
Journal of Computational and Applied Mathematics 29 (1990) 111-127
North-Holland

111

Parallel iteration of high-order Runge-Kutta
methods with stepsize control

P.J. VAN DER HOUWEN and B.P. SOMMEIJER
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Received 6 December 1988
Revised 3 March 1989

Abstract: This paper investigates iterated Runge-Kutta methods of high order designed in such a way that the
right-hand side evaluations can be computed in parallel. Using stepsize control based on embedded formulas a highly
efficient code is developed. On parallel computers, the 8th-order mode of this code is more efficient than the DOPRI8
implementation of the formulas of Prince and Dormand. The 10th-order mode is about twice as cheap for comparable
accuracies.

Keywords: Numerical analysis, Runge-Kutta methods, parallelism.

1. Introduction

Implicit Runge-Kutta (RK) methods for solving the initial-value problem for the system of
ordinary differential equations (ODEs)

d~~t) =J(y(t)), (1.1)

are seldom used in predictor-corrector (PC) iteration, because RK correctors are much more
expensive than linear multistep (LM) correctors. This is due to the increased number of coupled
nonlinear algebraic equations. Although RK correctors of order p usually possess smaller error
constants than LM correctors of comparable order, an accuracy-computational effort graph will
be in favour of PC methods based on LM methods. However, matters are different when parallel
computers are used. It is well known that PC iteration, being a form of functional iteration (or
Jacobi iteration), allows a high degree of parallelism, because, by partitioning the system of
equations into subsystems of equal computational complexity, we can assign to each processor
such a subsystem and perform the iteration steps in parallel. The problem is of course the
partitioning in subsystems of equal computational complexity. In the case of iterating s-stage
RK methods, there is a natural partitioning based on the s subsystems corresponding to the s
stages of the RK method. In this way, the computation time involved in applying RK correctors
can be reduced a great deal on parallel computers. We shall call these "parallel, iterated" RK
methods PIRK methods. The idea of iterating an implicit RK method to exploit parallelism goes
back to Jackson and Nmsett [10] and also in [9,11,12] such methods have been debated. Before

0377-0427 /90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland)

112 P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method

continuing our discussion on PC iteration, we emphasize that the choice of an implicit RK
corrector has nothing to do with the excellent stability characteristics such methods usually
possess, since this property is not preserved when the PC approach is followed. Their choice is
solely determined by the fact that a high order of accuracy is easily obtained and, particularly,
because of the potential parallelism exhibited by these methods. Hence, in the sequel we will
assume that the class of ODEs (1.1) is nonstiff and has to be solved with high accuracy demands.

If the predictor is itself an (explicit) RK method, then the PIRK method also belongs to the
class of explicit RK methods. In [9] it was proved that explicit RK methods of order p
necessarily require at least p effective stages, and in [12) the question was posed whether it is
always possible to find explicit RK methods of order p using not more than p effective stages,
assuming that sufficiently many processors are available (an explicit RK method is said to have
p effective stages if the computation time required for evaluating all right-hand sides in one step
is p times the computation time required by one right-hand side evaluation). This question
motivated us to look in the class of PIRK methods for explicit RK methods, the order of which
equals the number of effective stages; such methods will be called optimal RK methods. We will
show that PIRK methods generated by any (not necessarily implicit) s-stage RK corrector of
order p do not require more than p effective stages provided that s processors are available. The
next question is the least number of processors needed to implement an optimal explicit RK
method. For example, in [12] a Sth-order, 6-stage RK method of Butcher which can be
implemented on two processors requiring only 5 effective stages is mentioned. This method is
clearly an example of an optimal "minimal processor" RK method. So far, we did not succeed in
answering the question of least number of necessary processors. Therefore, we have looked for
RK methods of which the number of stages is small with respect to their order. It is well known
that, within the class of RK methods, those of Gauss-Legendre type require least number of
stages to obtain a given order; to be more precise, s-stage Gauss-Legendre methods have order
p = 2s. Hence, for an "optimal" implementation of these methods, we need only s processors.
Furthermore, the stability regions can directly be derived from known results for truncated
Taylor series, they allow an extremely simple implementation, and we obtain automatically a
sequence of embedded methods of varying order which can be used for stepsize control. PIRK
codes of order 8 and 10 using automatic stepsize control are compared with the code DOPRI8 of
[5] which is a variable step implementation of the 8th-order explicit RK formula with 7th-order
embedded formula of [13]. All codes use the same stepsize strategy. By a number of experiments,
the performance of PIRK codes is demonstrated. Both codes are considerably cheaper than
DOPRI8 for comparable accuracies. In the Appendix to this paper, we provide a FORTRAN
implementation of the PIRK methods. This implementation has the feature that the user can
introduce arbitrary RK correctors by means of their Butcher arrays.

Instead of using (one-step explicit) RK predictors one may use LM predictors reducing the
number of effective stages. First results based on LM predictors are reported by Lie [11], using a
4th-order, 2-stage Gauss-Legendre corrector and a 3rd-order Hermite extrapolation predictor.
With this PC pair, one iteration suffices to obtain a 4th-order PIRK scheme. We shall briefly
discuss the use of multistep predictors, in particular for RK correctors of general (nonquadra
ture) type. Various predictor methods are compared showing that the efficiency of PIRK
methods using multistep predictors is higher, but the price to be paid for the increased efficiency
is more storage and a less easy implementation.

Finally, the methods proposed in the following sections will be described for scalar differential

P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method 113

equations of the form (1.1). Their application, however, is straightforwardly extended to systems
of ODEs.

2. Optimal RK methods

Our starting point is the s-stage, implicit, one-step RK method of the form

Yn+l = Yn + hhTrn+1•

Where rn+I iS implicitly defined by

rn 1-1 := f (Yne + hAr,, + 1) •

(2.la)

(2.lb)

Here, h is the integration step, e is a column vector of dimension s with unit entries, b is an
s-dimensional vector and A is an s X s-matrix. Furthermore, we use the convention that for any
given vector v = (v), /(v) denotes the vector with entries /(v). By iterating the equation for
rn+ 1 m times by simple functional iteration and using the mth iterate as an approximation to
rn + 1 • we obtain the method

r(}) = J(yne + hAr<J-ll), j = 1, ... , m, - + hbT (m) Yn+1 - Yn r . (2.2}

Since the s components of the vectors rUl can be computed in parallel, provided that s
processors are available, the computational time needed for one iteration of (2.2) is equivalent to
the time required to evaluate one right-hand side function on a sequential computer. Hence, the
total costs of (2.2) per integration step comprise the calculation of the initial approximation rC0l

plus m right-hand side evaluations. In the following, we always assume that we have s processors
at our disposal and, speaking about "computational effort per step", we mean the computational
time required per step if s processors are available. If the computational effort per step equals
the computation time for performing M right-hand side evaluations, then we shall say that the
method requires M effective stages. Here, and in the sequel, we have assumed that the costs per
step are predominated by the time needed to evaluate the derivative function. If this happens to
be not the case for a particular ODE, then the overhead, which is sequential in essence, will take
a relative large portion of the total costs per step and, consequently, the parallel evaluation of the
s (cheap) right-hand side functions will not result in an overall speedup with a factor s.

We shall call the method providing r<0 l the predictor method and (2.1) the corrector method
and the resulting parallel, iterated RK method will be briefly called PIRK method. It should be
observed that in the present case of RK correctors, the predictor and corrector methods do not
directly generate approximations to Yn+l as is the case in PC methods based on LM methods.
However, at any stage of the iteration process we can compute the current approximation to Yn+ 1

by means of the formula

Y(J) == Yn + hbTr(J), j = 0, 1, (2.3)

Let r(O) be an approximation to r,,+ 1 satisfying the condition

r<0>=r. +O(hq)
n+l ' (2.4)

resulting in y<0l = Yn + 1 + 0(hq+ 1). Predictor methods satisfying (2.4) will be called predictor
methods of order q.

114 P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method

Suppose that A and bT are such that the corrector (2.1) is of order p and let the predictor
method be of order q- 1. Then, it has been proved in [10] that the (global) order of Yn+i as
defined by (2.2) equals p* == min{ p, q + m}. By using the simple predictor method r<0l :=

f(Yn)e = rn+I + O(h), i.e., q = 1, we immediately have as a corollary of this result the next
theorem.

Theorem 1. Let {A, bT} define ans-stage RK method (which need not be implicit) of order p.
Then the PIRK method defined by

r(O) = f(yn)e, rU> = f(yne + MrU-ll), j = l, ... , m, Yn+l = Yn + hbTr(m), (2.5)

represents an (m + l)s-stage explicit RK method of order p* == min{ p, m + 1} requiring m + 1
effective stages.

Method (2.5) can also be represented by its Butcher array. Defining the s-dimensional vector 0
and the s X s-matrix 0 both with zero entries, we obtain

0
A 0
0 A 0

0 0 A 0
oT oT oT bT

We remark that this Butcher tableau represents a direct translation of (2.5), resulting in
(m + l)s stages. However, written in this form, the 0-matrix in the first row could be replaced
by a scalar zero, since the prediction r<0> has equal components and, consequently, can be
produced by one processor. This would lead to an explicit RK method possessing ms+ 1 stages.

Setting m = p - l, it follows from Theorem 1 that the question posed by N0rsett and
Simonsen [12] can be answered in the affirmative: any pth-order RK method {A, bT} generates
an explicit RK method of the form (2.5) of order p requiring only p effective stages. Such
explicit RK methods will be called optimal RK methods. Of course, within the class (2.5) the
number of processors needed for the implementation is dictated by the number of stages s of the
generating corrector. For example, the lOth-order, 17-stage RK method of Hairer [4] generates
an explicit RK method of the form (2.5) which is also of order 10 if we set m = 9 and which is
optimal in the above sense. However, the implementation of this method requires 17 processors.
This suggests the problem of constructing RK methods of order p which are optimal and require
least number of processors. The Sth-order, 6-stage RK method of Butcher mentioned in [12] is an
example of such a method: it can be implemented on 2 processors requiring only 5 effective
stages. From the theory of RK methods based on high-order quadrature methods, such as
Gauss-Legendre and Radau methods [5], we can immediately deduce a lower bound for the
number of processors needed to implement optimal RK methods of the form (2.5).

Theorem 2. RK methods of the form (2.5) are optimal if m = p - 1. For even p the least number of
required processors equals ~p and the generating RK corrector is the pth-order Gauss-Legendre
method; for odd p the least number of processors is t(p + 1) and the generating RK corrector is the
pth-order Radau method.

P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method 115

Table 1
Comparison of sequential RK methods and optimal RK methods of the form (2.5)

p .;:; 4 5 6 7 8 9 10

Sequential RK smln p 6 7 9 11 ;;.12 ;;.13
s p 6 7 9 11 17

Optimal RK Seri p 5 6 7 8 9 10
spr 3 3 4 4 5 5

Thus, optimal RK methods requiring less than l h p + l)j processors cannot be found among
the methods of the form (2.5). Since (2.5) allows an extremely simple implementation and
provides automatically a sequence of embedded formulas which can be used for error estimation
(see Section 5) and order variation, we have not looked for methods requiring less than
t H p + l)j processors.

In order to illustrate the significance of Theorem 2, we make a comparison with explicit RK
methods devised for one-processor computers (sequential methods). In Table 1 the minimal
number of stages srnin (and therefore the minimal number of right-hand side evaluations) needed
to generate such methods of order p are listed. In addition, we list the number of stages S for
which these RK methods have actually been constructed (cf. [5, Section 11.6]), and the numbers
of effective stages Serr and processors Spr needed by the optimal RK methods of Theorem 2.

Finally, we remark that if the RK corrector is based on quadrature (or collocation) methods,
then the initial approximation r<0l can be interpreted as the derivative /(y<0>), where y<0l is an
approximation to y(t,,e + hAe). Suppose that the components of y<0l are computed (in parallel)
by using an explicit (q- 1)-stage RK method of order q --1 with stepsizes hAe. The resulting
PIRK method is still an explicit RK method itself and it is optimal if m = p - q corrections are
performed.

3. Multistep predictor methods

Evidently, we can save computing time by using multistep predictor methods. As observed
above, such predictors should provide approximations to the derivative values f(y(tne + hAe)) in
the case where the generating RK method { A, bT} is derived from quadrature formulas. Any set
of linear multistep methods providing approximations to the components of y(t ne + Me) serves
this purpose.

In this paper we briefly discuss the case of arbitrary RK correctors where we cannot give an
easy interpretation for the initial approximation r<0). In such cases, it is possible to construct
multistep predictor methods by performing the auxiliary vector recursion

(3.la)

where E denotes the forward shift operator, i.e., Efn = l+i· The predictor method is now simply
defined by

r (O) :=/,
n+l · (3.lb)

Here o(t) is a polynomial of degree k - 1 whose coefficients are matrices of appropriate

116 P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method

dimension (cf. [7]). The method defined by (2.2) and (3.1) gives rise to a k-step PC method
requiring m + 1 right-hand side evaluations per step. Form= 0, this method fits into the class of
methods investigated in [7].

By Taylor expansion of ln+I (or y<0)), conditions for the satisfaction of rn+I - ln+I = O(hq)
can be derived in terms Of A and o(n. For instance we have the following theorem.

Theorem 3. Let the corrector defined by {A, br} be of order p, then the k-step PC method

fn+I = f(yne + h8(E)E-k+IJ,,),

j= l, ... ,m,

is of order p* == min{ p, q + m }, where

q=2 if Ae-8(1)e=O.

q = 3 if, in addition, A 2e - 82 (l)e + k8(I)e - o'(l)e = 0,

1A 2e- t8 2 (I)e + ko(l)e - o'(l)e = 0.

(3.2)

Example 4. The most simple example is the case where k = 1 and o(n = 0, so that r<0> = f(Yn)e
and q = 1. This case has been already considered in the preceding section. Next we choose k = 1
and o(n =A. It is readily verified that the order conditions for the predictor are satisfied for
q = 2. The algorithm (3.2) assumes the one-step form

ln+I = J(yne + hAfn),
(0) -J, r - n+I• (3.3)

Yn+l = Yn + hbTr(m).

If the RK corrector has order p, then by performing m = p - 2 corrections this method is also of
order p and requires p - 1 right-hand side evaluations per step. Formally, the method no longer
belongs to the class of one-step RK methods. However, in actual applications, the method is
self-starting if we take / 0 = f(y0)e.

Finally, we choose k = 2 and o(f) = 2At - A which satisfy the order conditions for q = 3. The
algorithm (3.2) assumes the two-step form

ln+I = J(yne + 2hAJ,, - hA/n-1),
(0) -f, r - n+I• j=l,. .. ,m, (3.4)

Y = y + hbTr(m)
n+l n '

If the RK corrector has order p, then by performing m = p - 3 corrections this method is also of
order p and requires p - 2 right-hand side evaluations per step.

4. Stability

We consider linear stability with respect to the test equation

y' (t) = Ay(t). (4.1)

P.J. uan der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method

It is easily verified that application of (2.5) yields the recursion

Yn+l = [1 + zbTe + z 2bTAe + z 3bTA 2e + · · · +zm+lbTAme] Yn,

where we have written z =!..h. The stability polynomial is given by

Pm+ 1(z)=l+zbTe+z 2bTAe+z 3bTA2e+ ··· +zm+lbTAme.

117

(4.2)

(4.3)

In the particular case where we choose m = p -1, p being the order of the corrector, we obtain a
stability polynomial of degree p. According to Theorem 1, this PIRK method is of order p so
that the stability polynomial is consistent of order p, i.e., it approximates exp(z) with pth-order
accuracy. Thus, we have proved the next theorem.

Theorem 5. Let the corrector be of order p. If m = p - 1, then the method (2.5) becomes an
(explicit) RK method with the stability polynomial

() 12 13 1
p Z = 1 + Z + -z + -z + • · · +-zP

p 21 3! p! .

Using a result on truncated Taylor series (cf. [6,p.236)), we have the next corollary as a
corollary of this theorem.

Corollary 6. The method of Theorem 5 is stable in the interval [/3real, O], where

/3real :=::: 0.368 (p + 1)(19(p + 1))1/(i(p+l)l_ (4.4)

Defining [-i /3imag• i /3imagl to be the interval on the imaginary axis where the method of
Theorem 5 is stable, we list in Table 2 the values of !3rea1. (and its approximation provided by
(4.4)) and /3imag for orders p = 1, 2, ... , 10.

5. Stepsize control

In this section we will describe a simple strategy to implement the aforementioned methods
with a variable stepsize in order to control the local truncation error. This strategy is the same as
the one employed by Hairer, N0rsett and Wanner [5,p.167] in their code DOPRl8, in which they
have implemented the 13-stage, 8th-order explicit RK method with the embedded method of
order 7 of Prince and Dormand.

This strategy is based on the observation that when iterating the equation (2.lb) for r11 + 1 we
obtain approximations r<j) of successively increasing order, i.e.,

r (J) - .. = O(hmin{p.q+J}) 1· - 1 2 m
'n + 1 ' - , , · • ·, •

Table 2
/3real and flimag for the method of Theorem 5

p =1 p=2 p=3 p=4 p=S p=6 p=7 p=8 p=9 p=lO

True value of /3rcal 2.00 2.00 2.52 2.78 3.22 3.55 3.95 4.31 4.70 5.07
Value according to (4.4) 1.83 2.17 2.53 2.90 3.28 3.65 4.03 4.41 4.78 5.16
True value of /3i-.g 0.00 0.00 1.73 2.82 0.00 0.00 1.76 3.39 0.00 0.00

118 P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method

Thus, apart from our final approximation Yn+t == y12 + hbTr(m), we can easily construct a
reference solution (cf. (2.3))

(5.1)

for some k < m. Since· r<k> has already been computed, this does not require additional
right-hand side evaluations. This reference solution yCkl can be considered as an "embedded"
solution [5). Now, as an estimate for the local error t: in the step from t12 to t 12 + 1 = t 12 + h, we take

(5.2)

for some norm II • 11- Usually, one uses reference solutions y<k> such that the orders of Yn + 1 and
y<k> differ by 1. Here we follow this approach and choose k = m - l.

First, we will discuss the case where we restrict our stepsize strategy to methods in which the
number of iterations m is fixed in each step and is given by m = p - q. Hence, r(m> - r12 + 1 and
r<m-I> - r12 + 1 behave as O(hP) and O(hP-1), respectively, and, consequently,

t: = llYn+l -y<m-l)ll = llYn + hbTr(m) _ Yn -hbTr(m-l)ll = O(hP).

Then t: is compared with some prescribed tolerance TOL and the step is accepted if t: ~ TOL,
and rejected otherwise. Furthermore, the value of t: allows us to make an estimate for the
asymptotically optimal stepsize:

h(T~L rlP'
which will be taken in the next step (or to recompute the current step in case of rejection).
However, to give the code some robustness, we actually implemented (cf. [5,p.167])

. { {1 (TOL) 11P}} hnew =hmm 6, max J, 0.9 -t:- . (5.3)

The constants 6 and t in this expression serve to prevent an abrupt change in the stepsize and
the safety factor 0.9 is added to increase the probability that the next step will be accepted.

Apart from the variable stepsize implementation mentioned above, the PIRK methods allow
for a simple extension of the control strategy by which also the order of the method may vary
from step to step. This can be achieved by abandoning the approach of a fixed number of
iterations. Referring to the description above, we can construct a sequence of reference solutions,
i.e., after each iteration the "embedded" solution

yU> := Yn + hbT r(j)

is computed. Then, we can use the difference of two successive reference solutions as an estimate
for the local error, i.e.,

iu> :=II y<n - yu-1) \\.

If, during the iteration, the tolerance criterion iu> ~ TOL is satisfied for some j =Jo< m, then
there is no need to proceed with the iteration process and we accept y<Jo) as the numerical
solution Yn+l· This suggests to try the next step with the value of m defined by m = j 0 • Since

t:<Jo) = O(hP"), p* = min{ p + 1, q +Jo},

P.J. uan der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method 119

a prediction for the next stepsize can be made according to (5.3), where p is replaced by p* and
€ by €CJo).

It may happen that the tolerance condition is not satisfied for j = } 0 ~ m. In such cases, the
values of m and h predicted in the preceding step were not reliable. One may then decide to
reject the current value of m and to continue the iteration process. This is particularly
recommendable if the value of the current p* is less than p. If the continuation of the iteration
process does not help to satisfy the tolerance condition em~ TOL for j ~ M, where M is some
prescribed upper bound for the number of iterations per step, then the (relatively costly)
alternative is rejection of the current value of h, to redefine h according to (5.3) using the most
recent information on the error, and to perform the present step once again. In this way a
variable order variable stepsize RK method can be constructed.

6. Numerical experiments

We present few examples illustrating the efficiency of PIRK methods on parallel computers.
The calculations are performed using 14-digits arithmetic. The methods tested were all applied in
P(EC)mE mode.

6.1. Comparison of various predictor methods

In order to examine the effect of various predictor methods on the efficiency of the PIRK
algorithm we performed a few tests by integrating the equation of motion for a rigid body
without external forces (cf. [8, Problem B5]):

' Y1 = Y2Y3,

y; = -y1y3,

y; = -0.51 Y1Y2•

y 1 (0)=0,

Y2 (0) = 1,

Y3 (0) = 1, 0 ~ t ~ T.

(6.1)

In these tests we used the 1 Oth-order Gauss-Legendre corrector and the following predictor
methods:

Predictor I: ,.<0> = /(yn)e (cf. (2.5)), q= 1, p = rnin { rn + 1, 10},

Predictor II: r<0) defined by standard 4th-order RK, q=5, p=min{m+5, 10},

Predictor III: r(O) = /(yne + hAf,,) (cf. (3.3)), q=2, p = min{rn + 2, 10},

Predictor IV: ,.<0 > =I (yne + 2hAfn - hAf,,_ I) (cf. (3.4)), q=3, p = min{m + 3, 10}.

In Table 3 we have listed the values D\N, where D denotes the number of correct decimal
digits at the endpoint, i.e., we write the maximum norm of the error at t = T in the form 10-D,
and where N denotes the total number of effective right-hand side evaluations performed during
the integration process. Furthermore, we indicated the effective order Perr• that is the order of
accuracy which is shown numerically.

Comparing experiments with equal N (notice that this table contains for each h and each
predictor an experiment with N = 180h- 1) we conclude that in most experiments the 3rd-order

120 P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method

Table 3
Values D\N for problem (6.1) with T= 20

h - 1 Predictor I Predictor II Predictor III Predictor IV

m = 8 m = 9 m = 10 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 7 m = 8

1 5.6\180 6.5\200 6.9\220 5.3\180 7.0\200 6.8\220 4.8\160 5.5\180 7.5\200 4.6\160 5.7\180
2 8.0\360 9.7\400 9.8\440 7.8\360 10.2\400 9.7\440 7.2\320 8.5\360 9.6\400 7.2\320 8.8\360
4 10.6\720 13.0\800 12.3\880 10.5\720 13.3\800 12.2\880 9.7\640 11.6\720 12.1\800 10.4\640 12.4\720

Perr"" 9 10 10 9 10 10 9 10 10 10 10

predictor IV and the 2nd-order predictor III yield the most accurate values. However, the price
we pay is more storage and a more complicated implementation because of the auxiliary
recursion for In· The predictors I and II produce comparable accuracies. As the added storage
for the predictors III and IV is not offset by comparable reduction in the volume of computa
tion, we recommend predictor I in actual computations. The resulting PIRK method is a true
one-step RK method of an extremely simple structure, and consequently allowing an easy and
straightforward implementation. A FORTRAN code based on this PIRK method can be found
in the Appendix to this paper.

6.2. Comparison with the JOth-order methods of Curtis and Hairer

Curtis [2] and Hairer [4] used the test problem (6.1) for testing and comparing their lOth-order
RK methods. In Table 4 the results of the experiments performed by Curtis and Hairer are
reproduced together with results obtained by the PC pairs consisting of the predictors I, II and
III, and the lOth-order Gauss-Legendre corrector. Again we see that the simple predictor I can
compete favourable with the predictors II and III.

6.3. Comparison with the 8(7)-method of Prince and Dormand

The 8(7)-method of Prince and Dormand [13] is nowadays generally considered as one of the
most efficient methods with automatic stepsize control for TOL-values approximately in the

Table 4
Values D\N for problem (6.1) with T= 60

Method p 60/h D N

Runge-Kutta 4 12000 9.6 48000
Adams-Moulton-Bashforth 4 6000 8.1 12000
Bulirsch-Stoer: polynomial extrapolation 8.9 5276
Bulirsch-Stoer: rational extrapolation 9.6 4860
Runge-Kutta-Curtis 10 240 9.9 4320
Runge-Kutta-Hairer 10 240 10.1 4080
(2.2) with predictor I and m = 9 10 156 10.0 1560
(2.2) with predictor I and m = 10 10 150 10.0 1650
(2.2) with predictor II and m = 5 10 150 10.1 1500
(2.2) with predictor II and m = 6 10 156 10.1 1716
(2.2) with predictor III and m = 8 10 210 10.0 1891
(2.2) with predictor III and m = 9 10 168 10.0 1681

P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method 121

Table 5
Values of N for problem (6.2)

Method D=5 D=6 D=7 D=8 D=9 D =10 D=ll

DOPRI8 595 759 963 1227 1574 1990 2503
PIRK.8 379 495 623 786 978 1383 1874
PIRKlO 327 388 490 704 884 977 1078

range 10- 7 to 10- 13• In this subsection we compare the DOPRI8 code, as given by [5], with the
PIRK. method based on predictor I and the Gauss-Legendre correctors of orders 8 and 10. To
let the comparison of the DOPRI8 code and the PIRK codes not be influenced by a different
stepsize strategy, we equipped the PIRK codes with the same strategy (see Section 5). These
codes are respectively denoted by PIRK8 and PIRKlO.

6.3.1. Fehlberg problem
As a first test problem we take an example from [3]:

y{ = 2ty1 log(max{y2 , 10- 3 }), Yi(O) = 1,
0 ~ t ~ 5' (6 .2) y;= -2ty2 log{max(y1 ,10- 3 }), y2 (0) =e,

with exact solution y1(t) = exp(sin(t 2)), y 2(t) = exp(cos(t 2)). For tolerances TOL running from
10- 5 up to 10- 12 we computed the D and corresponding log10(N) values. Instead of presenting
the polygon graph for these values as was done in [5], we preferred to present the D\N lying on
this polygon for a number of integer values of D. In Table 5 these values are listed.

6.3.2. Euler equations
Next, we apply the codes to Euler's equation for a rigid body (cf. (6.1)). The performance of

the code is presented in Table 6.

6.3.3. Orbit equations
Finally, we apply the codes to the orbit equations (cf. [8, Problem 02]):

y{ = Y3, Y1 (0) = 1 - t:,

Y; = y4, Y2(0) = 0,
I -yl

y3(0) = 0, Y3 =
(2 2)3/2 ' (6.3) Y1 +Yi

I -y2 {fg { = I~, 0 ~ t ~ 20. Y4 =
(2 2)3/2 ,

y4(0) = '
Y1 + Y2

Table 6
Values of N for problem (6.1)

Method D=6 D=7 D=8 D=9 D=lO D=ll D =12
DOPRI8 415 576 728 898 1133 1422 1817
PIRK.8 294 381 534 728 961 1172 1746
PIRKlO 252 297 357 426 580 730 920

122 P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method

Table 7
Values of N for problem (6.3)

Method D=5 D=6 D=1 D=8 D=9 D=lO D=ll

DOPRI8 615 723 831 1062 1284 1780 2024
PIRK8 463 559 679 859 1099 1411 1876
PIRKlO 378 448 540 662 784 911 1076

The performance of the codes is presented in Table 7.
An obvious conclusion which can be drawn, is that-at least for these three testexamples-both

PIRK codes are more efficient than DOPRI8; in the average, PIRK8 requires! of the number of
/-evaluations that are needed by DOPRI8 to yield the same accuracy, whereas PIRKlO is almost
twice as efficient. The superiority of PIRKlO, especially in the high-accuracy range, is un
doubtedly due to its higher order. Therefore, it would be interesting to compare this method with
an embedded (sequential) Runge-Kutta pair of comparable order. Unfortunately, to the best of
our knowledge, such formulae have not been constructed in the literature.

7. Conclusions

Iterated Runge-Kutta methods of arbitrarily high order have been constructed that are
capable of efficiently exploiting the parallelism of an MIMD computer architecture. Assuming
that sufficient processors are available, it is shown how to derive "optimal methods", i.e.,
methods requiring a number of parallelised /-evaluations equal to the order. Within the class of
optimal methods considered, the required number of processors s is least with respect to the
order p if the algorithm is based on an iterated Gauss-Legendre RK method and this minimal
number is given bys= ip. It is known that optimal methods exist requiring a smaller number of
processors (an example is the 5th-order method of Butcher, mentioned in the Introduction), but
it is not clear how to formulate a general construction procedure to arrive at such methods for
arbitrary order.

A nice feature of the methods proposed is that they provide an embedded reference solution
without additional /-evaluations. This advantage has been utilized to make a variable step
implementation which has been compared with the code DOPRl8, nowadays considered as "the
state of the art" for the automatic integration of ODEs. On the basis of some testexamples, the
performance of the new code is compared with DOPRI8 and, in terms of the required number of
f-evaluations, demonstrates a superior behaviour.

Another aspect is the simple implementation of the new algorithm. In the Appendix a
FORTRAN subroutine is provided which accepts a general RK method of arbitrary order,
defined in terms of its Butcher tableau. For example, if there is need for an automatic integration
routine of order higher than 8, as is furnished by DOPRI8, then we can suffice to specify, e.g., a
high-order Gauss method (the construction of which is simple and fully described in [1]) and call
this subroutine. Furthermore, for such accuracy demands, we remark that even in the case that
the parallel evaluation of the derivatives is not possible (e.g., on a uniprocessor machine) or not
relevant (e.g., because the evaluation off is very inexpensive and offset by the overhead), this
code may still be of value. Since classical embedded RK pairs of such high orders are lacking, it

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge-Kutta method 123

may turn out that, even in the nonparallelised form, the present code is more efficient than
DOPRI8, in spite of its large redundancy with respect to the number of /-evaluations (cf. the
discussion following Theorem 1). It is easily verified that this approach can offer sequential
embedded RK methods of arbitrary order p, using ms+ 1 = hp2 - p + 2) stages. This aspect,
which is a direct consequence of the simplicity of the PIRK algorithm, needs further investi
gation.

Appendix

Here we give the implementation (in FORTRAN 77) of the optimal PIRK methods of the
form (2.5), including error control. This subroutine offers the user the facility to specify an
arbitrary Runge-Kutta method by means of the matrix A and the vectors bT and c (see also the
description of these parameters).

Although this routine has been coded in standard FORTRAN 77, it will require machine-de
pendent amendment as to exploit the parallelism. Therefore we shall discuss in some detail the
most important loop in this subroutine, i.e., the 80-loop. It is here, that the parallel calculation of
the components of the iterate rUl is to be performed (cf. (2.2)). A first observation is that this
loop contains a call to another subprogram (viz. FCN). The separate compilation of subprograms
prevents the compiler from actually parallelising this loop, since it is unknown what happens
within FCN. Nevertheless, if the present source is offered to a compiler without giving any
instructions, the outcome (i.e., the "optimized" object code) will be the product of all kinds of
operations, like unravelling, interchanging, distributing loops etc., and will certainly speedup the
execution. However, the parallelisation will probably not completely fit in with the ideas as
advocated in the present paper. Therefore, we have to insert an explicit specification concerning
the way the compiler had to do its job; for example, we can specify that it is in this case without
any danger to parallelise over the FCN-calls. Most parallel computers offer so-called "directives"
for this purpose (e.g., using an Alliant, one can specify: cvd$ cncall). Since these directives may
differ for the various parallel machines, we decided to code this loop in standard FORTRAN.

Another observation is that the 80-loop contains two nested innerloops: one over the
components of the ODE and one to form the innerproduct of a row of A and the iterate vector
,u- 1>. If the parallel machine at hand has an architecture in which each processor is a
vectorprocessor, then it may be advantageous to interchange these innerloops. Such consider
ations depend on the dimension of the ODE, the Startup time of the particular vectorprocessor,
the "smartness" of the compiler, etc.

To sum up, in order to obtain an optimal performance, the user of the subroutine PIRK. is
advised to adjust the 80-loop to the specific situation he is dealing with, like the number of
processors available (perhaps even larger than s), the dimensions of the problems to be solved,
etc.

SUBROUTINE PIRK(N, NR, FCN, T, Y, TEND, TOL, H, S, P,
+ NRA, A, B, C, YN, FN, RJ, RJMl, BIGY, YREFJ

c---
c PIRK SOLVES AU INITIAL VALUE PROBLEM FOR A SYSTEM OF FIRST-ORDER
C DIFFERENTI~L EQUATIONS OF THE FORM Y'(T)=F(T,Y(T)).
C THE ROUTINE IS BASED ON AN ITERATED RUNGE-KUTTA METHOD AND
C DESIGNED IN SUCH A WAY THAT PARALLELISM IS EXPLOITED.
C IN COUNTING THE NUMBER OF REQUIRED F-EVALUATIONS, IT IS ASSUMED
C THAT THE NUMBER OF STAGES IN THE RUNGE-KUTTA METHOD DOES ?iOT

124 P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method

C EXCEED THE NUMBER OF PROCESSORS AVAILABLE.
c
C MEANING OF THE PARAMETERS:
c --------------------------
c N - INTEGER VARIABLE
C THE DIMENSION OF THE SYSTEM
C NR - INTEGER VARIABLE
C FIRST DIMENSION OF THE ARRAYS RJ, RJMl AND BIGY AS
C DECLARED IN THE CALLING PROGRAM (NR .GE. N)
C FCN - SUBROUTINE
C A USER-DEFINED SUBROUTINE COMPUTING THE DERIVATIVE
C F(T,Y(T))
C ITS SPECIFICATION READS:
C SUBROUTINE FCN(N,T,Y,F)
C DIMENSION Y(N),F(N)
c
C ON RETURN, F(I) (I=l, ... ,N) MUST CONTAIN THE VALUE OF
C THE I-TH COMPONENT OF THE DERIVATIVE VECTOR
C FCN MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM
C T - REAL VARIABLE
C THE INDEPENDENT VARIABLE; ON ENTRY, T SHOULD BE SET
C TO THE INITIAL VALUE. ON RETURN, T CONTAINS THE VALUE
C FOR WHICH Y IS THE SOLUTION
C Y - REAL ARRAY OF DIMENSION (AT LEAST) N
C THE DEPENDENT VARIABLE. ON ENTRY, Y SHOULD CONTAIN THE
C INITIAL VALUES OF THE DEPENDENT VARIABLES.
C ON RETURN, Y CONTAINS THE NUMERICAL SOLUTION AT T
C TEND - REAL VARIABLE
C TEND SPECIFIES THE END POINT OF THE RANGE OF INTEGRATION
C TOL - REAL VARIABLE
C TOL (>0) SPECIFIES A BOUND FOR THE LOCAL TRUNCATION
C ERROR
C H - REAL VARIABLE
C ON ENTRY, H SHOULD BE GIVEN A VALUE WHICH IS USED AS A
C GUESS FOR THE INITIAL STEP SIZE
C S - INTEGER VARIABLE
C NUMBER OF STAGES OF THE SPECIFIED RUNGE-KUTTA METHOD
C P - INTEGER VARIABLE
C ORDER OF ACCURACY OF THE SPECIFIED RUNGE-KUTTA METHOD
C NRA - INTEGER VARIABLE
C FIRST DIMENSION OF THE ARRAY A AS DECLARED IN THE
C CALLING PROGRAM (NRA .GE. S)
C A - REAL ARRAY OF DIMENSION (NRA,L) WITH L .GE. S
C B - REAL ARRAY OF DIMENSION (AT LEAST) S
C C - REAL ARRAY OF DIMENSION (AT LEAST) S
c
C THE PARAMETERS A, B AND C DEFINE THE RUNGE-KUTTA METHOD,
C WRITTEN IN THE SO-CALLED BUTCHER-NOTATION (USUALLY, THE
C ELEMENTS OF C ARE EQUAL TO THE ROW-SUMS OF THE MATRIX A)
C IN PRINCIPLE, ANY RUNGE-KUTTA METHOD CAN BE USED.
C HOWEVER, THE OPTIMAL ORDER WITH RESPECT TO THE NUMBER OF
C STAGES IS OBTAINED IF A 'GAUSS-LEGENDRE' METHOD IS
C SELECTED. THE CORRESPONDING A, BAND C CAN BE FOUND IN:
C J.C. BUTCHER, IMPLICIT RUNGE-KUTTA PROCESSES, MATH.COMP.
C 18, (1964) PP. 50-64
C YN - REAL ARRAY OF DIMENSION (AT LEAST) N
C USED AS SCRATCH ARRAY
C FN - REAL ARRAY OF DIMENSION (AT LEAST) N
C USED AS SCRATCH ARRAY
C RJ - REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S
C USED AS SCRATCH ARRAY
C RJMl - REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S
C USED AS SCRATCH ARRAY
C BIGY - REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S
C USED AS SCRATCH ARRAY
C YREF - REAL ARRAY OF DIMENSION (AT LEAST) N
C USED AS SCRATCH ARRAY

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge-Kutta method

c---
DIMENSION Y(N),YN(N),FN(N),YREF(N),RJ(NR,*),RJMl(NR,*),

+ BIGY(NR,*),A(NRA,*),B(*),C(*)
INTEGER S,P
LOGICAL REJECT

c---c THE COMMON BLOCK STAT CAN BE USED FOR STATISTICS CONCERNING THE
C INTEGRATION PROCESS
C NFCN NUMBER OF EVALUATIONS OF THE DERIVATIVE FUNCTION F
C NSTEPS NUMBER OF INTEGRATION STEPS
C NACCPT NUMBER OF ACCEPTED STEPS
C NREJCT NUMBER OF REJECTED STEPS
c---

COMMON /STAT /NFCN, NSTEP S, NACCPT, NREJCT
c---c SMALLEST NtlMBER SATISFYING 1.0 + UROUND > 1.0
C UROUND MAY REQUIRE AMENDMENT ON DIFFERENT MACHINES
c---

DATA UROUND/7.lE-15/
c------------------
c INITIALISATIONS
c------------------

REJECT=. FALSE.
NFCN=O
NSTEPS=O
NACCPT=O
NREJCT=O
TOL=AMAXl(TOL,10.0*UROUND)

c---c ON ITERATING THE RUNGE-KUTTA METHOD, WE USE A PREDICTION
C OF FIRST-ORDER. THEREFORE, WE NEED M=P-1 ITERATIONS TO
C OBTAIN A RESULT OF ORDER P.
c---

M=P-1
c-------------------
c INTEGRATION STEP
c-------------------

10 CONTINUE
IF(H .LT. 10.0*UROUND)THEN

WRITE(6,l)T
1 FORMAT(' THE ROUTINE HAS ADVANCED THE SOLUTION UP TOT=',

+ E16.8,/,' AND STOPPED BECAUSE THE STEP SIZE HAS',
+ ' BECOME TOO SMALL'/' TRY A LESS STRINGENT VALUE',
+ ' OF TOL OR CHANGE TO A HIGHER-ORDER METHOD')

RETURN
ENDIF
IF(TEND-T .LT. UROUND)RETURN
IF(T+H .GT. TEND)H=TEND-T

c----------------------
c FORM THE PREDICTION
c----------------------

DO 20 I=l,N
20 YN(I)=Y(I}

CALL FCN{N,T,YN,FN)
NFCN=NFCN+l

30 NSTEPS•NSTEPS+l
DO 50 L-1,S

DO 40 I=l,N
40 RJMl(I,L)=FN(I)
50 CONTINUE

c--
c IN THE 110-LOOP, THE ITERATION IS PERFORMED
c--

00 110 J=l,M
c--c IN THE 80-LOOP, THE S STAGES ARE PERFORMED CONCURRENTLY
c--

DO 80 L•l,S
DO 70 I=l,N

125

126 P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method

BIGY(I,L)=YN(I)
DO 60 K=l,S

60 BIGY(I,L)-BIGY(I,L)+H*A(L,K)*RJMl(I 1 K)
70 CONTINUE

CALL FCN(N,T+C(L)*H,BIGY(l,L),RJ(l,L))
80 CONTINUE

NFCN=NFCN+l
c---------------------
c SHIFT THE ITERATES
c---------------------

IF (J. LT. M) THEN
DO 100 L=l,S

DO 90 I=l,N
90 RJMl (I,L)-RJ (I, L)

100 CONTINUE.
END IF

110 CONTINUE
c---c CALCULATE THE FINAL SOLUTION OF THIS STEP
C AND A REFERENCE SOLUTION FOR ERROR CONTROL
c---

00 130 I=l,N
Y (I) =YN (I)
YREF(I)=YN(I)
DO 120 K=l,S

Y(I)-Y(I)+H*B(K)*RJ(I,K)
120 YREF(I)=YREF(I)+H*B(K)*RJMl(I,K)
130 CONTINUE

c----------------
c ERROR CONTROL
c----------------

ERROR=O. O
DO 140 I=l,N

DENOM=AMAXl(l.OE-6, ABS(Y(I)), ABS(YN(I)), 2.0*UROUND/TOL)
140 ERROR=ERROR+((Y(I)-YREF(I))/DENOM)**2

ERROR=SQRT(ERROR/N)
FAC=AMAX1(1.0/6.0,AMIN1(3.0, (ERROR/TOL)**(l.O/P)/0.9))
HNEW-H/FAC
IF(ERROR.GT.TOL)THEN

c-------------------c STEP IS REJECTED
c-------------------

IF (NACCPT. GE. l) NREJCT=NREJCT+ l
REJECT-.TRUE.
H=HNEW
GOTO 30

ELSE
c-------------------c STEP IS ACCEPTED
c-------------------

NACCPT=NACCl?T+ l
T=T+H
IF(REJECT)THEN

HNEW-AMINl(HNEW,H)
REJECT-.FALSE.

END IF
H=HNEW
GOTO 10

END IF
END

References

[l] J.C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964) 50-64.
[2) A.R Curtis, High-order explicit Runge-Kutta formulae, their uses, and limitations, J. Inst. Math. Appl. 16 (1975)

35-55.

P.J. van der Houwen, B.P. Sommeijer /Parallel Runge-Kutta method 127

[3] E. Fehlberg, Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize control,
NASA Technical Report 287, 1968; extract published in Computing 4 (1969) 93-106.

[4) E. Hairer, A Runge-Kutta method of order 10, J. Inst. Math. Appl. 21 (1978) 47-59.
[5] E. Hairer, S.P. N0rsett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems (Springer,

Berlin, 1987).
[6] P.J. van der Houwen, Construction of Integration Formulas for Initial Value Problems (North-Holland, Amster

dam, 1977).
[7] P.J. van der Houwen, B.P. Sommeijer and P.A. van Mourik, Note on explicit parallel multistep Runge-Kutta

methods, J. Comput. Appl. Math. 27 (3) (1989) 411-420.
[8) T.E. Hull, W.H. Enright, B.M. Fellen and A.E. Sedgwick, Comparing numerical methods for ordinary differential

equations, SIAM J. Numer. Anal. 9 (1972) 603-637.
[9] A. Iserles and S.P. Narsett, On the theory of parallel Runge-Kutta methods, Report DAMTP 1988/NA12,

University of Cambridge, 1988.
[10] K. Jackson and S.P. Narsett, Parallel Runge-Kutta methods, 1988; to appear.
[11] I. Lie, Some aspects of parallel Runge-Kutta methods, Report No. 3/87, University of Trondheim, Division

Numerical Mathematics, 1988.
[12] S.P. N0rsett and H.H. Simonsen, Aspects of parallel Runge-Kutta methods, in: A. Bellen, Ed., Workshop on

Numerical Methods for Ordinary Differential Equations, L'Aquila, 1987, Lecture Notes in Mathematics (Springer,
Berlin, 1989).

[13] P.J. Prince and J.R Dormand, High order embedded Runge-Kutta formulae, J. Comput. Appl. Math. 7 (1981)
67-75.

