of the new code is compared with DOPRI8 and, in terms of the required number of 
f-evaluations, demonstrates a superior behaviour. 

Another aspect is the simple implementation of the new algorithm. In the Appendix a 
FORTRAN subroutine is provided which accepts a general RK method of arbitrary order, 
defined in terms of its Butcher tableau. For example, if there is need for an automatic integration 
routine of order higher than 8, as is furnished by DOPRI8, then we can suffice to specify, e.g., a 
high-order Gauss method (the construction of which is simple and fully described in [1]) and call 
this subroutine. Furthermore, for such accuracy demands, we remark that even in the case that 
the parallel evaluation of the derivatives is not possible (e.g., on a uniprocessor machine) or not 
relevant (e.g., because the evaluation off is very inexpensive and offset by the overhead), this 
code may still be of value. Since classical embedded RK pairs of such high orders are lacking, it 
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may turn out that, even in the nonparallelised form, the present code is more efficient than 
DOPRI8, in spite of its large redundancy with respect to the number of /-evaluations (cf. the 
discussion following Theorem 1). It is easily verified that this approach can offer sequential 
embedded RK methods of arbitrary order p, using ms+ 1 = hp2 - p + 2) stages. This aspect, 
which is a direct consequence of the simplicity of the PIRK algorithm, needs further investi­
gation. 

Appendix 

Here we give the implementation (in FORTRAN 77) of the optimal PIRK methods of the 
form (2.5), including error control. This subroutine offers the user the facility to specify an 
arbitrary Runge-Kutta method by means of the matrix A and the vectors bT and c (see also the 
description of these parameters). 

Although this routine has been coded in standard FORTRAN 77, it will require machine-de­
pendent amendment as to exploit the parallelism. Therefore we shall discuss in some detail the 
most important loop in this subroutine, i.e., the 80-loop. It is here, that the parallel calculation of 
the components of the iterate rUl is to be performed ( cf. (2.2)). A first observation is that this 
loop contains a call to another subprogram (viz. FCN). The separate compilation of subprograms 
prevents the compiler from actually parallelising this loop, since it is unknown what happens 
within FCN. Nevertheless, if the present source is offered to a compiler without giving any 
instructions, the outcome (i.e., the "optimized" object code) will be the product of all kinds of 
operations, like unravelling, interchanging, distributing loops etc., and will certainly speedup the 
execution. However, the parallelisation will probably not completely fit in with the ideas as 
advocated in the present paper. Therefore, we have to insert an explicit specification concerning 
the way the compiler had to do its job; for example, we can specify that it is in this case without 
any danger to parallelise over the FCN-calls. Most parallel computers offer so-called "directives" 
for this purpose (e.g., using an Alliant, one can specify: cvd$ cncall). Since these directives may 
differ for the various parallel machines, we decided to code this loop in standard FORTRAN. 

Another observation is that the 80-loop contains two nested innerloops: one over the 
components of the ODE and one to form the innerproduct of a row of A and the iterate vector 
,u- 1>. If the parallel machine at hand has an architecture in which each processor is a 
vectorprocessor, then it may be advantageous to interchange these innerloops. Such consider­
ations depend on the dimension of the ODE, the Startup time of the particular vectorprocessor, 
the "smartness" of the compiler, etc. 

To sum up, in order to obtain an optimal performance, the user of the subroutine PIRK. is 
advised to adjust the 80-loop to the specific situation he is dealing with, like the number of 
processors available (perhaps even larger than s ), the dimensions of the problems to be solved, 
etc. 

SUBROUTINE PIRK(N, NR, FCN, T, Y, TEND, TOL, H, S, P, 
+ NRA, A, B, C, YN, FN, RJ, RJMl, BIGY, YREFJ 

c-------------------------------------------------------------------
c PIRK SOLVES AU INITIAL VALUE PROBLEM FOR A SYSTEM OF FIRST-ORDER 
C DIFFERENTI~L EQUATIONS OF THE FORM Y'(T)=F(T,Y(T)). 
C THE ROUTINE IS BASED ON AN ITERATED RUNGE-KUTTA METHOD AND 
C DESIGNED IN SUCH A WAY THAT PARALLELISM IS EXPLOITED. 
C IN COUNTING THE NUMBER OF REQUIRED F-EVALUATIONS, IT IS ASSUMED 
C THAT THE NUMBER OF STAGES IN THE RUNGE-KUTTA METHOD DOES ?iOT 
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C EXCEED THE NUMBER OF PROCESSORS AVAILABLE. 
c 
C MEANING OF THE PARAMETERS: 
c --------------------------
c N - INTEGER VARIABLE 
C THE DIMENSION OF THE SYSTEM 
C NR - INTEGER VARIABLE 
C FIRST DIMENSION OF THE ARRAYS RJ, RJMl AND BIGY AS 
C DECLARED IN THE CALLING PROGRAM (NR .GE. N) 
C FCN - SUBROUTINE 
C A USER-DEFINED SUBROUTINE COMPUTING THE DERIVATIVE 
C F(T,Y(T)) 
C ITS SPECIFICATION READS: 
C SUBROUTINE FCN(N,T,Y,F) 
C DIMENSION Y(N),F(N) 
c 
C ON RETURN, F(I) (I=l, ... ,N) MUST CONTAIN THE VALUE OF 
C THE I-TH COMPONENT OF THE DERIVATIVE VECTOR 
C FCN MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM 
C T - REAL VARIABLE 
C THE INDEPENDENT VARIABLE; ON ENTRY, T SHOULD BE SET 
C TO THE INITIAL VALUE. ON RETURN, T CONTAINS THE VALUE 
C FOR WHICH Y IS THE SOLUTION 
C Y - REAL ARRAY OF DIMENSION (AT LEAST) N 
C THE DEPENDENT VARIABLE. ON ENTRY, Y SHOULD CONTAIN THE 
C INITIAL VALUES OF THE DEPENDENT VARIABLES. 
C ON RETURN, Y CONTAINS THE NUMERICAL SOLUTION AT T 
C TEND - REAL VARIABLE 
C TEND SPECIFIES THE END POINT OF THE RANGE OF INTEGRATION 
C TOL - REAL VARIABLE 
C TOL (>0) SPECIFIES A BOUND FOR THE LOCAL TRUNCATION 
C ERROR 
C H - REAL VARIABLE 
C ON ENTRY, H SHOULD BE GIVEN A VALUE WHICH IS USED AS A 
C GUESS FOR THE INITIAL STEP SIZE 
C S - INTEGER VARIABLE 
C NUMBER OF STAGES OF THE SPECIFIED RUNGE-KUTTA METHOD 
C P - INTEGER VARIABLE 
C ORDER OF ACCURACY OF THE SPECIFIED RUNGE-KUTTA METHOD 
C NRA - INTEGER VARIABLE 
C FIRST DIMENSION OF THE ARRAY A AS DECLARED IN THE 
C CALLING PROGRAM (NRA .GE. S) 
C A - REAL ARRAY OF DIMENSION (NRA,L) WITH L .GE. S 
C B - REAL ARRAY OF DIMENSION (AT LEAST) S 
C C - REAL ARRAY OF DIMENSION (AT LEAST) S 
c 
C THE PARAMETERS A, B AND C DEFINE THE RUNGE-KUTTA METHOD, 
C WRITTEN IN THE SO-CALLED BUTCHER-NOTATION (USUALLY, THE 
C ELEMENTS OF C ARE EQUAL TO THE ROW-SUMS OF THE MATRIX A) 
C IN PRINCIPLE, ANY RUNGE-KUTTA METHOD CAN BE USED. 
C HOWEVER, THE OPTIMAL ORDER WITH RESPECT TO THE NUMBER OF 
C STAGES IS OBTAINED IF A 'GAUSS-LEGENDRE' METHOD IS 
C SELECTED. THE CORRESPONDING A, BAND C CAN BE FOUND IN: 
C J.C. BUTCHER, IMPLICIT RUNGE-KUTTA PROCESSES, MATH.COMP. 
C 18, (1964) PP. 50-64 
C YN - REAL ARRAY OF DIMENSION (AT LEAST) N 
C USED AS SCRATCH ARRAY 
C FN - REAL ARRAY OF DIMENSION (AT LEAST) N 
C USED AS SCRATCH ARRAY 
C RJ - REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S 
C USED AS SCRATCH ARRAY 
C RJMl - REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S 
C USED AS SCRATCH ARRAY 
C BIGY - REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S 
C USED AS SCRATCH ARRAY 
C YREF - REAL ARRAY OF DIMENSION (AT LEAST) N 
C USED AS SCRATCH ARRAY 
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c-------------------------------------------------------------------
DIMENSION Y(N),YN(N),FN(N),YREF(N),RJ(NR,*),RJMl(NR,*), 

+ BIGY(NR,*),A(NRA,*),B(*),C(*) 
INTEGER S,P 
LOGICAL REJECT 

c-------------------------------------------------------------------c THE COMMON BLOCK STAT CAN BE USED FOR STATISTICS CONCERNING THE 
C INTEGRATION PROCESS 
C NFCN NUMBER OF EVALUATIONS OF THE DERIVATIVE FUNCTION F 
C NSTEPS NUMBER OF INTEGRATION STEPS 
C NACCPT NUMBER OF ACCEPTED STEPS 
C NREJCT NUMBER OF REJECTED STEPS 
c-------------------------------------------------------------------

COMMON /STAT /NFCN, NSTEP S, NACCPT, NREJCT 
c-----------------------------------------------------c SMALLEST NtlMBER SATISFYING 1.0 + UROUND > 1.0 
C UROUND MAY REQUIRE AMENDMENT ON DIFFERENT MACHINES 
c-----------------------------------------------------

DATA UROUND/7.lE-15/ 
c------------------
c INITIALISATIONS 
c------------------

REJECT=. FALSE. 
NFCN=O 
NSTEPS=O 
NACCPT=O 
NREJCT=O 
TOL=AMAXl(TOL,10.0*UROUND) 

c-----------------------------------------------------------c ON ITERATING THE RUNGE-KUTTA METHOD, WE USE A PREDICTION 
C OF FIRST-ORDER. THEREFORE, WE NEED M=P-1 ITERATIONS TO 
C OBTAIN A RESULT OF ORDER P. 
c-----------------------------------------------------------

M=P-1 
c-------------------
c INTEGRATION STEP 
c-------------------

10 CONTINUE 
IF(H .LT. 10.0*UROUND)THEN 

WRITE(6,l)T 
1 FORMAT(' THE ROUTINE HAS ADVANCED THE SOLUTION UP TOT=', 

+ E16.8,/,' AND STOPPED BECAUSE THE STEP SIZE HAS', 
+ ' BECOME TOO SMALL'/' TRY A LESS STRINGENT VALUE', 
+ ' OF TOL OR CHANGE TO A HIGHER-ORDER METHOD') 

RETURN 
ENDIF 
IF(TEND-T .LT. UROUND)RETURN 
IF(T+H .GT. TEND)H=TEND-T 

c----------------------
c FORM THE PREDICTION 
c----------------------

DO 20 I=l,N 
20 YN(I)=Y(I} 

CALL FCN{N,T,YN,FN) 
NFCN=NFCN+l 

30 NSTEPS•NSTEPS+l 
DO 50 L-1,S 

DO 40 I=l,N 
40 RJMl(I,L)=FN(I) 
50 CONTINUE 

c----------------------------------------------
c IN THE 110-LOOP, THE ITERATION IS PERFORMED 
c----------------------------------------------

00 110 J=l,M 
c----------------------------------------------------------c IN THE 80-LOOP, THE S STAGES ARE PERFORMED CONCURRENTLY 
c----------------------------------------------------------

DO 80 L•l,S 
DO 70 I=l,N 

125 
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BIGY(I,L)=YN(I) 
DO 60 K=l,S 

60 BIGY(I,L)-BIGY(I,L)+H*A(L,K)*RJMl(I 1 K) 
70 CONTINUE 

CALL FCN(N,T+C(L)*H,BIGY(l,L),RJ(l,L)) 
80 CONTINUE 

NFCN=NFCN+l 
c---------------------
c SHIFT THE ITERATES 
c---------------------

IF ( J. LT. M) THEN 
DO 100 L=l,S 

DO 90 I=l,N 
90 RJMl (I,L)-RJ (I, L) 

100 CONTINUE. 
END IF 

110 CONTINUE 
c---------------------------------------------c CALCULATE THE FINAL SOLUTION OF THIS STEP 
C AND A REFERENCE SOLUTION FOR ERROR CONTROL 
c---------------------------------------------

00 130 I=l,N 
Y (I) =YN (I) 
YREF(I)=YN(I) 
DO 120 K=l,S 

Y(I)-Y(I)+H*B(K)*RJ(I,K) 
120 YREF(I)=YREF(I)+H*B(K)*RJMl(I,K) 
130 CONTINUE 

c----------------
c ERROR CONTROL 
c----------------

ERROR=O. O 
DO 140 I=l,N 

DENOM=AMAXl(l.OE-6, ABS(Y(I)), ABS(YN(I)), 2.0*UROUND/TOL) 
140 ERROR=ERROR+((Y(I)-YREF(I))/DENOM)**2 

ERROR=SQRT(ERROR/N) 
FAC=AMAX1(1.0/6.0,AMIN1(3.0, (ERROR/TOL)**(l.O/P)/0.9)) 
HNEW-H/FAC 
IF(ERROR.GT.TOL)THEN 

c-------------------c STEP IS REJECTED 
c-------------------

IF (NACCPT. GE. l) NREJCT=NREJCT+ l 
REJECT-.TRUE. 
H=HNEW 
GOTO 30 

ELSE 
c-------------------c STEP IS ACCEPTED 
c-------------------

NACCPT=NACCl?T+ l 
T=T+H 
IF(REJECT)THEN 

HNEW-AMINl(HNEW,H) 
REJECT-.FALSE. 

END IF 
H=HNEW 
GOTO 10 

END IF 
END 
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