Validation Techniques for Object-Oriented Proof
Outlines



sTIKS

SIKS Dissertation Series No. 2006-5

The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Graduate School for Information and Knowledge Systems.

© C. Pierik
ISBN 90-393-4217-2



Validation Techniques for
Object-Oriented Proof Outlines

Validatietechnieken voor Objectgeoriénteerde
Bewijsschetsen

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof. dr. W.H. Gispen,
ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen
op woensdag 3 mei 2006 des middags te 2.30 uur

door
Cornelis Pierik

geboren op 20 november 1978, te Hasselt



promotor: prof. dr. J.-J. Ch. Meyer
co-promotor: dr. F.S. de Boer



Contents

1 Introduction 1
1.1 Proof Outline Logics . . . . . ... ... ... ... ... 3
1.2 Object-Oriented Intricacies . . . . . .. . ... ... ... .... 8
1.3 Overview . . . .. .. L e 11
2 Object-Oriented Programming 13
2.1 Object-Oriented Features and Terminology . . . ... ... ... 13
2.2 An Object-Oriented Programming Language . . . . ... ... .. 15
2.3 Related Languages . . . . . . ... ... . 26
3 Program Annotation 29
3.1 A Specification Language . . . . .. ... ... .. ... ... .. 29
3.2 Hoare Triples . . . . . . . . . . 37
3.3 Annotated Programs . . . . . . .. ... L. 38
3.4 Proof Outlines . . ... ... ... ... .. ... ... 40
3.5 Related Specification Languages . . . ... ... ... ... ... 43
4 Reasoning about Assignments 45
4.1 Local Assignments and Field Shadowing . . . . . . ... ... .. 45
4.2 Field Assignments and Aliasing . . . . . .. ... ... ... ... 50
4.3 Strongest Postconditions . . . . . . .. ... L 56
4.4 Related Work . . . . . . ... oo 61
5 Reasoning about Method Calls 63
5.1 Standard Hoare Rules for Method Calls . . . . ... ... .. ... 64
5.2 Adaptation Rules for Method Calls . . . . . .. .. ... ..... 70
5.3 Related Work . . . . . . ... 94
6 Reasoning about Object Creation 97
6.1 Object Allocation . . . . . . . . .. .. ... 98
6.2 Object Initialization . . . ... ... ... .. ... ... .. 118
6.3 Related Work . . . . . ... ..o o 123



vi CONTENTS

7 Formal Justification 125
7.1 Verification Condition Generation. . . . . . . . ... .. ... .. 125
7.2 Soundness . . . . . ... 132
7.3 Relative Completeness . . . . . . . . . .. ... ... ... 137

8 Modularity 153
8.1 Behavioral Subtyping . . ... ... ... . oL, 154
8.2 Modular Adaptation Rules . . . . ... .. ... ......... 165
8.3 Behavioral Modular Completeness . . . . ... ... ... ... .. 172
8.4 Advanced Specification Constructs . . . . . . ... ... ... .. 176

9 Invariants and Object Allocation 185
9.1 An Example: Sharing Borders . . . . . ... ... ... ...... 186
9.2 State Based Invariants . . . . . . . . ... ... ... ... 188
9.3 The Friendship System . . . . . .. .. ... ... ... .. 191
9.4 Creation Guards . . . . . . . . .. . 192
9.5 Related Work and Conclusions . . . . . . . .. ... ... .... 198

10 Tool Support 201
10.1 Using the VET . . . . . . . . . ... 201
10.2 Architecture . . . . . . . ... 204
10.3 Evaluation . . . . . . . . .. .. 206
10.4 Related Work . . . . . . . . . . . o 206

11 Conclusions 209

Samenvatting 223

Dankwoord 227

Curriculum Vitae 229

SIKS Dissertation Series 231



Chapter 1

Introduction

Modern class-based object-oriented languages like Java and C# provide support
for well-structured programs that reuse and extend existing framework classes.
A well-designed class typically represents one essential piece of data and supplies
a set of methods. Each of these methods implements a particular computational
task which can be executed on the encapsulated data representation. Classes
that are designed in this way often have elegant code that is amenable to formal
analysis and verification.

Another factor that currently stimulates interest in the formal analysis of
object-oriented software is the rapidly growing power of automated theorem
provers. This development opens up the possibility to delegate proof construc-
tion steps in the verification process to such systems, which improves the re-
liability of these steps. For the use of theorem provers reduces the possibility
that human errors render the outcomes of proofs invalid. But it is also of great
importance for the scalability and cost-effectiveness of verification methods.

Proof construction is, however, only one aspect of software verification that
may benefit from tool support. It is also possible to develop systems that com-
pute and manage the proof obligations which ensure that a program satisfies
certain properties. In recent years, several of these systems have been con-
structed. They typically differ in the input language that they support, the
program properties which they establish, and the amount of user interaction
that they require.

The verification technology with the highest degree of automation is proba-
bly extended static checking [FLL102]. A static program verifier that performs
extended static checking for annotated C# programs is currently being devel-
oped at Microsoft Research in Redmond [BLS05]. Similar tools (ESC/Java
[FLL*02] and its successor ESC/Java2 [CK05]) have also been built in recent
years for Java.

The aim of extended static checking is to move beyond ordinary type-
checking towards checking for common programming errors like null derefer-
ences and array bounds errors. By contrast, traditional program verification
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tools try to prove full functional specifications. Such tools will only produce
interesting results if the programmer has supplied a (more or less complete)
functional specification for a piece of code, whereas an extended static checker
also produces warnings for possible errors without a single line of specification.
A specifier typically starts to write specification lines in response to the warn-
ings that the checker generates. This process usually results in a specification
that is sufficient to eliminate the warnings but that is not as strong as a full
functional specification.

A closer look at both technologies reveals that there are also several sim-
ilarities. Program verification for imperative programs is commonly based on
Hoare logic [Hoa69]. The proof obligations for extended static checking are gen-
erated using verification condition generation techniques that also originated in
the context of Hoare logic [FLL102]. Moreover, the kind of specifications that
extended static checkers eventually establish can also be proved using Hoare
logics.

The main shortcoming of extended static checking is that it exploits a logic
that is both unsound and incomplete [FLLT02]. This means in practice that
the checker may produce less warnings than it should have produced, and that
it may also generates some spurious warnings. This is usually defended by
pointing out that an extended static checker must be cost-effective: every bug
which the checker finds proves it usefulness, whereas a full analysis may require
too many resources.

Where precisely the right balance between the required effort and the result-
ing safety assurances lies ultimately depends on the type of application. Certain
applications must satisfy stronger safety properties than others. For example,
the correctness of the software that controls an airplane is much more important
than the correctness of the software behind an internet forum.

In this thesis we will develop a proof outline logic for object-oriented pro-
grams. This logic is both sound and complete. Thus it overcomes the limitations
of extended static checking. But at the same time it is more suitable for auto-
mated verification than arbitrary Hoare logics because it defines a verification
condition generation strategy that shows how the proof obligations of an anno-
tated code fragment can be computed automatically. These proof obligations
can then be passed to an automated theorem prover. This entire process can
be implemented in a tool that is similar to an extended static checker.

Proof obligations which the automated theorem prover fails to prove should
be examined in order to establish whether they indicate counter examples. Valid
proof obligations which are beyond the power of an automated theorem prover
can usually be proved using an interactive theorem prover.

In the following sections we will explain in more detail what a proof outline
logic is. Moreover, we also outline some of the challenges that must be faced
in order to obtain such a logic for object-oriented programming languages. The
final section of this chapter contains an overview of this thesis.
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1.1 Proof Outline Logics

Both extended static checking and our proof outline logic take proof outlines as
input and translate these into a set of proof obligations. Proof outlines are an-
notated pieces of code. The annotation in proof outlines shows the specification
that the code satisfies as well as important intermediate proof steps.

We will give an example proof outline below. But first we show the code
without annotation. Our example is written in an object-oriented (Java-like)
language. It concerns a method which can be invoked on an object in order to
obtain a clone of this object. The clone is a fresh object of the same class as
the receiver of the method. Moreover, it has the same values stored in its fields.

object clone() {
Cloneable c;
¢ := new Cloneable();
c.field := this.field;
return c;

}

The first line of the code declares the name (clone) and the return type (object)
of the parameterless method; the code between braces that follows is the body
of the method. The second line defines a local variable ¢ of type Cloneable.
The third line creates a new object of class Cloneable and assigns it to this
local variable. We assume that each object of class Cloneable has one field (or
instance variable) called field. The field of the new object gets the value of the
field of the receiver of the object in the fourth line. The keyword this refers to
the receiver of a method, and the expression this.field denotes the value of the
receiver’s field. Similarly, c.field denotes the value that is stored in the field of
the object referenced by c. The last line reveals that the method returns the
new object.

A proof outline of a method contains a description of the states in which
the method may be called and a description of the states in which the method
may terminate provided that its execution started in a permitted state. These
descriptions are usually called the precondition and the postcondition of the
method. They state what a method requires and what it ensures. Together,
they form the specification of the method. We use logical formulas over program
expressions to express these conditions.

We will also use logical formulas to describe intermediate states of method
computations. These additional formulas characterize the states that may arise
when control reaches particular points in the body of a method.

A proof outline always first lists the precondition and the postcondition of
a method. These formulas are preceded by the keywords requires and ensures,
respectively. Formulas that describe intermediate states are preceded by the
keyword assert. Here is a proof outline of our clone method.
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requires z.field = 2’;
ensures result.field = this.field A —(result = 2) A z.field = 2/;
object clone() {

Cloneable c;

assert z.field = 2/;

¢ := new Cloneable();

assert —(c¢c = 2) A z.field = 2/;

c.field := this.field;

assert c.field = this.field A —=(c = 2) A z.field = 2;

return c;

}

The symbols — and A in the proof outline denote the standard negation and
conjunction operators. Other new elements in the proof outline are the logical
variables z and z’. Such variables are used as placeholders for arbitrary values.
A logical variable is a special kind of variable which may only be used in method
annotations: it is not allowed to occur in the actual code of a method. Thus
we know that the value of a logical variable never changes during a method
execution.

The logical variables in the specification of our method give its clients some
flexibility. If a client can show that the precondition holds in the initial state of
the method execution for some particular pair of values for the logical variables
z and 2’, then he gets the guarantee that the postcondition holds in the final
state of that execution for the same values of these logical variables. Hence
the clauses z.field = 2’ in the precondition and the postcondition state that
the value of the instance variable field of every object which existed when the
method started is not modified during its execution. This holds despite the
assignment c.field := this.field in the method body because at that point the
local variable ¢ references a fresh object which could not have been bound to
the logical variable z in the initial state.

The keyword result in the postcondition denotes the result value. The first
clause of the postcondition says that the result value (the clone) has the same
value in its field as the receiver of the method. Its second clause —(result = z)
states that the result value differs from the value of z. Since z can be any object
that existed in the initial state, this clause effectively implies that the clone is
a fresh object that has been allocated during the execution of the method.

Our proof outline also has formulas that describe the intermediate states.
These formulas gradually grow as the building of the clone proceeds. The mean-
ings of the clauses in these formulas are similar to the meanings of the corre-
sponding clauses in the postcondition of the method.

This proof outline shows the kind of input that a proof outline logic (and
an extended static checker) requires. The task of a proof outline logic is then
to check whether the proof outline indeed leads to a valid proof for the speci-
fication of the method. A method specification is valid if every final state of a
terminating computation of the method satisfies the postcondition. However,
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this requirement only applies to computations which started in a state in which
the precondition holds.

A proof outline logic consists of rules that specify a set of proof obligations
for each proof outline. Such proof obligations are usually called wverification
conditions. A proof outline can be validated by showing that its verification
conditions hold.

A typical feature of a proof outline logic is that its verifications conditions
are similar to the formulas that are used in the proof outlines themselves. Con-
sequently, the verification conditions of our proof outline logic will be logical
formulas over program expressions.

The fact that the verification conditions of our logic are merely logical for-
mulas is very important. For the complexity of the verification conditions deter-
mines how well theorem provers can automatically prove these proof obligations.
More complex verification conditions will be harder to prove. Designing a ded-
icated proof procedure for a particular set of formulas is easier if the formulas
in the set are more alike.

Specification Adaptation

What validation techniques does our proof outline logic provide to compute
these verification conditions? In part, it is based on the same techniques as
Hoare logics. For example, it exploits weakest precondition calculi for reasoning
about assignments and object allocation. We will develop the required calculi
by extending similar techniques in the work of De Boer [dB91, dB99] in order
to handle inheritance and (subtype) polymorphism. The resulting calculi can
be found in Chapter 4 and Chapter 6 of this thesis.

What distinguishes our proof outline logic from most Hoare logics is the fact
that it does not use the standard Hoare rules for reasoning about method calls.
Hoare initially proposed the following rule for reasoning about parameterless
procedure calls [Hoa71].

{P} body(p) {Q}
{P} call(p) {Q}

This rule involves two Hoare triples. A Hoare triple has the form {P} S {Q}.
This notation involves a statement .S, a precondition P and a postcondition Q.
A triple {P} S {Q} indicates that every computation of S that starts in a state
that satisfies P will only terminate in a state in which @ holds. The rule says
that every specification which holds for the body of some procedure p (denoted
by body(p)) also holds for an arbitrary call to p.

Applying this basic rule in a proof outline logic would mean that every
call may only be annotated with the same specification as the corresponding
method. That is, the intermediate formula that precedes the call in the proof
outline would have to match the precondition of the corresponding method, and
the formula that follows the call would have to match its postcondition. It is
most unlikely that these conditions can be satisfied in all circumstances.
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A more flexible requirement would be that the formula that precedes the
call only has to imply the precondition of the corresponding method. Similarly,
we could require that the postcondition of the method implies the formula that
follows the call. These two logical implications would then be added to the
verification conditions of this proof outline. But these requirements are still too
strong. One particular shortcoming of this solution is that it does not enable
the client to exploit the logical variables in the method specification.

We will illustrate this shortcoming using an example that involves the spec-
ification of the clone method in our previous proof outline. Suppose that we
want to prove the correctness of the following partial proof outline.

assert true;
v := this.clone();
assert —(this = v);

This formula that follows the call in this proof outline states that the object that
is returned by the clone method is different from the cloned object. It should
be possible to prove that this holds after the call since the specification of our
clone method states that the clone is a fresh object. However, the formula true
in this proof outline clearly does not imply the precondition z.field = 2’ of the
clone method, and the clause —(result = z) in the method’s postcondition does
not imply —(this = v). The last implication is partly invalid because we did
not take the effect of the assignment of the result value to v into account. But
even if we replace v by result in the clause —(this = v) we still have an invalid
implication. The two implications are only valid if we additionally replace z by
this and 2’ by this.field in the method specification.

This problem and some related problems are usually solved in Hoare logics by
adopting several ad hoc substitution rules [Apt81]. Most existing Hoare logics
for object-oriented languages also follow this approach [dB91, dB99, PHM99].
The main problem with these substitution rules is that it is not clear how they
can be applied in the context of a proof outline logic. For they do not define a
clear set of verification conditions for a method call.

Hoare himself was aware of some of the shortcomings of his basic proce-
dure rule. He proposed an adaptation rule to overcome some of its limitations
[Hoa71]. The purpose of an adaptation rule is to adapt existing specifications
to what is required in some specific context. Recall that Hoare’s initial rule re-
quires that the specification of a call and the specification of the corresponding
method be the same. With an adaptation rule one can simply adapt the method
specification to ensure that its matches the specification of a call. This adap-
tation step is only possible if the premise of the adaptation rule holds, which
suggests that this premise is a suitable verification condition for a proof outline
logic.

One of the main contributions of this thesis is an adaptation rule for object-
oriented languages. The basis of this rule is an adaptation rule for imperative
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languages with global variables proposed by Olderog [O1d83], which is supe-
rior to Hoare’s original adaptation rule [Old83]. Designing an object-oriented
adaptation rule is a non-trivial exercise because the state of an object-oriented
program is far more complex than the simple mappings from variables to values
in languages with global variables. The main problem is that its size cannot be
determined a priori. For this is determined by the amount of objects that have
been allocated during the execution of a program. We will say more about this
issue in Section 1.2.

The specification adaptation techniques which the adaptation rule exploits
also play a role in the context of behavioral subtyping [LW94]. There one must
check whether the specification of an overriding method refines the specification
of an overridden method. One way to answer this kind of question is to try
to adapt the specification of the overriding method to that of the overridden
method. There is a surprising similarity between this task and the original
task of an adaptation rule. We take advantage of this insight in Chapter 8
of this thesis. There we reuse the validation techniques of our object-oriented
adaptation rule to construct a test (a specification match [CC00]) that tells us
whether a particular class is a behavioral subtype of some other class.

Abstraction Level

Another feature that distinguishes the proof outline logic in this thesis from
other attempts to construct a logic for object-oriented programming languages
is its abstraction level. The reasoning in our logic occurs as much as possible
on the abstraction level of the source code. This becomes visible, for example,
in the specifications that we allow in proof outlines. The formulas in these
specifications are composed from the kind of expressions that are also used in
the programming language. This ensures that they are easily intelligible to
programmers.

Other Hoare-like logics for object-oriented programming incorporate explicit
heap (or store) references in their specification language [PHM99, Miil02] or
use a much stronger higher order language to specify their programs [vOO01].
These extensions render the specifications in these languages less comprehensi-
ble. Moreover, the fact that our logic is both sound and complete (cf. Chapter
7) indicates that these extensions may well be inessential.

Besides ordinary program variables we also use logical variables in our spec-
ifications. We have already seen their usefulness in the context of the example
proof outline on page 4. The types of the logical variables in specifications
will often be normal program types but we will also use logical variables that
denotes finite sequences. The usage of finite sequences in specifications can be
traced back to the work of Tucker and Zucker [TZ88]. They needed sequences
in their specification language to be able to express the strongest postconditions
of statements that modify elements of abstract data types. Object reachability
is another property that necessitates the use of finite sequences [Rot05]. We
will additionally use sequences in our novel adaptation rule. The addition of
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finite sequences has no major consequences for the abstraction level of most
specification languages because these sequences are very similar to the arrays
that are already present in most imperative languages.

Another aspect of the abstraction level of a program logic is the way it com-
putes its verification condition. Several verification methodologies first translate
a proof outline into some intermediate language before calculating the proof obli-
gations. This intermediate language can be, for example, a guarded command
language [FLL'02] or some other simple imperative language [MPMU04]. A
disadvantage of this kind of indirection is that it makes the correspondence be-
tween a proof outline and its proof obligations more difficult to grasp. It also
complicates the study of the formal properties of the underlying logic. The veri-
fication conditions of the proof outline logic in this thesis are computed directly
from the annotated source code.

1.2 Object-Oriented Intricacies

This thesis does not focus on some particular object-oriented language. Instead,
its aim is to provide proper reasoning techniques for a broad range of object-
oriented features that are shared by several modern languages. The features
that we discuss can all be found in, for example, Java and C#.

The remainder of this section explains some of the challenges of reason-
ing about object-oriented programs. Readers that are unfamiliar with object-
oriented programming may first want to read Section 2.1, which contains an
overview of the object-oriented terminology that is used in this thesis.

Field Shadowing

The two most prominent object-oriented features are probably inheritance and
(subtype) polymorphism. Inheritance is the mechanism that enables code reuse
in object-oriented languages. It is the reason behind the complex class hierar-
chies in object-oriented programs. A subclass inherits the fields and methods of
its superclass.

Related to inheritance is the field shadowing phenomenon that is supported
by both Java and C#. It occurs when a class declares a field with a name that
is also the name of one of the fields that it inherits. Each instance of the new
class then has several fields with the same identifier.

We will use an example to explain how most languages handle field shad-
owing. Let us assume that we have a class Person with a field number that
contains the person’s private telephone number. Now suppose that someone de-
fines a subclass Employee of this class in which he also declares a field number.
This second field is used to store the number of the telephone in the employee’s
office. In this way, each instance of class Employee has two fields that are both
called number.
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Recall that an expression e. f has the value of the f field of the object denoted
by e. In the presence of field shadowing it is no longer clear which field f
is meant. In languages like Java and C#, the (static) type of e determines
which field is selected. For example, the expression e.number denotes e’s private
number if e has type Person, and e’s office number if e has type Employee.

It may seem a poor choice to create another field with the same identifier
in a subclass. However, the designer of class Employee may have been unaware
of the existence of the other field in class Person. After all, it is possible that
this field is part of the hidden implementation details of that class. In practice,
most language designers seem reluctant to constrain the freedom of subclass
developers by preventing them from declaring fields with identifiers that have
already been used in some superclass.

Field shadowing has important consequences for reasoning in object-oriented
languages. For example, Hoare’s classical axiom for reasoning about assignments
[Hoa69] is no longer valid in the presence of field shadowing. Field shadowing
makes the static types of expressions much more important. We further explain
this observation in Section 4.1. In that chapter we also present techniques for
coping with the notorious aliasing problem.

Dynamic Binding

A feature that is related to subtype polymorphism is dynamic binding. Subtype
polymorphism allows an expression of a subtype to occur at places where nor-
mally an expression of a supertype is expected. This results in variables that
reference values of subtypes. Consequently, expressions will sometimes denote
values of subtypes of their static types.

In particular, it leads to method calls in which the receiver is an object of
some subclass of the type of the expression that denotes it. This class may also
have a different implementation of the method that is invoked. Dynamic binding
says that in such situations the class of the receiver determines which method
is executed. However, this class usually remains unknown until we evaluate the
receiver expression during the runtime execution of the method. Thus dynamic
binding destroys the static connection between a method call and the executed
method implementation.

This thesis proposes several adaptation rules for dynamically bound method
calls. In Chapter 5 we present an adaptation rule that leads to a complete
proof system for closed programs. In Chapter 8 we study the problem of rea-
soning about method calls in open (extensible) programs. For open programs
techniques are needed that build proofs which cannot be invalidated by future
program extensions. Section 8.2 presents two adaptation rules that satisfy this
requirement. The first rule follows the standard supertype abstraction principle
[LW90, LW95], but the second rule exploits a novel principle that results in a
stronger rule.
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Dynamic Object Allocation

Another factor that complicates many aspects of reasoning over object-oriented
programs is the dynamic allocation of new objects. Every piece of code in an
object-oriented program can contain statements that allocate new objects. The
size of the state of an object-oriented program is therefore not fixed. Object-
oriented languages share this property with all other languages with dynamically
allocated variables that are referenced by pointers.

A data structure that is often encountered in languages with dynamically
allocated variables is the linked list. The following pictures shows the initial
part of the object structure of a linked list.

head next next
list:List n1:Node n2:Node [ >

val=9 val=11

The leftmost block represents the list object, and the other blocks represent
nodes in the list. The list object has a reference (depicted by means of an
arrow) to the first node in the list, and each subsequent node has a reference to
its successor. Each node in this particular list stores an integer value in its val
field. The pictures shows only two nodes, but the number of nodes in a list is
in principle unbounded.

Unbounded data structures are difficult to specify. Consider, for example,
the task of specifying that the values in a linked list are sorted. We can use the
formula this.head.val < this.head.next.val to specify that the first two values in
the list are in the right order. But what if there are more than two values in the
list? Do we have to add a similar clause for each additional value? And how do
we know how many values the list contains in a particular state?

We will use finite sequences to solve this kind of specification issues. We
can, for example, use a logical variable L to represent the nodes in a linked
list. With the formula (this.head = L[1]) A (L[length(L)].next = null) we can
specify that the first object in L (denoted by L[1]) is the first node of L, and
that the final object in L has no successor. We assume here that length(L)
yields the length of the list. The expression null denotes the null reference.
The formula (Vie 1l <i < length(L) — L[i].next = L[i 4+ 1]) says that the ob-
jects in L form a linked list via their next fields. Finally, we can use the for-
mula (Vie 1 < i < length(L) — L[i].val < L[i + 1].val) to express that the list is
sorted.

The set of objects in an object-oriented state is also an unbounded structure.
For there is no a priori bound on the number of objects in the state. This thesis
shows how finite sequences can be used to model such states. We will exploit
these techniques in the adaptation rules that we propose (see, e.g., Chapter 5)
and in the completeness proof of our proof outline logic (Chapter 7).

There is also an interesting relation between quantification and object cre-
ation. Our specification language supports quantification over the set of existing
objects. However, the set of existing objects is not fixed: it is extended each
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time an object is created. This implies, for example, that the set of objects in
the initial state of a method execution may differ from the set of objects in its
final state. Consequently, one must be aware that a property that holds for all
objects in some initial state does not automatically hold for all objects in the
corresponding final state even when these objects have not been modified. For it
is possible that in the meantime new objects which do not satisfy this property
have been allocated. The adaptation rules in this thesis take this possibility
into account.

Finally, there are also certain invariants that are falsifiable by object allo-
cation. An invariant is a property that must hold in all stable states. There
are different answers possible to the question which states are stable. We show
how the invariant methodology [BDFT04] that is integrated in the Spec# pro-
gramming system [BLS05] can be extended to support this type of invariant in
Chapter 9.

1.3 Overview

In this section we explain the organization of this thesis and provide a more
detailed description of its content. The first part of this thesis (Chapter 2-
Chapter 7) defines a proof outline logic for closed object-oriented programs.
Chapter 8 and Chapter 9 study techniques for reasoning about open programs.
The final chapter of this thesis describes a verification tool that implements
these techniques. Related work is discussed throughout this thesis.

Chapter 2 and Chapter 3 define an object-oriented programming language
and its annotation, respectively. Chapter 2 starts with an overview of the object-
oriented terminology that is used in this thesis. The rest of this chapter presents
a sequential object-oriented language which embodies the features that are be-
ing studied in this thesis. It also describes an operational semantics for this
language.

Chapter 3 introduces specification constructs that can be used to build proof
outlines for programs that are written in this language. It also provides formal
definitions of their meanings.

The next three chapters define verification condition generation techniques
for the three kinds of basic statements in our object-oriented language: as-
signments, method calls, and creation statements. Chapter 4 defines weakest
precondition calculi for assignments to local and instance variables. In these
contexts we encounter the field shadowing phenomenon and the aliasing prob-
lem. The strongest postconditions of these statements are also studied in this
chapter.

Chapter 5 covers the cornerstone of our proof outline logic. It first explains
the shortcomings of the traditional rules for reasoning about method calls. Next,
it introduces the techniques that are needed to build an object-oriented adap-
tation rule. The rule that is presented in this chapter defines the verification
conditions of dynamically bound method calls in closed programs.
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Chapter 6 shows how the verification conditions of creation statements can
be computed. It defines a weakest precondition calculus for object allocation
and the complementary strongest postconditions. It also reuses the techniques
of the previous chapter to reason about constructor method calls.

Chapter 7 finishes the description of our proof outline logic for closed pro-
grams. It first outlines two verification condition generation strategies based on
the techniques of the previous three chapters, and subsequently shows that at
least one of these strategies defines a proof outline logic that is both sound and
(relatively) complete.

The next chapter reveals how our proof outline logic can be transformed
into a modular logic that is suitable for open programs. It first gives a formal
definition of behavioral subtyping [LW94] in the context of our proof outlines.
Next, it defines a novel specification match [CCO0] that is based on the same
techniques as our adaptation rules. This specification match can be used to
determine whether a subclass is a behavioral subtype of its superclass. We also
define two adaptation rules for modular programs in this chapter. Other contri-
butions in this chapter are an object-oriented completeness notion for modular
program logics and an analysis of several advanced specification constructs.

Chapter 9 studies a class of invariants that are falsifiable by object creation.
It introduces creation guards to obtain a modular methodology that protects
these invariants.

Finally, Chapter 10 describes a tool that implements our proof outline logic.
It supports the building of proof outlines and automatically computes the cor-
responding verification conditions. Moreover, it interacts with a theorem prover
in order to check these proof obligations.



Chapter 2

Object-Oriented
Programming

Object-Oriented programming has existed for almost forty years now. For the
pioneering work of Dahl and Nygaard on Simula started in the sixties of the
previous century. Naturally, the notion of object-oriented programming evolved
during the following decades. This thesis will be mostly concerned with the
object-oriented features that are found in two relatively young object-oriented
programming languages: Java and C#. They reveal in which direction object-
oriented programming has developed, and which features have proved to be
useful.

In the following section, we give an overview of the object-oriented features
in these languages. The subsequent section presents an object-oriented language
that embodies these features. We provide a formal description of its semantics
and its type rules. The final section compares the introduced language with
other object-oriented languages.

2.1 Object-Oriented Features and Terminology

The two central concepts in object-oriented programming are classes and ob-
jects. Classes are the structural units of object-oriented programs, whereas ob-
jects are the main data units of such programs. The two concepts are related:
a class provides a blueprint of a specific set of objects.

An object can be viewed as a record with named fields. However, an object
is more than a record because it has a unique identity. The fields of an object
are often called its instance variables, and collectively they form the internal
state of the object. Each object is an instance of a particular class; we will refer
to this class as the dynamic type of the object; the dynamic type is sometimes
also called the allocated type of an object, or its run-time type. Dynamic types
should not be confused with ordinary (static) types, which are properties of

13
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expressions.

A class is a syntactical entity that describes the structure of the internal
state and the available functionality of its instances. Their internal state is
defined by a set of field declarations. The operational information is given by a
set of (instance) method declarations.

A method can be seen as a procedure with an implicit (additional) parameter
that is always bound to an instance of the class in which it is declared. This
object is called the receiver of the method invocation. Method invocations are
usually referred to as method calls. The syntax of a method call specifies its
intended receiver. Classes usually also contain a specific set of methods that are
called constructors or constructor methods. Such methods are executed as the
result of object creation, and their purpose is to ensure that the new object is
immediately brought into a stable state.

Complex classes can be developed incrementally by declaring a class to be an
extension of another class. The resulting class is said to be a subclass of the class
that it extends. We call the latter its parent class, or its direct superclass. Thus
each object-oriented program has a class hierarchy based on the corresponding
subclass relation. We will assume in this thesis that the subclass relation of
each program is a rooted tree. This means that each class, with the exception
of the root class, has precisely one parent class.

Class extension relies on a mechanism that is called inheritance. It implies
that each subclass inherits the fields and methods of its superclass. If a class
has at most one superclass we speak of single inheritance. Some languages
allow classes to have several superclasses, which enables situations in which
the subclass inherits properties (fields and methods) from several classes. This
feature is called multiple inheritance. Multiple inheritance requires a renaming
mechanism to resolve name clashes between the properties of parent classes.
We will not further discuss multiple inheritance in this thesis because it is not
widely used.

The subclass may extend the superclass by defining new fields and methods.
It is possible that the subclass defines fields with the same identifier as a field
that it inherits. This situation is allowed in most object-oriented languages.
The new fields is said to hide the inherited field. An instance of the new class
will nevertheless have both fields. This phenomenon is called field shadowing.

A similar situation occurs if a class defines a method that it also inherits. In
this case, we say that the new method overrides the inherited method. Method
overriding can be exploited if it is combined with dynamic (or late) binding.
Dynamic binding means that a method call results in the execution of the most
specific method declared in (a superclass of) the dynamic type of the receiver. A
method is more specific than another method if it is declared in a subclass of the
other method’s class. Method overriding combined with dynamic binding allows
the programmer to change the behavior of instances of a subclass in comparison
to instances of the superclass.

It is customary in object-oriented programming to define a (partial) subtype
relation on the types of the programming language. Usually, this relation is
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defined in such a way that every operation on the elements of a particular type
t is also defined on the elements of every subtype t’. This convention enables
a particular kind of polymorphism that is known as subtype polymorphism.
Essentially, polymorphism is a relaxation of the typing restrictions. Without
polymorphism, an assignment z := e is only allowed if the type of the ex-
pression e and the type of the variable x are equal. Languages with subtype
polymorphism also allow the assignment if the type of the expression is only a
subtype of the type of the variable.

It is common to identify the subtype relation with the subclass relation.
This means that every subclass is also a subtype. We will say more about this
convention in Section 8.1.

2.2 An Object-Oriented Programming Language

In this section we describe a programming language (dubbed COORE) that
embodies the object-oriented features that we discussed in the previous section.
The version presented here it a slightly extended version of its predecessors that
either had no constructor methods [PdB03b] or were less explicit concerning
type declarations [PdBO5b].

We first describe the syntax of the languages. Its type restrictions are ex-
plained in Section 2.2.2. Section 2.2.3 contains a formal semantics of COORE.

2.2.1 Syntax

The syntax of COORE resembles that of Java, although we made some minor
changes that should improve the readability. Figure 2.1 provides an overview of
the syntax of the language.

A program 7 consists of a set of classes.

m € Prog ::= class™

Each valid program at least contains the root class object.
A class declaration specifies the (unique) name of the class, its parent class,
a set of fields, a constructor method, and a set of instance methods.

class € Class ::= class C' (e | extends D) { field" constr meth"}

We use C, D, and E as typical elements of the set of class names. By e we
denote the empty sequence of tokens. A clause C extends D indicates that class
C is an extension of class D. A class extends the root class object if the extends
clause is omitted. Cycles in the subclass relation are not allowed.

A field declaration specifies its type ¢ and its identifier.

field € Field =1 x ;

We typically use = to denote a field name. A class inherits all fields of its parent
class. We allow classes to declare fields with names that equal those of inherited
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m € Prog = class®
class € Class == class C (e | extends D) { field" constr meth”}
field € Field == tux;
t € Type == int|boolean|C |D|E]| ...
constr € Constr == C(p){ S}
p € Parameter = tu
meth € Meth == void m(p) { S } | t m(p) { S return e }
SeStat = tu|lu:=e|ex:=e|S; S| u:=newC(e)
| em(e) | u:=em(e)|if (e) Selse S| while(e) S
e € Ezpr == null | this|u]|ex | (C)e|einstanceof C |e?e:e

| e=e|op(e)
op € Op an arbitrary operator on elements of a primitive type

Figure 2.1: The syntax of COORE.

fields, which leads to field shadowing (see Sect. 2.1). Thus objects may have
multiple fields with the same name. However, within a class field names should
be unique.

A type t is either a primitive type or a reference type.

t € Type :=int | boolean |C | D | E| ...

We will only consider the primitive types int and boolean. Reference types
are simply class names in COORE. Object fields of reference types may hold
references to other objects. Thus objects can store references to other objects,
which may result in complex reference networks that are usually called object
structures.

A method declaration lists the return type of the method, its name m, a list
of formal parameters p, a statement S, and possibly a side-effect free expression
e that denotes its return value.

meth € Meth ::=void m(p) { S } | t m(p) { S return e}

A method with return type void returns no value, and it is therefore not allowed
to have a result expression. The declaration of a method with a non-void return
type must specify such an expression. A method name m should be unique
in its class; we do not consider overloading for simplicity. By p we denote a
comma-separated sequence of parameter declarations.

A parameter declaration specifies the type of the parameter and its identifier
u.

p € Parameter :=1t u
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Note that our language does not support visibility modifiers. All fields and
methods are considered to be public. Support for public (or protected) methods
is a prerequisite for dynamic binding, for private methods cannot be overridden
and are therefore always bound statically to an implementation.

Constructor method declarations are simplified method declarations.

constr € Constr :=C(p){ S }

Constructor methods always carry the name of the enclosing class. Their return

type is always void and therefore omitted. Again, we prevent the complications

of overloading by requiring that each class has only one constructor method.
We distinguish nine kinds of statements.

SeStat == tulu:=clex:=e|S; S| u:=newC(e)
| em(€) | u:=em(e)|if (e) Selse S|while (e) S

A statement of the form ¢ u declares a new local variable u with type t. Local
variables belong to a method and last as long as the method in which they
are declared is being executed. Each local variable should be unique in its
method, and it should be declared prior to its first use. A variable declaration
additionally has an operational aspect: the variable receives its default value at
the start of its lifetime.

We list assignments to local variables u := e and assignments to fields of
objects e.x := ¢’ separately because they require distinct reasoning techniques.
An expression e.x denotes field x of the object referenced by e. However, field
shadowing requires us to be more precise. An expression e.x always corresponds
to the first field = that is found by an upward search of the class hierarchy
starting in the static type of expression e.

A statement u := new C(é) allocates a new instance of class C and conse-
quently calls the constructor method of class C' with actual parameters e. The
new object is the receiver of the call. Afterwards, the local variable u becomes
a reference to the new object. An invocation of method m with receiver e is
denoted by e.m(€). Here, € is a comma-separated list of expressions. The other
statements are standard. We will sometimes put curly braces around statements
to clarify their start and end.

All expressions are side-effect free.

e € Ezpr == null | this|u|ex| (Ce]einstanceof C |e?e:e
| e=e]op(e)

The literal null denotes the null reference. This value is the default value of any
variable of a reference type. The keyword this always references the receiver of
the active method.

An expression of the form (C)e involve a cast, which changes the static type
of the expression e to C. The value of (C)e is normally the value of e, but its
value is undefined if e is not a reference to an instance of (a subclass of) class C
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or the null reference. We will say more about the use of casts in the following
section in which we explain the role of types in the language.

The instanceof operator is used to obtain information regarding the run-time
(allocated) type of an object. An expression e instanceof C' is an expression of
type boolean that is true if e references an instance of (some subclass of) class
C or the null reference. An expression e; 7 es : e3 is a conditional expression.
The binary operator = is the usual equality-operator which is denoted by ==
in languages like Java and C#.

Finally, we also assume the existence of a set Op of operators on integers and
booleans. This set includes, among others, the usual operators for addition and
multiplication of integers, and boolean operators for conjunction, disjunction,
and negation. For simplicity, we will assume that all operators are total. We
additionally assume that Op includes literals like true, false, and the usual integer
literals, which are seen as operators of arity 0.

2.2.2 Type Restrictions

Object-Oriented languages like Java and C# are strongly-typed, which means
that each program written in such languages must obey a set of mathematically
precise typing rules. The compiler typically infers a type for each expression
and checks if each expression that occurs in a compound language construct has
a type that is appropriate in that context. Typing rules are formulated such
that a compiler is able to check statically if a program satisfies the rules.

Verification techniques such as Hoare logics or proof outline logics are similar
to typing rules in two aspects. Firstly, they also aim to rule out programs with
unwanted behavior. Secondly, they can also be applied statically, i.e., without
actually running the program. The main difference between static verification
techniques and type checking is in the amount of effort that is required from
the programmer. Verification techniques require more program annotation, but
they also ensure much stronger safety properties.

Static verification techniques are not independent of typing rules, however.
They mostly assume at least type-safety of the language to which they are
tailored. This means that any state that may arise during the execution of a
program assigns values to the variables that are compatible with their declared
types. The typing rules of a programming language are sound if they preserve
this property. Moreover, they should ensure that each well-typed expression
evaluates to a value that is compatible with its derived type.

The type-safety of Java has been the subject of several studies [NvO98,
DEK99, IPW99]. Since COORE is a subset of Java, we may safely assume
that it is also type-safe, provided that our typing rules conform to the rules of
Java. The proof outline logic that we develop in this thesis also assumes type-
safety. We will explicate the typing rules that are typical for the object-oriented
paradigm in the remainder of this section.

Typing in object-oriented language depends on the is-subtype-of relation
between types. This relation in turn is based on the subclass relation, which
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[e] =C origin(z,C) =C" x € Fields(C")

[null] = NullT [e.x] = [z]
le] ~C e] =C
[(Cle] =C [e instanceof C] = boolean
[e1] = boolean [es] < [es] [e1] = boolean [es] < [e2]
[61 ? €g 63} = [63] [61 ? €9 ! 63] = [62]
[e1] ~ [e2]

[e1 = e3] = boolean

Figure 2.2: Selected type rules for expressions. Here Fields(C) denotes the set
of fields that are declared in class C'. The definition of origin is given in Section
2.2.3.

we denote by <. It is the reflexive and transitive closure of the extends relation
between classes. The null reference has a unique type NullT (the null type) that
is a subtype of each reference type. The is-subtype-of relation of a program
(written as =) is the least set such that int < int, boolean < boolean, NullT < C
for each class C, and C < D if C 4 D. We write t < t’ to express that t is a
proper subtype of t'. Type t is a proper subtype of ¢’ if ¢ <t and t # ¢'.

We denote the type of an expression e by [e]. We have [null] = NullT. The
value of [this] is always the reference type of the enclosing class. The type of an
expression e.x is the type of field z. We have [(C)e] = C. To ensure type-safety
we require that [e] is related to C. We say that two types t and ¢’ are related,
denoted by t ~ t' if either ¢ < ¢’ or t' < t. The same restriction applies to
boolean expressions of the form e instanceof C.

The typing rules must ensure for each conditional expression e; 7 es : e3
that [e1] = boolean, and that [es] is related to [e3]. The type of the conditional
expression itself is [es] if [es] < [e2], and [es] otherwise. An expression e; =
e2 is only valid if [e;] is related to [es]. The typing rules for operators on
primitive expressions are standard. An overview of the most relevant type rules
of expressions is given in Figure 2.2.

An expression new C'(€) has type C. The type of a method call e.m(e) is
the return type of the corresponding method. For both expressions we require
that the types of the actual parameters € are subtypes of the types of the
corresponding formal parameters p. That is, it must be the case that [e;] < [pi],
for each valid index ¢ of the sequences € and p. By [p] we refer to the declared
type of parameter p.

The type restrictions on actual parameters are the natural translation of the
subtype polymorphism principle to parameter passing. The subtype polymor-
phism principle states that an expression of a subtype is acceptable whenever a
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value of a supertype is expected. Therefore an assignment is allowed if the type
of its right hand side is a subtype of the type of its left hand side. Similarly, an
expression that denotes a return value is acceptable if its type is a subtype of
the declared return type of the method.

Subtype polymorphism also plays a role in the context of method overriding.
Naturally, a method that overrides a method declared in a superclass must
have the same number of parameters. Furthermore, one could demand that
its parameters have the same types as the parameters of the method that it
overrides. However, a less rigid restriction suffices for type-safety.

It is common to speak of covariant and contravariant changes in types (see,
e.g., [Bru02]). A covariant change occurs if a subclass uses a subtype compared
to the the type used in the superclass. A contravariant change is a change in
the opposite direction. Both types of changes can be permitted in overriding
methods. A method that overrides another method may have a covariant change
in its return type. That is, its return type may be a subtype of the return type
of the method that it overrides. Parameter types may only vary contravariantly.

2.2.3 Formal Semantics

In this section we present an operational semantics for COORE. A formal se-
mantics is an essential prerequisite for rigorous results regarding properties of
the language and the proof system that we present in this thesis.

It is common to distinguish natural operational semantics from structural
operational semantics [NN92]. A natural (or big-step) semantics relates ini-
tial configurations with their final states. A configuration (S, o) consists of a
statement S and a state 0. Formulas in a natural semantics have the form
(S,0) — ¢’. Such a formula states that a computation of S that starts in state
o terminates in state o’.

Natural semantics have been derived from the structural operational seman-
tics proposed by Plotkin [Plo81]. Plotkin’s (small-step) semantics additionally
contains rules of the form (S,0) — (S’,0’) that relates an initial configura-
tion with its successor in the computation. Thus Plotkin’s rules provide ad-
ditional information about how the individual steps of the computations take
place [NN92].

We will develop a natural semantics for COORE because this simplifies some
of the proofs. The additional information provided by a structural operational
semantics will not be required. However, a small-step semantics may be a better
guide for implementers of the language [DEK99, DVE00, vOO01].

Variables

Programs in COORE contain local variables and instance variables. We assume
that Var denotes the set of all local variables of a program; it also includes the
special-purpose variable this. By Fields(C) we denote the set of fields that are
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declared in class C'. Let C be the set that contains the names of all classes
declared in the program.

Due to inheritance objects may have several fields with the same identifier.
As explained in Sect. 2.2.1, an expression e.x always corresponds to the first
declaration of a instance variable x as found by an upward search starting in
class [e]. This search is formalized by the function

origin : C x ( U Fields(C)) = C ,
CeC

which yields the origin of field z of an object of class C.

origin(C, z) — C if x € Fields(C)
gintts &) = origin(par(C),x) otherwise
Here par(C) denotes the parent class of class C; it is undefined for class object.

Values and Domains

We represent objects as follows. Each object has its own identity and belongs to
a specific class. Let Id be an infinite set of object identities. The set of object
values Val(C) of a class C' € C is then given by {C'} x Id. The null reference
null is the value of null.

By dom(t) we denote the value domain of type ¢. The value domain of a
reference type subsumes the object values of subclasses due to subtype poly-
morphism. It is defined by the following cases.

dom(boolean) = {&,ff}
dom(int) = {...,-1,0,1,...}
dom(NullT) = {null}
dom(C) = Val(C) U (Useqppr<cy dom(t))

We finish this section with some simple results regarding values and domains.
Lemma 2.1. Ift <t then dom(t) C dom(t).

Proof. A simple case analysis. O
Lemma 2.2. For every class C we have

dom(C) = ( U Val(D)) U {null} .
DE{E|E=C}

Proof. A simple case analysis. O

Lemma 2.3. If C % D then dom(C) N dom(D) = {null}.
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Proof. Recall that dom(NullT) = {null} and that NullT < C, for every reference
type C. Then by Lemma 2.1 we have null € dom(C) for every C. Hence
null € dom(C) N dom(D) and {null} C dom(C) N dom(D)

Secondly, we will prove that dom(C) N dom(D) C {null} by showing that
o € dom(C) N dom(D) leads to a contradiction if o # null. So let 0o = (E,i) €
dom(C) N dom (D). Hence o € dom(C) and o € dom(D). Then E < C and
E < D by Lemma 2.2. In other words, £ must be a subclass of C' and of D.
The superclasses of F form a chain, so either C' is a subclass of D or D is a
subclass of C'. Therefore C' ~ D, which contradicts the assumption C 4 D. O

States

States of object-oriented programs consist of a stack which assigns values to
local variables, and a heap (or object store) that contains all allocated objects
and the values of their fields.

Only the top of the stack, which assigns values to the local variables and the
parameters of the active method, is relevant in the semantics. For this reason,
we model a stack s € Stacks as a total function of local variables to values. The
function represents the top of the (actual) stack. Formally, Stacks is the set

H dom([u]) .

ue Var

Note that we write [ [, 4, (P(a)) to denote a (generalized) cartesian product. An
element of this set is a function that assigns to every element a € A an element
of the set P(a).

A heap maps each existing object to its internal state. The internal state of
an object is a mapping from fields to values. The internal state of an instance
of class C assigns values to all inherited fields and to all fields declared in class
C. By IntSts(C) we denote the set of internal states of C-Objects. We have

IntSts(C):( I1 ( I1 dom([:v]))).

De{E|C=<E} xz€Ficlds(D)

A heap h € Heaps is a partial function that maps each existing object to its
internal state. The set Heaps is defined as follows.

Heaps = H (Id - IntSts(C’)).
CeC

We say that an object o exists in heap h if h(o) is defined. The domain of
a heap h, denoted by dom(h), is the set of objects o such that h(o) is defined
extended with null.

As a result of the above definitions, h(o) is the internal state of an object
o= (C,id), if it exists. The value of some field z declared in class C' is given by
h(0)(C)(z), for every object o in the value domain of class C.
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Not every heap is valid. We say that a heap h is valid if all instance variables
of objects that exist in h either reference null or an object that exists in h. In
other words, valid heaps do not have dangling references. Likewise, a stack s is
said to be consistent with heap & if all variables either reference an object that
exists in h or null. A state (s, h) is valid if h is valid and s is consistent with h.
We will silently assume that all considered states are valid in the remainder of
this thesis.

Expression Evaluation

Expressions in COORE have no side effects. Evaluation of expressions will
therefore result in a value; the state will always remain unchanged. We use the
following evaluation function for expressions.

E[] : Expr x (Stacks x Heaps) — Val

Here Val denotes the set (|J, dom(t))U{L}. The value L stands for ‘undefined’.
Expressions can be undefined due to dereferencing of the null pointer or illegal
casts.

The definition of £[e](s, k) can be found in Figure 2.2.3. Note that the
definition of EJop(ey, ..., en)](s, h) rules out non-strict (short-circuit) operators
that do not always evaluate all their operands, which implies that their value
need not be undefined if the value of one of their operands is undefined. This
is not an essential restriction; the proof system that we present is also suitable
for languages with non-strict operators.

The following lemma states that expression evaluation is type-safe.

Lemma 2.4. For every expression e and state (s,h) we have
Ele]l(s,h) € dom([e]) U{L} .

Proof. By structural induction on e. O

The Transition Relation

By (S, (s,h)) — (s',h') we denote that a computation of S that starts in state
(s, h) ends in state (s',h’).

We will discuss some interesting cases in detail. We first consider the se-
mantics of local variable allocation. Fresh local variables have their standard
default values after allocation. The default value of a variable depends on its
type. We assume that init(¢t) denotes the default value of type ¢ according to
the following cases.

init(boolean) = ff
init(int) = 0
init(C) = null
Local variable allocation then proceeds as described by the following rule.

(oo h)) = (sl ()] ) (v4)
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Enull](s,h) = null
Ethis](s,h) = s(this)
E[u](s,h) = s(u)
B 1 if v e {null, L}
Elea](s;h) = h(v)(origin([e], z))(z) otherwise
v ifv e dom(C
EL(C)ellsh) = 1 otherwise ©
1 ifo=1
E[e instanceof CJ(s,h) = tt if v € dom(C)
ff otherwise
1L ifoy=1
Eler 7 ex s e3](s,h) = vy if v =t
U3 if v = ﬁ

tt if vy =w
5[61 = 62]](37 h) = i othzrwisz‘
if V; = 4

Elopler - en)l(s,h) = op(vi,...,v,) otherwise

Figure 2.3: Evaluation of expressions. In the left hand sides we assume that v
and v;, with ¢ € {1,2,...}, abbreviate £[e](s, h) and E[e;](s, k), respectively.
By op we denote the fixed interpretation of operator op.

We write s[uy ...u, — v1,...,0,] to denote the stack that maps u; to v;, for
i € {1...n}, and that assigns all other variables the same value as s. Note that
local variable allocation always succeeds, for this rule has no antecedent.

Assignments to local variables of the form u := e only succeed if the value
of expression e is defined.

Ele](s, h) # L
(u:=re,(s,h)) = (slu— E[e](s, h)], h)

(LA)

Field assignments e.x := €’ only terminate if the values of the expressions e
and e’ are defined. The rule assumes that field x is defined in class D. The new
heap hl[o.xp — v] is obtained from h by assigning the value of ¢’ to field x of
class D of the object referenced by e.

Ele](s,h) =o & {L,null} E[e'](s,h) =v# L origin([e],z) =D

(e.x :==¢€' ,(s,h)) — (s,hlo.xp — v])

(FA)

Here b/ = hlo.xp — v] denotes the heap h’ such that h'(0)(D)(z) = v, and A’
equals h in all other cases.

Next, we discuss the semantics of method calls. Let us consider a call to
method m on object e of the form u := eg.m(es,...,e,). Recall that method
calls are bound dynamically to a method implementation. Therefore the value
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of ey is evaluated first. The call fails if the value of ey is undefined. Let
Eleo] (s, h) = (C,id). Then this call is bound to the implementation of method
m that is declared in class C' or otherwise the implementation that C inherits
from its parent class. We denote this method implementation by meth(C,m).

S[[GO]](Sa h)=o0=(C,id)

Elei](s,h) =v; # L foreveryiec {1...n}
meth(C,m) =t m(p1,...,pn){ S return e }
(S, (s[this, p1, ..., pn — 0,v1,...,0,],h)) — (s, 1))
Ele](s',h')y=v# L

(u:=-eg.m(er,...,en),(s,h)) = (sju— v],h")

(MCh)

The call starts with the context switch in which the value of e( is assigned
to this and the values of the actual parameters € = eq,...,e, are assigned to
the formal parameters p = p1,...,p,. We identify p; with its actual declaration
here, which has the form ¢; u;. It is the parameter u; that is updated in the
context switch. After execution of the body S the value of e is assigned to u.
Possible updates of the stack s by the body S are then discarded, but changes
to the heap remain intact when the method returns.

We have a similar rule for calls to methods that do not return a value.

Eleol(s,h) = 0= (C,id)
Elei](s,h) =v; #L foreveryie {l...n}
meth(C, m) = void m(p1,...,pa){ S }
(S, (s[this, p1,...,pn = 0,v1,..., 0], b)) — (8", h')

(eg-m(e1,...,en), (s,h)) — (s, )

(MCy)

An assignment u := new C'(eq, . .., e,) involves the allocation of a new object,
and the execution of the constructor method of class C'. The instance variables
of the new object initially have their default values. Let init(C) be the initial
internal state of an object of class C. We have nit(C)(D)(z) = init([z]) for
every field « € Fields(D) declared in some class D such that C' < D. It is
undefined for all other fields.

By h-[o — init(C)] we denote the heap that is obtained from h by extending
its domain with an object o such that (h-[o — init(C)])(0) = init(C). It is only
defined if object o is fresh, i.e., if h(0) is undefined.

Let constr(C') be the constructor method declaration in class C. The rule
below then describes object creation.

o= (C,id) h(o) is undefined
Elei](s,h) =v; # L foreveryie {1...n}
constr(C) = C(p1,...,pn) { S}
(S, (s[this, p1, ..., pn — 0,V1,..., 0], b+ [0+— nit(C)])) — (s',h)
(u:=new C(ex,...,ep) ,(s,h)) = (s[ur o], )

(0C)

The (standard) rules for the other statements are listed in Figure 2.4.
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<S17 (87 h)> — (S//v h”) <527 (81/7 h//)> — (S/, h/)

(S1: S, (1)) — (5, ) (5¢)
Ele](s,h) = tt (S, (s, h)) — (s', )
(if (¢) S else S, (s,h)) — (', ) (f1)
g[[e]](sah) =Jf <S27(87h)> - (Slvh/)
(if (e) S else S, (s,h)) — (', ) (If2)
(while (e) S, (s,h) = (s,h) for some n € {0,1,...}
(while (e) S, (s,h)) — (s, h) (Wh)
ELe](s, 1) = )
(while (€) S, (s,h)) = (s, h)
Ele](s,h) =1t
(8, (s, h)) = (s, 1)
(Wh{le (e) S,(s",h )7>H:> (s',h) (Whs)
(while (e) S, (s, h)) — (s',h’)

Figure 2.4: Additional rules of the operational semantics.

2.3 Related Languages

The language COORE is supposed to model the object-oriented core of lan-
guages like Java [GJSB00] and C# [Mok03]. This entails that we left out many
features of Java and C# that did not seem relevant to the subject of this thesis,
but that are certainly useful to programmers.

The most important omission is concurrency. Java and C# both have
a thread class that can be instantiated to obtain another execution thread.
Abrahdm et al. have developed a proof outline logic for a multi-threaded sub-
set of Java [AMdBARS02, AdBARS03, A05]. Their work does not deal with
inheritance and subtype polymorphism.

Our language does not have an error handling mechanism such as the ex-
ceptions in Java and C#. However, exception handling is not a characteristic
feature of the object-oriented paradigm. Hoare-like logics that deal with excep-
tions have been proposed by several authors [HJ00, Hui01, vO01]. Kowaltowski
wrote an early work on handling side effects and jumps in Hoare logics [Kow77].
Throwing an exception can be seen as a particular kind of jump. Kowaltowski’s
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work is also relevant for reasoning about side effects in Java and C#-expressions.
Nevertheless, we omitted expressions with side effects in COORE for clarity. We
also left out interfaces and abstract classes, which do not seem to pose interest-
ing problems from a proof-theoretical perspective.

Both Java and C# have visibility (or accessibility) modifiers that control
which class members are visible outside a class. There are subtle differences
between Java and C# in the meaning of modifiers [Mok03], and both languages
have at least one visibility mode that is not supported by the other language.
We simply assume that all class members have public visibility in COORE, i.e.,
they can always be accessed in other classes. We will indicate the consequences
of this choice for the proof system in the various chapters that describe its
constituents.

In Chapter 9 we will extend COORE with static variables. It is not nec-
essary to add static variables already because reasoning about static variables
is similar to reasoning about local variables. The main difference is their ini-
tialization process: static variables may be initialized in Java by code that is
executed during class initialization. It is difficult to determine when a class is
actually initialized. The general rule is that a class is initialized prior to the
first use of one of its members or prior to the first allocation of its first instance.
However, the Java Language Specification also has a disturbingly vague sentence
that says ”Invocation of certain reflective methods in class Class and in pack-
age java.lang.reflect also causes class or interface initialization” [GJSBOO,
p. 237]. A second complication is that the textual order of static variable dec-
larations influences the outcome of class initialization [GJSB00, JKW03]. Class
initialization in C# proceeds along the same lines [Mok03], but there may well
be subtle differences. For these reasons, it is essential to put further restrictions
on class initialization in order to facilitate formal reasoning. However, this falls
outside the scope of this thesis.

Java has a complex inference system that ensures that each local variable is
explicitly assigned a value before its first use. Thus the initial default value of
a local variable becomes irrelevant. We did not model this aspect of Java, but
it is certainly compatible with our model.

Object-Oriented languages that are older than Java (and certainly older
than C+#) sometimes have features that are not incorporated in later object-
oriented languages. For example, languages like C++ and Eiffel [Mey92] support
multiple inheritance; Smalltalk only supports single inheritance [GR89]. The
main reason for its omission in modern object-oriented languages seems to be
their designers’ desire to aim for simplicity.

Many other compact subsets of Java have have been proposed. The most rad-
ical subset is, presumably, Featherweight Java [IPW99], which even eliminates
assignments; its main goal was to make its proof of type soundness as concise
as possible. Other sequential subsets include Java-K [PHM99] and Java‘i9ht
[vOO01], of which the latter is the most substantial subset. The design goal
behind Javayr [AMdBARS02, AdBARS03] was to model Java’s concurrency
mechanism.
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Chapter 3

Program Annotation

This chapter introduces several key ingredients of the formal system that we
study in this thesis. First of all, it provides a formal description of interface
specifications. An interface specification of a method will consist of a precondi-
tion and a postcondition. Both these formulas will be members of the formal
specification language that we describe in the following section.

The main subject of this thesis are proof outlines. Proof outlines are a means
to give a justification for the interface specification of a method. Proof outlines
are annotated programs that satisfy certain validity constraints. We introduce
the syntax and semantics of annotated programs in this chapter. Related work
on specification languages is discussed in the last section.

3.1 A Specification Language

Our proof outline logic is based on an assertion language for COORE, dubbed
COORAL, that is tailored to the programming language. For example, most
expressions in COORAL are simply programming language expressions. We
add only a few additional language constructs to enhance the expressiveness of
the language. Our reluctance to add additional constructs to the language is
motivated by our desire to work with a specification language that can be easily
understood by the average programmer. The Java specification language JML
[LBRO4] is a similar attempt to design a specification language that is closely
tailored to a programming language.

The first necessary addition is logical variables. Logical variables are also
called freeze or ghost variables. We will use logical variables as bound variables
of quantifiers. It is also possible to use logical variables to relate initial and final
values of variables in specifications. For example, a Hoare triple

{r=ztz=c+1{z=2+1}
uses the logical variable z to freeze the initial value of program variable x in the

precondition z = z. The postcondition x = z + 1 then reveals that z has been

29
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incremented by one. However, our assertion language will also allow expressions
of the form old(e), which denote the value of expression e in the initial state of
a method execution.

A final extension concerns the set of valid types in the assertion language,
which we denote by 7. This set extends the set of programming language types
to enable quantification over finite sequences of state elements. Thus logical
variables may also denote sequences. We write t* to denote the sort of finite
sequences of elements from the domain of ¢. Recall from the previous chapter
that Type is the set of types in the programming language. The set of types
T of the assertion language is defined by 7 = Type U {t* | t € Type}. We will
assume that ¢ ranges over the latter set in the assertion language.

The set of logical expressions PFEzpr, with typical element p, is defined as
follows.

p € PExpr == null|this|u|pax| (C)p
| pinstanceof C' | p?p:p|p=p]|op(p)
| 2| z[p] | length(2) | undefined | defined(p)

Note that the first two lines are copied from the grammar of programming
language expressions; the last line shows five new cases.

We use z as a typical element of the set LVar of logical variables. As ex-
plained above, its static type [z] is an element of the set 7, which implies that a
logical variable may also denote a sequence of values. Let z be a logical variable
of some sequence type. Then z[p] denotes the element at index p in the sequence
z, and length(z) denotes the length of the sequence. Valid indices range from 0
to length(z) — 1. An empty sequence has length 0. These two operators will be
the only valid operators on sequences.

The keyword undefined has the value L; An expression defined(p) can be
used to test whether the value of p is defined, i.e., whether it is different from
1, in a particular state. Note that an expression defined(p) is not equivalent to
—(p = undefined) (where — denotes the logical negation operator) because the
value of an expression p; = po is L if either p; or po has the value L.

Observe that the grammar of the set of logical expressions PEzpr does not
include expressions of the form old(e). Actually, PEzpr is the set of expressions
that are valid in preconditions. An expression of the form old(e), which has the
value of e in the initial state of a method execution, does not make sense in a
precondition P because preconditions are always evaluated in the initial state.

For this reason, we introduce a second set QFxpr, which is the set of arbi-
trary logical expressions. The grammar for this latter set is obtained from the
grammar of PEzpr by adding the clause old(e), which results in the following
grammar.

q € QEzpr == null|this|u]qz]| (C)g
| qinstanceof C' | q?q:q|q=gq]op(q)
| z|old(e) | z[q] | length(z) | undefined | defined(q)
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A program expression e in an expression of the form old(e) may refer to the
parameters of a method (including the implicit parameter this), and to fields
of objects that are reachable from the parameters. It is not allowed to refer to
local variables other than the parameters of the method because such variables
are not allocated in the initial state.

Assertion language formulas are built from logical expressions in the usual
way.

QEQForm:=q|Q|QNQ| (Tz:teQ)

The set of preconditions PForm, with typical element P, is build from pre-
condition expressions p in the same way.

Other boolean connectives can be encoded as usual. For example, we have
Pl\/PlE"(_\Pl/\_\PQ),aHdP14>PQE_|(P1/\_\P2).

We write (3z : C o Q)) to express that @ holds for some ezisting object of
class C. Similarly, (3z : C* e Q) holds if @ holds for some sequence of existing
objects from dom(C'). We sometimes omit the type t in a formula (3z : t e Q)
if it is clear from the context. A formula of the form (Vz e Q) abbreviates the
formula —(3z ¢ =Q). We also use two other useful abbreviations. A formula
z € 2/ will stand for (Ji e 0 < i < length(z’) A z = 2/[i]), and z C 2’ abbreviates
the formula (Vi e 0 < i < length(z) — z[i] € 2/).

Quantification over finite sequences is a powerful extension of the language.
It allows us, for example, to express reachability via a reference chain of arbitrary
length in the assertion language, as witnessed by the following example.

Example 3.1. Let Node be a class with fields next : Node and val : int. A
second class List with field fst : Node can be used to build a linked list of elements
of class Node, with fst referencing the head of the list. The formula

(3z : Node™ o z]0] = this.fst A z[length(z) — 1] =n A
(Vie0 < i< length(z) — 1 — (2[i] # null A z[i].next = z[i + 1]))

holds if Node n can be reached via a finite chain of next fields from the head of
the list. Let reachable(n) abbreviate the above formula. A value v occurs in the
list if

(3n : Node @ n # null A reachable(n) A n.val = v) .

3.1.1 Formal Semantics

The typing rules for logical expressions are similar to those for program expres-
sions. In our assertion language, we use a new type undefT, which is the type
of the keyword undefined.

In the assertion language, we define < to be the least set such that int < int,
boolean < boolean, NullT < C for each class C, and C <X D if C' < D; moreover,
undefT <t if ¢ is a primitive type or a reference type C.

We do not extend the subtype relation to sequence types. As a result, an
expression of the form e = ¢’ is not well-typed if [e] or [¢] is a sequence type
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[e] =t [2] =t [q] =int [2] = t*
[old(e)] =t [2[q]] =t [length(z)] = int
lq] =t

[undefined] = undefT  [defined(q)] = boolean

Figure 3.1: Typing rules of logical expressions (additional cases).

(cf. the rule for this type of expression in Fig. 2.2). Sequences are dissimilar
from objects in one aspect: they have no identity. However, structural equality
of two sequences z; and 29 can be expressed in the assertion language by means
of a formula

length(z1) = length(z2) A (Vi e 0 < i < length(z1) — z1[i] = 22[i]) .

The new type rules are listed in Fig. 3.1. The type rules for assertions are
straightforward and therefore omitted; it suffices to remark that only logical
expressions of type boolean qualify as basic formulas.

In order to evaluate formulas from the assertion languages we must slightly
extend our state model. First, we must define the domains of sequence types.
We view lists as pairs (f,n) of a function f that maps indices to values, and a
natural number n € N that represents the length of the list. Let ¢ be some type
of the programming language. Then we define

n—1
dom(t*) = (J{(f,m)lf € [] dom(r)} -
=0

neN

For a sequence v = f(n) we define rng(v) = {f(9)|0 < i < n}.

Secondly, we extend the domains of stacks because they must now also store
the values of logical variables. Recall from Sect. 2.2.3 that a stack is a mapping
from local variables to values. From now on, we will assume a stack s € Stacks
to be a mapping from local variables and logical variables to values. That is,

Stacks is the set
[T dom(z) -
z€ VarULVar

This change has no consequences for the meanings of programs since logical
variables are not allowed to occur in programs. Also recall from Sect. 2.2.3 that
a state (s, h) is valid if h is valid and s is consistent with h. A stack s is said to
be consistent with heap h if all variables (including the logical variables) either
reference an object that exists in h or null.

Logical expressions are evaluated in two states: the current program state
(s,h), and a freeze state (s',h’) that assigns values to expressions of the form
old(e). The freeze state is a copy of the initial state of a method execution. We
use the following evaluation function for logical expressions.

L[] : QEzpr x (Stacks x Heaps) x (Stacks x Heaps) — Val
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/

Lnull] (s,

L[this] (s,

Lu] (s,
(

)(s' 1)
)(s' 1)
)(s', 1)
)(s' 1)

T

|s)

u)
1 if v e {null, L}
h(v)(origin([q],x))(x) otherwise

v if v € dom(C)

1 otherwise

1 ifvo=_1

h
h
h

Lg.x](s, h

LI (C)q I(s,h)(s" 1) =

S(
t}(
L[q instanceof C|(s,h)(s', ') = |

tt  if v € dom(C)
ff otherwise
1L ifuy=1

Llq1 @](s,h)(s',h) =< vy ifvr=1tt

vy if vy = ff

1 fvy=Lorwvy=_1
tt ifv =vyE L

ff otherwise
op(v1,...,v,) otherwise
)

(s',h')

(s, 1)

- EHES)M)fO here s(z) = (f,n)
) v) 1 0<v < n,where s(z) =(f,n
(s, 1) :{ 1 otherwise

( ) = n, where s(z) = (f,n)

(s, 1)

(s, 1)

V)

tt ifv# L
ff otherwise

Figure 3.2: Evaluation of logical expressions. In the left hand sides we as-
sume that v and v;, with ¢ € {1,2,...}, abbreviate L[g](s,h)(s’,h') and
L[] (s, h)(s', h'), respectively.

Its second argument is the current state, the third argument is the freeze state.
We say that a freeze state (s’,h’) is compatible with a current state (s,h) if
dom(h') C dom(h). The evaluation function is undefined if the freeze state is
incompatible with the current state. Thus evaluation of old(e) cannot result in
a value that does not exist in (s, h).

The definition of L[g](s, h)(s’, ') can be found in Fig. 3.2. The evaluation
of logical expressions follows the evaluation of program expressions. The new
cases are rather straightforward. Note that only L[old(e)](s,h)(s’, ') depends
on the freeze state.

Logical expression evaluation is type-safe.

Lemma 3.1. For every expression q, every state (s,h), and every compatible
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freeze state (s',h') we have
Lal(s, h)(s",n) € dom([q]) U {L} .
Proof. By structural induction on gq. O

The following lemma states that program expressions have the same values
in assertions as in programs.

Lemma 3.2. For every program expression e, every state (s,h), and every
compatible freeze state (s',h') we have E[e](s,h) = L[e](s,h)(s', h').

Proof. By structural induction on e. O

We use a different evaluation function for precondition expressions.
NI] : PEzpr x (Stacks x Heaps) — Val

This evaluation function has one argument less because the values of precon-
dition expressions do not depend on a freeze state. The value of N[p](s,h)
is also defined by induction on the structure of the precondition expression p;
its definition coincides with the definition of L[p](s, h)(s, h) in all cases, and is
therefore omitted.

We have for N'[_] the following counterpart of Lemma 3.2.

Lemma 3.3. For every program expression e and every state (s,h) we have
Elel(s, h) = Nel(s, ).

Proof. By structural induction on e. O

Formulas from the assertion language are also evaluated in two states. We
use the following evaluation function to evaluate formulas.

A[] : QForm x (Stacks x Heaps) x (Stacks x Heaps) — {tt, ff}

The range of the evaluation function reveals that formulas always evaluate to
tt or ff, which implies that we are dealing with a classical two-valued logic.
This should come as a surprise, since the formulas are built from expressions
whose values may be undefined. One would expect that the values of formulas
could also be undefined. However, a three-valued logic would complicate many
definitions. Therefore we choose to assign the value ff to expressions whose
value is undefined by means of the following definition of A[q](s, h)(s’, ).

- AL

The evaluation of formulas that are composed by means of the classical
propositional connectives is standard.
. it if A[Q](s,h)(s',h) =ff
AFQUs. ) = { g BAE )
it if A[Q1](s,h)(s',h) =1t
AlQ1 A Q2] (s, h)(s',h') = and A[Q2] (s, h)(s', 1) = tt
ff otherwise
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We would like to point out that these definitions imply that he validity of
an assertion —p does not imply that the value of p is ff; its value can also be
undefined. However, one can use the formula p = false instead of —p to test
whether the value of p is really ff. By contrast, a formula p is always equivalent
to p = true.

The quantification domain of primitive types and sequences of values of a
primitive type does not depend on the state.

tt  if there exists a v € dam( ) such

At QU B\ ) ={  that AQ)(s[z — v], h)(s', W) = tt
ff otherwise, for ¢ € {boolean(*)ﬂnt( )}

Quantification over objects of a particular class is always restricted to the set
of objects of that class that exist in the current state. The following definition,
where V' = dom(C) N dom(h), defines the meaning of quantification of a the
objects of a particular class.

tt if there exists a v € V such
A[(3z: C e Q)](s,h)(s',h) = that A[Q[(s[z — v],h)(s',h) = tt

ff otherwise

Finally, we also define the meaning of quantification over sequences of ob-
jects. Let V.= {0 | v € dom(C*) and v C dom(h)}. Then

tt  if there exists a sequence v € V' such
Al(3z: C* e Q)](s,h)(s',h) = that A[Q](s[z + 0], h)(s', h') = tt

ff otherwise .

We will write (s, h)(s’,h') = Q as shorthand for A[Q] (s, h)(s’,h') = tt. An
assertion @ is valid, which we express by writing = @, if (s, h)(s',h') E Q for
every state (s, h), and every compatible state (s',h’).

Preconditions are evaluated in a single state. We use the following evaluation
function for preconditions.

P[] : PForm x (Stacks x Heaps) — {tt, [f}

We have
tt i Np](s,h) = tt

ff otherwise .

Phle. ) = {

The definition of P[P](s, k) is similar to the definition of A[P](s,h)(s,h) in all
other cases.

The following lemma shows that the value of a precondition is independent
of the freeze state.

Lemma 3.4. For every precondition expression p, every precondition P, every
current state (s,h), and every compatible freeze state (s',h') we have

1. Npl(s,h) = L[p](s,h)(s', "), and
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2. P[PI(s,h) = A[P](s,h) (s, h')

Proof. By structural induction on p and P. Note that Pexpr C Qexpr, and that
PForm C QForm. The proof of the second claim depends on the first claim. O

For preconditions, we write (s,h) = P as abbreviation of P[P](s,h) = tt.
A precondition P is valid, denoted by |= P, if (s, h) = P for every state (s, h).

Remark 3.1. We will often simply write (s, h) = Q instead of (s, h)(s', ') = Q
if it is evident that Q € PForm. Lemma 3.4 justifies this shorter form by
showing that the validity of (s,h)(s',h') = Q does not depend on the freeze state
(s',h') if Q € PForm.

In the following sections, we will need a syntactical operation [./old(.)] that
replaces all expressions of the form old(e) in an assertion by e. Thus it translates
each formula into a precondition, and each logical expression into a precondition
expression. It is defined by induction on the structure of logical expressions and
assertions. Its characteristic case is as follows.

old(e)[./old(.)] = e

Its definition corresponds to the usual definition of structural substitution for
all other cases. Clearly, ¢[./old(.)] € PEzpr for every ¢ € QFEzpr, and similarly
Q|./old(.)] € PForm for every Q € QForm.

The following lemma describes the effect of the operation in terms of the
semantics of assertions.

Lemma 3.5. For every assertion Q, and every state (s, h) we have
PIQ[./old(.)]](s, h) = A[Q](s, h)(s, h)

Proof. The proof proceeds by structural induction on ). The base case requires
us to prove by structural induction on ¢ that

Llg[-/old()]I (s, h)(s, h) = L[4l (s, h) (s, h)

for every expression g and every state (s, h). The only interesting case is com-
puted as follows.

{ def. [./old(.)] }
{ Lemma 3.2 }

(@)](s, h)(s, h) { def. L[] }
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3.2 Hoare Triples

There is a strong connection between proof outlines logics [Flo67, OG76] and
Hoare logics [Hoa69]. A proof outline can be viewed as a convenient represen-
tation of a proof in a Hoare logic [OG76]. Hoare logics are based on Hoare
triples, which are a means to specify the input-output behavior of statements.
One of the aims of this thesis is to elucidate the correspondence between proof
outlines logics and Hoare logics. For this purpose we will define the validity of
proof outlines, which are introduced in the following two sections, in terms of
the validity of Hoare triples. Hoare triples are studied in this section.

We distinguish two types of Hoare triples. The first type specifies the be-
havior of statements, and has the form {Q}S{Q’}. The second type of Hoare
triples specify the behavior of methods. A Hoare triple of this type has the
form {P}m@C{Q}. It specifies the precondition P and the postcondition @ of
method m in class C.

Informally, a Hoare triple {Q}S{Q’'} means that every terminating compu-
tation of S that starts in a state that satisfies (), terminates in a state that
satisfies Q'. This interpretation of Hoare triples is known as partial correctness.
The following definition of the validity of a Hoare triple formalizes this notion.

Definition 3.2. A Hoare triple of the form {Q}S{Q’} is valid, which is ex-
pressed by = {Q}S{Q'}, if and only if for every current state (s,h), every
compatible freeze state (s',h'), and every computation (S, (s,h)) — (s",h"),

(s, h)(', ) |= Q implies (s, ") (') = Q' .

A Hoare triple of the form {P}m@C{Q} describes the behavior of the im-
plementation of method m declared in class C. It corresponds to the interface
specification of a method in an annotated program, which is the specification of
a method that is visible to its clients. We use a special-purpose logical variable
result to denote the result value in the postcondition ) of a method. Its type
[result] is the return type of the method.

The validity of this second type of Hoare triple is defined as follows.

Definition 3.3. Let S be the body of method m in class C. Let e be the ex-
pression that denotes its return value. Then the Hoare triple { P}mQC{Q} is
valid, which is denoted by = {P}mQC{Q}, if and only if for every current
state (s, h) and every computation (S, (s, h)) — (s',h’) such that (s,h) = P and
Ele](s', k') = v # L we have that (s'[result — v], h')(s, h) = Q.

The state modification [result — E[e](s’,h')] in the definition models the
effect of a (virtual) assignment result := e in state (s’, h’). Naturally, it should
be omitted if method m has return type void.

The effect of the above assignment on the validity of a formula ) can be
neutralized by a syntactical operation [e/result]. This operation corresponds to
the structural substitution of result by e in a formula (). However, its most
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important case is slightly more complex.

e if 2 = result and [result] = [e]
z[e/result] = ¢ ([result])e if z = result and [e] < [result]
if z # result

Recall from Sect. 2.2.2 that [e] < [result] expresses that the type of e is a
proper subtype of the type of result. The operation [e/result] is undefined if
[e] Z [result]. However, the typing rule for expressions that denote the return
value stipulates that the type of e must always be a subtype of the return type
of the method, which is also the type of result. (see Sect. 2.2.2). The given
definition of structural substitution is more complex than usual because it is
essential that the operation preserves the type of the expression. We motivate
this requirement in Chapter 4.

The following lemma states that an assertion @[e/result] has the same value
in the initial state as the assertion ) after the assignment result := e.

Lemma 3.6. For every assertion @Q, every state (s,h), and expression e such
that [e] < [result] and E[e](s, h) # L, we have

AlQle/result]](s, h)(s", 1) = A[Q](s[result — E[e](s, h)], h)(s', 1) .

The lemma is a specific instance of Lemma 4.3 in Chapter 4.

We use the substitution operation [e/result] in the following lemma, which
describes when the specification of a method follows from the specification of
its body.

Lemma 3.7. Let S be the body of method m in class C. Let e be the expression
that denotes its return value. Let |={Q'}S{Q"}. Then

E P — Q'[./old(.)] and = Q" — Qle/result] imply = {P}mQC{Q} .
Proof. Let (s,h) = P, and let (S, (s,h)) — (s',h’) be a computation such that
Ele](s’, k') # L . According to Def. 3.3 we must show that

(s'[result > E[e](s', 1)), H) (s, h) = Q -

From (s, h) = P and the first implication follows (s, h)(s, k) = Q'[./old(.)]. The
latter formula is equivalent to (s, h)(s, h) = Q' according to Lemma 3.5. We can
then use Def. 3.2 and = {Q'}S{Q"} to prove that (s',h')(s,h) = Q”. By the
second implication this latter formula implies (s',h')(s,h) = Qe/result]. The
desired goal then follows from Lemma 3.6 and the previous formula. O

3.3 Annotated Programs

This section describes the syntax of annotated programs. We will annotate
method bodies with assertions that describe the state at all control points.
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Moreover, an interface specification consisting of a precondition and a postcon-
dition will be assigned to each method declaration. A precondition describes the
states in which clients have the right to call the method. A postcondition de-
scribes the states in which the execution of the method may terminate provided
that the execution was initiated by a client in a state that satisfies the precon-
dition. Thus they form a contract between the implementor of the method and
its clients [Mey88].

An annotated program is a COORE program in which each method is anno-
tated. Annotated methods are assumed to have the following form.

requires P;
ensures Q;
t m(p) { assert Q; S ; assert Q; return e }

The requires keyword precedes the precondition of the method; the ensures
keyword indicates its postcondition. We require that the postcondition does
not contain free occurrences of local variables other than the local variables
that occur in expressions of the form old(e). Moreover, the set of local variables
in such expressions must be subsumed by the parameter set p.

The special-purpose variable result will denote the result value in the post-
condition. It is not allowed to occur in any other assertion.

The body S of the method is enclosed by two assertions. Each assertion is
preceded by the keyword assert. However, we will also need annotation inside
certain statements. We therefore provide a grammar for annotated statements
below.

S e Stat’ = tu|lu:=e|ex:=e]|S; assert Q; S
| w:=new C(e) | em(e) | u:=e.m(€)
| if

(e) S else S | while (e) assert Q; S

Note that we use S as a typical element of both the set of statements Stat and
the set of annotated statements Stat’. We do not expect that this will cause
confusion.

It is not difficult to see that this annotation strategy ensures that every semi-
colon is followed by an assertion. The intermediate assertion in an annotated
statement of the form

assert Q; Sy ; assert Q; So ; assert Q;

describes the states that may result from executing S; in a state that satisfies
the precondition of the composed statement. The additional assertion in a while
statement is called its invariant.

Example 3.2. The annotated class in Fig. 3.3 illustrates our specification
strategy. The method getAndSetAge assigns the value of its parameter to the
age field of the receiver, and returns the previous value of the field.
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class Person {
int age;

requires true;
ensures this.age = old(age) A oldAge = old(this.age);
int getAndSetAge(int age) {
assert age = old(age) A this.age = old(this.age);
int oldAge;
assert age = old(age) A this.age = old(this.age);
oldAge := this.age;
assert age = old(age) A oldAge = old(this.age);
this.age := age;
assert this.age = old(age) A oldAge = old(this.age);
return oldAge

Figure 3.3: A simple class Person with an annotated method.

We need to stress that the introduced assertions are assumed to have no
impact at all on the execution of a method or statement. We expect the compiler
to ignore all introduced annotations. In particular, we do not assume that the
program checks at runtime if the assertion that is assigned to its current control
point holds. Java supports this type of checking, which is usually called runtime
assertion checking, since version 1.4. It is also available in C# [Mok03], and
some researchers are trying to enrich its checking facilities [BLS05]. Cheon and
Leavens describe how Java assertions written in JML can be checked [CL02].
Instead, we will develop a proof system that enables us to prove statically that
no assertion will ever be violated if the program annotations are correct.

Not every annotated method constitutes a proof for the validity of its inter-
face specification. The following section investigates the question which anno-
tated methods are valid proof outlines for the interface specifications of their
methods.

3.4 Proof Outlines

In the previous section we introduced an annotation strategy for methods. The
resulting annotated methods are supposed to justify the interface specifications
of the methods. We will first formally define a notion of validity for method
interface specifications.

Definition 3.4. The interface specification of an annotated method of the form

requires P; ensures Q; (t | void) m(p) { ...}
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S PO(assert Q; S ; assert Q';)
tu e}t tu{Q'}}
u:=e HQ} u:=e{Q'}}
ex:=¢ HQ} e =" {Q'}}
Sy ; assert Q"; Ss PO(assert Q; Sp; assert Q";)
U PO(assert Q"; Sa; assert Q';)
u:=new C(€) {{Q} u:=new C(e) {Q'}}
em(@) {{Q) em(e) {Q'}}
u = e.m(e) {{Q} u=em(e) {Q'}}
if (e) S; else Sy PO(assert Q ANe; Sy; assert Q';) U

PO(assert Q A e = false; So; assert Q';)
while (e) assert Q”; S PO(assert Q" Ne; S; assert Q";)
Uu{Q —Q",Q"Ne="false - Q'}

Table 3.1: The set of proof obligations of annotated statements.

in class C is valid if and only if E {P} mQC {Q}.

Note that we have defined the validity of an interface specification in terms
of the validity of a Hoare triple. We will also use this strategy in the definition
of the validity of method annotations. A method annotation will be said to
be valid if its set of proof obligations are valid. This set of proof obligations
contains both formulas from the assertion language and Hoare triples.

We first define the set of proof obligations for an annotated method body
assert Q; S assert @Q’; by induction on the structure of S. The function PO
yields the set of proof obligations. Its definition can be found in Table 3.1.

For all basic annotated statements validity simply means validity of the
corresponding Hoare triple. The intermediate assertions in annotated compound
statements are used to define the validity of the annotation in terms of the
validity of the annotation of their parts.

The following theorem justifies the above validity definition.

Theorem 3.8. Let S be an arbitrary annotated statement, and let Q, Q' be
arbitrary assertions. If for all ¢ € PO(assert Q; S; assert Q';) we have = ¢

then = {Q} S {Q'}.

Proof. The proof is by induction on the structure of S. The theorem holds
trivially for basic statements. The three cases that involve compound statements
are covered by Lemma 3.9, Lemma 3.10, and Lemma 3.11 below. O

Lemma 3.9. Let = {Q} S1 {Q"} and = {Q"} S2 {Q'} for arbitrary statements
Sy and Sy and arbitrary assertions Q, Q’, and Q". Then ={Q} S1; S2 {Q'}.

Lemma 3.10. Let = {Q ANe} S1 {Q'} and = {Q AN e = false} Sy {Q'} for

arbitrary statements S1 and Sz, and arbitrary assertions @ and Q'. Then

E {Q}if (e) Sy else Sy {Q'}.
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Lemma 3.11. Let = {Q" Ae} S{Q"}, EQ — Q" and = Q" Ne = false — Q'

for an arbitrary statement S, and arbitrary assertions Q, Q' and Q. Then

= {Q} while (¢) 5 {Q'}.
The last lemma is the most difficult one to prove. We give its proof below.

Proof. We first prove by natural induction on n that for every state (s, h) and
every compatible freeze state (s, k') such that (s, h)(s’,h') = Q", it is the case
that

(while () S, (s,h) = (s, 1)) implies (s”,h")(s',h) = Q" . (3.1)

Let n = 0. The assumption of Rule Wh; and Lemma 3.2 together imply that
(s,h)(s', 1)) = e = false. We have (s,h)(s', /) E Q" Ne = false — Q. By modus
ponens then (s,h)(s',h') = @Q'. Rule Why also reveals that (s,h) = (s”,h"),
and therefore (s”,h")(s', 1) = Q.

Now assume that (while (e) S, (s, h) LaN (s”,h") and (s,h)(s',h') = Q".
According to Rule Wha, there must be an intermediate state (s1, k1) such that
Ele] (s, h) = tt, (S, (s,h)) — (s1,h1), and (while (e) S, (s1,h1)) = (s”,h"). The
first of these three assumptions and Lemma 3.2 imply that (s, h)(s’,h’) = e. By
{Q" Ne} S {Q"} and Def. 3.2 we may then conclude that (s1,h1)(s', 1) E Q".
Then (3.1) follows from the induction hypothesis.

We now return to the main lemma. Let (while (e) S, (s, h)) — (s”,h”) and
(s,h)(s’, 1)) = Q. By modus ponens we obtain (s, h)(s’,h') E Q" from the last
assumption and | Q" — Q. By Rule Wh we know that there must be some
n € {0,1,...} such that (while (e) S, (s,h)) = (s”,h"). Then (3.1) says that
(s" W)(s', W) E Q. 0O

After having defined the proof obligations of annotated method bodies, we
can now also define the set of proof obligations of an entire method, which
includes the proof obligations of its body.

Definition 3.5. The set of proof obligations of an annotated method of the form

requires P;
ensures (;
t m(p) { assert Q’; S; assert Q"; return e’ }

is obtained by adding the implications P — Q'[./old(.)] and Q" — Qle’/result]
to the set PO(assert Q)'; S; assert Q";).

Naturally, we wish to know whether the proof obligations ensure that the
interface specification of a method is valid, as defined by Def. 3.4. The following
theorem ensures us that this is the case.

Theorem 3.12. Let method m in class C' be annotated as in Def. 3.5. The
interface specification of this method is valid if its set of proof obligations are
valid.

Proof. The result follows from Lemma 3.7 and Theorem 3.8. O
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Let us summarize the series of definitions and results that we have introduced
in this chapter in order to discuss some of its implications. We have given a
formal syntax of annotated programs, and we have shown that the validity of
the annotation boils down to the validity of a set of formulas from the assertion
language, and a set of Hoare triples (Theorem 3.12). The set of proof obligations
has been defined inductively, and it can be computed automatically for every
annotated program.

This positive result raises the question if there is a way to even further
simplify the set of proof obligations. In particular, it raises the question if
there is a means to get rid of the obligation to reason about Hoare triples.
The next three chapters will present techniques that enable us to reduce such
proof obligations to the validity of formulas from the assertion language. The
availability of such techniques is the essential difference between a Hoare logic
(for reasoning about the validity of Hoare triples) and a proof outline logic.

3.5 Related Specification Languages

Early formalisms for program verification [Flo67, Hoa69, Apt81] are all based
on multi-sorted first-order predicate logic. It is, however, not clear if first-order
logic is also sufficiently expressive for reasoning about object-oriented programs
with dynamically allocated objects. Most early work on Hoare logics targets
languages which have states that consist of a fixed set of variables.

We follow the approach advocated by America and De Boer [dB91, AdB94,
dB99, dB02] that extends the domain of the logic with finite sequences. We show
in this thesis that this extension is sufficient to obtain a complete proof system
for object-oriented languages with subtype polymorphism and inheritance pro-
vided that the language contains a construct to access hidden variables, and a
means to test if an object belongs to a particular domain (cf. Chapter 7). We
added casts and the instanceof operator to the language for these reasons.

Another way to strengthen the expressiveness of the language is to add an
explicit heap reference to the language as is done in the work of Poetzsch-Heffter
and Miiller [PH97, PHM99, Miil02]. Their specifications refer to the current
heap (or store) by means of the $ constant, and encode heap modifications as
operators on the heap. For example, $(L) would denote the value of location
L in the current heap, and $(L := int(5)) denotes the heap that results from
updating location L with integer value 5 (cf. [Miil02]). The meaning of the
heap operators is specified using a series of additional axioms. Existence of
objects is encoded using an auxiliary alive field. Our specification language
is more closely tailored to the abstraction level of the programming language.
For example, objects that do not exist neither play a role in the programming
language nor in our assertion language.

The Object Constraint Language (OCL, [WK98]) is a subset of the Uni-
fied Modeling Language (UML) that can be used to add invariants and pre-
and postconditions to UML diagrams. UML, and consequently OCL, is is not
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tailored to a specific programming language.

Object-Z [Smi92, Smi00] is an extension of the Z [Spi92] specification lan-
guage. It brings operation schemas and state schemas together in class defi-
nitions. The state schemas may include invariants, and operation schemas de-
scribe pre- and postconditions of operations using the primed variable notation
that is typical for Z. However, these formulas can only restrict the values of the
attributes of the object to which the operation is applied. Thus the standard
Object-Z annotations are much weaker than our specifications. This weakness
is compensated in some publications on Object-Z by the addition of temporal
logic formulas (see, e.g., [Smi92]).

Several specification languages have been designed to specify programs writ-
ten in a particular language. Perhaps the most notable example is the Java
Modeling Language (JML), which is a behavioral interface specification lan-
guage for Java programs [LBR04, LCCT02]. Tt is a rich language that supports
among others pre- and postconditions, frame axioms (using assignable clauses),
invariants, and constraints. JML formulas are built from side effect free (pure)
Java expressions. The specifications may use types and methods from a library
of specification classes. More abstract specifications can be written using model
fields [BP03].

JML has grown so rapidly that most tools that claim to support the language
in fact only support a subset of JML [JMRO04, CKO05]. The language is also
unavoidably subject to constant change, and it is not backed by a rigorous
formal semantics. Most theoretical work on specification and verification of
object-oriented languages (including this thesis) is based on JML-like languages
of a more manageable size.

The Spec# programming language [BNSS04] extends the .NET program-
ming language C# with specification constructs like pre- and postconditions,
non-null types and invariants. Its invariant methodology differs from that of
JML (cf. Chapter 9). It also forces C# programmers to list all checked excep-
tions in the interface specification of a method [LS04].

Both JML and Spec# allow calls to pure methods in formulas. Cok [Cok04]
describes how method calls can be translated into the logic of ESC/Java2. Bar-
nett et al. [BNSS04] and Naumann [Nau05] discuss observational purity, a
criterion under which methods that are not entirely pure can be used in method
specifications. The embedding of method calls in the specification language is
considered outside the scope of this thesis.

We ignore object deallocation due to garbage collection in the semantics of
the programming language, and consequently also in the specification language.
This seems a natural decision because garbage collection is supposed to have no
effect on the execution of a program. However, the final state of a program may
differ if garbage collection takes place because unreachable objects may have
been removed. Calcagno et al. [COBO03] studied the consequences of garbage
collection (object deallocation) on program specifications. They essentially pro-
pose to alter the semantics of quantification in such a way that non-existing
objects are also included.



Chapter 4

Reasoning about
Assignments

This chapter shows how one can compute the verification conditions that check
the validity of Hoare triples of basic assignments. More in particular, it describes
the verification conditions of Hoare triples of the following three forms.

{Qtu{Q} {Qtu=e{Q} {Q}er:=¢{Q}

The Hoare triples of the first kind, which specify local variable declarations, do
not contain an assignment symbol. However, a local variable declaration t u
assigns the default value of type t to the local variable u. In other words, it
is equivalent to the assignment u := def(t), where def(¢) denotes an expression
whose value is the default value of ¢ in every state.

There are two features in object-oriented programming that complicate rea-
soning about assignments: field shadowing and aliasing. We will explain the
impact of these features in the following two sections. The following section
discusses field shadowing, and it presents a weakest precondition calculus for
assignments to local variables. The weakest precondition calculus can be used
to calculate the verification condition of Hoare triples of local assignments. Sec-
tion 4.2 discusses aliasing in the context of a weakest precondition calculus for
field assignments. Section 4.3 presents the strongest postconditions of assign-
ments. We finish this chapter with some historical notes and a discussion of
related work.

4.1 Local Assignments and Field Shadowing

Hoare’s original axiom for assignments has the form {Q?} = := e {Q}, where
@7 denotes the assertion that is obtained by replacing all free occurrences of x
by e in @ [Hoa69]. The assertion Q¥ is the weakest precondition of x := e with
respect to ). The weakest precondition is valid in those states for which holds

45
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that each terminating execution of x := e started in that state terminates in a
state that satisfies Q.

Hoare’s axiom is appropriate for simple imperative languages. But is it
also valid in object-oriented programs? We will show in this section that the
axiom does not hold for assignments in object-oriented languages with subtype
polymorphism and field shadowing.

The predicate Q¥ is the weakest precondition of an assignment z := e be-
cause the variable x has the original value of e after the assignment. However,
in languages with subtype polymorphism, it is in general not the case that the
types of x and e are equal. We explained in Section 2.2.2 that such languages
only require that the type of e is a subtype of the type of x. This typing rule,
in combination with field shadowing, invalidates Hoare assignment axiom, as is
shown by the following example.

Example 4.1. Consider a class Citizen with a field num : int that represents a
citizen’s social security number. Suppose that someone writes a subclass Student
of class Citizen in which he/she declares another field num : int, which is used
to store a student number. Fach Student-object now has two fields with the iden-
tifier num since class Student also inherits the fields declared in its superclass
Clitizen.

Now consider the following Hoare triple.

{std.num = 100} ctz := std {ctz.num = 100}

We assume here that std is a local variable of type Student, and that ctz is
a local variable of type Citizen. The assignment ctz := std is valid because
[std] = [ctz].

Note that the Hoare triple is a valid instance of Hoare’s assignment aziom.
But the Hoare triple itself is clearly not valid! The precondition ensures that the
student number of the object referenced by std is 100, whereas the postcondition
claims that the the social security of the same object is 100. Recall that the
static type of the expression that denotes the object decides which field is meant
in expressions of the form e.x. The Hoare triple would have been valid if the
precondition had been ((Citizen)std).num = 100.

The cause of the problem in the example is that merely substituting a vari-
able x in a logical expression ¢ by some expression e does not result in an
expression with the same static type as the original expression if the types of
e and x differ. This may cause problems in expressions of the form e.x be-
cause the static type of e determines to which field = of the object denoted by e
the expressions refer. Without field shadowing the difference in type would be
harmless because the identifier x would uniquely determine the field. However,
the example has shown that we have to be careful with types when performing
substitutions in languages with subtype polymorphism and field shadowing.

The issue can be solved by means of a type-preserving substitution operation
[e/v], where v is either a local variable u, a logical variable z, or the receiver
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= null
(qle/v]).x
(C)(gle/v])

gle/v] instanceof C

nullle/v
e/v
(C )q efv

q instanceof Cle/v

[e/v]
q.x[e/v]
.
17 a2 gsle/v] = (qile/v]) 7 (g2le/v]) : (g3le/v])
q=d'[e/v] = (qle/v]) = (¢'[e/v])
op(qi,---,qn)le/v] = op(aile/v],...,qnle/v])
old(e')[e/v] = old(e’)
zlglle/v] = z[gle/v]
length(z)[e/v] = length(z)
undefinedle/v] = undefined
defmed( )e/v] = defined(g[e/v])
Qle/v] = —(Qle/v])
QA Q’[@/U} = (Q[é/vDCS)(Q'[B/U])_f
(Fz 0 Q)le/V] { (Fz e (Qle/v])) ifzZ£w

Figure 4.1: The definition of the type-preserving structural substitution opera-
tion [e/v].

this. This operation casts an inserted expression back to the type of the variable
that it replaces. It is defined by induction on the structure of logical expressions
and formulas. Its most interesting case is defined below, where v’ also denotes
either a local variable u, a logical variable z, or the receiver this.

v if v
v[e/v] =< e if v =" and [e] = [u]
([v]))e if v =" and either [e] < [v] or [v] < [¢]

We have v = v’ if v and v are syntactical equal. The cast is omitted if v and
e have the same type. The operation [e/v] is undefined if [e] % [v]. The other
cases of the definition of the substitution operation are listed in Fig. 4.1.

The cast that is introduced will not fail if we have that [e] < [v], which is
what the type rules ensure for every assignment v := e. This is expressed by
the lemma below.

Lemma 4.1. For every logical expression q, and every reference type C such
that [q] < C, we have

‘C[KC)QH (s, h)(s/7 h,) = ‘C[[Q]](S7 h)(slv h/)
for every current state (s,h), and every compatible freeze state (s',h’).

Proof. Tt is not difficult to prove that L & dom(C') for every reference type C.
Hence if L[q](s,h)(s’,h') = L then L[(C)q](s,h)(s’,h') = L according to the
definition of £[.]. Now suppose that L[q](s,h)(s’,h’) = v # L. We then have
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v € dom([q]) according to Lemma 2.4. Then v € dom(C) follows from [¢g] < C
and Lemma 2.1. The definition of L[] then states L[(C)q¢](s,h)(s',h') = O
The following lemma states that [e/v] preserves the type of an expression.

Lemma 4.2. For every logical expression q, every variable v, and every expres-
sion e such that [e] < [u], we have [g[e/v]] = [q].

Proof. By structural induction on q. O

Unfortunately, we are not done yet. We must also face the possibility that
an assignment u := e goes ‘wrong’, i.e., that it will not terminate at all. This
happens if the value of e is undefined in the state in which we try to assign the
value of e to u. We can use the expression defined(e) to test whether this is the
case.

We claim that defined(e) — Q’[e/u] is the weakest precondition of an as-
signment u := e with respect to an assertion Q’. An assertion @ is the weak-
est precondition of some statement S with respect to a postcondition Q' if it
is a valid precondition, i.e., if E {Q} S {Q’}, and if every other valid pre-
condition is weaker than Q'. Hence we can prove our claim by showing that
{defined(e) — Q'[e/u]} u := e {Q’} is a valid Hoare triple, and that the validity
of {Q} u:=e {Q'} implies = Q — (defined(e) — Q'[e/u]).

To prove our claim, we first need a lemma that implies that @ holds after
an assignment u := e if and only if Q[e/u] holds in the initial state, provided
that the value of e is defined.

Lemma 4.3. For every assertion ), every state (s, h), every compatible freeze
state (s',h'), every variable v, and every expression e such that [e] < [v], we
have that E[e] (s, h) # L implies

AlQle/vll(s, h)(s', 1) = AlQ](s[v — Ele](s, k)], h)(s", 1) .

Proof. The proof proceeds by structural induction on . We first prove the
claim for an arbitrary logical expression g by structural induction on gq.

We first consider the important case where ¢ = v. Now first assume that
[e] < v. Then [v] must be some reference type C' because the subtype relation
does not allow subtypes of primitive types. We then compute as follows.

Llvle/v]](s, h)(s', B)

= L[([v])el (s, h)(s", h') { def. [e/v] }
= L[e](s, h)(s', 1) { [e] =% [v] and Lemma 4.1 }
= Ele](s, h) { Lemma 3.2 }

= L[vl(s[v — Ele] (s, )], h)(s",B') - { def. L[] }

! Dijkstra [Dij76] used the term weakest liberal precondition for what we call the weakest
precondition here. He reserved the latter term for the formula that additionally guarantees
that execution of the statement terminates. For brevity, we will continue to use the term
weakest precondition, but we ask the reader to bear in mind that what we mean is actually
the weakest liberal precondition.
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If [e] = [v] we immediately get L[v[e/v]](s,h)(s',h') = L[e](s,h)(s',h’) from
the definition of [e/v]. The rest of the above computation remains the same.
The only other interesting case concerns a logical expression of the form q.z.

Let L[qle/v]](s, h)(s', h') # null.

Llg-zle/vll(s,h)(s", b’
= L[(qle/v]).x](s, h)(s', h') { def. [e/] }
= h(L[gle/v]](s, Z’ origin([gle/v]], x))(x) { def. L[] }

[(s,n)(s", B'))( gle/v
= h(L]gle/v]](s, h)(s', h"))(origin([q], 2))(x) { Lemma 4.2 }
= h(L[g](s[v — E[e] (s, h)], h)(s, h))(origin([g], #))(x) { ind. hyp. }
= Llg.a](slo > Elel(s, W), W)(s', ) { def. L[] }

It is not difficult to show that the claim also holds if L[gle/v]] (s, h)(s', h') = null.
Both expressions evaluate to L in that case. O

The theorem below reveals that defined(e) — Q[e/u] is a valid precondition
of @ with respect to the assignment u := e.

Theorem 4.4. For every assertion QQ, and every expression e and local variable
u such that [e] < [u], we have

= {defined(e) — Qle/u]} u:=e {Q} .

Proof. Let (s,h)(s’,h') & defined(e) — Qle/u]. Let (u :=e,(s,h)) — (s, h").
This computation can only be derived using rule LA of the operation seman-
tics. Hence the assumption of that rule must also hold. This assumption
states that E[e](s, h) # L, which implies that (s, h)(s’, ') |= defined(e). Hence
(s, h)(s', 1)) = Qe/u]. Moreover, we have s” = s[u — E[e](s,h)] and h" = h.
Then Lemma 4.3 implies that (s”,h)(s’,h') E Q. O

The final bit of support for our claim regarding the weakest precondition of
an assignment u := e with respect to an assertion is provided by the theorem be-
low. In fact, the theorem states that it always suffices to check the validity of the
assertion () — (defined(e) — Q’'[e/u]) if we want to check the validity of a Hoare
triple {@Q} u := e {Q'}. Thus it ensures that we can replace a proof obligation
{Q} u:=e {Q’} by the verification condition @ — (defined(e) — Q’[e/u]).

Theorem 4.5. Let ), Q' be arbitrary assertions. Let e be an expression, and
let u be a local variable such that [e] = [u]. Then

C{Qlu=e{Q) > Q- (defined(e) — Q'le/al]) -
Proof. We first prove that = {Q} u := e {@Q’'} implies that our verification condi-
tion @ — (defined(e) — Q’[e/u]) holds. Let (s,h)(s',h') = Q. If E[e](s,h) = L
then (s, h)(s,h’) [~ defined(e). Assume therefore that E[e](s,h) = v # L. Then

(u:=e,(s,h)) — (s[urv],h)
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according to rule LA of the operation semantics. From = {Q} u :=e {Q'} and
(s,h)(s’, 1)) = Q we may then conclude that (s[u+— v],h)(s',h') E Q’. Lemma
4.3 then implies that (s, h)(s’,h') = Q'[e/u].

To prove the implication in the opposite direction, assume (s, h)(s’, h') = Q,
and the existence of a computation (u := e, (s,h)) — (s”,h”). By the validity
of @ — (defined(e) — Q'[e/u]) we get (s,h)(s',h') = defined(e) — Q'[e/u].
The assumption of rule LA, which much have been used to derive the above
computation, states that E[e](s,h) # L. Then (s, h)(s’, ') |= defined(e). Hence
(s,h)(s', 1)) E Q'[e/u]. Moreover, in the context of LA we have (s”,h") =
(s[u — v], k). Then Lemma 4.3 implies (s”,h")(s',h') = Q’. O

We can use similar techniques to reason about local variable declarations.
We already argued above that a variable declaration statement ¢ u can be viewed
as an assignment u := def(¢), where def(¢) denotes an expression whose value
is the default value of type t in all states. The expression def(t) is defined for
every program type t by the following equations.

def(boolean) = false
def(int) = 0
def(C) = null

In fact, reasoning about local variable allocation is simpler than reasoning about
arbitrary local assignments because the value of def(t) is never equal to L. Hence
Q[def(t)/u] is the weakest precondition of a statement ¢ u with respect to an
assertion Q. We finish this section with two theorems that support this claim.

Theorem 4.6. For every assertion QQ, and every local variable declaration t u
we have

= {Qdef () /u]} t u {Q} .

Proof. A simple variant of the proof of Theorem 4.4 using rule (VA) of the
operational semantics. O

Theorem 4.7. Let Q, Q' be arbitrary assertions. Then
F{Q}tu{Q} = EQ— (Qdef(t)/u]) .
for every wvalid program type t and every local variable u.

Proof. Along the lines of the proof of Theorem 4.5. o

4.2 Field Assignments and Aliasing

A statement of the form e.x := ¢’ assigns the value of ¢’ to field x of the object
that is referenced by e. Reasoning about field assignments is more complex
than reasoning about local assignments because the expression e that denotes



4.2. FIELD ASSIGNMENTS AND ALIASING 51

the object may have aliases. That is, there may be other expressions e’ that
reference the same object.

It is not possible, in general, to determine statically if two access expres-
sions e.r and e¢’.x denote the same heap location. Recall from Sect. 2.2.3 that
origin([e], z) denotes the class in which the field  of an access expression e.z is
declared. The access expressions e.r and ¢’.z denote the same heap location if
e and e’ reference the same object, and if origin([e], z) is equal to origin([¢/], ).
The last condition, which is necessary due to field shadowing, can be resolved
statically since the static types of the expression can be derived statically. How-
ever, it is in general not possible to resolve the first condition statically because
one cannot determine beforehand if two expressions will denote the same object
at run-time.

In special circumstances one can determine that two expressions e and e’
cannot be aliases by inspecting their static types. The expressions cannot be
aliases of the same object if the types of the two expressions are unrelated.
Lemma 2.3 states that the union of the domains of two unrelated types C
and D is the singleton set {null}. Moreover, we know from Lemma 3.1 that
evaluating an expression with type C always yields an element from the domain
of C' if the value of the expression is defined. Hence we can prove the following
lemma.

Lemma 4.8. Let q, ¢’ be two expressions of a reference type. Let (s,h) be an
arbitrary state. Let (s',h') be a compatible freeze state. If [q] # [¢'] then

LIq](s,h)(s',h") = L[] (s,h)(s',h') = L[q](s,h)(s', 1) € {null, L} .
Proof. A simple case analysis using Lemma 2.3 and Lemma 3.1. O

The above observations can be used to define a syntactical substitution op-
eration [¢//e.z] that substitutes all aliases of e.xz by e’. Obviously, the most
interesting case of this substitution operation is q.z[e¢’ /e.z] because ¢.z may be
an alias of the expression e.xz. The substitution should replace g.z by €’ if it is
an alias of e.x. We define g.z[e’/e.x] using a conditional expression if we cannot
statically guarantee that ¢.x is not an alias of e.z. Let ¢’ = g[e//e.x]. Then we
define g.x[e’/e.x] as follows.

¢ i [g) £ [¢] or
q.zle'fex] = origin([q], z) # origin([e], x)
¢ =e? ([qgx])e : ¢.x otherwise

(4.1)
The cast in ([g.z])e’ can be omitted if g.z and e’ have the same static type. We
have q.y[e' /e.x] = (q[e' /e.x]).y for every field y that is not equal to z. Moreover,
ule’/e] = w for all local variables u. All other cases of gle’/e.x] are defined in
the same way as g[e/u] in Fig. 4.1.

Example 4.2. Figure 4.2 shows a class that models a clock. Clocks have a sync-
method that synchronizes the time of the clock with that of a master clock in
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class Clock {
int time ;

requires —(this = m);
ensures this.time = m.time — 1;
void sync(Clock m) {
assert —(this = m);
this.time := m.time — 1 ;
assert this.time = m.time — 1;
}

}

Figure 4.2: An example proof outline that involves reasoning about aliases.

such a way that all clocks lag one tick behind the master clock. The master clock
s passed as a parameter to the method. The precondition of the sync method
requires that the clock that is synchronized is not the master clock itself. We
can show that this requirement is necessary by considering the proof obligations
of the method. The proof obligation that corresponds to the assignment in the
body of the method is the Hoare triple

{=(this = m)} this.time := m.time — 1 {this.time = m.time — 1} .
We will show that the precondition —(this = m) is necessary to prove
this.time = m.time — 1[m.time—1/this.time] . (4.2)
In order to prove our claim we first compute
(this.time = m.time — 1)[m.time—1/this.time],
which is by the definition of the substitution operation equal to
((this.time)[m.time—1/this.time]) = ((m.time — 1)[m.time—1/this.time]).
The left-hand side of this equality is computed as follows.

(this.time)[m.time—1/this.time]

= (this[m.time —1/this.time]) =this ? m.time—1
: (this[m.time —1/this.time]).time

= (this = this ? m.time — 1 : this.time)

The right-hand side is computed similarly.

(m.time — 1)[m.time—1/this.time]
= ((m.time[m.time—1/this.time]) — (1[m.time —1/this.time])
= ((m[m.time —1/this.time]) =this ? m.time—1
: (m[m.time—1/this.time]).time) — 1
= (m = this ? m.time — 1 : m.time) — 1
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By combining the two resulting formulas we obtain the formula
(this = this ? m.time — 1 : this.time) = (m = this ? m.time — 1 : m.time) — 1,
which is equivalent to

(m.time — 1) = (m = this ? m.time — 1 : m.time) — 1.

This formula clearly only holds if the value of m differs from the value of this.
Hence our precondition was necessary. This example shows how the substitution
operation for field assignments reveals possible aliases to the reasoner.

It is not difficult to see that [¢//e.x] is a type-preserving substitution oper-
ation. In (4.1), we have that the type of ([¢.x])e’ is equal to [g.z]. The type of
the access expression ¢’.z in (4.1) depends on the type of ¢’. By the induction
hypothesis, we have [¢] = [¢]. Hence [¢’.z] = [q.z]. Therefore the following
lemma holds.

Lemma 4.9. For every logical expression q, every access expression e.x, and
every expression €' such that [¢'] < [e.x], we have [qle’ /e.x]] = [q].

Proof. By structural induction on gq. O

We can also prove that Q[e’/e.x] predicts if @ holds after assigning the value
of € to e.x.

Lemma 4.10. Let e.x := €' a well-typed assignment. Let origin([e],z) = D. Let
(s,h) be a state such that E[e](s,h) = o & {L,null} and E[e'](s,h) = v # L.
Let (s',h") be a compatible freeze state. Then

A[Q[e’ Je.x]](s,h)(s',h") = A[Q](s, h[o.xp > v])(s, k) ,

where hlo.xp +— v] denotes the heap that results from h by assigning v to the
field x of object o that is declared in class D.

Proof. We prove the lemma by structural induction on @Q. For the base case we
must prove, by structural induction on ¢, that

Llgle’ /e.x]](s,h)(s',h") = L]q] (s, hlo.xp — v])(s',h') | (4.3)

holds for every logical expression q.
Let h* = h[o.xp — v]. The only interesting case of (4.3) concerns a logical
expression of the form ¢.z. We must prove that

Llg.z[e'Je.x]](s,h) (s, h') = L][q.x] (s, h*)(s',h) . (4.4)
follows from the induction hypothesis

‘C[[Q[e//e'x”](s? h)(8/7 hl) = £[[Q]](S7 h*)(slv hl) :
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Note that (4.4) holds trivially if L[qle’/e.z]](s,h)(s’,h') € {null, L}. We will
therefore assume that L[g[e//e.x]](s,h)(s’,h’) is not contained in {null, L} in
the rest of this proof.

If origin([q], #) = E # D we get the following computation.

Lg.z[e' [e.x]] (s, h)(s', h)

= L[(qle' /e.x]).z] (s, h)(s', k') { def. [¢//e.x] }
= h(L[qle'/e.]](s, )(8 ') (origin([gle’/e.z]], ))(z) { def. L[] }

= h(L[q[e’/e.z]](s,h) (s, h))(E)(z) { Lemma 4.9 }
= h(L[q](s,h*)(s", 1)) (E)(x) { ind. hyp. }
= h*(L[q](s, *)(S h))(E)(x) {E#D}

= Lg.2](s,h*)(s, h') { def. L[] }

In the sequel, we will assume that origin([¢],z) = D. Next, we prove that
(4.4) holds if [g] # [e]. By the contraposition of Lemma 4.8 and our previous
assumptions we then get

Llal(s,h)(s", 1) # Lle] (s, h)(s", 1) = Eel (s, h) = o . (4.5)

The second step follows from Lemma 3.2. The following proof shows that (4.4)
holds if [q] # [e].

Llg.z[e'fe.x]] (s, h)(s', b

= L[(qle'fe.]).] (s, h)(s',

= h(L[gle’ /ea]](s, h) (s, 1))
h)(s', ')

/

) { def. [¢//e.x] }
Eorigin([q[e’/e.x]],Jc))(a:) { def. L[] }
)

= h(Llgle'/e.]l(s, h)(s', A)(D)(x) { Lemma 4.9 }
= h(L[q] (s, h*)(s", W) )(D)(z { ind. hyp. }
= h*(L[g] (s, h*)(s", ")) (D)(x) {Eq. 45}

— Llq.a] (s, h*)(s', 1) { def. ][]}

For the final case we assume that origin([¢],2) = D and [g] ~ [e]. By applying
the definition of [¢//e.x] we then get

Llg.z[e'/e.x]](s,h)(s', h")
= L[(qle'/e-x]) = e ? ([q-z])e" : (qle'/e.x]).x] (s, h)(s", ') .

If L[qle’ /e.x]) = €](s, h)(s', h') does not evaluate to true, we know that Eq. (4.5)
holds again, and we can finish the proof along the lines of the previous case.
Therefore assume that Lqle’/e.z]) = e](s, h)(s',h') = true. We then have

L(qle'/e-x]) = e ? ([g-x])e" : (qle’/e.x]).x](s, h)(s', 1)
= L[(lg-2)e(s, n)(s", 1)

by the definition of L[.]. Moreover, L[g[e’/e.x])](s,h)(s’, k') must be equal to
L[e](s,h)(s', k"), which by Lemma 3.2 implies

L[gle’ Je.x))](s,h)(s',h') = L[e] (s, h)(s',h') . (4.6)
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The final case is then computed as follows.

£l 2)ells (s )
Lle'(s 7h)(s R { def. L[], [¢'] 2 [l.z], Lemma 3.1 }
= (0)(D)(x) { def. h* }
= h*(L[qle'/e.x]] (s, h)(S’,h’) (D)(z) { Eq. (46) }
= h*(L]g] (s, h")(s", 1)) (D) () { ind. hyp. }
= L[q.z](s, h*)(s', ') { def. L[] }
O
The lemma we just proved shows that Q[e’/e.z] predicts if @ holds after
an assignment e.xr := €/. Therefore it can be used to describe the weakest
precondition of an assignment of that form with respect to an assertion ). The
complete weakest precondition of an assignment e.x := ¢’ with respect to an

assertion @ is the assertion Q[e’/e.x] vV —defined(e) V e = null V —defined(e’). We
will prove this claim along the same lines as we did in the previous section for
local assignments. That is, we first prove that the given assertion is a valid
precondition.

Theorem 4.11. For every assertion Q, and every well-typed assignment of the
form e.x := €', we have

E {Ql[e’/e.x] V —defined(e) V e = null V —defined(e’)} e.x :=¢" {Q} .

Proof. Let (s,h) be a state such that (e.x :=¢,(s,h)) — (s”,h"). Let (s',h')
be a compatible freeze state such that

(s,h)(s', 1) = Qle’ Je.x] V —defined(e) V e = null V —defined(e’) .

The computation guarantees that E[e](s,h) = o & {L,null} and EJe](s, h) =
v # 1 according to rule FA of the operational semantics. Moreover, we have
s = s and b = hlo.xp — v], where D = origin([e],z). Then we also have
(s,h)(s’,h') £ —defined(e) and (s,h)(s’,h') = —defined(e’). From o # null
follows (s, h)(s’,h') ¥~ e = null. Hence (s, h)(s',h’) = Q[e'/e.x]. Then Lemma
4.10 implies that (s”,h"”)(s', 1) E Q. O

Secondly, we prove that the give precondition is indeed the weakest precon-
dition.

Theorem 4.12. Let Q, Q' be arbitrary assertions. Let e.x := €’ be a well-typed
assignment. Then

F{Q} ew:=€ {Q}
—
EQ — (Q'[¢'/e.x] V ~defined(e) V e = null V —defined(e’)) .
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Proof. We first prove that = {Q} e.x := ¢’ {Q'} implies
EQ — (Q'[e'/e.x] V —defined(e) V e = null V —defined(e’) .

Let (s,h)(s',h') E Q. If E[e](s,h) = L or E[e'](s,h) = L then we have
(s,h)(s,h') |E —defined(e) or (s,h)(s',h') = —defined(e’). If E[e](s,h) = null
then (s, h)(s’,h') |E e = null. Assume therefore that E[e](s,h) = o & {L, null}
and that E[e’](s,h) = v # L. Then

(e.x :== ¢, (s,h)) — (s, hlo.xp — v])

according to rule FA of the operation semantics, where D = origin([e],x).
From = {Q} ex := ¢ {Q'} and (s,h)(s',h)) E @ we may then conclude
that (s, hlo.xp — v])(s',h') E Q'. Then (s,h)(s',h') E Qle'/e.x] follows from
Lemma 4.10.

To prove the implication in the opposite direction, assume (s, h)(s’,h') = Q,
and the existence of a computation (e.x := €', (s, h)) — (s, k). By the validity
of the right-hand side we then infer

(s,h)(s',h") = Q'[€' /e.x] V —defined(e) V e = null V —defined(e’) .

From rule FA we get E[e](s,h) = o € {L,null} and E[e’](s,h) # L. More-
over, we have (s”,h") = (s,hlo.xp +— v]), where D = origin([e],z). Then it
must be the case that (s,h)(s’,h') E Q'[¢//e.x]. Lemma 4.10 then states that
(5", 1") (', ) b= Q. .

4.3 Strongest Postconditions

After having described the weakest preconditions of assignments in the previ-
ous section, we will use this section to present their strongest postconditions.
Weakest preconditions are usually more concise than strongest postconditions
because assertions of the latter type must contain all information that may
be relevant in the final state, whereas weakest preconditions are, as the name
weakest precondition already suggests, minimal formulas that ensure that the
desired postconditions hold in the final state.

Our main reason for studying the strongest postconditions of assignments is
that the standard pattern for proving completeness of procedures with param-
eters [Gor75] assumes that the strongest postconditions of arbitrary statements
can be expressed in the assertion language. This assumption can only hold if
we are also able to express the strongest postconditions of assignments in our
assertion language. Hence we will investigate the strongest postconditions of
assignments below.

We will denote the strongest postcondition of a statement S with respect
to an assertion @ by sp(@,S). Formally, sp(Q,S) is an assertion such that
FA{Q} S {sp(Q,9)}, and = {Q} S {Q'} implies = sp(Q, ) — Q'. There may

be several syntactically distinct (but equivalent) formulas that satisfy these two
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criteria, so it would actually be more correct to speak of a strongest postcondi-
tion instead of the strongest postcondition. Naturally, each strongest postcon-
dition is equivalent to every other strongest postcondition.

The following equations describe strongest postconditions for local assign-
ments.

sp(Q,u:=e€) = (3z:[u] e (Q Adefined(e))[z/u] Au = (e[z/u]))
sp(Q,tu) = (Fz:teQ[z/u]) Au=def(t)

Strictly speaking, we have not (yet) defined the substitution operation [z/u]
because the logical variable z is not a program expression. There is a well-
known problem if we allow logical variables in the substitution operation because
replacing free occurrences of a variable by a logical variable may result in a
formula in which the latter is bound. This happens if the program variable
occurs in the scope of a quantifier for the logical variable. We will therefore
assume that any logical variable z that is introduced to express a strongest
postcondition is fresh, i.e., that it does not occur in @Q. It is not difficult to prove
that this assumption ensures that Lemma 4.3 also holds for the substitution
[2/u].

The definition of the strongest postcondition of local assignments is fairly
standard. But the strongest postcondition of field assignments is a different
story: we are not aware of previous attempts to formulate the strongest post-
condition of arbitrary field assignments of the form e.z := ¢’. We propose the
following strongest postcondition for an assignment e.x := e’ with respect to an
arbitrary assertion Q.

(Jo: [e] @ 3z : [e.x] @ (Q A defined(e) A —(e = null) A defined(e’))[z/0.7]
No = (e[z/o.x]) No.x = (€'[z/o.x])) (4.7)

The logical variables o and z must be fresh. The substitution operation [z/0.z]
is the obvious variant of [e//e.x] with the program expressions e and e’ replaced
by logical variables.

The strongest postcondition describes the resulting state if the assignment
e.x := €' is successfully executed in a state that satisfies the precondition Q. It
says that there exist an object o and a value z such that the precondition @
holds if we set the value of 0.z (back) to z. This clearly holds if we choose the
old values of e and e.x for o and z, respectively. The state change is modelled
by the substitution [z/0.x]. The old state also satisfies

defined(e) A (e = null) A defined(e’)

because the assignment would have gone wrong otherwise. The second line of
the strongest postcondition says that the object o is the old value of e, and that
the new value of o.x is the old value of ¢’.

We can prove the following substitution lemma for the operation [z/0.z].
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Lemma 4.13. Let o and z be logical variables such that [o.x] = [z]. Let Q be
an arbitrary assertion in which o and z do not occur. Let (s,h) be a state such
that s(0) = a # null, and let (s',h') be a compatible freeze state. Then

A[Q[z/0.a]l(s, k) (s, h') = A[Q](s, hlevxp — B])(s", W)
where D = origin([o], x), and 8 = s(z).

Proof. By structural induction on (), along the lines of the proof of Lemma
4.10. O

The following lemma plays an important role in the justification of our
strongest postcondition. It says that we may substitute a logical variable for an
access expression if we assign the value of the access expression to the logical
variable.

Lemma 4.14. Let o and z be logical variables such that [o.x] = [z]. Let Q be
an arbitrary assertion in which o and z do not occur. Let (s, h) be a state such
that s(0) = a # null, and let (s',h") be a compatible freeze state. Then

AlQI(s, h)(s', 1) = A[Q[z/0.x][ (s[z — h(e)(D)(x)], h)(s", h')
where D = origin([o], x).
Proof. By structural induction on Q. O

There is another useful property of the substitution operation [z/o.z]: it
makes an assertion insensitive to other substitutions of the same field.

Lemma 4.15. Let QQ be an arbitrary assertion. Let e.x := €' be a well-typed
assignment. Let o and z be arbitrary logical variables such that [o] = [e] and
[z] = [e.x]. Then

(s, h)(s', 1) | Qlz/0.alle! fe.a] <= (s,)(s', ') k= Qlz/o.a]

for every current state (s, h), and every compatible freeze state (s',h') such that

s(0) = Ele](s, h).

Proof. By structural induction on Q. O

The following theorem justifies our strongest postcondition of field assign-
ments.

Theorem 4.16. For every well-typed assignment e.x := €', and every precon-
dition @, we have that sp(Q,e.x := €') as defined in Eq. 4.7 denotes a strongest
postcondition of e.x := €' with respect to Q.
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Proof. We first prove = {Q} e.x := ¢'{sp(Q,e.x :=€')}. Let (s,h)(s', ) = Q
and (e.x := ¢,(s,h)) — (s,h”). Rule FA of the operational semantics en-
sures that E[e](s,h) = a € {L,null} and E[e'](s,h) = v # L. Moreover, we
know that h” = h[a.xzc — v], where C = origin([e], z). We must prove that
(s, ") (s, 1)) = sp(Q, e.x :=¢).

Let 5 = Ee.x](s,h). Note that 8 # L because E[e](s,h) ¢ {L,null}. Let
s* = slo,z — «a,B]. We first prove that (s*,h"”)(s',h') = Q’'[2/0.2], where @’
abbreviates the formula Q A defined(e) A —(e = null) A defined(e’).

From (s,h)(s',h') E Q, a € {L,null} and v # L follows (s,h)(s',h') E Q'
We also have (s*,h)(s’,h') = @ because o and z do not occur in Q’. Hence
(s*,h)(s',h) = Q'[z/o.x] by Lemma 4.14. The original substitution lemma
(Lemma 4.10) then yields (s*,h")(s', 1) | Q'[z/0.x][¢' /e.x]. The latter formula
is equivalent to (s*,h")(s',h') E Q'|z/0.x] according to Lemma 4.15.

Secondly, we will prove that (s*,h”)(s’,h') = 0 = (e[z/o0.2]). Note that

L[o] (s, ")(s", 1) = s™(0) = a = E[e] (s, h) = E[e] (s", ) .
The last step is valid because o and z do not occur in e. Moreover, we have

Elel(s™,n)

= L[e](s*, h)(s', h') { Lemma 3.2 }

= L[e[z/o.x]](s*, h)(s', h') { Lemma 4.14 }
= L[e[z/o.x][e’ [e.z]](s*,h")(s',h') { Lemma 4.10 }
= Lle[z/o.x]](s*, ") (s',h) . { Lemma 4.15 }

Note also that o # L. Hence (s*,h"”)(s', 1) E o = (e[z/0.x]).
Finally, we must prove that (s*,h”)(s',h') = o.x = (¢'[z/0.x]). We have

Llo.x](s*, 1")(s', 1) = h"(s(0))(C)(x) = 1" () (C)(x) = v = E[e'] (s, h)

by the construction of s* and h”. Clearly, £[e'](s,h) = E[e'](s*, h) because o
and z do not occur in €. Along the same steps as above we can show that
Ele')(s*,h) = L[e'[z/o.x]](s*,h")(s',h"). The previous subproofs collectively
imply that (s*,h"”)(s',h') E o.x = (€'[z/0.x]), which completes our proof of
(s,h)(s', 1) = sp(Q, e.x :=¢).

The second half of the entire proof must show that = {Q} e.x := ¢ {Q'}
implies = sp(Q,e.x :=¢€') — Q. So let (s,h)(s',h") = sp(Q, e.x :=¢’). Then
there exist values a and (3 such that

(s*,h)(s',h") E (Q A defined(e) A —(e = null) A defined(e”))[z/o0.]
No= (e[z/o.x]) No.x = (e'[z/o0.x]) , (4.8)

where s* = slo, z — «, §]. We will prove that
(e.x =€, (s* hla.zc — O])) — (s*,h) (4.9)

where C' = origin([o], z), can be derived using rule FA of the operational seman-
tics. Let v1 = E[e](s*, hla.zc — 0]), and vy = E[€](s*, hla.xc — B]). Observe
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that origin([e], ) = origin([o],z) = C because [0] = [e¢]. Then we can derive the
above computation if the following conditions hold.

o hla.xe — flvi.xc — vl =h
o vy & {1, null}
® U9y 7& 1.
Note that the first condition holds if & = v; and ve = h(v1)(C)(z). We have
a = s*(0) { def. s* }
= Lelz/o.x]](s*, h)(s',h') { (Eq. 4.8) }
= E[e](s*, hla.xzc — f]) { Lemma 4.13 }
=V .

Moreover, we have

vy = E[e](s*, hla.xc — O])
= L[e'](s*, hla.zc — B])(s',h') { Lemma 3.2 }

= L[e'[z/o.x]](s*, h)(s', h') { Lemma 4.13 }
= Llo.x](s*, h)(s', 1) {Eq. (4.8) }

— 1(5"(0))(C) () {def. 2] }

= h(a)(C)(x) { def. s* }

= h(v1)(D)(x) . { prev. result }

Hence the first condition of the derivation is met.
Observe that Eq. (4.8) implies that

(s*,h)(s',h') = (defined(e) A —(e = null))[z/0.2] .

Then (s*, hla.xp +— B])(s', 1) |= defined(e) A (e = null) follows from Lemma
4.13. Hence E[e](s*, hla.xp — B]) = v1 &€ {L,null}. The third requirement
vy # L follows from (s*,h)(s',h’') |= defined(e’)[z/0.2] along the same lines.
Hence the computation in Eq. 4.9 can be derived.

Now observe that Eq. 4.8 implies that (s*,h)(s',h’) | Q[z/0.x]. By Lemma
4.13 we then get (s*, hla.xzp — G])(s', 1) = Q. Since o and z do not occur in
Q@ we also have (s, hla.zp — ())(s',h') E Q.

Finally, observe that a computation never depends on the values of logical
variables. The existence of the computation in Eq. 4.9 therefore implies the
existence of the computation

(e.x := ¢, (s, hla.zc — B])) — (s,h)

Recall that = {Q}e.x := €'{Q’'} and (s, hla.zp — O])(s',h') = Q. The above
computation then implies (s, h)(s’,h') E Q" according to Def. 3.2. O
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4.4 Related Work

The weakest precondition calculus for assignments in object-oriented programs
described in this chapter has its roots in work by America and De Boer [dB91,
AdB94, dB99] on Hoare logics for object-oriented programming languages. How-
ever, they never considered languages with subtype polymorphism and inher-
itance. Consequently, it was hitherto unknown if their approach could be ex-
tended to reason about object-oriented languages like Java and C#.

Reus et al. used the above mentioned approach to reason about Java real-
izations of UML models with OCL annotations [RWHO01]. Their Hoare calculus
ignores field shadowing, and puts more restrictions on field assignments.

Our weakest precondition calculus for assignments [PdB03b, PdB05b] fully
handles field shadowing, and the proposed weakest preconditions require no ad
hoc extensions of the assertion language. The field shadowing problem can also
be tackled by a preprocessing step that disambiguates fields by annotating them
with the classes in which they are declared (see, e.g., [Miil02]). However, field
identifiers in programming language expressions lack this kind of annotation.
Consequently, one must devise ad hoc syntax for this approach.

Luckham and Suzuki [LS79] extended the syntax of their assertion language
with reference classes in order to reason about pointer operations in Pascal.
A reference class is a possibly unbounded set of values of data structures like
arrays and records that pointers may reference. Their proof rule for pointer as-
signments substitutes the reference class of the pointer type in the postcondition
to model the effect of the assignment.

Poetzsch-Heffter and Miiller substitute the reference classes by a global ob-
ject store in their Hoare rules for assignments in object-oriented programming
[PH97, PHM99, Miil02]. Their weakest precondition calculus for assignments
replaces references to the object store in the postcondition by references to an
updated object store. Both the reference classes as well as the object store are
not present in ordinary program expressions.

Cartwright and Oppen studied aliasing in the context of a language with
pointers and array assignments [CO81]. Their assertion language also contains
additional predicates that model array updates. They do not consider records,
which ensures that pointer assignments can essentially still be handled using
ordinary substitution operations.

The use of a powerful specification language like higher order logic makes it
possible to define weakest preconditions of statements directly in terms of the
semantics of statements. The weakest precondition calculus of Jacobs [Jac04]
for a subset of Java illustrates this possibility.
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Chapter 5

Reasoning about Method
Calls

In this chapter, we will develop an approach to reasoning about method calls
that can be exploited to verify proof outlines of object-oriented programs. It
will turn out that the standard approach to reasoning about method calls in
Hoare logics is incompatible with a proof outline logic. We will solve this prob-
lem by constructing an adaptation rule that checks whether the specification
of a method call follows from the specification of the corresponding method
implementation.

However, before we discuss these issues we will first explain why reasoning
about method calls in object-oriented programming languages is more challeng-
ing than reasoning about procedure calls in ordinary imperative languages. The
latter topic has an interesting history of its own in which several rules where
proposed that resulted in unsound or incomplete logics [Apt81, O1d83].

Reasoning about method calls is more difficult because the state of an object-
oriented program is far more complex than the simple mappings from a fixed
set of variables to values that are usually considered in classical papers about
Hoare rules for procedure calls. The state of an object-oriented program addi-
tionally comprises a heap that has no fixed size; an object-oriented program can
extend heaps by allocating new objects. This makes it harder to construct an
adaptation rule for such languages because an adaptation rule typically replaces
all program variables in a formula by logical variables (cf. Section 5.2).

Secondly, we must also find a way to handle dynamic binding. Dynamic bind-
ing destroys the ordinary statically determinable connection between a method
call and the executed method implementation (cf. Section 2.1). It will no longer
be possible, in general, to determine which implementation will be executed as
a result of a particular method call. Consequently, we may have to consider
several implementations in order to prove the specification of one particular
method call.

63
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This chapter is divided into two parts. The first part follows the standard
approach to reasoning about procedure calls in Hoare logics. We will develop
new versions of the standard Hoare rules which will enable us to reason about
method calls in object-oriented programs. However, we will also explain why
these rules are not suitable for a proof outline logic. The second part of this
chapter, which starts in Section 5.2, focusses on adaptation rules. We will
construct an object-oriented adaptation rule that is equally powerful on its own
as the set of Hoare rules in the first part of this chapter. Moreover, it has the
advantage that it can be employed in proof outlines. Related work is discussed
in the last section of this chapter.

5.1 Standard Hoare Rules for Method Calls

In this section we will first summarize the standard approach to reasoning about
procedure calls in Hoare logics. The standard approach is also described in, for
example, the survey article by Apt [Apt81]. The summary below serves as
a gentle introduction to the rules for reasoning about method calls in object-
oriented programs in the remainder of this section.

5.1.1 Hoare Rules for Procedure Calls

We will assume in this section that a procedure declaration has the form
pE<=S .

This syntax declares a procedure p with body S (a statement). A call to proce-
dure p is denoted by call p(). For now, we only consider parameterless procedures
in a language with global variables.

Hoare proposed rules for reasoning about calls to recursive procedures with
several kinds of parameters mechanisms in his seminal paper on procedures
and parameters [Hoa71]. He proposed the following rule (in our notation) for
reasoning about recursive procedures without parameters:

{P} call p() {Q} H{P} 5 {Q}
{P} call p() {Q} '

Here P and @ are arbitrary first-order formulas over program variables. The
rule says that it is valid to conclude {P} call p() {Q} if there is a derivation
of {P} S {Q} that uses the assumption that any call to procedure p already
satisfies the desired specification. !

This simple rule on its own is, unfortunately, not sufficient. It cannot, for
example, handle local variables. We can illustrate this deficiency by means of
the procedure declaration p < skip and the Hoare triple {u = 1} call p() {u = 1},

(5.1)

'De Bakker [dB80] and Apt [Apt81] both remark that Hoare’s rule is a specific instance of
the more general rule that is known as Scott’s induction rule (see, e.g., [dB80, p. 173]).
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where u is a local variable in the context of the call. If we try to derive this
Hoare triple using rule (5.1) we are forced to prove that

{u=1} call p() {u =1} F {u =1} skip {u =1} .

In other words, we must prove that the Hoare triple {u = 1} skip {u = 1} follows
from the assumption that the specification of the call satisfies the same speci-
fication. This assumption is not necessary here because the given procedure is
not recursive. The problem here is the Hoare triple {u = 1} skip {u = 1}. This
Hoare triple cannot, in general, be permitted because we cannot allow the local
variables that occur in the context of a call to appear in the specification of
the body of the corresponding procedure. Consider what could happen if that
procedure would also have a local variable u of its own. ..

The local variable problem can be solved by adding another rule and an
additional axiom to our logical system. The required additions are the invariance
axiom? (5.2) and the conjunction rule (5.3) below.

{P} call p() {P}, where vars(P) Nvars(S) =0 (5.2)

{P} call pO) {@Q} {P'} call p() {Q'}
{PAP}callp() {QAQ}

We assume here that vars(P) denotes the set of all free global variables in P,
and that vars(S) denotes the set of global variables that are modified by S. Note
that {u =1} call p() {w = 1} is a valid instance of the invariance axiom because
u is a local variable. Hence this axiom suffices to prove the example Hoare triple
above. The conjunction rule can be used to combine instances of the invariance
axiom with Hoare triples regarding a call that have been derived using Hoare’s
recursion rule.

However, there is another problem that will force us to adopt even more
rules. In turns out that we also need a way to adapt the specification of a
method to what is needed in the context of a call. We will illustrate this point
with a simplified version of an example that Apt [Apt81] used to explain the
same problem. Consider the following procedure declaration.

(5.3)

p<if £ =0 thenskipelse z:=2—1; call p(); z:=x+1fi ,

Now suppose that we want to prove the Hoare triple {x = z} call p() {z = z},
where x is a global program variable and z is a logical variable. In other words,
we want to prove that procedure p restores the initial value of x. The desired
property can be derived using rule (5.1) if we can first prove that

{z=z}ifx=0thenskipelsez:=xz—1; call p() v :=z+1fi{z =2}, (54)

2Note that the invariance axiom is not valid in a proof system for total correctness. Apt
has [Apt81] proposed a separate set of rules for total correctness. However, America and De
Boer [AdB90] have shown that his logic for total correctness is unsound.
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follows from the assumption {x = z} call p() {x = z}. In order to derive (5.4)
we must prove that the recursive call in (5.4) satisfies

{r=2z—-1}cllp) {r =2—-1} . (5.5)

We must prove this Hoare triple using the assumption {x = z} call p() {z = 2}
because we run into an infinite regression if we try to prove (5.5) by again apply-
ing rule (5.1). Intuitively, (5.5) follows from our assumption because the logical
variable z is a placeholder for an arbitrary value. However, the assumption
{z = 2z} call p() {x = 2z} does not exactly match the desired Hoare triple (5.5).
In this sort of situation, we would like to have additional rules that enable us
to adapt a given specification of a call to some other desired specification. The
following two substitution rules support this kind of specification adaptation.

{P} call p() {Q} {P} call p() {Q} = ¢ vars(Q)
{PZ} call p() {Q%} {Pz} call p() {Q}

Recall from Chapter 4 that PZ denotes the formula that is obtained from P by
replacing every occurrence of x by expression e. The first substitution rule allows
one to replace the free occurrences of a logical variable z by some other logical
variable z’. The substitution operation must be capture-avoiding. The second
substitution rule enables one to replace a logical variable z in the precondition
by a program expression whenever the logical variable does not occur in the
postcondition.

We can now derive {z = z — 1} call p() {x = z — 1} from the assumption
{z =2} call p() {z = =} as follows. Using the first substitution rule we get

{x=2"}cllp() {z=2"} . (5.8)

Note that {2/ = z —1} call p() {2’ = z — 1} is a valid instance of the invariance
axiom. Hence we can derive

(5.6) (5.7)

{z=2N=z-1}cllp){z=2 N =2-1} .

using the conjunction rule. Observe that z = 2’ A2/ =2—-1 2 =2—-11is
valid. Hence by the ordinary rule of consequence

{r=2N=z—-1}callp(){z=2-1} .

At this point we use the second substitution rule with the substitution = for 2z’
to obtain
{zt=azne=2z—-1}cllp() {r=2—-1} .

Now {x = z—1} call p() {x = z—1} can be derived using the rule of consequence.

The rules that we discussed in this section lead to a proof system that is rela-
tively complete [Gor75, Apt81]. We will translate these rules for reasoning about
procedure calls into rules for reasoning about method calls in COORE programs
in the following subsection. Subsequently, we will ask ourselves the question
whether these rules can be used in the context of proof outlines.
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5.1.2 Hoare Rules for Method Calls

We started this chapter with an enumeration of some of the differences between
reasoning about procedure calls and reasoning about method calls in object-
oriented programs. However, it turns out that the standard rules for reasoning
about method calls can nevertheless be adapted in a relatively straightforward
way for reasoning about methods calls. We will present the object-oriented
counterparts of these rules in this section.

We first give a rule that enables us to prove method specifications. It is the
object-oriented counterpart of Hoare’s recursion rule in (5.1). Let

t m(pi,...,pn) { Sreturne }

be the implementation of method m in class C. The following rule suffices for
simple recursive methods.

{P} m@C {Q} F {P} S {defined(e) — Q[e/result]}
{P} macC {Q}

The rule says that a method specification {P}m@QC{Q} is valid if one is able to
prove that the desired specification holds for the body of the method under the
assumption that the specification holds for every call to that particular method
in the body S. We have defined the meaning of method specifications in Section
3.2. The precondition P in a method specification may refer to the receiver this
of the method, and the parameters p1,...,p,. Local variables are not allowed
in P. The postcondition ¢ may not depend on any local variable or formal
parameter. Moreover, we assume in this section that the receiver this does not
occur in the postcondition to avoid confusion with occurrences of this in the
context of a call.

Recall from Section 3.2 that the special-purpose logical variable result de-
notes the result value in the final state of the method execution. The statement
return e is treated as a (virtual) assignment result := e. Note that we have
proved in Section 4.1 that the assertion defined(e) — Q[e/u] is the weakest
precondition of an assignment u := e with respect to an postcondition ). Sim-
ilarly, we have that defined(e) — Q[e/result] is the weakest precondition of the
assignment result := e with respect to a postcondition Q.

The rule in (5.9) enables us to derive method specifications. Our next step
will be to present a rule that uses such method specifications to infer specifica-
tions for a particular call. Recall that a call to a method that returns a result
value has the form u := eg.m(eq,...,e,). For simplicity, we will only consider
calls for which we can statically determine to which method implementation
the call is bound in this section. This situation arises, for example, if m is a
private method, or if the implementation of m is not overridden in a subclass.
Note that COORE has no access modifiers, so only the second case may occur
in COORE programs.

Let C be the static type of [eg], and let the implementation of method m in
class C’ be the implementation that is either inherited by or declared in class C.

(5.9)
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In the latter case, we have C = C’. The value of ey, i.e., the receiver of the call,
is an object of (a subclass of) class C'. Hence ey inherits this implementation if
the method is not overridden. Consequently, we know that the implementation
in class C’ is the implementation that is executed as a result of the call. Let

P1,---,Pn be the formal parameters of this implementation. We then have the
following basic rule for method invocations.
{PIm@C’{Q}
Q' — (Pleg,e1,...,en/this,p1, ..., ppllut, ..., ur/z1,. .., 2k
ULy v ey U/ 21,y 2 "result/u

{Q'} u:=eg.m(e1,...,e,) {Q"}

The first assumption of this rule is the specification of the method to which
the call is bound. The next two assumptions are two implications that check
whether the specification of the call follows from the method specification. The
second assumption of the rule verifies whether the precondition of the call implies
the precondition of the method invocation. The final assumption checks if the
postcondition of the implementation implies the postcondition of the call.

In the implications we find three types of substitution operations. The simul-
taneous substitution [eg,eq, ..., e, /this,p1,...,p,] reflects the context switch,
which consists of the assignment of the value of eg to this, and the values of
the actual parameters to the formal parameters. It is the operation that si-
multaneously executes the type-preserving substitutions [eq /this] and [e;/p;], for
i € {1...n} as defined in Section 4.1. Note that the typing rules of COORE en-
sure that [e;] < [p;] for every actual parameter e; and every corresponding formal
parameter p;. The substitution [result/u] that is applied to the postcondition
@"” models a (virtual) assignment of the result value to the local variable u of
the caller.

The final substitution operation [u,...,ug/21,...,2;] denotes the simul-
taneous version of the type-preserving substitutions [u1/z1], ..., [ur/zk]. Tt
allows us to replace logical variables in the method specification by local vari-
ables. The logical variables z1, ..., 2z; must be distinct. The final substitution
has the same function as the invariance axiom in the previous section. It en-
ables us to prove that the local variables of the caller are not changed during a
method call. Consider, for example, the specification {z = 2’} m@QC {z = '},
which is valid for every method because the logical variables z and z’ cannot
be modified in a program. By choosing the substitution [u'/z'] we can deriving
{z=v} u:=eg.mley,...,e,) {z =u'} using rule (5.10) provided that the call
is bound to the implementation of method m in class C'.

We have shown elsewhere [PdB03b, PdB03c] how these rules for reasoning
about method calls can be refined in order to handle dynamic binding. More-
over, we have also shown that the resulting rules can be combined with the
substitution rules and the conjunction rule to obtain a Hoare logic for object-
oriented programs that is both sound and relatively complete [PdB03c].
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5.1.3 Hoare Rules in a Proof Outline Logic

The aim of this thesis is to develop a proof outline logic for object-oriented
programs. That is, we are searching for a logic that describes the verification
conditions that ensure that an annotated program constitutes a valid proof
outline. In the context of method calls, this means that we are looking for
a set of verification conditions Q1,...,Q, that imply that a particular Hoare
triple {Q'} u :=eg.m(eq,...,e,) {Q"} is valid provided that the corresponding
method specification {P}m@C’{Q} is also valid.

The two implications in the assumptions of rule (5.10) seem to be suitable
candidates. However, we have explained in Section 5.1 that the Hoare rule
in (5.1) only leads to a complete proof system if it is supplemented by two
substitution rules, the conjunction rule and the invariance axiom. We must
therefore fear that the resulting logic is incomplete if we cannot find a way to
integrate these additional rules in either rule (5.9) or rule (5.10).

Our rules are slightly more advanced than Hoare’s original recursion rule
due to the simultaneous substitution [u1,...,ur/z1,..., 2] that we allow in
our basic method invocation rule (5.10). This substitution integrates the in-
variance axiom in Hoare’s recursion rule. However, a disadvantage of this ap-
proach is that we must additionally specify this substitution for every method
call in our program annotation. Another drawback is that it forces us to rep-
resent the local variables by means of logical variables in the specification of
the method that is being called. We have shown in the previous section that
we can derive {z = u'} u := eg.m(ey,...,e,) {z = v’} from the specification
{z =2'} mQC {z = 2'}, but we cannot derive it, for example, from the method
specification {true} m@QC' {true}. The adaptation rule that we will introduce in
the following section overcomes these two shortcomings of our basic invocation
rule.

What about the two substitution rules? We used these two rules in Section
5.1 to adapt the method specification to what is needed for a particular call. So
far, we have not integrated these rules into our invocation rule. It is most likely,
therefore, that our present rule inevitably leads to an incomplete proof system.

There is another problem with rule (5.10) too. It is not able to handle expres-
sions of the form old(e) in the postcondition of a method invocation properly.
Suppose that we have a method m in class C with the following specification.

{this = z}m@QC{z.z = old(z.z) + 1}

Apparently, this method increases the value of the x field of its receiver by one.
Now consider what happens if we try to verify the following Hoare triple.

{u.x =old(u.z) + 1} u.m() {u.z = old(u.z) + 2}

If this method call is bound to the method invocation above, we must prove the
following two verification conditions according to rule (5.10).

vx=olduz)+1—-u=z2 (5.11)
z.x =old(z.z) + 1 — w.x = old(u.z) + 2 (5.12)
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These verification conditions are clearly not valid. We can improve the situation
by additionally applying the substitution [u/z], which the rule allows us to do.
This results in the following two verification conditions.

uwr =oldluzr)+1—-u=u (5.13)
w.z =old(u.x) + 1 — u.x = old(u.x) + 2 (5.14)

The first verification condition now becomes valid, but the second verification
condition remains invalid. This is caused by the two different interpretations
of the old(.) predicate in the example. The predicate old(z.z) in the method
specification corresponds to the value of u.x prior to the method call, whereas
the expression old(u.z) in the specification of the method call denotes the value
of field x of object u in the initial state of the method in whose body the call
occurs.

So it turns out that our rule (5.10) is only sound if we do not allow expressions
of the form old(.) in the postcondition @ of the method specification. It is
somewhat surprising that a well-known specification technique like the use of
these old(.) predicate, which is also used in, e.g., JML [LBR04], is incompatible
with the standard approach to reasoning about method calls in Hoare logic.

Our conclusion is that the standard Hoare rules for procedure calls can be
used for reasoning about method calls in object-oriented languages, but there
is no obvious way to integrate them in a proof outline logic. We will therefore
explore an alternative approach to reasoning about method calls in the following
section. We will show that this approach overcomes all the shortcomings of the
standard approach that we signalled in this section.

5.2 Adaptation Rules for Method Calls

Hoare discussed the local variable issue that we have described in Section 5.1.1 in
his seminal paper on procedures and parameters [Hoa71]. He writes: “What is
required is a rather more powerful rule which permits the assumed properties of a
recursive call to be adapted to the particular circumstances of that call” [Hoa71,
p. 110]. With these words he introduces the first adaptation rule. The aim of
this section is to develop an object-oriented adaptation rule. However, we will
first have a look at some existing adaptation rules.

5.2.1 Adaptation Rules for Procedure Calls

We will not repeat Hoare’s adaptation rule here because Olderog has shown that
the rule that Hoare proposed is not the strongest possible rule [O1d83]. We will
therefore discuss Olderog’s stronger adaptation rule in this section.

The starting point of an adaptation rule is a given specification for a call,
and some other desired postcondition. The adaptation rule then describes the
weakest precondition that the call should satisfy given the particular call specifi-
cation. If we also have a desired precondition, then we must simply check if that
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precondition implies the weakest precondition. This latter situation corresponds
to the following version of Olderog’s adaptation rule.

{P} call p() {Q}
P — ((Vze P — Q[y/7]) — Q'[7/%])
{P'} call p() {Q'}

The conclusion of this rule is the desired call specification. Its first premise is
the available (valid) call specification; its second premise is the implication that
checks if the desired precondition P’ implies the weakest possible precondition.

In this rule, P, P’, ), and @)’ are assertions, and T is a list of the variables
that are modified by procedure p. The list g is a list of fresh logical variables
of the same length as Z. We substitute the program variables T by the logical
variables § in the postconditions @ and @’ in order to distinguish between
the initial and the final values of the program variables. This is necessary
because the implication brings together preconditions and postconditions —
which describe different states — into one formula. The list z contains all
logical variables that occur free in P and (). By quantifying over the logical
variables in the original call specification the rule reflects the fact that those
logical variables are merely placeholders for arbitrary values. Thus it allows us
to adapt call specifications.

The soundness of this rule can be explained (informally) as follows. Sup-
pose that we have a computation of the procedure that starts in a state that
satisfies P’. Now take the initial state of the computation and assign to the
logical variables g the values of the program variables Z in the final state of the
computation. Thus we have that Q' holds in the final state of the computation
if and only if Q'[¢/Z] holds in the modified initial state.

Now consider the second premise of the rule. This implication also holds
in the modified initial state. Moreover, P’ also holds in the modified initial
state because the logical variables 4 do not occur in P’. Hence the weakest
precondition (VzZe P — Q[j/Z]) — Q'[7/Z] holds in the modified initial state.
We will show that the antecedent of this implication holds in the modified
initial state in order to prove its conclusion. This would suffice to prove the
soundness of the rule due to the correspondence between @ and Q'[7/Z] that
we have indicate above.

To prove the antecedent of the weakest precondition we consider another
variant of the modified initial state that is obtained by assigning arbitrary values
to the logical variables in zZ. Assume that P holds in this third state. We also
have a computation that starts in this state because computations do not depend
on the values of logical variables. Note that ) must hold in the final state of this
computation due to the first premise of the rule. Moreover, the logical variables
in g will have the same values as the program variables T in the final state (the
variables in Z are disjoint from those in 7). Consequently, Q[7/Z] holds in the
final state. Then Q[g/Z] holds also in the modified initial state because it does
not depend on any of the program variables Z that may have been modified by
the procedure. This proves that the antecedent of the implication holds, which

(5.15)
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is, as explained above, the last step in our informal explanation of the soundness
of this rule.

Example 5.1. In order to clarify the use of the adaptation rule, let us revisit the
example that we discussed earlier in Section 5.1.1, which involved the following
procedure declaration.

p<if x =0 then skipelse x ;=2 —1; call p(); z:=x+1fi
We will try to prove again that the Hoare triple
{z=z-1}call p() {x =2—-1}

follows from the given call specification {x = z} call p() {z = z}. If we instan-
tiate the adaptation rule (5.15) we get the verification condition

z=z—1->NVzerx=z—oy=2)—-y=2—-1,

which s clearly valid. Note that we have replaced the global program variable x
in the postconditions by a fresh logical variable y because x is modified by p.

Olderog’s adaptation rule exploits the weakest precondition that ensures
that a desired postcondition holds given a particular call specification. It is
also possible, however, to express a variant of his adaptation rule that instead
involves the strongest postcondition that follows from an arbitrary precondition.
It concerns the following rule.

{P} call p() {Q}
(P'ly/x] A (Vze Ply/z] — Q) — @
{P'} call p() {Q'}

The elements of this rule are similar to the elements of the previous adaptation
rule. For example, T is again a list of the variables that are modified by p, and
y once more denotes a corresponding list of fresh logical variables. The list Z
once again contains the logical variables in P and Q.

However, there are also some important differences. The formula

P'ly/z] A (VZ e Ply/z] — Q)

describes the state after the method call, whereas the corresponding formula
in (5.15) describes the state prior to the method call. Moreover, the second
rule replaces the program variables in the preconditions by logical variables
instead of in the postconditions. We will argue in the following section that
these differences make this rule much more suitable for use in object-oriented
programming than the previous rule.

The soundness of rule (5.16) can be argued along the lines of our informal
explanation of the weakest precondition rule. However, for this rule one must
consider the final state of the computation, and assign the initial values of the
program variables Z to the logical variables . We were able to derive rule (5.16)
using Olderog’s general analysis of adaptation rules [Old83]. We later discovered
that it is also stated by Zwiers et al. [ZHL196].

(5.16)
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5.2.2 An Object-Oriented Adaptation Rule

We have examined two adaptation rules in the previous section that are both
tailored to a simple language with global variables. We will now develop an
object-oriented version of the last rule that will enable us to assign to every
annotated method call {Q} u := eg.m(e,...,e,) {Q'} a verification condition
which checks whether the annotation of the call follows from the annotation of
the corresponding method.

But first we will explain why we cannot state a counterpart of Olderog’s
original rule (5.15) in an object-oriented setting. Recall that this rule exploits
the weakest precondition of a method call with respect to some desired postcon-
dition and a given method specification. This precondition describes the state
prior to the call. However, the logical variables ¢ that it introduces describe the
final state after the call. The final state is likely to contain more objects than
the initial state because the called method may allocate new objects. The pro-
gram variables will presumably reference some of these new objects in the final
state. This kind of situation cannot be described by a formula that describes
the initial state because consistent states only reference existing objects.

The strongest postcondition variant of the adaptation rule that we presented
in the previous section is more promising because its verification condition de-
scribes the final state after the method call. This causes no problems because
the initial values of the program variables still exist in the final state. The ob-
jects that existed prior to the call are simply a subset of the objects in the final
state. We will therefore develop an object-oriented counterpart of rule (5.16) in
this section.

The following parts of this section describe the changes to the rule that are
necessary in order to employ it for reasoning about method calls. Note that
we will first develop an adaptation rule for reasoning about calls for which we
can statically determine to which method implementation the call is bound; the
more complex calls that involve dynamic binding are handled in Section 5.2.3.
A soundness proof of the final rule is given in Section 5.2.4.

A Heap Model

We have seen that the adaptation rule replaces every program variable that is
modified by the method call by a fresh logical variable in the preconditions.
We must therefore consider the question which variables in the precondition of
a method call in COORE should be replaced likewise. The rule for method
invocations in the operational semantics of COORE shows that only the heap
is modified by a method call (see Section 2.2.3). Hence we will replace every
variable that denotes a heap location by a logical variable. All variables whose
values are specified by the stack remain unchanged during a method call. That
is, the local variables of the caller and the logical variables retain their values.
Since every variable that denotes a heap value will have to be replaced by
a logical variable we will have to find logical variables to represent all heap
locations. In other words, we have to build a model of the heap using logical
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variables. Recall that the heap stores the existing objects and the values of their
fields.

We represent the set of existing objects by means of a fresh logical variable
‘H of type object™. This sequence is supposed to contain all objects that are allo-
cated in the heap. Each field that is declared in the program is also represented
by a logical variable. For each field = of type ¢ that is declared in some class C
we introduce a logical variable H(z¢) of type t*. We assume that each of these
sequences has the same length as H. Thus H(x¢) can store the value of the x
field of each existing object. The value of the z field of an object that occurs at
some position 7 in the sequence H is supposed to be stored at the same position
iin H(zc).

In order to use this heap model we must be able to find the position of an
object in the sequence H. We use a function symbol f € F for this purpose.
This function is supposed to yield the index in the sequence H of an object
if it is applied to an existing object. For this purpose, we extend the sets of
logical expressions with expressions of the form f(g). Every function f € F is
assumed to be of type object — int. Formally, we will treat functions in the same
way as logical variables. That is, we will assume that every stack s € Stacks
also assigns a meaning to function symbols. The value (or interpretation) of a
function symbol f is a function with domain dom(object) and range dom(int).

We have i
‘C[[f(Q)]](Svh)(s/’ h/) = { j—(f)(v) ;tzejwie ,

where v = L[qg](s,h)(s’,h'). The substitutions operations that we defined in
the previous chapter for reasoning about assignments are supposed to handle
expressions of the form f(q) in the same way as expressions of the form op(q),
where op is an unary operator on an element of a primitive type.

In order to fully exploit this heap model we need four additional axioms
regarding its constituents, which all can be expressed in our assertion language
COORAL.

(Vi o0 < i< H.length — f(H[i]) = i) (5.17)
f(null) = length(H) (5.18)
length(H(zc)) = length(H) (5.19)
H(zc) T H ::null (5.20)

The first formula states that the index function yields the index of each object in
‘H. It also implies that each object occurs at most once in the heap. The second
formula ensures that f(null) does not denote a valid index of H (length(H) is
bigger than the last valid index length(7) — 1). The third formula expresses the
above-mentioned assumption that every sequence H(z¢) has the same length as
H. We write z C H :: null in the last formula as an abbreviation of the formula
(Vie0 < i < length(H(zc)) — H(zc)[i] = null V H(zc)[i] € H). Thus the last
formula, which should hold for every field = : t declared in some class C if ¢ is
a reference type, implies that there are no dangling references in the heap.
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We will denote the conjunction of (5.17) -(5.20) by heap. Often we will want
to say additionally that every variable in a particular set of local and logical
variables V' references an object in the old heap. We use the predicate heapy
for this purpose. It denotes the formula heap A Aoy, v € H (or v C H instead
of v € H if v is a logical variable of some type C*).

Bounded Quantification

The heap model that we described above enables us to replace expressions
that reference heap locations by the corresponding logical variables in the heap
model. But before we describe this translation step we first draw attention to
the consequences of heap extensions for the adaptation rule.

Methods can not only modify the heap by assigning to fields, but they can
also extend it by allocating new objects. And object allocations extend quan-
tification domains. Suppose, for example, that the formula

(Vs : Singleton e s = this)

holds prior to a method call. This formula states that the present receiver is
the only existing instance of class Singleton in the current state. This formula
will no longer hold after the call if the method creates new instances of class
Singleton.

Recall that the verification condition of the adaptation rule 5.16 brings to-
gether both preconditions and postconditions in one formula. It even enables us
to use the precondition of the call to prove the desired postcondition. It would,
however, be wrong to use the above mentioned precondition to prove that there
also exists only one instance of class Singleton after the method call since this
property may no longer hold.

This issue can be solved by explicitly limit the quantification domain of
quantifiers to the objects that existed before the call. Recall that the sequence
‘H is assumed to contain the objects that exist in a particular heap. We will
therefore restrict quantification over objects of a class C' to objects in the se-
quence H in assertions that describe the state prior to a call. For this purpose,
we introduce a bounded form of quantification.

Let ‘H be a logical variable of type object™. Then we define the bounded
variant (3z € H : t @ P) of an expression (3z : t @ P) as follows.

(3zeH:teP) = (Jz:teP)forte {int,boolean}
(JzeH:t*eP) = (Jz:t* e P) fort € {int,boolean}
(F3zeH:CeP) = (Fz:Ce(z=nullvzeH)AP)
(3zeH:C*eP) = (Fz:C*ezL H:nulAP)

Note that formulas that quantify over primitive types retain their original mean-
ing; we introduce bounded variants of quantification over such types merely for
notational convenience.
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Figure 5.1: The definition of |Q].

Building Dual Heap Formulas

The verification condition of an adaptation rule always describes two states:
the state prior to the method call and the state after the method call. We
have argued above that it suffices to distinguish between the initial heap and
the final heap for method calls. The verification condition of our adaptation
rule will therefore be a dual heap formula: the ordinary heap references will
describe the final heap, and the logical variables of the heap model will describe
the initial heap.

We will build dual heap formulas by means of a syntactical operation |.].
This operation will be an object-oriented counterpart of the substitution [j/Z] in
Equation 5.16. The operation achieves the meaning shift by replacing variables
that reference heap locations by the corresponding logical variables in the heap
model, and by restricting quantification to the objects in the heap model. We
define |Q] by induction on the structure of Q. All cases of |@Q] are listed in
Figure 5.1.

The most interesting case is |g.z| because q.x references a heap location.
An expression ¢.x is replaced by the corresponding variables in the heap model.
Let C = origin([g], =) (field z is defined in class C'). Then we have

lg.z] = H(zo)[f(Lq])] -

Quantification is restricted to the objects in the heap model:

[BzeQ)] =(FzeHe|Q]) .
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All other cases are straightforward.

The dual heap is a ‘real’ heap: the initial heap of the call. In the following
definition we show how we can reconstruct this heap from the values of the dual
heap variables using the |.| function. In fact, if (s, k) is the final state of the
caller after a method call, then (starty,start,) as defined below is the initial
heap of the corresponding execution of the method body.

Definition 5.1. Let H be a logical variable of type object™, and let H(zc) be
a logical variable of type t*, for every field x : t declared in some class C.
Let f : object — int be a function symbol, and let eq be an expression such that
[eo] ~ [this]. Furthermore, let p1,...,pn be a sequence of formal parameters with
a corresponding sequence e1, ..., e, of actual parameters such that [e;] = [pi],
fori € {1...n}. Finally, let (s,h) be a state such that (s,h) = heapy, and
Elleoll(s, h) € dom(Jthis]), where V is the set that contains both this and all
local variables in e;, fori € {0...n}. Then (starty,starty,) is the state such that

e start,(this) = N|eo|](s,h), starts(p;) = N|ei]](s,h) fori € {1...n},

and starts(v) = init([v]) for every other local variable or parameter v, and

o for every object o, starty(0) is defined if and only if o occurs in s(H), and
moreover, for every field x in class C, and every index i with 0 < ¢ < m we
have starty (g(7))(C) () = ¢'(¢) if g(i) € dom(C) \ {null}, where (g,m) =
s(H) and (¢',m’) = s(H(z¢)).

The clause (s,h) = heapy in Definition 5.1 is necessary to ensure that
(startg, starty,) is a valid state (see also Lemma 5.1 below).

Verification Conditions of Method Calls

So far, we have defined several object-oriented counterparts of the main building
blocks of the adaptation rule in (5.16). We will now use these parts to build
object-oriented adaptation rules. Our eventual goal is an adaptation rule for rea-
soning about dynamically bound method calls of the form u := eg.m(eq, ..., e,).
We will present such a rule in Section 5.2.3. In the remainder of this section
we will present several adaptation rules for simpler method calls. We will start
with very basic method calls in an object-oriented context, and then move step-
by-step towards more complex method calls.

The most simple kind of method calls in object-oriented languages are calls
to static methods. Static method have no receivers, and consequently the
keyword this is forbidden in the implementation and specification of a static
method. We will assume that each static method has a unique name m, and
that m(eq, ..., e,) denotes a call of method m with actual parameters ey, ..., e,.

The outline of the adaptation rule for this kind of method call is as follows
(where 6.18 denotes the verification condition of the call).

(P} macC {Q}  VO1
{Q} m(er,...,en) {Q"}

(5.21)
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We will make the usual assumption that the postcondition ) contains no occur-
rences of the parameters pq, ..., p, of the method or of any other local variable.
And for simplicity, we will initially also assume that it contains no subexpres-
sions of the form old(.).

The verification condition VC1 below has the same structure as its counter-
part in rule (5.16).

L/\:”Z1 defined(e;)] A heapy A |Q'] A (V2 € He | Ple/pl] — Q) — Q" (VC1)

However, it also contains some new elements. The first new element in (VC1)
is the clause A\, defined(e;), which state that the actual parameters evaluate
normally; note that the method call does not terminate if this condition does
not hold. Hence we can safely add this assumption. The |.| operator is applied
to this clause because it describes the situation in the initial heap, which is the
dual heap in this verification condition.

The second new element is the predicate heap;,. Here, V is the set that
contains this and every local or logical variable of some reference type C or C*
occurring in P, Q or e;, fori € {0...n}. The additional assumption A\ ., v € H
is valid because the values of these variables are not modified during the method
call. Therefore these values must be part of the initial heap.

The formula heap,, ensures that every expression |e] denotes an object in
the dual heap.

Lemma 5.1. Let (s,h) be an arbitrary state, and let (s',h') be a compatible
freeze state. Then we have, for every program expression e with [e] < object,

that (s, h)(s',h') = heapy, and L[|e]](s,h)(s',h') & {null, L} imply that
(s,h)(s',h') =0 <f(le]) < length(H) and (s,h)(s',h') = |e|] € H ,

provided that V' contains both this and every local variable in e.

Proof. By structural induction on e. O

Note that in (VC1) we restrict the meaning of the call’s precondition Q' to
the initial heap by means of the |.| operator. This operator is also applied to
the precondition P of the method. The substitution [¢/p] on P replaces the
formal parameters by the actual parameters. We assume that € = ej,..., e,
and p = p1,...,pn. The list Z again contains all logical variables that occur free
in P or Q.

Adding support for result value handling is straightforward. Suppose that
we have a call u := m() to a static method m that returns a value. This
statement will execute m and subsequently assign the result value to the local
variable u. Recall that result denotes the result value in the postcondition
Q. Our verification condition must ensure that the postcondition Q" holds
after this assignment, which is equivalent to checking that Q”[result/u] holds
after the method call because Q" [result/u] is the weakest precondition of the
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assignment u := result. Hence we get the following verification condition for the
call u :=m().

L/\:;l defined(e;) | Aheapy, A |Q'|A(VzZ € He|Ple/p]] — Q) — Q" [result/u]
(vee)

The special-purpose logical variable result should not be included in the list Z
because it does not represent an arbitrary value.

In our next step we move to non-static methods. In other words, we will
now consider methods that have a specific receiver stored in their implicit this
parameter. We will assume that a call to a method of this kind has the form
u:=eg.m(ey,...,e,), where ey denotes the receiver of the method. For now,
we will assume that we can statically determine to which method the call will
be bound; dynamic binding is discussed in Section 5.2.3. The outline of our new
adaptation rule is as follows.

(PY mac {Q} V(3
{Q'} u:=eg.m(ey,...,eq) {Q"}

In principle, one can treat the implicit receiver parameter in the same way
as ordinary parameters by replacing this in the precondition P of the method
by eg. This yields verification condition VC3, where [eq, &/this, p| denotes the
simultaneous substitution that replaces this by eg, and every formal parameter
in p by its corresponding actual parameter in é.

(5.22)

L/\:L:O defined(e;) ] A |=(eg = null) | A heapy, A | Q']
A ((Vz € H o | Pleg, €/this, p]| — Q) — Q" [result/u] (VC3)

Note that we have also added the clauses defined(eg) and —(eg = null) to the
antecedent of the verification condition.

However, we will go one step further. More specifically, we will also add
support for occurrences of this in the postcondition @ of the method. This is
possible because this is a readonly parameter, which implies that its final value
is known in the context of the method call.

So let us assume that the method postcondition () may contain occurrences
of this. This keyword may also occur in the precondition )’ and the postcondi-
tion Q" of the method call. In those contexts, however, it denotes the receiver
of the method in whose body the present call occurs, which is not necessarily
the same object as the receiver of the call in v := eg.m(eq,...,e,). In our ver-
ification condition, we will therefore substitute occurrences of this by a fresh
logical variable rec of the same type. Moreover, we add the clause rec = this
to the precondition of the method in order to make the desired correspondence
explicit. The occurrence of this in this clause (and every other occurrence of
this in the precondition P) will be replaced by ey as a result of the substitu-
tion [eg, &/this, p]. The proposed changes are embedded in verification condition



80 CHAPTER 5. REASONING ABOUT METHOD CALLS
Vay.

L/\ defined(e;)| A [—=(eo = null)| A heapy, A | Q']

(Vz € H e | (P A rec = this)[eq, €/this, p] | — (Q[rec/this])) — Q" [result/u]
(vey)

The final extension that we will discuss in this section concerns support
for the old(.) construct. An expression old(e) in the postcondition @ in VCY
denotes the value of e in the initial state of the call u := eg.m(eq,...,e,). Note
that similar expressions may also occur in Q" and Q”. However, an expression
old(e) in Q" or Q" does not denote the value of e in the same initial state;
such an expression denotes the value of e in the initial state of the execution
of the method in whose body the statement u := eg.m() occurs. The value of
an expression old(e) of this latter kind is stored in the freeze state, whereas the
value of an expression old(e) of the former kind is determined by the values of
the dual heap variables. We have already seen these two different interpretations
of old(e) in Section 5.1.3.

In order to represent this situation correctly in our verification conditions,
we must replace every occurrence of an expression of the form old(e) in the
postcondition @) by an expression that denotes the value of e in the initial
state. It should be clear that the expression |e[eg, é/this, p]| denotes this value.
Therefore we will define a syntactical operation that replaces every occurrence
of an expression of the form old(e) in a formula by |e[eg, &/this, p]|. For brevity,
we will assume in the remainder of this thesis that g(e) and g(P) abbreviate
le[eo, €/this, p]| and | Pleg, €/this, pl |, respectively.

With function g we can define the above-mentioned substitution operation,
which we denote by [g(.)/old(.)]. It is defined in the same way as [./old(.)]. It
only differs from [./old(.)] in the following case:

old(e)[g(.)/old(.)] = g(e) -

If we apply this operation to the postcondition of the method in (VC/) we
get verification condition (VC5).

L/\ defined(e;) | A |=(ep = null) ] A heapy, A QA
(Vz € H o g(P A rec = this) — (Q[rec/this|[g(.)/old(.)]))
— Q"[result/u] (VC5)

The following lemma states that function g(e) indeed denotes the value of e
in the initial state of the method execution.

Lemma 5.2. Let (s,h),H, H(zc), P1,---,Pn, €1,---,€n, this and ey be given
as in Definition 5.1. Let (s',h’) be an arbitrary freeze state that is compatible
with (s, h), and let Q be an assertion that only contains expressions of the form
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old(e) in which every occurrence of a local variable concerns an element of the
parameter list p1,...,pn. Then

(s, h)(startg, starty,) = Q if and only if (s,h)(s', 1) = Qlg(.)/old(.)] ,

where g s the syntactical operation that takes an expression e and returns the
expression | eleg, €/this, Pl |.

Proof. By structural induction on @. The only non-trivial case concerns a
logical expression of the form old(e). For this case, we can prove that, for every
expression e in old(e), we have &[e](starts, start,) = N[g(e)](s, h) by structural
induction on e. O

Our adaptation rule reveals an interesting practical advantage of the use
of old(.) predicates to refer to initial values over the standard approach that
uses logical variables to freeze initial values: it reduces the number of logical
variables in Z in VC5. Observe that every logical variable that is used to freeze
an initial value in the method specification must be added to z. This leads to
a more complex formula. When proving the verification condition we will have
to find out which values of the logical variables in Z satisfy the precondition of
the method invocation. By contrast, the operation [g(.)/old(.)] automatically
replaces every expression old(e) by the corresponding value in the initial state
without requiring additional logical variables.

Let us examine a small example proof outline with a method call and its re-
sulting verification condition. The example that we give below mainly illustrates
the elegant way in which the rule handles local variables.

Example 5.2. An example proof outline is listed in Fig. 5.2. It concerns a
simple class with two methods. The second method calls the first method with
the statement this.setX (p). This call has the following verification condition if
the setX -method is not overridden in a subclass.

defined(this) Adefined(p) A= (this = null) Aheapy, Ap = old(p) Ab = old(this.z = p)
A (Vrec : C erec € H — (true A rec = this — rec.x = p))
— this.z = old(p) A b = old(this.x = p)

We did not expand the heapy,-predicate for brevity; it represents the conjunc-
tion of heap and the formula this € H in this verification condition. The variable
rec is a logical variable, and is therefore universally bound in the verification con-
dition. Thus it becomes possible to adapt the specification to what is needed in
the context of the call. The method specification implies the specification of the
call if we choose this for rec.

Observe that the clause b = old(this.x = p) in the precondition of the call can
be used to prove the same clause in the postcondition. Thus there is no need for
a separate invariance axiom to reason about local variables in the specification
of the call, and we also do not have to represent the local variables of the caller
in the method specification by means of logical variables.
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class C {

int T ;

requires true;

ensures this.z = old(p);

void setX (int p) {
assert p = old(p);
this.z :=p ;
assert this.z = old(p);

}

requires true;
ensures this.xz = old(p) A result = old(this.z = p);
boolean testAndSetX (int p) {

assert p = old(p) A this.z = old(this.z);

boolean b ;
assert p = old(p) A this.z = old(this.z);
b := (this.x = p) ;

assert p = old(p) A b = old(this.z = p);
this.setX (p) ;

assert this.z = old(p) A b = old(this.x = p);
return b ;

Figure 5.2: An example proof outline that involves a method call and local
variables.

We will present another example in order to motivate our use of bounded
quantification in the verification conditions of our adaptation rules.

Example 5.3. Suppose that we have a class C' with a field x : object and a
method m with the following specification:

{true} m@QC {—(this.z = null) A =(this.z = 2)}

Admittedly, this specification is somewhat unusual: it involves a logical variable
z which does not occur in the precondition. In this specification, z represents an
arbitrary object in the initial state of the method execution. We can use logical
variables for this purpose because the initial value and the final value of a logical
variable are always the same. Therefore the final value of z is an object that
already exists in the initial state. Consequently, this specification says that m
allocates at least one new object and that it assigns this object to the x field of
1ts receiver.

Now suppose that we want to prove a similar specification for a call to this
method: {true} this.m() {—(this.z = null) A =(this.z = 2’)}. This call gets the
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verification condition

defined(this) A —(this = null) A heapy, A true A
(Vrec € H o (Vz € H o (true A rec = this) — (—(rec.x = null) A —(rec.x = z2))))
— =(this.z = null) A =(this.z = 2') . (5.23)

The clause z € rec is very important in this verification condition. Without it,
the second line of (5.28) becomes a contradiction if we choose this for rec, and
this.z for z. For this would result in the clause —(this.z = this.z)! Fortunately,
this scenario is not possible because we cannot prove that this.x € H!

1t becomes clear that this verification condition holds if we expand the heapy
formula. This yields the formula heap Athis € HAz' € H. We need the informa-
tion regarding this and 2’ in this formula because it enables us to instantiate the
second line of (5.23) with the corresponding two values. This suffices to prove
(5.23).

5.2.3 Dynamic Binding

The final hurdle in this chapter on reasoning about method calls is dynamic
binding. Dynamic binding destroys the static connection between a method
call and its implementation: we cannot assume any longer that we know which
method implementation will be executed as a result of a particular method call
in our code. The dynamic type of the receiver now determines which method
implementation is executed.

For the convenience of the reader, we repeat here the rule in the operational
semantics that specifies the behavior of method calls.

5[[60]](8,}1) =o0=(C,i)
Eleil(s,h) =v; #L forie{l...n}
Ele](s,h)y=v# L
meth(C,m) =t m(p1,...,pn){ S return e }
(S, (s[this, p1, ..., Pn — 0,04, ..., 0], h)) — (s, 1)
(u:=-eg.m(e1,...,en),(s,h)) = (sjur—v],h")

(MCh)

The rule reveals that it is necessary to evaluate the expression eg that denotes
the receiver of the call to determine to which method implementation the call is
bound. Recall that meth(C,m) denotes the implementation of method m that
is either declared in class C' or otherwise inherited by C from its superclass.

The dynamic type of the receiver is always a subtype of the static type of
ep. This fact is expressed by the lemma below.

Lemma 5.3. For every well-typed expression e with [e] = C, and every state
(s,h), we have that E[e](s, h) = (D,q) implies D < C.

Proof. From Lemma 3.2 follows E[e](s, k) = L[e](s, h)(s', k') for every (s',h)
that is compatible with (s, k). Because (D, i) # L we have E[q](s, h) € dom(C)
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by Lemma 3.1. Since E[e](s, h) is also different from the null reference we get
D < C from Lemma 2.2. O

Because we cannot statically determine the dynamic type of the receiver,
we will have to consider all implementations of method m that are declared
in or inherited by subclasses of the static type of the receiver. Each of these
implementations may be bound to the call, and each specification of one of
these implementations must support the desired specification of the call. It
seems, therefore, that our proof outline logic will have to generate a verification
condition for each subclass of the static type of the receiver.

Fortunately, we can often reduce the number of verification conditions. We
will show that it suffices to generate a verification condition for each method
implementation that belongs to some subclass of the static type of the receiver.
This reduces the number of verification conditions because not every subclass
will have its own implementation; a class may also reuse the implementation
that it inherits.

This approach can only be used if every subclass of the static type of the
receiver is available for inspection. In other words, our solution cannot be
used in the context of open, extensible programs without rechecking part of the
proofs. We discuss an alternative solution that is based on behavioral subtyping
[Ame91, LW94] in Chapter 8.

Suppose again that we consider a call u := eg.m(eq, ..., ey). Let prov(C,m)
denote the class in which the implementation of method m for objects of class C'
is declared. That is, prov(C,m) is class C if C' declares a method m, and other-
wise prov(C,m) is equal to prov(D,m), where D is the direct superclass of class
C. By impls([eg], m) we denote the set of classes that provide an implementation
that may be bound to the call. Formally, we have

impls(C,m) = {D | prov(E, m) = D for some subtype E of C} .
The outline of the rule for dynamically bound method invocations is then as

follows. .
impls([eg],m) = {C4,...,Ck}
{Pl} m@01 {Ql}, ey {Pk} m@Ck {Qk}
VCy,..., VCy
{Q} U = 60.m(€1, AR en) {Ql}
Here VCj, for j € {1...k}, denotes the verification condition that corresponds
to the implementation in class C;. It is the following formula.

(5.24)

|boundto(eg, Cj,m)]| A L(/\;O defined(e;))| A [~(eo = null)| A heapy, A QA
(Vz € H e g;(P; Arec = this) — (Qj[rec/this][g;(.)/old(.)]))
— Q'[result/u] (VCy)

This formula is almost identical to (VC5), and its elements are also defined
in the same way as their counterparts in (VC5). We assume that p/ = p7, ..., p)
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are the formal parameters of the implementation of method m in class C;, and
that [rec] = C; in (VC}). The function g; is the syntactical function that takes
a formula P and returns the formula | Pleg, €/this, p’]].

The only new element in (VC)) is the formula boundto(eg, Cj, m), which
is a formula that implies that ey is an instance of a class that inherits the
implementation of method m in class C;. A class inherits the implementation
in class C' if it is a subclass of class C, and if it is not a subclass of some other
class that overrides the implementation in class C. We denote the set of classes
that override the implementation of method m in class C' by overrides(C)(m).
We have D € overrides(C')(m) if (1) class D is a proper subclass of class C, and
(2) class D provides an implementation of method m, and moreover, (3) class
C has no other proper subclass E such that D is a proper subclass of F/, and E
also provides an implementation of method m.

Then boundto(eg, Cj,m) is the formula

eg instanceof C; A /\ —(ep instanceof D) |,
Decoverrides(Cj)(m)

which says that the receiver ey of the method call is an instance of some some
subclass of class Cj, and it is not a subclass of some class that overrides the
implementation in class C;. This assumption is valid because the call will not
be bound to the implementation that corresponds to (VC}) if it does not hold.
Moreover, our proof system is not relatively complete if we omit this assumption.
The example at the end of this section shows how the additional assumption is
used in practice.

An Example with Dynamic Binding

In this section we describe a somewhat larger example proof outline and its
resulting verification conditions. The example involves dynamic binding and
heap modifications.

Consider the class Clock and its subclass FastClock in Figure 5.3. The
subclass overrides the tick method: fast clocks run twice as fast as normal
clocks. The methods have a specification that reflects their behavior. The
annotation of the method bodies has been omitted.

Now assume that we want a method doubleTick that aims to increment the
time of a clock by two. The method has to treat fast clocks differently because
one call to their tick method suffices for fast clocks. The proof outline of this
method is listed in Figure 5.4.

Note that the conditional statement in the method body has no else branch,
which is illegal according to the COORE syntax definition in Section 2.2.1.
It would be a very simple task to add such a statement and define its proof
obligations. We trust that it suffices to say here that the precondition of the
conditional statement and the formula !(c instanceof FastClock) = false must
imply its postcondition.
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cIa.ss C.ZOCk { class FastClock extends Clock {
int time ;
requires true;

ensures this.time =

ensures this.time = L
o old(this.time) + 2
old(this.time) + 1 void tick() {

void tick() { S )
this.time := this.time + 1 ; ! this.time := this.time + 2 ;

) }

requires true;

}

Figure 5.3: Two Clocks

requires true;
ensures c.time = old(c.time) + 2;
void doubleTick(Clock c) {
assert c.time = old(c.time);
c.tick() ;
assert c.time = old(c.time) + (c instanceof FastClock ? 2 : 1);
if (!(c instanceof FastClock)) {
c.tick() ;
}

assert c.time = old(c.time) + 2;

Figure 5.4: The proof outline of method doubleTick.

Each of the two method calls has two verification conditions, one for each
implementation of the method. The first call c.tick() has verification condition
(5.25a) for the implementation in Clock, and (5.25b) for the implementation in
FastClock.

¢ instanceof Clock A —(c instanceof FastClock) A defined(c) A —=(c = null)

A H(time ciocr ) [f(¢)] = old(c.time)

A(Vrec : Clockerec € H — (trueArec = ¢ — rec.time = H(time ciock ) [f(c)]+1))
— c.time = old(c.time) + (c instanceof FastClock 72 :1) (5.25a)
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¢ instanceof FastClock A defined(c) A —(c = null)
A H(time crock)[f(c)] = old(c.time)
A (Vrec : FastClock e rec € H —
(true A rec = (FastClock)c — rec.time = H(time ciocr ) [f(¢)] + 2))
— c.time = old(c.time) + (c instanceof FastClock 72 :1) (5.25b)
We omitted the heapy, predicates in both verifications conditions for brevity;

it is the formula
heap Ace H Athise H .

for both verification conditions. With this additional assumption both verifi-
cation conditions hold. The additional assumption —(c instanceof FastClock)
in (5.25a) turns out to be necessary in order to prove that the expression
c instanceof FastClock 7 2 : 1 has the value 1. Similarly, we need the assump-
tion c¢ instanceof FastClock to reduce the same conditional expression to 2 in
the second formula.

The verification conditions (5.26a) and (5.26b) of the second call are also
interesting because they reveal a different way to use the information regarding
the class of the receiver.

¢ instanceof Clock A —(c instanceof FustClock) A defined(c) A —(c = null)
A H(time ciock ) [f(c)] = old(c.time) + (c instanceof FastClock 7 2 : 1)
Alc instanceof FastClock A (Vrec : Clocke
rec € H — (true A rec = ¢ — rec.time = H(time cioer ) [f(¢)] + 1))
— c.time = old(c.time) +2 (5.26a)

¢ instanceof FastClock A defined(c) A —(c = null)
A H(time ciock ) [f(c)] = old(c.time) + (¢ instanceof FastClock 7 2 : 1)
Al(c instanceof FastClock) A (Vrec : FastClock e rec € H —
true A rec = (FastClock)c — rec.time = H(time ciocr ) [f(¢)] + 2))
— c.time = old(c.time) +2 (5.26Db)
Again, we have omitted the heap; formula, which corresponds to the same
formula as in the previous verification conditions. The antecedent of (5.26b) is
a contradiction, which trivializes this verification condition. It corresponds to

an implementation that will never be bound to this particular call due to the
guard that protects it.

5.2.4 Soundness

We will prove the soundness of the adaptation rule for dynamically-bound
method calls in this section. We start with a simple lemma that states that
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the |.| operator is type preserving.
Lemma 5.4. For every assertion Q we have [Q] = [|Q]].
Proof. By structural induction on Q. O

There is a minor problem with the substitution [eg/this] in (VC;). Thus
far, we have only used substitutions in which the variable that is being replaced
has a type that is a supertype of the type of the expression that replaces it.
However, [eg] =< [this] need not hold for every verification condition in this rule;
most of the classes C; will be subtypes of [eg], and [this] = C; in every method
specification {P;} m@QC; {Q;}. The following variant of Lemma 4.3 covers this
case.

Lemma 5.5. For every assertion Q, every state (s, h), every compatible freeze
state (s',h'), and every expression e such that [e] ~ [this], we have

A[Qle/this]] (s, h)(s', h") = A[Q](s[this — v], h)(s', 1)
if E[e](s,h) =v # L and v € dom([this]).
Proof. By structural induction on Q. O

We also need a lemma that states that the heap increases monotonically
during each computation.

Lemma 5.6. For every computation (S, (s,h)) — (s',h') of some statement S
we have dom(h) C dom(h’).

Proof. By induction on the length of the derivation. O

We now turn our attention to the relation between the dual heap and a
computation. The following lemma essentially states that [@Q] holds in relation
to the final heap of a computation if and only if @) holds in relation to the initial
heap of the computation, provided that the variables of the heap model store
the initial heap values.

Lemma 5.7. Let Q be an arbitrary assertion. Let H be a fresh logical variable of
type object™. Let H(zc) be a fresh logical variable of type t*, for every instance
variable x : t declared in some class C which occurs in @, and let f be a fresh
function symbol. Let h,h' be two heaps such that dom(h) C dom(h'). Let s be
a stack such that the following three formulas hold in the state (s, h).

(Vo : object @ o = null Vo € H) (5.27)
f(null) = length(H) (5.28)
/\(Vo :Ce=(o=null) = o.x = H(ze)[f(0)]) (5.29)

xc

Finally, Let (s”,h") be an arbitrary freeze state that is compatible with h. Then
(Sa h)(sﬂv h//) ‘: Q (57 hl)(sll7 h”) ‘: I_QJ :
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Proof. By structural induction on (). We first consider the most interesting case
of an expression ¢.x and prove L[g.z](s*,h)(s”,h") = L]|q.x]](s*, 1) (s", h").
Let origin([g],z) = C. We have L[q](s*,h)(s”,h") = L[|q]|](s*,h')(s",h") by
the induction hypothesis. If L]q](s*, h)(s”,h") & {L, null} then

Lllg.z]](s*,n")(s", h")

{ def. ||}

L[H(zc)[f(La])]1(s™, B)(s”, 1)

{ def. L[], where s*(H(z¢)) = (g,n), and L[|g]|](s*,h')(s",h") # L }
{ def. L[], and ind. hyp. }

LIH(zc)[f(a)]](s*, h)(s", h")

{(5.29), L[q](s*, h)(s",h") & {L,null} and def. L[] }
Llg.x](s*,h)(s",h") .

b
)

1
1

It L[q[(s*, h)(s", n") = L][q]1(s", 1) (s", h") = null then

L[lg-z][(s*, 1) (s", h") { def. [] }
= L[H(zc)[f(lgDI](s*, h')(s", h")  { def. L[] and (5.28) }
—_— { det. £[] }

Llg.x](s*, h)(s", W) .

Similarly, iff L[q](s*, h)(s”, ") = L]|q]](s*,h")(s",h") = L then

Lllg.z]](s*,h")(s", h") { def. [] }
= L[H(zc)[f(lgDI](s*, n)(s", 1) { def. L[] }
= 1 {def. £[] }

Lg.x](s*,h)(s",h") .

Another non-trivial case concerns assertions of the form (3z : C o Q). We

must prove that

A3z : C o Q)(s*, h)(s" 1) = A[|(3z : C o Q)|](s*, k')(s", ") .



90 CHAPTER 5. REASONING ABOUT METHOD CALLS

We prove this case as follows.

AlL(3z: Ce Q)]](s™, h)(s", h")
— et (]}
Al(3z € H: C o [QDI(s" W) (", 1)
= { def. bounded quantification }
Al(3z: Ce(z=nullVzeH)A|Q])](s*,h)(s",h")
= {def. A[]}
a € ({null} Urng(s*(H))) and
A[lQ]](s*[z — a], W) (s", k") = tt for some o € dom(C) N dom(h’)
= { ({null} U mg(s*(H))) € dom(h) }
a € ({null} Urng(s*(H))) and
A[Q]](s*[z — a], R')(s", k") = tt for some o € dom(C) N dom(h)
= { Eq. (5.27) and def. A[] }
A[1Q|](s*[z — a], h')(s",h") = tt for some o € dom(C) N dom(h)
= {ind. hyp. }
A[Q](s*[z — «], h)(s”, h") = tt for some « € dom(C) N dom(h)
= {def. A[]}
A[(3z: C e Q)](s*, h)(s",h")

O

Our next lemma describes the correspondence between the context switch
and the substitution [eq, &/this, p].
Lemma 5.8. Let p = p1,...,pn be a sequence of formal parameters, and let
€ = e1,...,e, be a corresponding sequence of expressions with [e;] = [pi], for
i€ {l...n}. Let ey be an expression such that [this] ~ [eg]. Then we have, for
every precondition P, and every state (s,h) such that E[eo](s, h) € dom(][this])
and E[e;](s,h) = v; # L for every i € {0...n}, that

(s[this,p — o],h) = P <= (s,h) |= Pleo,€/this,p] ,
where U = Vg, ..., Un.

Proof. By structural induction on P. The proof combines the proofs of Lemma
4.3 and Lemma 5.5. o

The following lemma combines Lemma 5.7 and Lemma 5.8 above in order
to describe the effect of the operation [g(.)/old(.)] on a formula.

Lemma 5.9. Let QQ be an arbitrary assertion. Let H and H(zc) be as as in
Lemma 5.7. Let ($,h),p = p1,-.-,Dn,€ = €1,...,6n, and ey be as in Lemma
5.8. Moreover, let (s, h) |= (5.27), (s,h) = (5.28) and (s,h) = (5.29). Let h' be
a heap such that dom(h) C dom(h’). Then

(s, h')(s[this,p — 9], h) |= Q if and only if (s,1') = Qlg(.)/old(.)] ,

where g is the syntactical operation that takes a formula Q and returns the
formula |Qleq, €/this, p]|, and © = vo, ..., v,.
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Proof. By structural induction on Q). Observe that the value of Q[g(.)/old(.)]
does not depend on any freeze state because the operation [g(.)/old(.)] removes
all expressions of the form old(e). The only non-trivial case concerns a logical
expression of the form old(e). We must prove that

Llold(e)](s, h')(s[this,p — 8], h) = Nold(e)[g(.)/old()]] (s, h') .
We compute this case as follows.

Nlold(e)[g(.)/old(.)]] (s, n') { def. [g(.)/old(.)] }

Nlg(e)](s,h') { def. g }
N|eleo, €/this, p]|] (s, h') { Lemma 5.7 }
Neleo, €/this, p]] (s, I) { Lemma 5.8 }
Ne](s[this, p — ], h) { Lemma 3.3 }
Ele](s[this, p — T], h) { def. L[] }
Llold(e)](5, ) (s[this, p+— 71, h)

O

Our final lemma can be used to reason about the substitutions [rec/this] and
[result/u] in the verification conditions of the adaptation rule.

Lemma 5.10. Let v be a local variable u or the receiver keyword this. Let
z be a logical variable such that [z] < [v]. Let Q be an assertion that has no
subformulas of the form (3z ¢ Q') or (Vz ¢ Q'). Then we have, for every state
(s, h) such that s(z) = s(v), and every compatible freeze state (s',h'), that

(s,h)(s', 1) = Q if and only if (s,h)(s', 1) E Q[z/v] .
Proof. By structural induction on Q. O

We are now able to prove the main result of this section: the soundness of
the adaptation rule.

Theorem 5.11. The adaptation rule (5.24) is sound.

Proof. Let impls([eg],m) = {Ci,...,Ck}, and let = {Pi} m@QC; {Q1}, ...,
= {P.} mQCy {Qr}. Moreover, let = VO, ..., E VCj. We must prove that

E{Q} u:=-eqm(er,...,e,) {Q'}. Let (u:=eg.m(er,...,en),(s,h)) — (', 1),
and let (s,h)(s”,h") = Q for some freeze state (s”,h’”). We must then prove

that (s',h")(s”,h") = Q.
The given computation of the call can only be derived using rule MC; of
the operational semantics. Hence the following must hold.

Elleol (s h) = 0 = (C, 1) (5.30)

Eleil(s,h) =v; # Lforie{l...n} (5.31)
meth(C,m) =t m(p1,...,pn){ S return e } (5.32)

(S, (s[this,p1,...,pn > 0,01, ..., 0,],h)) — (s°, ) ( )
Elel(s°,h) =v # L (5.34)

(5.35)

s = sfur v
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Our next step is to build a stack in which the variables of the heap model have
the same values as the corresponding locations in the initial heap h. Let ¥ be an
arbitrary sequence without repetitions that contains every object o € dom(h)
(except null). Let ©[i] denote the object at position ¢ in ¥. For every instance
variable x declared in some class C, let o(x¢) be the sequence of the same length
as ¥ such that the i-th element of v(x¢) is h(0[i])(C)(x), if 9[i] € dom(C), and
init([z]) otherwise. Let f : dom(object) — dom(int) denote a function such that
f (null) denotes the length of ¥, and for every object stored at some index i of
o we have f(3[i]) = i. Let st be the stack that is obtained from s by assigning
v to H, f to f, and v(x¢c) to H(ze), for every field 2 declared in some class C.
Finally, let s* = sf[result — E[e](s°, h')].

Note that C' < [eg] (Lemma 2.4 and Lemma 2.2). Let prov(C,m) = Cj.
Then C; € {C4,...,Cy}, and meth(C,m) denotes the implementation of method
m declared in class C;. The verification condition that corresponds to the
implementation in method Cj is

|boundto(eg, Cj,m)] A L(/\:;O defined(e;)) | A [ =(eo = null) | A heapy, A |Q]
A (VZ € H e g;(P; Arec = this) — (Q;[rec/this][g;(.)/old(.)]))
— Q'[result/u] . (5.36)

From [= (5.36) follows that (s*,h")(s”,h") = (5.36). We will prove that the an-

tecedent of (5.36) also holds in that state to obtain (s*, h')(s”, h") = Q'[result/u].
In order to do so, we will first prove that for every formula Q* in which the

logical variables of the heap model and result do not occur we have that

(s, h)(s", W) b= Q* implies (s*, h)(s", 1" |= Q"] . (5.37)

From (s,h)(s”, 1) E Q* follows (s*,h)(s”,h") = Q* by the construction of
s* whenever the logical variables of the heap model and result do not occur in
Q*. We also have (s*,h) = (5.27), (s*,h) = (5.28), and (s*, h) = (5.29) by the
construction of s*. Note that (5.33) and Lemma 5.6 imply dom(h) C dom(h').
Hence, by Lemma 5.7, we get (s*,h')(s”,h") = |Q*].

Let us now return to the antecedent of (5.36). Since prov(C,m) = C; it must
be that o € dom(C;) (Lemma 2.2). Hence (s,h)(s”,h") = e instanceof C;.
Moreover, for every class D € overrides(C;)(m) we have C' A D because other-
wise we would have prov(C,m) = D instead of prov(C,m) = C;. Hence we have
o & dom(D) (Lemma 2.2), and consequently (s, h)(s”,h”) | —eq instanceof D.
Therefore we have (s, h)(s”,h”) = boundto(eg, Cj,m), and by Eq. (5.37) then
also (s*,h')(s”,h") = | boundto(eq, C;,m)].

From (5.30) and (5.31) follows (s, h)(s”, h"") = \i_ defined(e;), and by (5.37)
then (s*,h')(s”,h") = |\, defined(e;)|. By (5.30) and (5.37) we also have
(s,h)(s",h") = [ ~(eo = null)]. To prove that (s*,h')(s”,h") |= heapy we con-
sider its parts. Firstly, we have (s*,h’')(s”,h"") |= heap by the construction of s*
(heap only depends on the variables of the heap model). The variables in V' ref-
erence objects in dom(h) because s is consistent with h. By the construction of
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s* these values also occur in H. We must also prove that (s*, h')(s”,h") E |Q].
Note that we have (s, h)(s”,h") = Q. Hence (s*,h')(s",h") E | Q] using (5.37).

We now turn our attention to the second line of (5.36). Let z = z1,..., zp,.
Let @ = aq, ...,y be an arbitrary sequence of values such that «; € dom([z]),
for i € {1...m}. Moreover, assume that

(s*[z—al,h")(s", 1) =z € H A g(P; Arec = this) (5.38)

where g is the syntactical operation that takes a formula @) and returns the
formula | Q[eq, €/this, p]|. In other words, we have

(s*[z — a],h)(s",h") =z € H A [(P} Arec = this)[eg, €/this, p])| . (5.39)
At this point, we can again use Lemma 5.7 to obtain
(s*[z — a],h)(s", 1) = (Pj A rec = this)[eq, e/this, p]

from (5.39) because the variables of the heap model do not occur in z. Moreover,
the variables of the heap model and result also do not occur in the formula
(P; A rec = this)[eg, €/this, p], and therefore

(s[z+— al,h)(s",h") = (Pj A rec = this)[eo, €/this, p] .

The validity of (s[z — @&][this, p > o, 7] = (Pj A rec = this), where & = v1, ..., Uy,
then follows from Lemma 5.8. The second clause of this formula means that
s[z — a](rec) = o.

Next, observe that the computation in (5.33) entails that we also have

(S, (s[z — a]lthis,p — o0,9],h)) — (s°[z — a], ')

because the existence of a computation does not depend on the values of logical
variables. From our initial assumption = {P;}m@C;{Q;} and Definition 3.3
then follows

(s°[z — a][result — E[e](s°[z — a], h')], h')(s[z — a][this, p — 0,9],h) = Q; .

(5.40)
Next, observe that s°(this) = o because assignments to this are not allowed,
and that s°[Z — &](rec) = o because rec € Z and, as observed above, we have
s[z — a](rec) = o. Then (5.40) and Lemma 5.10 imply

(s°[z > al[result — E[e] (s°[2 — al, b)), k') (s[z — a][this, p — o, ], h)
= Qjlrec/this] . (5.41)

The formula @;[rec/this|] contains no free occurrences of local variables, and
every logical variable that occurs free in @), (except result) occurs in Z. Moreover,
s*(result) = E[e](s°, h’). Therefore

(s*[z — al,h')(s[z — a][this,p — o0,0],h) = Q;[rec/this]
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must hold too. We can also replace the freeze stack s in the formula above by
s* because the only variables in (); whose values depend on the freeze state are
this and p1,...,pn. Subsequently, we can use Lemma 5.9 to obtain

(s*[z — a],h")(s", h") = Q,[rec/this][g;(.)/old(.)] . (5.42)

Equation (5.42) shows that the entire antecedent of (5.36) holds in the given
state. Its consequent must then hold too: (s*,h’)(s”,h”) = Q'[result/u]. If we
expand s* we get (sf[result — v], h')(s”, ") = Q'[result/u]. Then we know that

(s[result — v], h')(s”, h") = Q'[result/u]

holds too because the dual heap variables do not occur in @’. Moreover,
Q'[result/u] does also not depend on the value of u. Hence we also have
(s'[result — v],h')(s", ") = Q'[result/u]. Then (s'[result — v],h")(s" A" E Q'
follows from the definition of s’ and Lemma 5.10. This shows that our main
goal (s',h')(s",h") = Q" also holds because result does not occur in @’. O

The result that we have proved above differs in one important sense from the
soundness results of the previous chapter: we have proved the soundness of a rule
whose assumptions are not only verification conditions, but also entire method
specifications of the form {P} m@C {Q}. The soundness of the complete proof
outline logic therefore depend on an additional meta-proof that shows that the
validity of the verification conditions of all methods also establishes the validity
of the corresponding method annotations. We will present such an argument in
Section 7.2.

5.3 Related Work

The rules for reasoning about method calls in this chapter are variants of the
rules that we presented in two previous papers [PdB03b, PdB04]. We have
shown elsewhere [PdB04] how the adaptation rule in this thesis can be optimized
by taking the effects of a method into account. We will further discuss this topic
in Section 8.4.2.

Poetzsch-Heffter and Miiller [PHM99, Miil02] follow Gorelick’s approach (see
Section 5.1.1) in their logic, which does not lead to a proof outline logic (cf.
Section 5.1.2). They have, for example, a separate substitution rule for reasoning
about the local state of a caller.

Poetzsch-Heffter and Miiller use syntactical constructs of the form T' : m,
which are called virtual methods, to structure reasoning about dynamically-
bound method calls. A specification of a virtual method T : m reflects the
common properties of all implementations that might be bound to a call of
method m on a receiver with static type T. Proving the specification of a
virtual method proceeds in two steps. In the first step, one proves that the
implementation of method m in class T satisfies the specification. In the second
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step, one shows that the specification also holds for the virtual method S : m
of every subtype S of T.

Previous work on adaptation rules [Hoa71, Old83, BMW89, Nau00] focusses
on imperative languages with global variables. The soundness of adaptation
rules always depends on the state changes that method executions may cause,
which implies that adaptation rules are necessarily tailored to a specific lan-
guage.

Kleymann [K1e99] combines the adaptation rule with the rule of consequence.
Thus he obtains a stronger rule of consequence that is also able to adapt the
meaning of logical (or auxiliary) variables in specifications. Our proof outline
logic does not have a rule of consequence, and we use our adaptation rule very
economically. That is, we only use it to adapt method specifications in the
context of method calls.

Homeier and Martin [HMO03] also combine the adaptation rule with the call
rule in their logic for basic recursive procedures. This enables them to define a
verification condition generator (VCG).

Von Oheimb uses several variants of Kleymann’s rule of consequence in his
logic for Java [vO01]. His call rule quantifies universally over the dynamic type
D of the receiver. The quantification range is, moreover, restricted to classes
that are subtypes of the static type of the receiver. Our rule goes one step
further by clustering the set of possible classes D that must be considered into
groups that share a particular implementation.
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Chapter 6

Reasoning about Object
Creation

In the previous two chapters, we have analyzed how the data in object-oriented
programs is manipulated by assignments, and how this process is controlled
using method calls. We have seen how we can describe the behavior of methods
using program annotation, and how we can compute the corresponding proof
obligations that collectively ensure that the program annotation constitutes a
valid proof outline.

In this chapter we turn our attention to the creation of objects, which is
another key feature of object-oriented programming. Reasoning about object
creation has no clear counterparts in the early work on Hoare logics which
typically focussed on languages with a fix set of variables. By contrast, object-
oriented programs may allocate new objects in each state, and every new object
has its own set of instance variables.

Recall from Section 2.2.1 that a statement u := new C'(eq,...,e,) allocates
a new object of class C, and subsequently calls the constructor method of class
C on this new object; the expressions ey, . .., e, denote the actual parameters of
the call. Upon completion of the call, a reference to the new object is assigned
to the local variable u. The allocation step creates the new object, whereas the
constructor method typically initializes its fields with specific values.

The allocation of a new object and the subsequent call to the constructor
method are two distinct steps, which are initiated by a single statement in our
language COORE. Combining these two steps in one statement ensures that
each object is always immediately initialized after its allocation. However, the
two steps differ greatly, and they require quite distinct reasoning techniques.

This chapter is therefore organized as follows. First, we explore reasoning
about object allocation using a weakest precondition calculus (Section 6.1.1).
Secondly, we show that we can also express the strongest postconditions of
object allocations in our assertion language (Section 6.1.2). In Section 6.2, we

97
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formulate an adaptation rule for reasoning about calls to constructor methods.
Moreover, we also explain how this rule can be combined with the results of
the previous section in order to reason about the total effect of a statement
u := new C(eq,...,e,). As usual, we discuss related work in the final section
(6.3) of the chapter.

6.1 Object Allocation

Object creation starts with the allocation of a new object. Formally, object
allocation means that a new object is added to the domain of the heap. The
identity of the new object always differs from the identities of all previously
allocated objects. The fields that are part of the internal state of the new
object receive their default values during the allocation.

We model the allocation of a new object of some class C' by means of a
pseudo statement u := alloc(C). This statement allocates a new object of class
C, and subsequently assigns the new object to the local variable .

The effect of a statement v := alloc(C') can be described formally by means
of an operational rule. The following rule models object allocation as a non-
deterministic execution step because it does not fix the identity of the new
object that is being allocated: every object that satisfies the premisses may
be the object that is allocated. We prefer this abstract semantics over a more
concrete semantics that enforces a particular allocation order.

o= (C,1) h(0) is undefined

(u :=alloc(C), (s, h)) — (s[u — o], h-[o— init(C)]) (04)

Recall from Section 2.2.3 that init(C) denotes the initial internal state of an
object of type C. We have init(C)(D)(x) = init([z]) for every field z € Fields(D)
declared in some class D such that C'< D; the function is undefined for all other
fields.

6.1.1 A WP-Calculus for Object Allocation

In this section, we will define a weakest precondition calculus for statements of
the form w := alloc(C). Unfortunately, we cannot simply use the substitution
[alloc(C) /u] for reasoning about object allocation like we did in Chapter 4 for
reasoning about basic assignments. For the expression alloc(C) is not a well-
formed expression in our assertion language. It would, in principle, be possible
to think of alloc(C) as denoting the new object after its allocation, but that does
not answer the question what this expression denotes prior to the allocation. It
cannot already denote the new object because this object does not exist prior
to its allocation.

We will, nevertheless, define an operation [new(C')/u| in this section that
computes the weakest precondition of the statement u := alloc(C') with respect
to an arbitrary postcondition (). This operation will be a contextual substitution
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operation. Normal substitution operations simply replace the occurrences of a
particular variable. A contextual substitution operation, however, substitutes
the occurrences of a particular variable together with the immediate contexts in
which they occur.

We will motivate the use of a contextual substitution operation by means
of an example. Consider the postcondition =(u = null). This postcondition
holds after a statement u := alloc(C') because u references the new object when
the statement terminates. Observe that we cannot replace the occurrence of u
in the postcondition by the expression alloc(C) because the resulting formula
—(alloc(C) = null) has no meaning in the initial state.

Recall that v is the only reference to the new object immediately after its
allocation. Our contextual substitution operation [new(C)/u] will recognize the
expression © = null as a possible context of the variable u. Secondly, it will
recognize u as an expression which denotes the new object, and it will identify
null as an expression that cannot denote the new object. Therefore it concludes
that the value of the expression v = null must be ff in the postcondition, and
it will substitute the entire expression v = null by the equivalent expression
false. Thus the weakest precondition of the postcondition —(u = null) becomes
—(false).

Atoms

We call an expression that is being replaced by our substitution operation an
atom. An atom, like u = null, always consists of an expression that denotes the
new object (u in our example) together with its immediate context. However,
there is another criterion for atoms, which is that only expressions that do not
denote the new object itself are atoms. This is important because there is no
expression that denotes this object in the initial state. And therefore we cannot
replace such expressions by an expression that denotes the same value in the
initial state.

A simple inspection of the typing rules of our assertion language reveals that
expressions that denote the new object can only occur in the immediate context
of a conditional expression, or an expression of one of the following forms.

(D)q q.x q instanceof D qg=q

Each of the subexpressions ¢ in these expressions may denote the new object.
Every expression of the last three forms is an atom of our contextual substitution
operation if (one of its subexpressions) ¢ indeed denotes the new object.

An expression (D)q is only an atom if ¢ denotes the new object, and if
C A D. Recall that C is the dynamic type of the new object. So the condition
C A D predicts whether the cast in (D)q will fail. If it fails, we know that (D)q
has the value L. Hence this condition ensures that (D)g does not denote the
new object itself. Conditional expressions are not atoms if their value is the
new object. However, it turns out to be convenient to remove all conditional
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expressions from an assertion before we compute its weakest precondition. We
will explain how this can be done below.

Note that we can statically predict the value of each atom in the state
immediately after the allocation of a new object. The value of an expression
u.z, for example, is the default value of the type of field x because the fields of
the new object initially have their default values. An expression u instanceof C
is equivalent to true after executing u := alloc(C'). We can also predict the value
of an expression of the form ¢ = ¢’ if either ¢ or ¢’ denotes the new object: its
value is tt if both ¢ and ¢’ denote the new object, and ff if only one of these
expressions denotes the new object.

All other operators in our language cannot be applied to the new object
directly due to its type rules. Note also that an expression old(u) does not
involve the new object because the occurrence of w in old(u) denotes an old
value of w.

Removing Conditional Expressions

To precisely identify the set of atoms of our contextual substitution operation,
we need to be able to determine statically which expressions denote the new
object. A conditional expression like true 7 u : u clearly also denotes the new
object after the execution of u := alloc(C'). However, we cannot statically
determine whether an arbitrary conditional expression q1 7 g2 : g3 denotes the
new object, because its value depends on the value of ¢;.

We will therefore define a function that removes all conditional expressions
from an assertion (except those inside expressions of the form old(e)). This
function is based on the following observation. Let @) be an arbitrary formula
without quantifiers. Let ¢ = ¢1 ? ¢2 : g3 be a conditional expression in ) which
does not occur inside an expression of the form old(e). Then Q is equivalent to

q1 = true — Q[(D)g2/q]
A q = false — Q[(D)gs/q (6.1)
A —defined(q1) — Q[(D)undefined/q| ,

where D = [q]. By [¢'/q] we mean here the operation that replaces every
occurrence of a logical expression g by another logical expression ¢’. To ensure
that every formula Q[q'/q] is well-typed we require that [¢] = [¢'].

The following lemma formally states the above-mentioned equivalence.

Lemma 6.1. For every formula Q without quantifiers, every state (s,h), and
every compatible freeze state (s',h'), we have

(s,h)(s',h') = Q if and only if (s,h)(s', k") = (6.1) .

Proof. By structural induction on ). For the base case we must prove that for
every expression ¢’, every conditional expression ¢ = ¢1 ? q2 : ¢3, every state
(s,h), and every freeze state (s, h’), we have
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L Lla](s,h)(s", 1) = tt = v = L]¢'[(D)g2/a]](s, h)(s", 1)

2. LIl (s, )(s', 1) = ff = v = LI¢'[(D)gs/all (s, h)(s, b')

3. Llg:](s,h)(s', 1)) = L = v = L[¢'[(D)undefined/q]] (s, h)(s', i)
LldT

h)(
h)(

where v = (s,h)(s’,h') and D = [¢]. All three claims can be proved easily
by structural induction on ¢'. O

We will define a function h* : QForm — QForm that repeatedly performs
this rewriting step until all conditional expressions have been removed from a
formula. But first we define a function h that executes this step once. Let Qg be
an arbitrary formula. If Qo contain no conditional expressions then h(Qg) = Qo.
Else, let ¢ = q1 7 g2 : g3 be the leftmost innermost occurrence of a conditional
expression in Qg (outside expressions of the form old(e)). Moreover, let Q be the
smallest subformula of Qg such that g occurs in Q'. Then h(Qp) is the formula
that is obtained by replacing @ in Qo by (6.1), where D = [¢]. Note that @
is always a formula without quantifiers because a formula Q' is always smaller
than a formula (3z e Q').

We have a lemma that states that h preserves the meaning of a formula.

Lemma 6.2. For every assertion @, every state (s,h), and every compatible
freeze state (s',h') we have

(s,h)(s', 1) = Q if and only if (s, h)(s",h) = h(Q) .
Proof. By structural induction on @. For the base case we need Lemma 6.1. O

Next, we define a family of functions h,, for n € N such that hg is the identity
function, and h,4+1(Q) = h(h,(Q)). Finally, we define h* as the function such
that, for every formula @, we have h*(Q) = h,(Q), where n is the smallest
natural number such that h, (Q) is a fixed point of h.

Note that every formula without conditional expressions is a fixed point of h.
The function h* is therefore well-defined if we can show that for each formula @
there exists an n such that h,,(Q) is a formula without conditional expressions.
This is not immediately clear because an application of h to a formula may
increase the total number of conditional expressions in a formula. For example,
formula (6.1) contains more conditional expressions than @ itself if @) contains
more than one conditional expression.

We can solve this issue by assigning a weight w to every formula. We define
w(Q) by induction on the structure of ). We have w(q) = (n + 4)!, where n is
the number of conditional expressions in q. The other cases are straightforward.

w(=(Q) = w(@Q)
W@ AQ2) = w(@Q1)+w(Q2)
w((F3zeQ)) = w(Q)

Then we can prove that the application of h to a formula always decreases the
weight of a formula. Let n be the number of conditional expressions in the
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formula @ in the context of (6.1). The weight of (6.1) is then 3x ((n—1)+4)! .
It is not difficult to see that n! > 3 x (n — 1)! for every n > 4. Hence

3Ix((n—=1)+4)=3x(n+4) —-1!'<(n+4)!.

Lemma 6.3. For every assertion Q we have that h*(Q) is a formula without
conditional expressions.

Proof. Along the lines of the given proof sketch. O
Naturally, we also want h* to preserve the meaning of a formula.

Lemma 6.4. For every assertion @, every state (s,h), and every compatible
freeze state (s',h') we have

(s, h)(s', 1) = Q if and only if (s,h)(s',h') Eh*(Q) -
Proof. A simple consequence of Lemma 6.2. O

It is not strictly necessary to remove all conditional expressions from a
formula in order to compute its weakest precondition. Elsewhere [PdB03b,
PdB03c], we give an alternative definition of a weakest precondition calculus
for object allocation which correctly handles conditional expressions. However,
the calculus that we present in the remainder of this section is much easier to
understand.

A clear disadvantage of the function h is that it increases the length of
formulas. This makes it harder for human beings to read the resulting formulas.
However, the case analysis which it performs is probably similar to the way
in which a theorem prover would try to prove the validity of formulas with
conditional expressions. This suggests that h* merely implements a proof step
that would otherwise be executed by the theorem prover!

Nuclei

We now return to our discussion of the atoms of our contextual substitution
operation. We have observed that in order to correctly identify all atoms we
have to be able to check statically whether a particular expression denotes the
new object. We will call an expression that denotes the new object a nucleus.

Recall that u is the only program variable that references the new object
after its allocation by the statement w := alloc(C). However, we have also seen
that expressions like (C')u denote the same value. We will prove that all other
expressions cannot denote the new object (under some assumptions which we
clarify below). Most expressions cannot denote the new object because the
domain of their type does not include the new object. We will discuss the
remaining cases in more detail.

A logical variable z can only reference the new object if it occurs inside a
formula (3z e Q). For free occurrences of logical variables never refer to the new
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object because the new object is only assigned to u. We will revisit this issue
when we define the result of our contextual substitution operation on formulas
of the form (3z e )). We will then take measures which ensure that it is safe
to assume that z never denotes the new object. A similar remark can be made
about expressions of the form z[¢q]. We also assume that all formulas do not
contain conditional expressions.

If these assumptions hold, then we can define the set of nuclei using the
following grammar.

v € Nuclei :=u | (D)v

We assume here that C' < D. Note that the value of an expression (D)g can
only be the new object if C < D because otherwise the cast will fail whenever
q references the new object.

The lemma below justifies our definition of the set of nuclei.

Lemma 6.5. Let q be a logical expression in which no conditional expressions
occur outside expressions of the form old(e). Furthermore, let (s,h) be an ar-
bitrary state, and let (s',h’) be a compatible freeze state. Let o = (C,14) be such
that h(o) is undefined. Then

Lq)(s", ") (s', 1) = o if and only if g € Nuclei ,
where s = s[u o] and b’ = h - [o — nit(C)].

Proof. By structural induction on gq. Note that u is the only reference to o in
the new state because o does not exist in the state (s, h). O

Contextual Substitution in Expressions

We will define the result of g[new(C')/u] by induction on the structure of a logical
expression ¢. Because [new(C)/u] is a contextual substitution which substitutes
atoms (of which the nuclei are always a part) we do not have to define the
result of v[new(C)/u]. That is, g[new(C)/u] is not defined for expressions ¢
which denote the new object. However, we will define the result of g[new(C')/u]
for all atoms, and for all other logical expressions.

We will use in our definition of g[new(C')/u] the convention that ¢’ and ¢”
denote arbitrary logical expressions that are mot nuclei. The simple cases of
g[new(C')/u] which do not involve an atom are gathered in Figure 6.1. We will
discuss the other cases in more detail.

The first interesting case is g.z[new(C)/u] because ¢ can be a nucleus. We
have

v.znew(C)/u] = init([v.z])

because we know that every field of the new object has its default value after
the allocation, and init([v.z]) denotes this value. This case nicely illustrates
our approach: our contextual substitution replaces atoms by expressions that
have the same values. To ensure that the operation is type-preserving we have
v.z[new(C)/u] = (D)init(D), where D = [v.x], if D is a reference type. If ¢ is
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nulllnew(C)/u] = null
this[new(C)/u] = this
Wnew(C)/u] = o (v #u)
op(a1.- - gu)lnew(C)/u] = op(qi[new(C)/ul, .., qu[new(C)/u])
undefined[new(C)/u] = undefined
defined(g)[new(C')/u] = defined(g[new(C')/u])
zlnew(C)/u] = z (2Zw)
old(e)[new(C)/u] = old(e)
2lgllnew(C)/u] = lglnew(C)/u]
length(z)[new(C)/u] = length(z)

Figure 6.1: Selected simple cases of the weakest precondition operation of object
allocation.

not a nucleus we have ¢'.z[new(C)/u] = (¢'[new(C)/u]).z. The fact that ¢’ is
not a nucleus ensures that ¢’'[new(C')/u] is defined.

The definition of ¢ instanceof D[new(C')/u] requires a similar case split. If ¢
is a nucleus, we can again predict the value of the atom in the final state. The
second equation describes all cases where ¢ is not a nucleus.

) /] true ifC <D
v false otherwise
C)/u]

(¢'[new(C')/u]) instanceof D
The definition of (¢ = ¢)[new(C)/u] is interesting because it often yields a result
that is simpler than the original expression. We can distinguish four cases.

v instanceof D[new(C

¢’ instanceof D[new(

(v =v)[new(C)/u] = true
(v =¢)[new(C)/u] = false
(q =v)[new(C)/u] = false
' [ )/ul

(¢" = q")[new(C = (¢'[new(C)/ul) = (¢"[new(C)/ul)

Our final case concerns expressions of the form (D)g. We have
(D)v[new(C)/u] = (D)undefined if C A D
(D)q'[new(C)/u] = (D)(q'[new(C)/u])

Note that we do not have to define (D)v[new(C)/u] if C' < D because in that
case (D)v € Nuclei.

The following lemma states that g[new(C)/u] is defined for every logical

expression ¢ that is not a nucleus. It implies that g[new(C)/u] is defined for

every expression of type boolean, which is important because only expressions
of type boolean can be used in our assertion language as postconditions.

u

Lemma 6.6. For every logical expression q in which no conditional expressions
occur outside expressions of the form old(e) we have that g[new(C)/u] is defined
if and only if ¢ & Nuclei.
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Proof. By structural induction on gq. O

The operator is also type-preserving.

Lemma 6.7. Let q be a logical expression such that gnew(C)/u] is defined.
Then [qlnew(C)/u]] = [q].

Proof. By structural induction on gq. ]

Finally, we have a lemma that states that g[new(C)/u] denotes the same
value in the initial state as ¢ in the state after execution of u := alloc(C).

Lemma 6.8. Let q be a logical expression such that g[new(u)/C] is defined.
Let (s, h) be an arbitrary state, and let (s',h’) be a compatible freeze state. Let
o= (C,1) be such that h(o) is undefined. Then

E[[q[neW(C)/u]]](s, h) (8/7 hl) = ‘C[[q]](‘s”’ h”)(s/v h/) )
where " = s[u— o] and b = h - [0 — init(C)].
Proof. By induction on the complexity of ¢q. We will discuss two illustrative

cases here. For ¢ = z we have z[new(C)/u] = z. By the construction of s” we
have s(z) = s"(z). So we can reason as follows.

Ll=new(C) /ull(s, B)(s', W) = L[N (s, h)(s 1) = s(2) = 8" (2)
= L[1(s", W)/ )

Next, we will consider all four cases of ¢ = q1 = 2. First, let ¢ = 11, = vs.
Lemma 6.5 implies that L[v1](s”,h")(s',h") = L[] (s”,h")(s',h’) = 0. Then

L[(v1 = v2)Inew(C)/u][ (s, h)(s", h') = Ltrue](s, h)(s', 1) = tt
= L1 = ] (s", 1) (s, ') .

Secondly, let ¢ = v = ¢/. By definition ¢’ ¢ Nuclei. Hence Lemma 6.5 implies
L[¢'1(s",h")(s', k') # o. By the same lemma we get L[v](s”,h")(s’,h') = 0. So

L(v = ¢)new(C) /ull(s, h)(s', b') = L[False](s, h)(s', h') = fF
_ ,C[[V _ q’](s”, h//)(sl’ h/) )

The case ¢ = ¢’ = v is similar. Finally, let ¢ = ¢’ = ¢’. This case follows
immediately from the induction hypothesis. Note that Lemma 6.6 ensures that
¢'[new(C)/u] and ¢"'[new(C)/u] are defined. O
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The Weakest Preconditions of Formulas

The extension of [new(C)/u] to formulas is straightforward in most cases. Ob-
serve that a formula can never be a nucleus because a formula has type boolean.

(=Q)[new(C)/u] = —~(Q[new(C)/u])
QA Q)new(C)/u] = (Q[new(C)/u]) A (Q'[new(C)/u])
(Fz:teQ)[new(C)/u] = (Jz:teQ[new(C)/ul), if t € {int, boolean}
(G t" e Q)new(C)/u] = (3=:1° o Qlnew(C)/ul), if t € {int, boolean}

However, quantification over objects requires some care because object allo-
cation may extend the domain of quantification. The domain of quantification
of a formula (3z : D e Q) is extended if the formula quantifies over a super-
type D of the class C of the new object. Consider, for example, the formula
(3z : C @ =(z = null)). The new object ensures that this formula holds in the
extended state.

A formula (3z : DeQ) may hold in the postcondition for either the new object
or some old object. For this reason, the weakest precondition of (3z : D e Q)
has two clauses, which correspond to these two options.

(3z: D e Q)[new(C)/u] =

{ (3z: D e Q[new(C)/u]) V (Qlu/z][new(C)/u]) if C =D
(3z: D e Q[new(C)/u]) otherwise

The first case corresponds to a domain extension. The first disjunct of this case
represents the possibility that P holds for an old object, whereas the second
disjunct covers the possibility that P holds for the new object. Recall that
our contextual substitution operation assumes that occurrences of the logical
variable z do not reference the new object. This assumption gives the first
disjunct its intended meaning. In the second disjunct we want z to denote the
new object. This is achieved by replacing z by u in that clause.

Example 6.1. Consider the formula (3z : C @ =(z = null)), which states that
there exists an object of class C (or some subtype of class C'). This formula
clearly holds after the allocation of an object of class C. Therefore we expect that
its weakest precondition with respect to the statement u := alloc(C) is equivalent
to true. We can compute this weakest precondition as follows.

C o —(z = null))[new(C) /u]
: C e =(z = null)[new(C) /u]) V =(z = null)[u/z][new(C) /u]
: C o =((z = null)[new(C)/u])) V =(u = null)[new(C) /u]
: C o ~((=[new(C) /u]) = (nullfnew(C) /u]))) v ~( (e = null)[new(C) /]
: C o —(z = null)) vV —(false)

e m 4D

A/-\A/-\ t\z

The resulting formula is indeed equivalent to true.

If a formula of the form (3z : D* e Q) is valid in the state after an object
allocation, and if C' < D, then it holds for a sequence of objects that may include
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the new object at various positions. This means that there may be expressions
of the form z[i] in @ that denote the new object, which would undermine our
definition of the set of nuclei. We solve this issue as follows. Note that we can
construct a boolean sequence z’ of the same length as z such that 2'[i] = true
holds if and only if the object at position 7 in the sequence of objects happens
to be the new object. For this sequence, we have that

z[i] = (2'[i]?u : 2[d]) .

The expression on the right-hand side of this equation has the advantage that
its subexpression z[i] is not evaluated if it denotes the new object. For the ex-
pression u determines the value of the conditional expression if z’[¢] holds. Thus
this equivalence reveals a way to reestablish our assumption in every expression
on which the value of the weakest precondition depends.

We use an additional postfix operation (z||%) to replace expressions of the
form z[i] by (#'[{]?u : z[i]). Its two characteristic cases are listed below.

length(2)(z]%/)
(zla))(=112)

The cast in (D)u can be omitted if [u] = D. The operation (z||%) is defined for
the remaining expressions and extended to assertions in the standard way. It is
not defined on z, but z can only occur in the two contexts that are described
above.

We would like to point out here that our choice to support only two operators
on sequences (indexing and the length(.) operator) ensures that the definition
of ¢(z||%) is straightforward. Allowing other operators on sequences (like con-
catenation) would complicate the definition of this operation. However, most
operators on sequences can be encoded in terms of our two basic operators.

With the operation (z /%) we can define the final case of Qnew(C)/u].
The idea behind the definition of (3z : D* e Q)[new(C)/u] is that the formula
(3z: D* ¢ Q)[new(C)/u] holds in the final state if and only if there exists a
sequence z’ as described above which can be used to do the replacement.

length(z)
Zalzl2)] 7 (D)u = 2[q(Al[%)], where D = [2[q]]

2!

(3z e (32’ e length(z) = length(z’)
(3z: D* e Q)[new(C) /u] = A (W (Q(z]|%))[new(C) /u]))) if C <D
(3z : D* e Q[new(C)/u)) otherwise

We have to insert the function h* in the right-hand side of the equation because
(2]|%) may insert new conditional expressions in Q.

The following lemma shows that Q(z||%) denotes the same value as @ pro-
vided that the values of z, 2z’ and u are as described above.

Lemma 6.9. Let Q be an arbitrary assertion in which the logical variable z' :
boolean™ does not occur. Let u be a local variable such that C < [u]. Let z : D*
be a logical variable such that C < D. Let (s,h) be a state, and let (s',h') be a
compatible freeze state. Let o = (C,i) be such that h(o) is undefined. Let U be
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a sequence such that v € dom(D*) and rng(v) C dom(h). Let v’ be a sequence
that is obtained from © by replacing an arbitrary number of elements in v by o.
Let 3 be a boolean sequence of the same length as U such that the i-th element
of B is tt if and only if the i-th element of ¥ is 0. Then

AlQNIN(S" [z, 2" = 9, 8], h")(s', h') = A[QI(s"[z = '], ")(s', ')
where s = s[u > o] and b’ = h - [o — nit(C)].

Proof. By structural induction on Q. For the base case we must prove that, for
every logical assertion q # z,

Llg(212))(s" [z, 2" = 0, 8], k")(s" . 1) = LIa)(s"[z = 0], ") (s, 1)

by structural induction on g. We will tackle the case ¢ = z[¢'], which is the only
interesting case of both claims. Recall that z[¢'](z]|%) is syntactically equivalent
to 2'[¢'(z]|4)] 7 (D)u : z[¢'(z]|%)]. So we must prove that

LI2'[g"(2l12)] 7 (D)u = zlg' (2A[2)]1(s" [z, 2" = v, 8], h") (s, 1)
= L[z[¢]](s"[z — ¥'],h")(s', 1) . (6.2)

By the induction hypothesis we have
Llg (28" [z 2" = 0, 8L ") (s, 1) = LIg'N(s" [z = 0] B")(s )

Let i = L[¢](s"[z — '], R")(s', ). If i is out of bounds for v, then i is also
out of bounds for ¥ and 3. Hence both sides of the equation in (6.2) eval-
uate to L. For all other indices 7 we must distinguish two cases. First, let
L[z[d(s" [z — ], W) (s', 1) = o. From s”(u) = o and C =< D follows that

L[(D)u](s"[z, 7 + v, 8],h")(s',h') = 0. Moreover, for this case we have
LI [q AN [z, 2 = 0, 8L A") (s, 1) = tt

by the construction of 3 and the induction hypothesis. Then clearly (6.2). In
the second (and final) case we have L[z[¢']](s”[z — ¥'],h")(s',h') # o. This
means that the object at position 7 in the sequence o’ is not o. Therefore it is
equal to the object at position ¢ in ©. Moreover, for this case we have

LI AN (" [z, 2" = 0, B, B7)(s', B) = ff

by the construction of 3 and the induction hypothesis. Equation (6.2) then
follows from the definition of L[.]. O

The most important result of this section is a lemma that states that, for
every assertion () without conditional expressions outside expressions of the
form old(e), Q[new(C)/u] denotes the same value before u := alloc(C) as @
after the allocation. It will enable us to prove that h*(Q)[new(C)/u] is the
weakest precondition of u := alloc(C') with respect to Q.
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Lemma 6.10. Let Q be an arbitrary assertion without conditional expressions
outside expressions of the form old(e). Let (s,h) be an arbitrary state, and let
(s',h') be a compatible freeze state. Let o = (C,i) be such that h(o) is undefined.
Then

A[QInew(C) /ull (s, h)(s', 1) = A[Q)(s[u — o], b - [o — init (C)))(', ) .

Proof. By induction on the complexity of . A non-standard complexity mea-
sure is required to prove the theorem because the operations h* and (z||%,) may
increase the length of a formula.!

We will consider the most interesting case, which concerns an assertion of
the form (3z: D* e Q). If C A D we have

A[(3z : D* e Q)[new(C)/u]](s, h)(s', 1)
= { def. [new(C)/u] and D £ C }
A[(3z : D* e Q[new(C)/u])] (s, h)(s', k)
= {def. A[]}
A[Q[new(C) /u]](s[z — v], h)(s',h’) = ¢t for some & such that
v € dom(D*) and rng(v) C dom(h)
= {ind. hyp. }
A[Q](s[z — 9][u — o], h - [o — init(C)])(s', ') = tt for some & such
that o € dom(D*) and rng(v) C dom(h)
= { C A D and Lemma 2.2 imply o ¢ dom(D) }
AlQ](s[z — v][u+— o], h - [0+ init(C)])(s’', h') = tt for some ¥ such
that © € dom(D*) and rng(v) C dom(h) U {o}
= {def. A[ ] andu#z}
A[(3z: D* e« Q)](s[u > o], h - [0 — init(C)])(s',h) .

Now let C < D. Then (3z: D* e Q)[new(C)/u] is syntactically equivalent
to (3z e (32’ e length(z) = length(2’) A (h*(Q(z||%))[new(C)/u]))) by the defini-
tions of h* and [new(C)/u]. Let us assume that the latter formula holds in
the state (s,h) and the freeze state (s',h’). So there exists a sequence o
such that o € dom(D*), rng(?) C dom(h), and a sequence of boolean values
3 € dom(boolean™) of the same length such that

A[N(QUIZ)) Inew(C) ful)(s[z, 2" — v, 8], h)(s', h') = tt .
From the induction hypothesis follows that
ATV (QUEN(slz. 2/, u = 8, B0l - [o — init(C))) (', 1) = .
Then we get
A[Q(2|“)](s]z, 2/, u v D, B, 0], h - [0+ init(C)])(s',h') = tt .
I1We need a complexity measure that assigns a greater weight to the formula (32 e Q) than
to h*(Q(z]|%)). Note that the operations h* and (/%) can only increase the complexity of

a formula. It therefore suffices to assign to every quantified formula (3z e Q) the standard
complexity of h*(Q(2||%,)) plus some positive number.
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using Lemma 6.4. Let 0’ be the sequence of objects of the same length as v
such that the i-th element of ¥’ is o if the i-th element of 3 is #¢, and the i-th
element of ¥ otherwise, for every valid index of ¥’. By Lemma 6.9 we then get

A[Q](s[u + o[z — '], h - [0+ init(C)))(s',h') = tt .

Note that o' € dom(D*) because C' < D implies 0 € dom(D) (Lemma 2.2).

Clearly, we also have rng(v') C dom(h) U {o}. Therefore
A[(3z: D* e Q)] (s[u+— o], h - [0+ init(C)])(s',h') = tt , (6.3)

which finishes one direction of the proof.
Our proof of the opposite direction starts from (6.3). Let o* be a sequence
such that o* € dom(D*), rng(v*) C dom(h) U {0}, and

A[Q](s[u + o[z — 0*],h - [0 init(C)])(s',h') = tt .

Let 5* be the sequence of boolean values of the same length as o* such that
the i-th element of 3 is tt if and only if o is the i-th element of ©*, for every
valid index i of 3. Next, consider the sequence o' that is obtained from 7* by
replacing every occurrence of o by null. Clearly, we have o7 € dom(D*) and
v* C dom(h).

At this point, we use Lemma 6.9 in the opposite direction to obtain

A[QEN (slu = ol[z, 2" = 0T, 3], h - [0 — init (C)))(s', h') = tt
which in turn implies that
AP Q2N (s[u = o][z, 2" = 0T, B*], b - [0 init(C)])(s', B') = #t
holds according to Lemma 6.4. And by the induction hypothesis we then get
AR (Q(=]12)) Inew(C) /ull (s[z, 2" = 0T, B, h)(s', By =t . (6.4)
Recall that ((3z : D* e Q)[new(C)/u]) is the formula
(3z o (32" e length(z) = length(2) A (h*(Q(z]|2/))[new(C) /ul))) -

It is not difficult to prove that A[((3z: D* e Q)[new(C)/u])](s,h)(s', ') = tt

follows from (6.4) by the definition of A[_] and the construction of o' and g*. O

Our first theorem in this chapter states that h*(Q)[new(C)/u] is a valid
precondition of @ with respect to u := alloc(C).

Theorem 6.11. For every assertion Q, and every class C and local variable u

such that C < [u], we have = {h*(Q)[new(C)/u]} u := alloc(C) {Q}.
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Proof. Let (u := alloc(C),(s, h)) — (s”,h") and (s, h)(s', ') =h*(Q)[new(C) /u].
This computation can only be derived using rule OA of the operation semantics.
Hence the assumption of that rule, which says that there exists and object
o = (C,%) such that h(o) is undefined, also holds. Moreover, we have s’ =
slu +— o] and B = h - [o — init(C)]. By Lemma 6.3 and Lemma 6.10 we get
(s",h")(s', ) E h*Q. Then (s”,h")(s', ') E Q follows from Lemma 6.4. O

Our second theorem of this chapter shows that h*(Q)[new(C)/u] is not only
a valid precondition for every postcondition ), but that it is also the weakest
possible precondition of u := alloc(C') with respect to ). Moreover, it entails
that the validity of the assertion @ — (h*(Q")[new(C)/u]) implies the validity
of the Hoare triple {Q} u := e {Q'} for every pair of assertions Q and @', which
means that we can show the validity of a proof outline = {Q} u := alloc(C) {Q’}
by proving the formula @ — (h*(Q")[new(C)/ul).

Theorem 6.12. Let Q, Q' be arbitrary assertions. Let C be a class , and let u
be a local variable such that C =< [u]. Then

F{Q} u:=alloc(C) {Q'} = EQ— (h"(Q)new(C)/u]) .

Proof. First, we prove that the validity of {@Q} u := alloc(C) {Q'} implies
EQ — (h* ( "Nnew(C)/u]). Let (s,h)(s',h') E Q, and let o = (C,4) be such
that h(o) is undefined. Then we can derive (using rule OA) the computation
(u = alloc(C), (s,h)) — (s”,h"), where s” = s[u — o], and the heap h" =
h-lo — init(C)]. From = {Q} w := alloc(C) {Q'} and (s,h)(s',h) = Q we
may then conclude that (s”,h”)(s',h’') = Q’, which according to Lemma 6.4
and Lemma 6.10 is equivalent to (s, h)(s’, ') E h*(Q")[new(C)/u].

To prove the remaining implication we assume that (s, h)(s’,h’) E @, and
that (u := alloc(C), (s, h)) — (s”, h"). By the validity of @ — (h*(Q’)[new(C) /u])
we get (s,h)(s',h') = (h*(Q")[new(C)/u]). The assumption of rule OA, which
must have been used to derive the above computation, states that there exists
an o = (C,4) such that h(o) is undefined. Moreover, the rule ensures that
s" = slu — o] and that b = h - [0 — init(C)]. Hence Lemma 6.10 implies that
(s",h")(s', 1) = h*(Q'). Then Lemma 6.4 yields (s”,h")(s', ) = Q'. O

6.1.2 Strongest Postconditions of Object Allocation

We have seen in the previous section how one can reason about object allocation
using a weakest precondition calculus. We will show in this section that it is
also possible to reason about object allocation ‘in the opposite direction’, i.e.,
by means of the strongest postcondition of object allocation. We will construct
a formula in our assertion language that expresses the strongest postcondition
sp(Q, u := alloc(C)) of the statement u := alloc(C') with respect to a precondi-
tion Q.

There are four aspects of object allocation that need to be reflected by
the strongest postcondition sp(Q,u := alloc(C)). Firstly, it must describe the
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internal state of the new object. Secondly, it has to fix the allocated type of the
new object. Thirdly, it must express the ‘freshness’ of the new object. That is,
it should imply that u is the only reference to the new object after the allocation
of the new object. And finally, it must state that the properties of the state as
described by @ still hold (although they do not apply to @). This assumption
is valid because object allocation has no effect on existing parts of the state.

The first aspect concerns the fields of the new object. Every field of the new
object has its default value after allocation, which is expressed by the following
formula.

~(u = nul) A /\DGSuperCls(C) (/\zeFields(D) <((D)u)'x - init([x}))) (@)

Here SuperCls(C) denotes the set {D|C < D}, i.e., the set that contains every
superclass of C.

The second aspect is even simpler to describe. The formula (@) below
states that the new object u belong to the domain of C, and that it does not
belong to the domain of some subclass of D, which implies that its dynamic
type is C:

u instanceof C'A /\DerSuprs(c) —u instanceof D . (Q2)
The expressions PrpSubTps(C) in this formula denotes the set {D|D < C},
which contains all proper subtypes of C. (An obvious optimization would be to
consider only the immediate subtypes of C, but we use the present formula for
simplicity.)

We now turn out attention to the third aspect: the ‘freshness’ of the new
object. The identity of the new object is unequal to the identity of any of the
previously allocated object. We express this fact using a logical variable O : C*
which is assumed to contain all other objects that also belong to dom(C) (we
will eventually existentially quantify over this variable). Our third clause says
that u is the only object that does not occur in this sequence O.

~(ueO)ANNMo:Ceo=uVoeO) (Q3)

The freshness of the identity of the new object does also imply that no other
variable stores a reference to the new object. More precisely, no instance vari-
able, logical variable or local variable other than u may point to the new object.
The following formula says that no field of any object references the new object.

/\C (/\weFiEldS(C)ﬁ{w’Cj[l"]}(vo 1000w = u))) (Q4)

It is also not difficult to express that every local variable different from u does
not point to the new object; only a finite number of local variables are in scope,
and we assume in ((Q5) that v is one of those variables.

/\UE{U0|Cj[vo]}\{u} ~(v=1u) (Qs)
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However, the set of logical variables that may occur in proof outlines is not a
priori finite. This makes it impossible to express in a finite first-order formula
that none of these variables references the new object. We therefore only say
in (Qg) below that the logical variables that occur free in the precondition Q
do not point to the new object. This decision has consequences for the set of
Hoare triples that we can allow. We will say more about this issue below.
—(u € 2)
(Qe)
We assume here that FLV (Q) denotes the set of logical variables that occur free
in Q.

Finally, we should also say that the new object does not exist in the freeze
state. More precisely, we should state that every expression of the form old(.)
does not denote the new object. Again, this is problematic because there are
infinitely many expressions of this form. We solve this issue similarly by only
taking expressions of the form old(e) into account of which e is a subexpression
of some expression €’ such that old(e’) occurs in the precondition Q).

—(old(e) =u)  (Q7)

We assume that SubEzprs(Q) denotes the set of all subexpressions of Q.

The final aspect of the strongest postcondition concerns the properties of
the initial state as described by the precondition ). As observed above, these
properties still hold after object allocation because the only existing part of the
state that is being modified by the addition of a new object is the local variable
u. We will therefore replace this variable by a existentially quantified logical
variable z.

Furthermore, we must ensure that the meaning of quantified subformulas in
@ is restricted to objects of the initial state. This can be achieved by restricting
quantification in @ to the objects in Q. We denote a formula @ in which
quantification is restricted to O by @ |§. Formally, we define Q |§ by structural
induction on . The only interesting cases are as follows.

(3z:teQ) |G (3z:te(Q15)) fort e {boolean,int}
(3z:t* Q) |G (3z:te(Q1G)) fort e {boolean,int}

/\ —(z=u) A /\
z€FLV(Q)N{z0|C=[z0]} z€FLV (Q)N{z0|[z0]=D* and C<D}

/\ee{eo|60€SubEmst(el) and C=[eg] and old(eq)€SubEzprs(Q)}

. / _ (Fz:DezeOA(QLG) fC=D
(z:DeQ) 1o = (3z:De(Q 1)) © otherwise
) / _ (3z:DezcOAN(QL%)) IfC=D
Gz:De Q) lg - (Fz:De(Q lg)) ° otherwise

The final clause of our strongest postcondition of a statement « := alloc(C') with
respect to an arbitrary precondition ) is then the formula

(32 : [u] e =(2 = u) A (Q[z/u]) 15) - (Qs)

The following lemma basically says that @ holds before object allocation
if and only if Qg holds after the object allocation provided that O denotes a
sequence of all the objects in dom(C) that existed in the initial state.
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Lemma 6.13. Let QQ be an arbitrary assertion, and let C' be an arbitrary class.
Let (s, h) be an arbitrary state, and let (s',h’) be a compatible freeze state. Let
o = (C,4) be such that h(o) is undefined. Let u be a local variable such that
C =< [u]. Assume that O : C* and z : [u] are two logical variables that do not
occur in Q. Let v be a sequence of the objects in dom(h) N dom(C). Then

-A[[QH (Sv h)(s/, h/) = A[[Q[Z/’LL] lg]](sua h/,)(slv hl) ’
where s = s[z,0 — s(u), ] and ' = h - [o — init(C)].
Proof. By structural induction on Q. O

With clauses Q1-Qs we can define sp(Q,u := alloc(C)). It says that there
exists a sequence of C-objects such that the clauses @1 up to Qg hold.

sp(Q,u = alloc(C)) = (30 : C* o /\f=1 Q) .

In the remainder of this section, we will discuss two properties of the formula
sp(Q, u := alloc(C)). Firstly, we will prove that sp(Q,u := alloc(C)) is a valid
postcondition of the precondition @ for the statement u := alloc(C).

Lemma 6.14. For every precondition ), every local variable u, and every class

C we have = {Q} u := alloc(C) {sp(Q,u := alloc(C))}.

Proof. Straightforward. The strongest postcondition holds in the final state if
we assign a sequence of the objects in dom(C) that existed in the initial state
to O. The only interesting part of the proof, which concerns formula Qs, is
described by Lemma 6.13. O

Secondly, we would like to prove that

E{Q} u = alloc(C) {Q'} implies = sp(Q,u := alloc(C)) — Q" ,

for every postcondition Q’. This property says that sp(Q, u := alloc(C)) is the
strongest postcondition of u := alloc(C') with respect to the precondition Q.

Unfortunately, the latter property does not hold for arbitrary Hoare triples
{Q} u = alloc(C) {Q'}. This is ultimately caused by the fact that we cannot
express the freshness of an object with respect to the values of an infinite set
of variables by means of a finite formula. Hence we had to limit quantifica-
tion in (Qe) to logical variables that occur free in (. Similarly, we restricted
quantification in (Q7) to expressions of the form old(e) that occur in Q.

We address this issue by putting some additional restrictions on Hoare
triples. We will prove that the property holds for all Hoare triples that sat-
isfy these restrictions.

Definition 6.1. A Hoare triple {Q} S {Q'} (see Section 3.2) is conservative if

e cvery logical variable that occurs free in Q' also occurs free in Q, and
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o for every subexpression of Q' of the form old(e) there exists an expression
e’ such that e is a subexpression of €' and old(e’) is a subexpression of Q.

This restriction seems quite natural because the purpose behind the use of
logical variables is to freeze initial values of program variables. Logical variables
can only fulfil this task if they occur in the precondition of the Hoare triple.
The same can be said about expressions of the form old(e). We will not restrict
Hoare triples of the form {P} m@QC {Q} in the same way because expressions
of the form old(e) are not allowed in P.

We need the following additional definitions in the sequel of our investigation
of the properties of sp(Q,u := alloc(C)). Let h\ {0} denote the heap that is
obtained from h by removing object o from its domain, and by assigning null
to every field that points to o. Let s\ {o} be the stack that is obtained from
s by assigning null to every local and logical variable v with s(v) = o, and by
replacing o by null in every sequence of values s(z) of a sequence variable z.

We will present a series of lemmas that describe the effect of object removals
on the validity of assertions. Our first lemma states that the removal of an object
from the heap has no effect on formulas in which quantification is restricted.

Lemma 6.15. Let QQ be an arbitrary assertion, and let u be a local variable such
that C < [u]. Let (s,h) be a state such that s(u) = o and o € dom(h)Ndom(C),
and s is consistent with h\ {o}. Let (s',h’) be a freeze state that is compatible
with (s,h\ {o}). Then

A[Q 18](s, h)(s'. 1) = A[Q 1G] (s, h \ {o})(s', ) -
Proof. By structural induction on Q. O

Our second lemma says that we can remove an object from the stack without
changing the validity of an assertion if the assertion has no free occurrences of
variables that reference the removed object before the removal. However, the
lemma also supports one specific reference to the old object that is restored.

Lemma 6.16. Let Q be an arbitrary assertion. For every state (s,h) and
compatible freeze state (s',h’), and every object o € dom(h) N dom(C') such that
s(u) = o, we have that if

(s, b)(s', W) = /\ve{vo\Cj[vo]}\{u} "o=u)
(s, m)(s', W) = N\ ~(z=u) , and

z€FLV(Q)N{z0|C=[z0]}
(s, h)(s' ') = N\ ~(uez)

z€FLV(Q)N{zo0|[z0]=D* and C<D}

then
A[QI(s,h) (s, 1) = A[Q]((s \ {o})[u + o], h)(s', 1) .

Proof. By structural induction on Q. O
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Our final lemma describes the effect of object removal in the freeze state.

Lemma 6.17. Let Q be an arbitrary assertion. For every state (s,h) and
compatible freeze state (s',h’), and every object o € dom(h) N dom(C') such that
s(u) = o, we have that if

A —(old(e) = u)
e€{eoleo€SubEzprs(e1) and C=<[eg] and old(e1)€ESubExprs(Q)}

holds in the state (s,h) and the freeze state (s',h') then
A[QI(s, h)(s", h) = A[QI(s, h)(s"\ {o}, h" \ {o}) .
Proof. By structural induction on Q. O

Our final result in this section is a theorem that states that the formula
sp(Q, u := alloc(C)) as defined above denotes the strongest postcondition of u :=
alloc(C) with respect to Q.

Theorem 6.18. Let C' be an arbitrary class, and let w be an arbitrary local
variable. Let {Q} u := alloc(C) {Q} be a conservative Hoare triple. Then

E{Q} u:=alloc(C) {Q'} implies = sp(Q,u = alloc(C)) — Q" .

Proof. Assume that (s, h)(s’, ') = sp(Q,u := alloc(C)). This means that there
exists a sequence ¥ of objects from dom(h) N dom(C) such that

(10— o (s W) N, 5P (6.5)

Let o = s(u). We will prove that there exists a state (sg, ho) and a compatible
freeze state (s{, h{) such that

(u = alloc(C), (s0, ho)) — (s, hq) and (so, ho)(sg, hy) E Q (6.6)
where s§ = so[u — o], and h{j = hg - [0 — init(C)]. By the validity of the Hoare
triple {@Q} w := alloc(C) {Q’} and (6.9) this implies

(59, ) (50, ho) = Q" - (6.7)

Finally, we will argue that (6.7) implies that (s, h)(s’,h') E @Q’.

We start with the state (sg,hg). Observe that (6.5) states that we have
(s[O +— ©],h)(s',h') EQs. Hence there exists a value vy € dom([u]) N dom(h)
such that vy # o, and moreover

(5[0, 2 — B, 0], h)(s', W) = Q[z/u] 1S . (6.8)

This value vg will be the value of u in sg. Let sg = (s \ {o})[u — wvg] and
ho = h\ {o}. Thus s is consistent with hg.
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The state (so, ho) satisfies the premiss of rule (OA) because hg(0) is undefined
and because @2 in (6.5) implies that the dynamic type of o is C. Hence

(u = alloc(C), (s0, ho)) — (85, hg) - (6.9)

Next, let s, = s’ \ {o} and hj = A’ \ {0}. Our new aim is to prove that
(s0,ho)(sh, b)) E Q. According to Lemma 6.13 it suffices to prove

(50[07 Z =0, UO]? ho)(867 hé)) ’: Q[Z/u} lg . (6'10)

(Note that Q3 in (6.5) is needed here to ensure that ¥ is a sequence of the objects
in dom(hg) N dom(C)).) Lemma 6.15 states that Eq. (6.10) is equivalent to

(50[0, 2 — v, 00, h) (55, hy) = Qlz/u] 1 (6.11)

because the clause —(u € O) of Q3 in (6.5) ensures that so[O — 7] is consistent
with hg, and moreover vy # 0. Observe that

50[0, z — T,v9] = (s \ {o})[u — v9][O, z — T,vg] = (s[u, O, z — v, T, v9])\ {0}

because zg # o and 0 € ¥ (@3 in (6.5)). Then we can use Lemma 6.16 to prove
that (6.11) is equivalent to

(s[u, O, z — g, T, vo], h) (s, hiy) = Qlz/u] 1§ (6.12)
which in turn is equivalent to
(s]0, 2 = v, v0], h)(s5, hg) |= Qlz/u] 1§ (6.13)

because u does not occur in Q[z/u] |§. Finally, we observe that (6.13) fol-
lows from (6.8) via Lemma 6.17 because clause @7 in (6.5) ensures that the
premisses of Lemma 6.17 hold. This line of reasoning therefore shows that
(0, ho) (35, ) = Q-

Using the validity of {@} u := alloc(C) {Q'} and the computation in (6.9)
we then conclude

(50, ho) (50, ho) = Q" - (6.14)

Recall that h§ = ho - [o — init(C)] = (b \ {0}) - [o — nit(C)]. Note that
(4 in (6.5) implies that ho assigns the same values as h to fields of objects
other than o because not a single instance variable points to o in h. We claim
that (h\ {0}) - [o — init(C)] = h follows from (6.5) because @; says that each
instance variable of o has its default value in h. Hence (6.14) is equivalent to

(s0, M) (s0,h0) F Q" - (6.15)

Recall that s§ = so[u — o] = s(u\ {0})[u— vol[u+— o] = s(u\ {o})[u — 0.
Because Q' is part of a conservative Hoare triple we know that every logical
variable that occurs free in @' also occurs in ). For this reason, we have by
(6.5) (in particular Qg) that each logical variable that occurs free in @’ does not
point to o. Similarly, we have by @5 that each local variable v that is distinct
from u does not reference the new object. Therefore we can use Lemma 6.16
to obtain (s, h)(s(, hy) E @ from (6.15). Observe that Q7 in (6.5) implies that
the conditions of Lemma 6.17 are met. Hence (s, h)(s',h') = Q. O
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6.2 Object Initialization

As explained in the introduction of this chapter, object allocation is only the first
part of the execution of a statement u := new C(eq,...,e,). Upon completion
of the allocation, the constructor method of class C' is executed with the new
object as receiver. A constructor method typically initializes the fields of a new
objects with specific values. Finally, a reference to the new object is assigned
to the local variable u. (Rule OC in Section 2.2.3 provides a formal description
of the execution of u := new C(eq,...,ey).)

In this section, we will define the verification condition of a Hoare triple
of the form {@Q} u := new C(eq,...,en) {Q'}. Interestingly, such a verification
condition combines three previous results. We will employ our analysis of object
allocation in the previous section to reason about the first phase, showing that
we can either use the weakest precondition calculus from Section 6.1.1 or the
strongest postcondition from Section 6.1.2. Reasoning about the call to the con-
structor method will be done using our techniques for reasoning about method
calls as described in Section 5.2.2. The final assignment to the local variable u
can be handled using our weakest precondition calculus for assignments to local
variables, as described in Section 4.1. Our reuse of these parts in this section
shows that we have developed some fairly general techniques in the previous two
chapters, which can function as building blocks in the axiomatization of more
complex statements.

Our description of the execution of a statement u := new C(eq,...,ep)
reveals that such a statement is equivalent to the execution of the following
sequence of more basic statements.

v:=alloc(C) ; v.C(e1,...,en) ; u:=v

We assume here that v is a fresh local variable, and that v.C(eq, .. ., e,) denotes
a call of the constructor method in class C' with receiver v and actual parameters
e1,...,en. We first assign the new object to v instead of u because the local
variable © may occur in the parameters eq,...,e,, and u should still have its
original value while these expressions are evaluated.

We are looking for a verification condition that tells us if a Hoare triple
{Q} u := new Cl(ey,...,e,){Q'} is valid. Our analysis suggests that we can
also try to find a verification condition for the Hoare triple

{Q} v:=alloc(C) ; v.C(e1,...,en) ; u:=v{Q'} .

However, this Hoare triple has two annotation points (semicolons) that are not
described by assertions. So the question is which assertions correctly describe
the state at each of these two annotation points.

Possible answers to these two questions are as follows. We have shown
in the previous section that the formula sp(Q,v := alloc(C)) leads to a valid
Hoare triple {Q} v := alloc(C) {sp(Q,v :=alloc(C))} (cf. Lemma 6.14). So
sp(@, v := alloc(C)) could be used to describe the state at the first annotation
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point. Similarly, we can use the weakest precondition of u := v with respect to
Q' to describe the state at the second annotation point. Theorem 4.4 implies
that {Q'[v/u]} v := v {Q'} is a valid Hoare triple (the predicate defined(v) is
equivalent to true and can therefore be omitted). These observations imply that
we can use the verification condition of the Hoare triple

{sp(Q, v := alloc(C))} v.Cle1,. .., en) {Q'[v/u]} (6.16)

to check the validity of {Q} u := new C'(eq,...,e,) {Q'}.

A verification condition for a call to a constructor method is less complex
than a verification condition for a dynamically bound method call (VC; on p.
84) because a call to a constructor method can be bound statically to a method
implementation: a call v.C(eq,...,e,) always triggers the constructor method
in class C. We can use the specification of the constructor method in class C'
to justify such a call along the lines of our analysis of statically bound method
calls in Section 5.2.2.

We will assume that constructor methods are annotated in the same way as
ordinary methods. That is, each constructor method has a precondition and a
postcondition. Let P.,s; be the precondition of the constructor method in class
C, and let Q) st be its postcondition. We are looking for a verification condition
VCC whose validity implies that the Hoare triple in (6.16) is valid, provided
that the specification of the constructor method is also valid. The starting point
of our verification condition VCC will be the verification condition VC5 (see p.
80) for statically bound method calls. We will argue below that a slightly simpler
verification condition suffices to reason about calls to constructor methods. The
resulting formula is as follows.

L(/\;l defined(e;)) | A heapy A [sp(Q, v := alloc(C))|A
(V2 € H @ g(Penst) = (Qenst[v/this] [g(.) /old(.)]) — Q'[v/u]  (VCC)

Our first change to the original verification is the omission of the clauses
defined(v) and —=(v = null) (defined(eg) and —(ep = null) in VC5). The first
clause is redundant because defined(v) is equivalent to true. The second clause
is also redundant because —(v = null) already follows from sp(Q, v := alloc(C)).
The formula heapy, is defined in the same way as in VC5. We also restrict the
meaning of the precondition of the method call (the formula sp(Q, v := alloc(C))
in our present setting) again to the dual heap.

Another simplification is the replacement of the logical variable rec by wv,
which resulted in the substitution [v/this], and the omission of the corresponding
clause this = rec. This change is possible because the expression in the call that
denotes its receiver is the local variable v. The value of v does not change
during the call, which enables it to fulfil the role of the logical variable rec. In
the original rule we allow arbitrary expressions ey at the position of v in the
call. The value of an expression ey may change during a call if it depends on
the values of object fields.
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The function symbol g has the same role in VCC as in VC5. It denotes
the syntactical function that takes a predicate P and returns the predicate
| P[v, €/this, p]|. We assume again that e =ej,...,e, and p = p1,...,Pn.

Our final simplification is the exclusion of the substitution [result/u]. This
operations models the assignment of the result value to a local variable u in
VC5. A constructor method, however, does not return a value.

Summarizing, we get the following rule for object creation.

{PC’VLSt} cac {QCnst} veoe
{Q} u:=new Cley,...,e,) {Q'}

Here {P..st} CQC {Qcnst} denotes a Hoare triple that specifies the behavior of
the constructor method of class C (the first occurrence of C in CQC denotes the
identifier of the constructor method, whereas the second occurrence reflects the
class in which the method is defined). The validity of an interface specification of
the form {P} CQC {Q} follows from the validity of the set of proof obligations
of its body as defined in Definition 3.5. We will further explain this issue in
Section 7.2.

(6.17)

Theorem 6.19. Rule 6.17 is sound.

Proof. The proof of this theorem is a straightforward combination of the proofs
of Theorem 4.4, Theorem 5.11 and Theorem 6.18. O

An advantage of rule 6.17 is that it automatically computes assertions for
the two unspecified annotation points. The assertion that is used at the first
annotation point is the strongest postcondition of the allocation of a new object
with respect to the precondition. This solution, however, also has a distinct
downside. The strongest postcondition is a rather long and unwieldy formula,
as we have seen in the previous section. This implies that a verification condition
that is based on this formula also becomes difficult to handle. Moreover, it may
well be the case that most of the information in the strongest postcondition is
superfluous. It is not necessary, for example, to include the information that a
particular field of the new object has its default value after allocation if that
value is discarded as a result of a field update before it is used.

This disadvantage of rule 6.17 was the reason behind our decision to describe
an alternative approach to reasoning about object creation elsewhere [PdBO05b].
We will also present this solution here. It is based on the weakest precondition
calculus of object allocation in Section 6.1.1.

The idea behind our second approach is to allow a programmer to specify
an additional assertion which describes the state after the allocation of the new
object. This additional assertion is preceded by the keyword intermediate to dis-
tinguish it from the ordinary precondition of a statement u := new C'(eq, ..., e,).
This involves a change to the annotation schema outlined in Section 3.3. A suf-
ficiently annotated statement of this form would be as follows.

assert @; intermediate Q'; u := new C(ey,...,e,) ; assert Q"
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Note that there is no local variable is this approach that denotes the new object
in the state described by @’. For this purpose, we introduce a special-purpose
local variable fresh that designates the new object in @’. That is, we assume
that the allocation step is modelled by the statement fresh := alloc(C'). The
keyword fresh may only occur in Q’.

The annotated code fragment above has two verifications. There is one veri-
fication condition that checks whether {Q’}fresh := alloc(C){Q'} is a valid proof
outline, and another verification condition that checks whether the remaining
part is valid. The first verification condition is simply

Q — h*(Q")[new(C)/fresh] . (6.18)

In other words, we check whether @) implies the weakest precondition of the
statement fresh := alloc(C') with respect to @'. The other verification condition
is a variant of VCC:

L(/\; defined(e;))| A =(fresh = null) A heapy A [Q'|A
(Vz € H @ g(Pepst) — (Qenst[fresh/this][g(.)/old(.)]) — Q" [fresh/u] (6.19)

We assume here again that P, and Q.5 are the precondition and the post-
condition of the constructor method in class C, respectively. All other elements
of (6.19) are defined in the same way as in VCC.

We believe that this second approach to reasoning about object creation is
more efficient in most cases because the weakest precondition operation in (6.19)
leads to a more concise formula than the strongest postcondition operation in
VCC. Moreover, both approaches require an equal number of annotations be-
cause the formula h*(Q’)[new(C') /fresh] - which can be computed automatically
- can be used instead of @) in the proof outline. This choice would also mean
that (6.18) becomes a tautology.

6.2.1 An Example

We will finish our discussion of object creation with an example that involves a
constructor method. The example concerns a simple class Clonable with only
two methods: a constructor method and a clone method. A complete proof
outline of the class is listed in Figure 6.2.

The specification of the clone method uses a logical variable S : Cloneable*
to express the freshness of the object which the clone method returns. It says in
the precondition that every Cloneable-object is stored in the sequence S. The
postcondition states that the result value does not occur in S, which ensures
that it is a new object. The postcondition also states that the new object’s
x field has received the initial value of the x field of the receiver of the clone
method.

The interesting part of this example is the creation statement in the clone
method, which is specified as follows.
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class Cloneable {
int z ;

requires true;
ensures this.xz = old(p);
C(int p) {
assert p = old(p);
this.x :=p ;
assert this.z = old(p);

}

requires (Vo : Cloneable @ 0 € S);
ensures —(result € S) A result.z = this.x;
Cloneable clone() {
assert (Vo : Cloneable ® 0 € S) A this.z = old(this.z);
Cloneable u ;
assert (Vo : Cloneable 0 € S) A this.z = old(this.z);
intermediate —(fresh € S) A this.x = old(this.z);
u := new Clonable(this.x) ;
assert =(u € S) A u.z = old(this.z);
return u ;

Figure 6.2: Example: cloneable objects

assert (Vo : Cloneable ® 0 € S) A this.x = old(this.z);
intermediate —(fresh € S) A this.z = old(this.x);

u := new C'(this.z);

assert =(u € S) A u.z = old(this.z);

Recall that a clause o € S abbreviates the formula
(Jie0 <i<length(S)Ao=Si]) .

The intermediate keyword reveals that we will employ our second approach to
reasoning about object creation. Thus we get two verification conditions for
this code fragment.

The first verification condition of this proof outline corresponds to the allo-
cation of the new object, and is defined in (6.18). It is the implication

(Vo : Cloneable @ 0 € S) A this.z = old(this.z) —
(h*(—(fresh € S) A this.z = old(this.z))[new(Cloneable) /fresh]) . (6.20)

The operation h* has no effect on its argument because it does not contain any
conditional expressions. The following computation reveals the result of the
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application of [new(Cloneable)/fresh] on the clause —(fresh € S).

—(fresh € S)[new(Cloneable) /fresh]

—(Fi e 0 < i < length(S) A fresh = S|i]) [new(Cloneable) /fresh]
—(Ji e 0 < i < length(S) A ((fresh = S[i])[new(Cloneable) /fresh]))
—(Ji e 0 < i < length(S) A false)

The clause S[i] = fresh is reduced to false because S[i] cannot be equal to the
new object fresh. Observe that the resulting formula is equivalent to true. We
have

this.z = old(this.z)[new(Cloneable) /fresh]) = this.z = old(this.x)

because neither this.2 nor old(this.z) involves an expression that may denote the
new object. These two results show that (6.20) is a tautology.

The second verification condition of our code fragment corresponds to the
invocation of the constructor method. It is therefore based on the specification
of the constructor method as given in Fig. 6.2, which says that the receiver’s
x field gets the initial value of parameter p. The outline of the verification
condition can be found in (6.19). The real verification condition is as follows.

defined(this.z) A = (fresh = null) A heapy, A —(fresh € S) A [this.z| = old(this.x)
A (true — fresh.z = |this.z]) —
—(fresh € S) A fresh.z = old(this.z) (6.21)

We did not expand the formulas heapy, and |[this.z] for brevity. Note that
we have |- (fresh € S)| = —(fresh € S) because the formula does not quantify
over objects, and it also does not contain references to object fields. The list
Z is empty because there are no free occurrences of logical variables in the
specification of the constructor method. It is not difficult to see that (6.21) is
also a tautology.

6.3 Related Work

The weakest precondition calculus for object allocation in this chapter is an
extension of the calculus that was developed by De Boer [dB91, dB99]. Our
calculus shows which amendments are necessary in order to handle inheritance
and subtype polymorphism.

A sketch of the strongest postcondition for object allocation has also been
given by de Boer [dB99]. Abraham has used his ideas to formulate a cooperation
test for object allocation in the context of a multi-threaded subset of Java [A05,
p. 43]. This test involves a global invariant which is absent in our setting.
Other differences are caused by the fact that her (local) assertion language does
neither support the old(.) construct nor free occurrences of logical variables.
Our research also reveals that the strongest postcondition of object allocation
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requires additional type information (cf. the clause Q2 above) in the context of
a language with subtype polymorphism.

The weakest precondition of a statement S with respect to a postcondition
() characterizes the set of states in which a computation of S terminates in a
state that satisfies (). It is impossible to use such a semantical definition of
the weakest precondition of object allocation in our logic because we cannot
directly express this set in our assertion language. However, if one uses, for
example, higher order logic as specification language, then it becomes possible
to encode the semantics of object allocation in the assertion language. Thus one
can use the given description of the weakest precondition of object allocation for
reasoning about object allocation. Von Oheimb [vO01] employs this approach in
his Hoare logic for sequential Java. The weakest precondition calculus by Jacobs
[Jac04] also works in this way. A disadvantage of this approach is that it blurs
the traditional distinction between an axiomatic semantics and an operational
semantics. Program verification by means of such a logic requires knowledge of
both the Hoare logic and the operational semantics that is used to formalize the
behavior of object allocation.

The approach taken by Poetzsch-Heffter and Miiller [PHM98] lies somewhere
in between our approach and the semantical approach of the previous paragraph.
Their specification language supports expressions of the form new($,C) and
$(C), which denote a fresh object of class C in the present heap $ and the heap
that results if new($, C) is allocated, respectively. With these expressions they
formulate the (possibly weakest) precondition of object allocation. However,
an additional non-trivial axiomatization of the properties of these expressions
is required to reason about the resulting verification conditions. This suggests
that it is more difficult to automatically (dis)prove such formulas.

None of the papers cited in this section (except our own work [PdB05b])
gives a formal account of constructor methods. To the best of our knowledge,
we have given the first complete axiomatization of the entire creation process
(including both the allocation and the initialization of an object) in this chapter.



Chapter 7

Formal Justification

In the previous chapters we have developed techniques for reasoning about all
basic statements in our object-oriented language COORE. In this chapter we
bring all these fragments together and paint the full picture: a sound and com-
plete proof outline logic for object-oriented programs.

This chapter consists of three parts. In the first part we present a verification
strategy that shows how we can compute the verification conditions of annotated
methods. In fact, we will present two strategies: a basic strategy that computes
the verification conditions of the annotated statements as defined in Chapter 3,
and an optimized strategy that requires less annotation.

The second and third part of this chapter contain a soundness proof and a
completeness proof, respectively. The soundness proof is relatively short because
many elements of the proof have already been presented in previous chapters.
The completeness proof is more interesting and also more elaborate. It is the first
completeness proof for an object-oriented proof outline logic with inheritance
and subtype polymorphism.

The only other complete program logic for such a language that we know of
is the Hoare-like logic for (sequential) Java by Von Oheimb [vOO01], which uses
the classical Hoare rules for reasoning about method calls. For this reason his
logic is not suitable for verification condition generation (cf. Section 5.1.3). Our
proof outline logic handles method calls by means of adaptation rules, which are
well-suited for verification condition generation. The heart of our completeness
proof is a result (Theorem 7.8 below) that shows that these adaptation rules
also lead to a complete logic.

7.1 Verification Condition Generation
In Section 3.4 we defined a set of proof obligations for annotated methods (see
Table 3.1). We have shown that the validity of this set of proof obligations

implies the validity of the interface specification of the method (cf. Theorem

125
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3.12). The set of proof obligations of a method contained Hoare triples as well as
assertions. In the preceding three chapters, we have developed techniques that
enable us to compute verification conditions for Hoare triples. We will apply
these techniques here in this section to define alternative sets of proof obligations
(called verification conditions) which will no longer contain Hoare triples. All
verification conditions will merely be formulas of our assertion language.

The total set of verification conditions of an annotated program will always
be the union of the verification conditions of each individual class in the pro-
gram. Likewise, the set of verification conditions of a particular class is given
by the union of the verification conditions of all its methods. The remaining
question is therefore how to define the set of verification conditions of annotated
methods.

Each definition of the set of verification conditions of annotated methods
can be seen as a particular verification strategy. Two strategies are discussed in
the remainder of this section. A basic strategy that assumes that each method
is fully annotated is defined in Section 7.1.1. Section 7.1.2 contains a more
economical strategy that requires fewer annotations.

7.1.1 A Basic Verification Strategy

The following verification strategy takes as input an annotated method as de-
fined in Section 3.3. Additionally, we will assume that each creation statement
in the body of the method is preceded by an additional assertion indicated by
the intermediate keyword as in the following proof outline schema (cf. Section
6.2).

assert (Q; intermediate Q'; u := new C(eq,...,e,) ; assert Q"
Recall from Section 3.3 that an annotated method has the following form.

requires P;
ensures (Q;
t m(p) { assert Q'; S ; assert Q”; return e) }

Note that the body S of the method is enclosed by two assertions (its precon-
dition @’ and its postcondition Q”). We call a statement S that is enclosed by
two assertions a fully annotated statement. The set of verification conditions
of an annotated method includes the verification conditions of its fully anno-
tated body. The main part of the definition of our basic verification strategy
consists of the definition of the set of verification conditions of fully annotated
statements.
We denote the set of verification conditions of an annotated statement

assert Q; S; assert Q';

by VC(Q,S,Q"). This function always depends implicitly on the program = in
which the statement occurs because, e.g., the verification conditions of method
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calls depend on the interface specifications of the corresponding methods, which
are defined elsewhere in 7.

We start with some simple cases. The verification conditions for assign-
ments are computed using the weakest precondition calculus for assignments
in Chapter 4 in the usual way. The verification conditions check whether the
preconditions imply the weakest preconditions of the statements with respect
to the postconditions.

VC(Q,tu,Q") = {Q — Q'[def(t)/u]}
VC(Q,u:=e,Q') = {Q — (defined(e) — Q'[e/u]) }
VO(Q,ex:=¢€,Q") = {Q — (Q'[¢/ /e.x] V —defined(e) V e = null

V —defined(e’))}

The verification conditions of composed statements are defined in the same
way as their sets of proof obligations in Section 3.4.

VC(Q, Si;assert Q";9:,Q") = VCO(Q,51,Q") U VC(Q", 52, Q')
VC(Q7 if (6) Sl else 827 Q/) = VC(Q A €, 517 Q/)
UvVC(Q A e = false, S, Q")
VC(Q,while (e) assert Q"; S,Q") = VC(Q" Ne, S, Q")
U{Q — Q",Q" Ne =false — Q'}

Next, we define the verification conditions of dynamically-bound method
calls using the adaptation rule for this type of method call as defined in Section
5.2.3. That is, we will define the set VC(Q,u :=eg.m(eq,...,e,),Q’). Recall
from Section 5.2.3 that impls([eg],m) denotes the set of classes that contains
implementations of method m to which the call eq.m(eq, ..., e,) may be bound.
Let impls([eg], m) = {C1,...,Ck}. Then we have

VC(Q,u:=eog.m(e1,...,e,),Q") ={V1,...,Vi} ,

where V}, for j € {1...k}, is defined as described on page 84. The verification
conditions for a call of the form eg.m(ey,...,e,) (i.e., a call to a method which
does not return a value) are similar - just drop the substitutions [result/u] in
the verifications conditions.

Finally, we define the verification conditions of creation statements of the
form u := new C(ey, ..., e,). As mentioned above, we assume that each creation
statement is preceded by a clause of the form intermediate @), which describes
the state after the allocation of the new object. We will use the weakest pre-
condition calculus for object allocation to express the verification conditions for
creation statements because this leads to much more concise formulas than the
alternative set of verification conditions based on the strongest postconditions
of object allocation. The corresponding verification conditions (6.18) and (6.19)
are listed in Section 6.2. Hence we have

VC(Q,intermediate Q";u := new C(ey,...,e,), Q") = {(6.18),(6.19)} .
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The previous definition finishes our definitions of VC(Q, S,Q’). The given
definitions together form a nice overview of some of the techniques that we
have developed in the previous chapters. Next, we use the set of verification
conditions of fully annotated statements to define the verification conditions of
annotated methods. The following definition is an obvious variant of Definition
3.5, which defined the set of proof obligations of a method.

Definition 7.1. The set of verification conditions of an annotated method of
the form

requires P;
ensures Q;
void m(p) { assert Q'; S; assert Q"; }

is the set {P — Q'[./old(.)],Q" — Q} U VC(Q', S,Q").

The set of verification conditions of method that return a value is only
slightly more complex.

Definition 7.2. The set of verification conditions of an annotated method of
the form

requires P;
ensures Q;
t m(p) { assert Q’; S; assert Q"; return e’ }

is the set {P — Q’'[./old(.)], Q" — (defined(e) — Q[e'/result])} U VC(Q', S, Q").

Our basic verification strategy treats every statement in the same way in
the sense that each statement requires a postcondition and a precondition. For
certain statements we can also compute a valid precondition for every given
postcondition. We will use this observation in the following section to define a
more economical verification strategy. The soundness of the basic verification
strategy is discussed in Section 7.2.

7.1.2 An Advanced Verification Strategy

The basic verification strategy in the previous section takes as input a method
implementation in which each statement is fully annotated. This raises the
question whether it is possible to define a verification strategy for statements
in which some of the annotations are missing. We will go one step further by
asking ourselves the question what the minimum set of annotations is for which
there exists a verification strategy based on the techniques in this thesis. We
will answer that question in this section, and we will also give the corresponding
verification strategy.

Ideally, our logic would provide weakest precondition calculi for all state-
ments in the programming language. However, it is customary to reason about
while loops using invariants instead of weakest preconditions [Hoa69]. (It is in
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principle possible to compute weakest preconditions for loops (cf. [Mey85, pp.
200-211], but this requires a stronger assertion language.) Invariants must be
supplied by the reasoner. Alternatively, one could use randomly-generated test
runs to try to predict invariants automatically, but that does not always yield
a suitable invariant [ECGNO1]. Additionally, our logic has no weakest precon-
dition calculus for method calls. Our adaptation rules are based on strongest
postconditions. We have explained in Section 5.2.2 that this decision is unavoid-
able in an object-oriented context.

These two observations reveal which intermediate assertions are indispens-
able in proof outlines: each loop must be annotated with an invariant, and a
precondition must be supplied for every method call (including calls to construc-
tor methods). Furthermore, each method must have an interface specification
consisting of a precondition and a postcondition. All other annotations can be
computed using weakest precondition calculi. Fig. 7.1 shows a schema of an
annotated method with precisely those annotations.

requires P;
ensures (;
t m(pr,...,pn) {

assert Q; u:= e.m(e)
while (e) assert Q; S

intermediate Q; u := new C(€)

Figure 7.1: A schema of an annotated method indicating the minimum amount
of annotation that suffices for our proof outline logic.

We will call a statement that contains precisely the annotations which are
indispensable a sparsely annotated statement.

Definition 7.3. The grammar of sparsely annotated statements is as follows.

ST e Stat™ = tu|lu:=elex:=e|S; S |assert Q; e.m(e)
| assert Q; u:=e.m(€) | intermediate Q; u := new C(€)
|

if (e) S~ else S~ | while (e) assert @; S~

The verification strategy for sparsely annotated statements does not require
that each statement is annotated with both a precondition and a postcondition.
For most statements, we can infer a valid precondition for a given postcondition
using a weakest precondition calculus. We will call this formula the inferred pre-
condition of the statement. In most cases it is the weakest precondition of the
statement with respect to the given postcondition. In all other cases we simply
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take the additionally supplied assertion. We will denote the inferred precondi-
tion of a sparsely annotated statement S~ with respect to a postcondition @)
by ip(S™, Q). We distinguish the following cases.

ip(t u, Q) = Q[def(t)/u]
ip(u:=e, Q) = defined(e) — Qe/u]
iple.x :=¢€',Q) = Q[e'/e.x] V ~defined(e) V e = null
V —defined(e’)
(S 7

2. Q) = (5 ip(5;,Q))
|p(assert Q’;e. m( )7Q)
ip(assert Q';u :=e.m(€),Q) = Q’
ip(intermediate Q’; u:= new C(€),Q) = h*(Q")[new(C)/v]
ip(if (e) Sy else S5 ,Q) = e ip(Sy,Q)A e =false— ip(S;,Q)
ip(while (e) assert Q’;57,Q) =

Observe that each creation statement is again preceded by an assertion that
describes the intermediate state; The inferred precondition of a creation state-
ment is the weakest precondition of this formula and the allocation of the object
that it creates.

The verification strategy for sparsely annotated statements is a function that
assigns a set of verification conditions to each pair that consists of a sparsely
annotated statement and a postcondition. We denote the set of verification
conditions of a sparsely annotated statement S~ with respect to a postcondition
Q by VC*(S™,Q); the function VC* is defined by induction on the structure
of S™.

The inferred precondition of a basic assignment S~ with respect to some
postcondition @ is its weakest precondition with respect to that postcondition.
The weakest precondition is always a valid precondition; we do not need to
verification condition to check that. Therefore we have VC*(S~,Q) = 0 for
every basic assignment S™.

VC*(t u,Q) = 0
VC* (u:=¢,Q) =10
VC*(ex :=¢,Q) =10

In composed statements, the inferred preconditions take the roles of the
missing assertions.

VC (Sl ) SQ aQ) - VC (S;,IP(SQ_,Q)) U VC*(SQ_aQ)
VC*(if (e) ST else S5,Q) = VC*(S7,Q) U VC* (S5 ,Q)
VC* (while (e) assert Q'; S—,Q) = VC* (S~ ,Q’) U{Q ne—ip(S—,Q")}
UA{Q' ANe=false — Q}
The verification conditions for method calls in our advanced strategy are

equal to the corresponding conditions for method calls in the basic strategy.
The additional assertion that precedes a method call is the additional parameter
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that is required for the basic strategy.

VC* (assert Q';ep.m(€), Q) = VC(Q',e9.m(€), Q)
VC*(assert Q';u :=eg.m(e),Q) = VC(Q',u := ep.m(€), Q)

Our basic verification strategy has two verification conditions for creation
statements: one that corresponds to the allocation of the new object, and one
that corresponds to the constructor method call. We omit the former verifi-
cation condition in our advanced strategy. This is again possible because the
inferred precondition of the creation statement is the weakest precondition of
the allocation of the new object with respect to the assertion that describes the
state after the allocation of the new object (@' in the definition below).

VC* (intermediate Q';u := eg.m(e1, ..., e,),Q") = {(6.19)}
The annotation in a sparsely annotated statement suffices to verify the

method implementation in which the statement occurs. In other words, we
are able to verify a method implementation of the form

requires P; ensures Q; t m(p) { S” }

without additional annotation. The total set of verification conditions of such
a method implementation is as follows.

Definition 7.4. The minimal set of verification conditions of an annotated
method of the form

requires P; ensures Q); void m(p) { S~ }
is {P — (ip(S7,Q)[./old(.)])} U VC™(57,Q).
We can give a similar definition for methods that return a value.

Definition 7.5. The minimal set of verification conditions of an annotated
method of the form

requires P; ensures Q; t m(p) { S~ ; return e }
18
{P — (ip(S™, Q)] /old(.)N} U VC*(S™,Q") ,
where Q' =defined(e) — Q[e/result].

We hope that the reader recognizes defined(e) — Q[e/result] as the weakest
precondition of the assignment result := e with respect to the postcondition Q.
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7.2 Soundness

The most important part of the formal justification of a program logic is always
its soundness proof. Although it may sometimes be economical to work with
a logic that is intentionally unsound in some respects [FLL102], it certainly
is folly to work with a logic of which the soundness is ill-documented or even
ill-understood. We will prove in this section that the proof outline logic that
corresponds to the basic verification strategy as outlined in Section 7.1.1 is
sound.

Many parts of our soundness proof have already been described in previous
chapters. The main purpose of this section is therefore to show how all these
pieces fit together. The overall structure of the proof may not come as a surprise
to some because this kind of soundness proof has been given before (see, e.g.,
[PHM99, vOO01]), but we nevertheless feel that the interested reader deserves to
see the complete picture.

The most important difference between our soundness proof and existing
soundness proofs for Hoare logics is that our soundness proof shows that every
method specification in a program holds if all verification conditions of the pro-
gram are valid, whereas the soundness proof of a Hoare logic usually shows that
every derivable Hoare triple regarding the behavior of some statement holds.
Another minor difference is that our proof outline logic works with one fixed
specification for every method whereas Hoare logics can use different specifi-
cations for different calls (cf. rule (5.1) on page 64). The strength of our
adaptation rules compensates this loss of flexibility.

The structure of this section is as follows. We will start by stating our main
result. In the remainder of the section we explain the structure of its proof and
the required intermediate results.

Theorem 7.1. Let w be a well-formed and well-typed annotated program (cf.
Section 2.2.1, 2.2.2 and 3.3) such that all its verification conditions as defined
in Section 7.1.1 are valid. Let m be an arbitrary method in some class C' in 7
with precondition P and postcondition Q. Then = {P}mQC{Q}.

In other words, we want to prove that the interface specification of every
method in 7 is valid if all its verification conditions hold. For simplicity, we
will focus our discussion on methods that return a value. The translation of our
definitions and remarks to methods that do not return a value or to constructor
methods is straightforward.

Recall from Definition 3.3 that = {P}m@QC{Q} means that for every initial
state (s,h) and every computation (S, (s,h)) — (s',h’) with E[e](s',h') = v #
1 we have that (s,h) = P implies (s'[result — v],R')(s,h) E @ , where S
is the body of m and e is the expression that denotes its return value. In
other words, we must show that every terminating computation of its body that
started in a state that satisfies the precondition ends in a state that satisfies the
postcondition if we assign the return value to the logical variable result.
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The main proof complication is the fact that we are dealing with mutually
recursive methods. This means that we cannot prove our claim by means of
a standard structural induction on S because the behavior of method calls in
S may depend on the correctness of other parts of 7. Instead, we will exploit
the observation that every terminating computation has a mazimum recursion
depth. This enables us to prove our claim by induction on the maximum re-
cursion depth. This approach is also used in several other soundness proofs
[PHM99, vOO1].

For this proof technique we need a variant of the operational semantics in
Section 2.2.3 that records the maximum recursion depth in a computation. This
new operational semantics has formulas of the form

<Sv (S,h)) 71) (Sl,h/) ’

which say that a computation of statement S that starts in the state (s, h) ter-
minates in the state (s’,h’) and that the maximum recursion depth throughout
the computation is r.

Recording the recursion depth in an operational semantics is quite simple.
An interesting example is the new rule for methods calls. In this rule, we
increment the recursion depth parameter by one because a method call moves
the computation to the next recursion level.

Eleo](s,h) =0 = (C,1)
Elei](s,h) =v; #L forie{l...n}
Ele](s',h)=v# L
meth(C,m) =t m(p1,...,pn){ S return e }
(S, (s[this, p1,...,pn — 0,01,...,0,],h)) SN (s, )

(u:=eg.m(er,...,en),(s,h)) I+ (s[u— E[e](s', )], h")

(MC)

The other rules of the new semantics are displayed in Figure 7.2. The addi-
tional recursion depth parameter does not influence the existence of a compu-
tation. Therefore we can prove the following lemma.

Lemma 7.2. For every statement S, and every initial state (s,h) and final
state (s',h'), we have

(S, (s,h)) — (s',h) <= Tr € N.(S, (s, h)) -+ (s', 1) .

Proof. Both implications can be proved by induction on the lengths of the
derivations of their antecedents. o

Our next step is to define a notion of correctness of method specifications
that restricts the validity of a method specification to computations of its body
which do not exceed a particular recursion depth.

Definition 7.6. Let S be the body of method m in class C. Let e be the
expression that denotes its return wvalue. Then we say that the Hoare triple
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(VA")
(t u, (5, 1)) = (s[u > init([u])], h)

Ele] (s, h) =v#1l
(u:=e,(s,h)) 2 (s[ur—v],h)

(LA)

Ele](s,h) = o & {L, null} 5[[6’]](3 h)=v# L origin([e],x) = D

(e.x :=¢€,(s,h)) N (s, hlo.xp — v])

(S1.(s.h)) "> (" H") (S (5", 1) "> (s, 1)

max(r,r’)

<Sl; SQ?(S’h» -4 (Slvh/)

o= (C,i) k(o) is undefined
Eleil(s,h) =v; £ L forie{l...n}
constr(C) = C(py, - -, o) { S}
(S, (s[this,p1,...,pn = 0,v1,...,0a], h - [0+ init(C)])) -5» (5/7 h/)

r

(w:=new Clen,. .. en), (s,h)) "5 (s[u— o], b)

(oc")

Ele](s,h) = tt (S, (s, h)) _-L (s, 1) (1F)

(if () Sy else Sy, (s,h)) -=» (s', )
Elel(s,h) = ff (o, (s,h)) -=» (', 1) (IF})
(if (€) Sy else Sa, (5,h)) - > (s, h") ?
Elel(s,h) = ff (wH?)

(while (¢) S, (s,h)) - (s, )
Ele](s,h) = tt
(S, (s, h)) - (s h")

(while (e) S, (s”,h")) = (s, 1) (W)

max(r,r’)

(while (e) S, (s,h)y --+ (s, 1)

Figure 7.2: An operational semantics that records the maximum recursion
depth.



7.2. SOUNDNESS 135

{P}mQC{Q} is r-valid, which is denoted by |=, {P}mQC{Q}, if and only if for

every state (s,h) and every computation (S, (s, h)) --» (s, h') such that ' <r,
(s,h) = P and E[e](s',h') = v # L we have that (s'[result — v], h')(s,h) = Q.

We can define a similar correctness notion for ordinary Hoare triples.

Definition 7.7. A Hoare triple {Q}S{Q'} is r-valid, denoted by =, {Q}S{Q’'},
if and only if for every state (s,h), every compatible freeze state (s',h'), and
every computation (S, (s, h)) = (s", k") with r' < r we have (s,h)(s',h') = Q
implies (s",h'")(s',h) = Q.

The relation between r — walidity and total validity of specifications is
straightforward.

Lemma 7.3. For every method specification { P}m@QC{Q} we have that
E{P}maC{Q} <= Vr e N. |5, {P}mQC{Q} .
Proof. Trivial using Lemma 7.2. o
The following lemma is also obvious.

Lemma 7.4. For every method specification { P}mQC{Q} and every pair r,r’
of recursion depths we have

r<r’ = (Ev {PImeC{Q} = | {P}m@C{Q}) .

The main lemma that we will prove in this section says that we can prove
the r — validity of every method specification in a program for every recursion
depth r. To prove this lemma we first need another lemma that states that we
can prove the r-validity of the specification of every annotation method body if
we know that every method specification in the program is at least r — 1-valid.

Lemma 7.5. Let w be a well-formed and well-typed annotated program as in
Theorem 7.1 such that all its verification conditions as defined in Section 7.1.1
are valid. Let {Py}mi1QC1{Q1}, ..., {PetmiQCL{Qr} be all specifications of
methods in w. Then we have for every r € N and every annotated statement
assert Q'; S; assert Q'; in w that if

r>0 — }:r,1 {Pl}ml@Cl{Ql},...,\:r,l {Pk}mk@Ck{Qk}
then =, (Q'}S1Q").

Proof. By natural induction on the recursion depth r followed by structural in-
duction on S. We must prove that the validity of the verification conditions
of 7 ensures that for every computation (S, (s,h)) -~ (s',h’') we have that
(s,h)(s", 1) = Q' implies (s',h')(s”,h"”) E Q" for every compatible freeze
state (s”,h").
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We first discuss the base case where » = 0. If S is a simple assignment we
can either refer to Theorem 4.5, Theorem 4.7 or Theorem 4.12. Lemma 7.2 can
be used in each case to show that a computation of S with recursion depth 0
corresponds to a ‘real’ computation of S with the same initial and final state.
If S is a sequential statement S7;S2 we can easily prove our claim using the
induction hypothesis (cf. Lemma 3.9).

Note that S cannot be a creation statement or a method call because such
statements have a recursion depth greater than 0. If S is a conditional statement
or a while-loop we must again use the induction hypothesis. These cases are
similar to the proofs of Lemma 3.10 and Lemma 3.11.

For the induction step we assume that our claim holds for recursion depth r
and we show that it also holds for recursion depth r 4+ 1. More in particular, we
must show that for every fully annotated statement assert Q'; S assert Q”; we
have =41 {Q'} S {Q"}. We prove this claim again using structural induction
on S. Note that S cannot be an assignment because r + 1 cannot match with
the recursion depth 0 of an ordinary assignment.

Clearly, the most interesting case is the one where S = u := eg.m(eq, ..., en).
We must prove that =41 {Q'}u :=eg.m(eq,...,e,){Q"}. For this purpose, we
consider an arbitrary computation

<u = eo.m(61, ey en)a (8, h)> _t,—) (5/7 h/)

such that 0 <7/ <r+1 and (s,h)(s”,h”) = Q' for some freeze state (s”,h").
Our goal now is to show that (s',h')(s”,h") E Q".

For every method implementation m@D that may be bound to this call we
have that |, {P'}mQD{Q’}, where P’ and @’ are the fixed precondition and
postcondition of m@D in m, follows from the induction hypothesis. By Lemma
7.4 this implies that =, _1 {P'}m@D{Q’}. We can then finish the proof of this
case along the lines of the soundness proof of the adaptation rule (Theorem 5.11).
Note that this theorem is slightly weaker than what is required for this case
because it assumes that we have = {P'}m@D{Q’} for every method that may
be bound to the call instead of the weaker assumption =, _1 {P'}mQD{Q’}
that we have here. However, an inspection of the proof reveals that the weaker
assumption also suffices to complete the proof.

If S is a creation statement we can prove our claim along the lines of the
proof of Theorem 6.19. The proofs of the cases where S is a control statement
are only slightly more complex for the induction step than the corresponding
proofs for the base case. O

We now come to the above-mentioned main lemma that states that every
method specification is 7 — valid for every recursion depth r if the verification
conditions hold.

Lemma 7.6. Let w be a well-formed and well-typed annotated program as in
Theorem 7.1 such that all its verification conditions as defined in Section 7.1.1
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are valid. Let {P1}mi1QC1{Q1}, ..., {Pe}miQCL{Qr} be all method specifica-
tions of methods in w. Then we have for every r € N that

Er {P1}m1QC {1}, . ... = {Pe}miQCr{Qr} .

Proof. By natural induction on the recursion depth r. Let {P} m@QC {Q} be
an arbitrary method specification from the given set of method specifications.
Let S be its body, and let e be the expression that denotes its return value. We
assume that the body of method m is as follows.

assert Q’; S: assert Q"”; return e

The proof pattern of the base case and the induction step is the same.
We must in each step prove that for some recursion depth r we have that
for every state (s,h) and every computation (S, (s,h)) --» (s',h') such that
(s,h) E P and E[e](s',h) = v # L we have (s'[result — v],h')(s,h) E Q.
From the first verification condition of the method body (see Def. 7.2) we get
that (s, h) = P implies (s, h)(s,h) E Q'. Next, we use Lemma 7.5 to prove that
(s',h)(s,h) E Q". Finally, we use the second verification condition to show
that (s',h')(s,h) = Q. In this step we use the observation that Efe](s’, k') # L
implies (s',h')(s, h) = —defined(e). O

Our main theorem 7.1 follows directly from Lemma 7.3 and Lemma 7.6.

7.3 Relative Completeness

Investigating the relative completeness of a Hoare logic is the classical way to
evaluate its strength [Apt81]. Relative completeness is a formal property of a
Hoare logic that ensures that any failed attempt to verify the correctness of a
program is not caused by a weakness of one of its rules or axioms.

Completeness of a logic means in general that every valid formula can be
derived within the logic. Thus completeness of a Hoare logic boils down to the
property that every valid Hoare triple { P} S {@Q} can be derived using the rules
and axioms of the logic.

It is customary to prove completeness for Hoare logics under two additional
assumptions. The first assumption is that every valid formula of the assertion
language is an axiom of the Hoare logic [Apt81]. This assumption enables the
completeness proof to focus on the strength of the Hoare rules instead of the
underlying proof system for the assertion language. The second assumption
concerns the expressiveness of the assertion language; one only proves com-
pleteness for interpretations of the assertion language that allow one to express
the strongest postcondition or the weakest precondition of every statement in
the assertion language [Coo78|. This completeness notion is known as relative
completeness.

Our logic is based on a fixed interpretation of the assertion language. We can
therefore eliminate the second assumption by showing that either the strongest
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postcondition or the weakest precondition can be expressed in our assertion
language. We will further discuss this issue in Section 7.3.4.

Before we plunge into the details of the completeness proof of our proof
outline logic we first sketch the outline of Gorelick’s seminal completeness proof
for recursive programs [Gor75]. We will use his proof as a blueprint for the
construction of our completeness proof, developing many elements of Gorelick’s
proof in order to make them fit for the object-oriented world.

7.3.1 Gorelick’s Completeness Proof for Recursive Pro-
grams

To prove that a particular Hoare logic is complete we must consider an arbitrary
valid Hoare triple {P} S {Q} and show that we can derive it. The complexity
of this task largely depends, of course, on which statements S the language
supports, and on which preconditions P and postconditions () can be expressed
in the assertion language. For simple languages without recursive procedures
(or methods) one can usually prove completeness by means of a straightforward
induction on the complexity of S. A similar proof can also be given for languages
with non-recursive procedures by first replacing every procedure call in S by the
corresponding procedure body.

The situation changes, however, when the programming language supports
recursive procedures. For to derive a particular Hoare triple regarding a call
to a recursive procedure one must first pick a particular procedure specification
and then show that the chosen specification suffices to prove that the procedure
body indeed satisfies this specification (cf. rule 5.1 on page 64). And the chosen
specification must of course also be strong enough to derive the initial Hoare
triple of the procedure from it. In a completeness proof one must stipulate a
suitable procedure specification for every valid Hoare triple of a procedure call.

The main contribution of Gorelick’s seminal completeness proof for recursive
procedures [Gor75] is its introduction of a kind of procedure specification that
suffices to derive every valid Hoare triple. The specifications that Gorelick used
are known as Most General Formulas (MGFs). But before we explain what an
MGF is, we must first describe its context because an MGF is always tailored
to a particular programming language.

We will assume in this section that we are dealing with a simple sequential
programming language with (mutually) recursive parameterless procedures (as
in Section 5.1.1). Let

p1 <= S1,...,pn <= Sk

be a set of £ mutually recursive procedure declarations, where p < S indicates
that statement S is the body of procedure p. We assume here that every state-
ment S; with ¢ € {1,...,k} only modifies elements of the set of global variables
{z1,..., 2}

The key element of an MGF is a formula that ‘freezes’ the initial state by
claiming a correspondence between the program variables and a set of ‘freeze’
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variables. The freeze formula of our simple language has the form /\?=1 (z; = 2z),
where z; is a logical variable of the same type as x;, for i € {1...n}. The Most
General (correctness) Formula of a statement S is then the formula

I\, (@i = z)S{sp(S. \,_ (@i = 2i))} -

The postcondition sp(S, A, (z; = z;)) denotes the strongest postcondition of
S with respect to the precondition A, (z; = 2;).

The rest of Gorelick’s proof can be divided in two parts. First, he proves
that every valid correctness formula {P}S{Q} can be derived using these Most
General Formulas by induction on the complexity of S. Naturally, the most
interesting case involves a procedure call because there one must bring the
suggested procedure specifications into play. And secondly, he shows that it
is possible to derive the MGF for every procedure in the program using the
recursion rule. This latter step is able to exploit the result of the first part
because an MGF is by definition a valid correctness formula.

7.3.2 The Structure of Our Completeness Proof

The structure of the completeness proof of our proof outline logic differs from
that of Gorelick’s proof in certain respects. These dissimilarities are due to the
difference in scope between proof outline logics and Hoare logics. Hoare logics
can be used to derive valid specifications of arbitrary statements, whereas a
proof outline always corresponds to a complete method implementation.

What we will do is the following. First, we will demonstrate that these
Most General Formulas enable all clients of a method to derive every valid
specification of a arbitrary invocation of the method. And secondly, we will
prove that we can annotate method bodies in such a way that we get a valid
proof outline for every method that is annotated with its Most General Formula.

Our first task will be to find an object-oriented counterpart of the freeze
formula in Gorelick’s proof. Gorelick’s freeze formula only suffices for programs
with a finite set of global variables. In order to freeze the initial state of a
method execution we will have to find a way to store the internal states of all
its objects (a set of arbitrary size) in a finite set of logical variables.

7.3.3 Freeze Formulas

The freeze formula A]_,(z; = 2;) in Gorelick’s proof freezes the initial values
of all the variables that may be changed during program execution by ‘storing’
them in freeze variables. Thus it ensures that these values are still available in
the final state of a computation.

The main complication for an object-oriented freeze formula are the dy-
namic boundaries of states of object-oriented programs. The internal states of
all objects must also be stored in freeze variables, and the number of objects
in a state is not fixed. Thus the size of states is not fixed. For this reason
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object-oriented languages belong to the category of languages with dynamically
allocated variables. The techniques that we describe in this section can also
be applied in completeness proofs for program logics of other languages in this
category [dBP04].

The fact that we do not know a priori how many objects exist in a particular
heap does not mean that it is impossible to freeze an object-oriented state. The
key to an object-oriented freeze formula is the observation that the set of objects
that exists in a particular state is finite. Hence we can use a variable of type
object™ (a finite sequence of objects) to store all the objects in a particular state.
Using this observation we can introduce freeze variables in the same way as we
used logical variables in Section 5.2.2 to model the dual heap.

Let F be a fresh logical variable of type object™. This variable will freeze all
objects that exist in the initial state. Let F(x¢) be a fresh logical variable of
type [z]* for every field x defined in some class C. We will use the i-th position
of the sequence denoted by F(z¢) to store the value of the z field of the object
at position ¢ in F (if this object inherits field x).

Next, we must express the correspondence between the program variables
and the freeze variables in a formula. The first clause of our freeze formula
states that every object is stored in the sequence F.

(Vz : object e z = null V z € F) (7.1)

Our second clause states, for every field x in some class C, where the values
of the z- fields of all C-objects can be found in F(z¢).

/\(W o0 < i < length(F) A Fli] instanceof C — ((C)Fli]).x = F(ze)[i]) (7.2)

zc

The cast in ((C)F[i]).« is necessary to ensure that the expression denotes the
value of the zx field declared in class C; recall that COORE supports field shad-
owing, which means that superclasses of C' may also contain field declarations
with the same identifier.

We will denote the conjunction of (7.1) and (7.2) by init.

Interestingly, we do not have to freeze the values of the formal parameters
and the implicit this-parameter. The reason for this is that we can already refer
to the initial values of these variables in the final state by means of expressions
of the form old(p) and old(this). This raises the question whether the freeze
formula is perhaps redundant since we can also use expressions of the form
old(e.z) to denote the initial value of field x of object e. The answer to this
question is ‘no’, and the reason is as follows. We must at least be able to refer
to the initial values of the fields of all reachable objects (unreachable objects
cannot be modified by a method). However, we do not know a priori how many
objects are reachable in the initial state. Take, for example, the set of objects in
a linked list and assume that we want to freeze the value of the next link of each
node in the list. It is not clear how many expressions of the form old(e.next)
we need, for that depends on the length of the list in a particular state. So the
freeze formula remains indispensable.
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It is also worthwhile to observe that there is an important difference between
the role of the freeze variables F and F(x¢) on the one hand, and the dual
heap variables H and H(x¢) (see Section 5.2.2) on the other hand. We use the
former variables in the precondition of a method to freeze the initial state. The
latter variables are employed in the verification conditions of method calls. It
is technically impossible to identify both sets of variables since the adaptation
rule requires that the dual heap variables do not occur in the specification of
the corresponding method.

7.3.4 Strongest Postconditions

Recall from Section 7.3.1 that Gorelicks’s Most General Formula has the form
{F}S{sp(S, F)} where sp(S, F') denotes the strongest postcondition of S and the
freeze formula F'. Our counterpart of his MGF will also be based on the strongest
postcondition of a statement. Moreover, we will need assertions that express
strongest postconditions of statements with respect to arbitrary preconditions
to be able to build valid proof outlines for methods in our completeness proof.
For these reasons we will study the strongest postconditions of object-oriented
statements in this section.

We will use the following ‘semantical’ definition of a strongest postcondition
in our completeness proof.

Definition 7.8. The strongest postcondition of a statement S and a precondi-
tion Q, denoted by sp(Q, S), is the set of pairs of states (s,h) and compatible
freeze states (s',h') defined by

{<(87h)’ (S/7h,)> | H(SOahO) : <87 (SO’hU» - (Svh) and (SO’hO)(Slvh/) ): Q)} .

In other words, the strongest postcondition of an assertion @) with respect to
a statement S' is the set of pairs ((s, h), (s',h’)), consisting of a state (s, h) and a
compatible freeze state (s’,h’), for which there exists an initial state (sg, ho) of
a computation of S that terminates in (s, h) in which the precondition @ holds.

An important question concerning our strongest postcondition notion is
whether there is, for every statement S and precondition @, an assertion @’
that expresses it. That is, we would like to know whether there is an assertion
Q' such that for every state (s, h) and freeze state (s',h’), we have

(s, ) (s",h) = Q= ((s,h)(s", 1)) € 5p(Q, 5)

This issue has been studied rigorously by Tucker and Zucker for programming
languages with Abstract Data Types [TZ88]. They showed that the strongest
postcondition can be expressed in the weak second-order language that is ob-
tained by extending a first-order language with finite sequences. De Boer has
proved comparable results for a basic object-oriented language [dB91]. Our as-
sertion language is similar to the languages considered in these two studies. For
this reason we will not explore this question further, and merely assume that



142 CHAPTER 7. FORMAL JUSTIFICATION

the strongest postcondition can be expressed in our assertion language. More-
over, we will silently identify the strongest postcondition with the assertion that
expresses it.

The definition of the strongest postcondition in this section differs from the
definition that we used in Section 4.3 and in Section 6.1.2, where we simply
defined the strongest postcondition of a statement S and a precondition @ as
the strongest assertion Q' that is still a valid postcondition of S with respect
to Q. The above-mentioned results can be used to show, however, that the two
definitions are equivalent.

We have the following standard result.

Theorem 7.7. For every statement S and precondition (Q we have

={Q}S{sp(Q,9)} -
Proof. A direct consequence of Def. 3.2 and Def. 7.8. |

7.3.5 Most General Method Specifications

With the freeze formulas and the strongest postcondition notion from the pre-
vious two sections we can build a kind of method specification that will enable
us to derive every valid specification regarding method calls. We will call such
a method specification a Most General Method Specification (MGMS). It is a
pair (P, Q) consisting of a precondition P and a postcondition Q.

Definition 7.9. The Most General Method Specification (MGMS) of a method

MGMS(void m(p){ S }) = (init, (32" e sp(init*(p), S)[z'/u']))
MGMS(C(p){ S }) = (init, (32" e sp(init™(p), S)[z'/u']))
MGMS(t m(p){ S return e }) = (init, (32’ o ((sp(init™ (p), )/\ defined(e)
A result = e)[z'/a']))
where init™ (p), for p = p1,...,Dn, denotes the formula

inat A /\ ; =old(p;)) -

(For init, see Sect. 7.5.8).

Observe that each postcondition has the form (3z' ¢ Q[z'/@’]). This form
ensures that the postcondition has no occurrences of local variables outside ex-
pressions of the form old(e), which is an important condition for postconditions
in our logic. We implicitly assume each time that @’ is a sequence of the local
variables in @ (outside expressions of the form old(e)), and that z’ is a corre-
sponding sequence of fresh logical variables. The substitution [_’ /ﬂ] replaces
every local variable in Q) by its corresponding logical variable in z’. This does
not result in any loss of meaning because the final values of local Varlables are
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always discarded when a method returns. Hence we may as well replace them
by arbitrary fresh placeholders. The freshness of the logical variables in z’ also
ensures that the existential quantifiers around Q[z’/%@’] do not alter the meaning
of the corresponding method specification.

We use expressions of the form old(p) to freeze the initial values of the
formula parameters. The MGMS of a method that returns a value has two
additional clauses, which describe its result value.

Justification

In order to justify our definition of the Most General Method Specification of
a method we will show that these specifications enables us to prove every valid
specification regarding a call. We will only examine the most interesting case,
which concerns a Hoare triple of the form {Q} u := eg.m(ey,...,e,) {Q'}.

The following theorem states that every verification condition of the adap-
tation rule for dynamically-bound method calls holds if we try to prove a valid
Hoare triple concerning a call u := eg.m(eq,...,ey), and if the corresponding
method implementations are all annotated with their Most General Method
Spefications. Thus it justifies our MGMS definition.

Theorem 7.8. Let {Q} u :=eg.m(e1,...,e,) {Q'} be a valid Hoare triple, and
let impls([eg], m) ={C1,...,Cx}. We assume that the implementation of method
m in class C; has the form t; m(p;){ S; return e; }, for every j € {1...k}.
Then we have, also for every j € {1...k}, that |=(VC;), where P; and Q;
are the precondition and postcondition of the MGMS of the implementation of
method m in class Cj. (For (VCj;), see page 84.)

Proof. We must prove that every verification condition (VC;) holds. We will
consider an arbitrary verification condition (VC';) in our proof. For brevity, we
will drop all the subscript j’s in this particular (VC;). Let

Q" = (32" o (sp(init™ (p), S) A defined(e) A result = e)[Z'/u/]) .
Then we must show that

|boundto(eo, C,m) | A L(A\”

1=

o defined(e;)) | A | —~(eo = null) | Aheapy, A Q] (7.3)
and the implication
(Vz € H o g(init A rec = this) — Q"[rec/this][g(.)/old(.)])) (7.4)

together imply Q' [result/u].

The outline of the proof is as follows. We will consider an arbitrary state
(s,h) and a compatible freeze state (s’,h’) that satisfy both (7.3) and (7.4).
Then we perform the following steps.

1. To be able to exploit (7.4) we choose proper values for the logical variables

in z. The required result is a new stack s* that satisfies (s*,h) E z € H.
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2. Secondly, we prove that the antecedent g(init A rec = this) of the implica-
tion in (7.4) holds in this state.

3. The resulting state then also satisfies the consequent of the implication
in (7.4), which states that there exists a computation of the body S from
some initial state to our modified state.

4. Next, we show that we can extend this computation of the body to a
computation of the call.

5. We will prove that the initial state of this computation satisfies Q.

6. Hence Q' holds in the final state of the computation.

7. Our final step shows that this implies that @’[result/u] holds in the start
state of our proof.

In our first step we assign values to the logical variables in Z to obtain a
state that satisfies the antecedent g(init A rec = this) of (7.4). Equation (7.4)
also requires that variable z € z with an object type has a value that is part
of the dual heap H. By an object type we mean either a class name C or a
sequence type C*. We must prove that z € H or z C H for every logical variable
z with an object type.

Recall that Z contains the logical variables that occur free in init and in
Q". The logical variables in init are F, F(z¢) (for every field = in some class
(), and rec. The postcondition Q" may potentially also contain other logical
variables.

The precondition init assumes that F contains every object in the initial
heap, and that every variable F(z¢) contains the corresponding values of field x.
The verification condition assumes that these values are stored in the variables
H and H(xc), respectively. Therefore we build our new stack s* from s by
assigning s(H) to F, and s(H(z¢)) to F(xc) for every field z in some class C.
Moreover, s* assigns the value of N|eg]](s, h) to rec.

Observe that s*(F) = s(H) ensures that (s*,h) = F C H. From the clause
heapy, in (s, h) = (7.3) follows that (s*,h) = F(zc) C H for every logical
variable F(z¢) that references a sequence of objects (cf. Eq. (5.20)). Finally,
(s*,h) = rec € H follows from (s, h) = (7.3) by Lemma 5.1.

For the remaining logical variables in zZ we make a case distinction. For
every logical variable z € z which occurs in either @ or Q' we simply choose
§*(z) = s(z). Thus we ensure that we also have (s*, h)(s’, h') = (7.3). This value
of z is possible for if z has an object type then we already have (s,h) E 2z € H
or (s,h) = z C H because in that case z € V. For every other logical variable
z € Z we assume that s*(z) is the default value of 2’s type. Thus s*(z) is null
or the empty sequence if z has an object type.

In the second step of our proof we show that (s*,h) |= g(init A rec = this).
We have

g(init A rec = this) { def. g }
= | (init A rec = this)[eg, &/this, p] | { def. [eg,&/this, ], |.| }
= | (init[eo, €/this, p])| Arec = |eo] .

It is clear that (s*,h) |= rec = |eg] holds due to the value of s*(rec). Recall
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that 4nit is the conjunction of (7.1) and (7.2). The operation [eg, €/this, p| has
no effect on both formulas because they contain no occurrences of this or p. For
(7.1) we get

|(Vz : objecte z = null vV z € F)]
= (Vz :objecte (z=nullVzeH) = (z=nullVzeF)) .
The latter formula clearly holds because s*(F) = s*(H). For (7.2) we get

[(Vie0 <i < length(F) A Fli] instanceof C' — ((C)Fli]).x = F(zc)[i])]

(Vie0 < i< length(F) A Fli] instance;f C — H(zo)[f((C)Fi)] = F(ze)[i])

by the definition of |.|. Observe that the variables in Z do not occur in heapy, .
Therefore (s,h)(s',h’) = (7.3) entails that (s*,h) |= heapy,. Formula (5.17) in
heapy, implies that (s*,h) = f((C)H][i]) = ¢ whenever

(s*,h) =0 <i < length(H) A H[i] instanceof C' .

Then (s*,h) = |(7.2)] follows from s*(F(z¢)) = s*(H(x¢)), which completes
our proof of (s*, h) |= |initleo, €/this, p]|.

In the third step we combine our previous results with our initial assumption
(s,h) = (7.4). The carefully chosen values of Z ensure that we have

(s*,h) = g(init A rec = this) — (Q"[rec/this][g(.)/old(.)]) . (7.5)
By (7.5) and the result of the second proof step we get
(s*,h) = Q"[rec/this][g(.)/old(.)] .

An application of Lemma 5.2 then yields (s*, h)(starty«, starty) = Q" [rec/this].
And by Lemma 5.10 then (s*[this — o], h)(start,«,start,) = Q", where the re-
ceiver o = s*(rec) = E[|eo]](s, k). By expanding Q" we find that our previous
result means that there exists a sequence of values @ such that

(s1,h)(starts«, starty) = (sp(init™ (p), S) A defined(e) A result = e)[z/u/] ,

where s1 = s*[this — 0][Z' — @a]. Let so = s1[t — &]. Our previous result also
holds if we replace s; by s because the local variables in 4 do not occur in the
formula. By Lemma 5.10 then

(52, h)(start,-, starty,) = sp(init™ (p), S) A defined(e) A result = e .
Finally, let s° = s*[this — o][a — &]. We also have
(s°, h)(starts-, starty,) = sp(init™(p), S) A defined(e) A result = e . (7.6)

because the (fresh) variables in zZ’ do not occur in this formula.
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The first clause of the above formula implies that there exists a state (s, ho)
such that
<S, (So7 h0)> — (SO, h) (77)

and (s, ho)(startg-, starty,) |= init™(p). So we have finished the third proof step.

Next, we want to use the computation in (7.7) to build a computation of
the statement u := eg.m(ey,...,e,). Let s be the state that is obtained from
So by assigning the value of s*(v) to every local variable v that is no element of
the set {this, p1,...,p,}. It is not difficult to prove that we also have

(S, (s, o)) — (s° 1) (7.8)

because a computation does not depend on the initial values of local variables
other than the formal parameters and this. Moreover, it should be clear that
we also have (s}, ho)(startg«, starty,) |= init" (p).

Let v = £[e](s°, h). We claim that we can derive the computation

(u:=-eg.m(er,...,en), (8%, ho)) — (s [urv],h) , (7.9)
from (7.8) using rule (MC';). This requires us to prove that

Eleo](s*, ho) = vo & {null, L} (7.10)
Elei](s* ho) =v; #L forie{l...n} (7.11)
s*[this, p1, ..., Pn = V0, V1, ..., Un] = 8 (7.12)

Ele](s°,h) =v # L (7.13)

Finally, if v = (E,#’), then we should also prove that meth(E,m) (the imple-
mentation of m that is bound to calls on E-objects) is the implementation of
method m in C.

In order to do so, we first show that the state (s*, hg) satisfies the conditions
of Lemma 5.7. First, note that (7.8) guarantees that s° assigns the same values
to logical variables as sj. By the construction of s° this also means that s
assigns the same variables to logical variables as s*. Therefore (s, ho) | init
implies (s*, ho) = (5.27) by the construction of s*. From (s*,h) = heapy, we
get (s*, ho) = (5.28) because (5.28) does not depend on the heap. And finally,
from (s*,h) = heapy and (s, ho) = init follows (s*,hg) | (5.29). Thus we
have shown that all conditions of Lemma 5.7 are met.

We start with (7.10). We have

Eleo](s*, ho) { Lemma 3.3 }

= Neo](s*,ho)  { Lemma 5.7, Lemma 5.6, (7.7) }
= NTleo]](s*,h) { construction of s* }

= Nleoll(s, h)

The clauses |defined(eg)] and [—=(eg = null)| in (s,h) |= (7.3) then ensure that
Eleo](s*, ho) & {null, L}. Hence (7.10). Along the same lines we can show that
(7.11) holds.
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We have already observed that s, and s* assign the same values to logical
variables. Moreover, by the construction of sj they also agree on all local vari-
ables outside the set {this, p1,...,p,}. Hence the remaining cases of (7.12) that
are yet to be proved are E[eg](s*, hg) = s;(this) and E[e;](s*, ho) = si(pi), for
ie{l...n}.

For the first case we have

Eleo](s*, ho) { see above }
= Nleo]](s,h) { construction of s* }

= s*(rec) { def. 0 }
=o0 { construction of s° }
= $°(this) {(7.8) }
= s((this) ,
and for the second case we have
Elei](s*, ho) { see above }
= Nlei]](s,h) { def. starts- and L[] }
= L[old(p;)](sh, ho)(starts,starty) { (s§, ho)(starts, start,) | init™ (p) }
= 50(pe) -
Hence (7.12) holds. The fourth condition (7.13) follows from the second clause
of (7.6).
Finally, we must show that the call eg.m(eq, ..., e,) in state (s*, hg) is bound

to the implementation in class C. We have (s*,h) = |boundto(eg, C,m)]| from
(7.3), and by Lemma 5.7 then (s*, hg) = boundto(eg, C,m). If we expand the
latter formula we get

(s*, ho) = eg instanceof C' A /\ —(egp instanceof D) |,
Dcoverrides(C)(m)

which implies that C' < C' (and therefore that E inherits the implementation of
method m in class C'), and moreover, E is not a subclasses of any of the classes
that override this implementation. Hence meth(E,m) denotes the implementa-
tion of method m in class C', which completes our justification of (7.9).

The fifth step of our proof consists of showing that (s*, ho)(s’,h’) = Q.
Recall that we have (s,h)(s',h’) = |Q], and therefore (s*,h)(s',h’) = |Q] by
the construction of s*. Hence (s*, ho)(s’,h') = @ by Lemma 5.7.

In the sixth step we must prove that (s*[u — v],h)(s’,h') E Q. This
follows immediately from the result of our previous step, the run in (7.9) and
the validity of {Q}u := eg.m(es,...,e,){Q’} using Def. 3.2.

We start the final step of our proof by repeating from Equation (7.6) that
(s°, h) | result = e. Moreover, s°(result) = s*(result) due to the construction of
5°. These observations entail that

§*[u — v](result) = s°[u — v](result) = s°(result) = E[e](s°, h) = v .

Applying Lemma 5.10 then yields (s*[u — v], h)(s’, ') = Q[result/u]. Note that
u and all logical variables in Z that obtained a different value in s* do not occur
in QJresult/u]. For that reason we also have (s, h)(s’,h’) |= Q[result/u]. O
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7.3.6 Proof Outlines of Most General Method Specifica-
tions

In the previous section we have defined the Most General Method Specification
(MGMS) of an arbitrary method, and we have shown that the MGMS enables
us to prove every valid call specification. What remains to be done is to demon-
strate that we can construct a valid proof outline for every MGMS. We will do
so by proposing a particular annotation strategy for method bodies. Again, we
will only consider the most difficult case which involves a method that returns
a value.

Recall from Definition 7.9 that the MGMS of a method with formal parame-
ters p, body S and return value expression e consists of the precondition init and
the postcondition (32 e (sp(initt(p), S) A defined(e) A result = e)[z'/a']). We
propose the following Standard Annotation Pattern (SAP) for methods that
are annotated with their MGMS.

Definition 7.10. The Standard Annotation Pattern (SAP) of a method that
returns a value is as follows.

requires init;
ensures (32’ o (sp(init™(p), S) A defined(e) A result = e)[z'/u']);
t m(p) { assert init" (p); S; assert sp(init' (p),S); return e }

This annotation pattern has the following two verification conditions in our
basic verification strategy (cf. Definition 7.2).

init — init™ (p)[./old(.)] (7.14)

sp(init* (p), S) —
(defined(e) — ((32" o (sp(init™ (p), S) A defined(e) A result = e)[Z’/@'])[e/result]))
(7.15)

The SAP is not a complete proof outline because it does not specify the annota-
tion inside the body S. The SAP is only a valid proof outline if all verification
conditions of the annotated method body S also hold. This set is defined by
VC (init™ (p), S, sp(init™ (p), S)). But first we show that both (7.14) and (7.15)
trivially hold.

Lemma 7.9. For every parameter sequence p we have = (7.14).
Proof. Let p=p1,...,pn. Recall that init™ (p) = init A N}, (p; = old(p;)). We

have A, (p; = old(p;))[./old(.)] = A._,(pi = p;), which is clearly a tautology.
]

Lemma 7.10. For every parameter sequence p and every expression e with
[e] < [result] we have = (7.15).
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Proof. Let (s,h)(s',h') = sp(init™ (p),S) and (s,h)(s',h’) |= defined(e). The
latter clause implies that £[e](s,h) = v # L. Moreover, from these clauses we
conclude that (s*,h)(s’,h’) | sp(init™ (p),S) A defined(e) A result = e, where
s* = [result — ], because result does neither occur in sp(init"(p),S) nor in e.
Next, let s = 5[z’ + s(@')]. Because the variables in #’ are fresh we also have
(st,h)(s',h') |= sp(init™ (p), S) A defined(e) A result = e. Repeated applications
of Lemma 5.10 then yield

(s, h)(s', 1)) |= (sp(initt (p), S) A defined(e) A result = e)[Z /@] .

Hence (sf,h)(s',h') = (32" e (sp(initt(p), S) A defined(e) A result = e)[2' /a']).
This formula has no free occurrences of logical variables in Z, so we can re-
place st by s*. The resulting formula is equivalent to

(s,h)(s',h) = (3% o (sp(initt (p), S) A defined(e) A result = e)[2' /u'])[e/result]
according to Lemma 4.3. |

The task that remains is to show that we can construct a proof outline for
S such that all verification conditions of VC (init*(p), S, sp(init™ (p), S)) hold.
We will show that this is possible. In fact, we will define an annotation pattern
that yields a valid proof outline for every valid Hoare triple provided that every
relevant method is annotated with its MGMS. This annotation pattern is a
function which for every valid Hoare triple {Q} S {Q’} yields a valid proof
outline for that triple. We call such a proof outline the Standard Proof Outline
(SPO) of a Hoare triple, and we denote the SPO of a precondition @, a statement
S, and a postcondition @' by spo(Q, S,Q’). It is defined by induction on the
structure of S. We discuss its most interesting case below; the full definition is
listed in Figure 7.3.

The most difficult case of spo(Q, S, Q') concerns a while loop because there
we have to come up with a suitable invariant. In the following, we use a solution
to this problem that is described elsewhere by De Boer [dB91].

Intuitively, the invariant of a loop while (e) S must be a formula that holds
in all final states of computations in which the body S has been executed a
finite number of times. We only consider executions in which the guard e holds
each time S is executed. Moreover, the initial state of each computation must
satisfy precondition ). Note that we cannot use the strongest postcondition
sp(@, while (e) S) as invariant because it is too strong: it describes the final
states of all terminating computations and thus excludes all partial computa-
tions of the loop.

Our weaker loop invariant is based on the strongest postcondition of @) and
the augmented loop while (e Au < u') S; w:=wu+ 1. We assume here that u
and u’ are two fresh local variables. This augmented loop also terminates if the
counter u reaches a particular limit u’. Thus its strongest postcondition also
holds in the final states of partial computations of the original while loop. The
complete loop invariant is

(Fz:intesp(Q Au=0,while (e Au<u')S; u:=u+1)zz2/uu]) . (7.16)
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spo(Q,t u,Q") =t u
spo(Q,u:=e,Q")=u:=¢e
spo(Q,e.x:=¢,Q') = ex :=¢
spo(Q, S1; S2, Q") = spo(Q, S1,sp(Q, S1)); assert sp(Q, S1);

SpO(Sp(Q, Sl)a 527 Ql)
= intermediate sp(Q, u:=alloc(C)); u:=new C(e)

(e) spo(Q N e, S1,Q")
else spo(Q A e = false, So, Q')
") = while (e) assert R; spo(RAe, S, R)
where
R=(3z:intesp(Q Au=0,while (eAu<v)S; u:=u+1)zz/u,u])

Q
Q)
Q)=
). Q) = ui= e.m(@)
5. Q') = if
Q

Figure 7.3: The definition of spo(Q, S, Q’). We assume in R that u, v’ and z are
variables of type int which do not occur in @, S, or Q’.

Next, we will show by means of two lemmas that (7.16) satisfies the verifi-
cation conditions of our basic verification strategy (Section 7.1.1).

Lemma 7.11. For every statement S, every expression e, and every precondi-
tion Q in which u, v’ and z do not occur we have = Q — (7.16).

Proof. Let (s,h)(s',h') = Q. We will prove that
(s[z— 0],h)(s', 1) Esp(Q Au=0,while (e Au<u') S;u:=u+1)[z,2/u,u].

(7.17)
Let s* = s[z,u,u’ — 0,0,0]. The claim in (7.17) is equivalent to

(s*,h)(s',h") Esp(Q Au=0,while (e Au<u) S;u:=u+1)[z,2/u,u]
(7.18)
because (7.18) does not depend on the values of u and «’. From Lemma 5.10
follows that (7.18) is equivalent to

(s*,h)(s', 1) Esp(Q Au=0,while (e Au<u') S;u:=u+1). (7.19)

Note that (s* )(s’ Y E Q@ Au = 0 follows from (s,h)(s’,h') = @ by the
construction of s* and our assumption that u, ' and z do not occur in Q.
Hence we can prove (7.19) by deriving

(while (e Au < ') S;u:=u+1,(s*h)) — (s5,h) ,
which is an easy task because EJe A u < u'](s*, h) = ff. O

Lemma 7.12. Let {Q} while (e) S {Q'} be a valid Hoare triple. Let u, v’ and
z be variables which do not occur in Q, Q', e and S. Then

E (7.16) A e = false — Q'
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Proof. Let (s,h)(s',h') = (7.16) A e = false. Then there exists an a € dom(int)
such that

(slz = a],h)(s', ) Esp(Q Au=0,while (e A\u<u') S;u:=u+1)zz2/uu] .
(7.20)
Let s* = s[z,u, v’ — «, a, a]. From (7.20) follows

(s*,h)(s' 1) Esp(Q Au=0,while (e Au < u') S;u:=u+1)[z,2/u,u]
7.21)
because the formula in (7.20) does not depend on the values of u and v’. By
means of Lemma 5.10 we then get

(s*,h)(s', 1) Esp(Q Au=0,while (e Au<u') S;u:=u+1) . (7.22)

So there exists a state (so, ko) such that (s, ho)(s’,h') E @, so(u) = 0, and
(while (e Au < v') S;u = u+ 1,(s0,ho)) — (s*,h). We must prove that
(s,h)(s',h') = @', which is equivalent to

(s*[u0],h)(s', 1) = Q' (7.23)

because u, v’ and z do not occur in @’. It is not difficult to see that the
existence of the run of the augmented loop and (s*,h)(s’, k') = e = false imply
the existence of the computation (while (e) S, (sg, ho)) — (s*[u +— 0], h). Then
(7.23) follows from {Q} while (e) S {Q'}. O

We must also prove that (7.16) is a real invariant of the original loop.

Lemma 7.13. Let while (e) S be a valid statement, and let u, u' and z be
variables which do not occur in @, e and S. Then

E {(7.16) A e} while (e) S {(7.16)} .

Proof Sketch. We only give a sketch of the proof because the proof itself is rather
straightforward. Note that we can extend every terminating execution of the
body S with an execution of u := u + 1. If we append this computation to the
computation of the augmented loop whose existence is ensured by the precon-
dition, then we get the terminating computation whose existence is claimed in
the postcondition. If the first computation has n executions of the body, then
we can prove the postcondition for z =n + 1. o

Theorem 7.14. For all valid Hoare triples {Q}S{Q’} we have = Q" for every
Q" € VC(Q,spo(Q, S,Q"), Q") if every method in the program is annotated with
its MGMS.

Proof. By structural induction on S. The cases where S = u :=¢€, S =t u,
and S = e.x := €’ are covered by Theorem 4.5, Theorem 4.7, and Theorem
4.12, respectively. For S = S;; S5 we first prove that | {Q}S1; S2{Q’} implies
E {sp(Q, S1)}S52{®@'}. Then this case follows from the induction hypothesis
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and Theorem 7.7. For S = if (e) Sy else Sz we must prove that the validity of
{Q}if (e) Sy else S2{Q’} implies ={Q A €}51{Q’'} and |={Q AN e=false}S2{Q"}.
Then this case follows also from the induction hypothesis. For S = u := e.m(€)
we can simply refer to Theorem 7.8. We can prove a similar (and slightly
simpler) result for S = e.m(e). For the case S = u := new C(€) we must prove
the validity of two verification conditions. The first one corresponds to the
allocation step and is covered by Lemma 6.12 and Theorem 7.7. The validity
of the verification condition that corresponds to the call to the constructor
method can be proved along the lines of the proof of Theorem 7.8, but this
case is less complex because it does not involve dynamic binding. Finally, for
S = while (e) S’ we can prove our claim using the induction hypothesis, and the
Lemmas 7.11-7.13. U

With this result we can return to the Standard Annotation Pattern of Def-
inition 7.10. If we replace the body S in Definition 7.10 by the proof outline
spo(initt (p), S, sp(init™ (), S)) then we get a valid proof outline for an arbitrary
method that is annotated with its Most General Method Specification.

Theorem 7.15. FEvery verification condition of the basic verification strategy
(Section 7.1.1) for an arbitrary method with the following annotation holds.

requires init;
ensures sp(init™ (p), S) A defined(e) A result = ¢;
t m(p) {

assert init" (p);

spo(init" (p), S, sp(init* (p), 5));

assert sp(init* (p), S);

return e

}

Proof. By Theorem 7.7 we have |= {init" (p)}S{sp(init" (p), S)}. Then we use
Theorem 7.14 to show that the verification conditions of the annotated method
body spo(initt (p), S,sp(init™ (p), S)) hold. The validity of the two remaining
verification conditions follows from Lemma 7.9 and Lemma 7.10. O

For other method types we can prove similar results. Thus we have shown
that our proof outline logic is relatively complete.



Chapter 8

Modularity

The proof outline logic that we have developed in the preceding chapters of
this thesis takes closed programs as input. That is, we have always assumed
that all classes of the program are available, and we have not yet considered
the question what happens to a proof when new classes are later added to an
existing program. We will endeavor to provide an analysis of the consequences
of this type of program extension in this chapter.

There are at least two significant reasons for considering this question. The
first reason is that it addresses a reality in object-oriented software engineer-
ing. Almost all object-oriented software reuses prefabricated classes in standard
modules (or packages) which are supplied by other parties. Programs that are
written in this way can be seen as extensions of the programs formed by these
standard classes. Ideally, such standard classes are shipped with formal spec-
ifications, which can then be used to reason about calls to methods in these
classes without having to see their actual implementation.

Another reason for considering this question is that it may lead to a proof
system which supports division of labor. If a program consists of several parts
which are merged at some later stage, then we would like to know whether
verified specifications of the individual parts still hold. The object-oriented
development process described in the previous paragraph is but one example
of division of labor; software maintenance can also be seen as a form of divi-
sion of labor. Adequate support for division of labor clearly contributes to the
scalability of a proof method.

Program logics for reasoning about open, extensible programs are usually
called modular. However, this term is not always adequately defined. One
notable definition has been given by Leavens and Weihl [LW90]: ‘... specification
and verification techniques must be modular in the sense that when new types
of objects are added to a program, unchanged program modules should not have
to be respecified or reverified’. The expression ‘types of objects’ can be replaced
by ‘classes’ in Leavens and Weihl’s description of modularity. We will use the
adjective modular according to this definition.

153
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We would like to emphasize that there are two distinct problems which may
both compel us to respecify a program module. Firstly, a given specification
may no longer be accurate. In other words, we could be forced to replace an
existing specification because it is no longer valid. However, it may also be the
case that a specification is still accurate, but no longer adequate in the sense
that it has become too weak. For example, it could be the case that a method
specification describes the behavior of a method for arguments of specific types,
but that it does not tells us what happens if we pass it an argument of some
new subtype. The first issue has received a considerable amount of attention
in the literature, but a definite solution for the second problem is still missing.
We will investigate both matters in this chapter.

This chapter is organized as follows. We start with a section that pro-
vides a formal account of behavioral subtyping in the context of annotated
COORE programs. Behavioral subtyping is a kind of subtyping that requires
objects of subtypes to behave in the same way as the objects of their supertype
[Ame91, LW94]. The main result of that section is a static test (a specifica-
tion match) for determining whether a subclass is a behavioral subtype of its
superclass. This test is based on the same techniques as our object-oriented
adaptation rules.

In Section 8.2 we develop two new adaptation rules which turn our proof
outline logic into a modular proof system. The first rule is based on the well-
known supertype abstraction principle [LW90, LW95]. We will argue that this
principle leads to program logics that are incomplete. Subsequently, we will
define a new principe called subtype awareness and develop the corresponding,
stronger adaptation rule.

In Section 8.3 we define a new completeness notion called behavioral modular
completeness. We propose this new completeness notion because the standard
relative completeness notion is too stringent for program logics that are based
on behavioral subtyping [PdB05a].

In the last section of this chapter we first introduce an open reasoning prob-
lem for modular program logics. Next we evaluate several advanced specification
constructs that may lead to a solution for this problem.

8.1 Behavioral Subtyping

Recall from Section 2.1 that each subclass inherits the fields and methods of its
superclass. Thus inheritance proceeds along the subclass relation. By contrast,
the subtype relation essentially determines whether the objects of some type
t can ‘play the role’ of objects of type t’. Recall that the typing rules of the
language allow objects of subtypes to enter the domains of their supertypes. For
example, an assignment u := e is also permitted if the type of e is some subtype
of the type of u. Naturally, it is important that no unexpected behavior results
from this design decision.

In the preceding chapters of this thesis we have always equated the subtype
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relation with the subclass relation, as is done in most object-oriented program-
ming languages. This couples inheritance (which proceeds along the subclass
relation) with subtyping. However, several people have opposed this equation.
For example, Snyder [Sny86] writes that ‘subtyping should not be tied to inher-
itance’. And America [Ame87] argues that ‘inheritance and subtyping should
be decoupled and that each should be considered in its own right’.

The main objection against equating the subtype relation with the subclass
relation is that inheritance only ensures that a subclass has the same internal
structure (fields). But it does not ensure that objects of a subclass behave in the
same way as objects of their superclass. For a subclass can potentially change
the behavior of inherited methods by overriding them.

Behavioral subtyping can be seen as a less liberal form of subtyping. Having
the same internal structure or external structure (method signatures) is not
enough when it comes to behavioral subtyping. It also demands that what
holds regarding the behavior of objects of a particular type also holds for all
objects of its subtypes [Ame91, LW94]. We will give a more formal definition
of behavioral subtyping in Section 8.1.3.

Forcing a program to satisfy the behavioral subtype relation has important
benefits for proof systems. The following section reveals by means of an example
what goes wrong if we adopt a weaker definition of subtyping.

8.1.1 Class Addition May Invalidate Proofs

We demonstrate in this section that program extensions can render method
specifications invalid. The following example also sheds light on the benefits of
behavioral subtyping.

Consider the following (closed) COORE program m = Client One, where

Client = class Client { void initOne(One 0){ o.init() } }
One class One { int z; void init() { thisz:=1}} .

The constructor methods of both classes are irrelevant in our example and
are therefore omitted. It is not difficult to see that the following specification
holds for method initOne of class Client in .

{true} initOne@Client {old(0).x = 1} (8.1)

That is, field x of the object that is passed to the initOne method is set to 1.
Next, consider the program 7’ = Client One Two that is obtained by extend-
ing m with class Two below.

Two = class Two extends One { void init() { this.z :=2} }

Class Two inherits field x of class One. Thus it has the same internal structure
as class One. Its external structure is also equal to that of class One because
it provides the same methods. But the behavior of objects of class Two dif-
fers from that of objects of class One because the behavior of the overriding
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implementation of method init in class Two is different. So class Two is not a
behavioral subtype of class One.

Does the addition of class Two have consequences for the validity of proper-
ties of the original program 7?7 It is not difficult to see that specification (8.1)
no longer holds. Consider what happens when method initOne is passed an
instance of class Two. This is permitted if Two is a subtype of One. The call
o.init() is then bound to the implementation in class Two, which invalidates
the postcondition of (8.1). Thus the example reveals that class addition may
invalidate proofs.

A way to prevent this scenario is to partially decouple the subtype relation
from the subclass relation by insisting that every subtype must be a behavioral
subtype. This would forbid clients to call the initOne method with an actual
parameter of type Two.

8.1.2 A Modular Programming Language

We have seen in the previous section that behavioral subtyping has important
advantages over ordinary subtyping for modular reasoning. But we have also
seen that not every subclass is a behavioral subtype. For these reasons we
will develop a modular variant of COORE in this section, dubbed M-COORE,
which partially decouples the subtype relation from the subclass relation. More
precisely, the subtype relation in M-COORE will be a subset of the subclass
relation. This gives programmers the opportunity to reuse code by means of
inheritance without the obligation that every new subclass must behave in the
same way as its superclass.

A minimal requirement for subtypes is that they have the same fields and
methods as their supertypes. Our decision to view the subtype relation as a
subset of the subclass relation means that every subtype will also be a subclass
of its supertype. Hence it will automatically inherit the required fields and
methods from its supertype.

It is possible to further decouple the subtype relation from the subclass
relation. This could be done by dropping the requirement that each subtype
must be a subclass of its supertype. The compiler would then have to check
whether each subtype declares the same fields and methods as its supertype.
This is similar to a class implementing an interface in Java [GIJSB00] or C#
[Mok03]. It would open up the possibility to declare several supertypes for
one class. However, we do not think that this situation requires interesting
additional reasoning techniques. Therefore we choose to work out the simpler
situation in which each subtype is a subclass of its supertype.

To accommodate the proposed functionality of M-COORE we define the
grammar of the syntax of its class definitions in the following way.

class € Class == class C (e | extends D) (e | refines E)
imports C { field* constr meth*}
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In other words, the syntax of a class in M-COORE additionally contains a refines
clause and an imports clause. The syntax of M-COORE equals the syntax of
COORE (see Fig. 2.1) in all other respects.

A clause extends D continues to define the subclass relation. The new clause
refines E indicates that C is a subtype of E. Such a clause will lead to new
proof obligations for class C' which will only hold if C' is indeed a behavioral
subtype of E. We additionally require that class E is a superclass of class
D, thus ensuring that the subclass relation subsumes the subtype relation. An
omitted refines clause is equivalent to refines D. We write C' < E if C'is declared
as a subtype of E. The subtype relation < in M-COORE is the reflexive and
transitive closure of the < relation.

To obtain a modular proof system for M-COORE programs we have to
analyze on which classes a particular class depends. We say that a class C
explicitly depends on some class D when the corresponding type D occurs in
the code of C (e.g., as the static type of a field). The classes on which C
explicitly depends form the type range of C. A clause imports C' explicitly lists
the type range of C. By C we denote a comma-separated list C1, ..., C; of class
names.

Only class names that are listed in the type range C' may occur in the class
implementation. Moreover, both D and F (or their default values if the clauses
are omitted) should occur in C. The class name C'is not allowed to occur in C
but may nevertheless be used in its implementation. We will assume that, for
every class C, impcl(C) denotes the set of classes that C' imports.

Class Scopes

While we restrict all use of class names in the implementation of a class to
class names that occur in the imports list, we have to be more liberal when it
comes to specifications. For a similar restriction would easily lead to inadequate
specifications, as the following example shows.

Example 8.1. Suppose that we have three classes C, D, and E such that C
imports D, and D tmports E. Furthermore, assume that class D has a method
m that allocates an object of class E. Now consider a method m' in C that
calls method m in D. After execution of m' we know that one object of class E
has been added to the heap. But how can we express that in the specification of
method m’ without mentioning its type E ¢

This example suggests that we must allow specifications to refer to all class
names in the transitive closure of the imports relation of a class C'. We will call
this set the scope of C' and denote it by scope(C'). Formally, scope(C') is defined
as the least set of classes such that D € scope(C') if one of the following holds.

i) D=C
ii) D € impcl(C)
iii) there exists a class E such that E € scope(C) and D € scope(E)
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The scope of a class also limits the set of types that expressions in that class
may have.

Lemma 8.1. For every well-typed expression e in the context of a class C we
have [e] € scope(C') U {undefT, NullT, int, boolean}.

Proof. By structural induction on e. The only complex case concerns an expres-
sion of the form e’.x. Let field = be defined in class D. Then [¢’.x] € impcl(D),
and consequently [¢'.z] € scope(D). From the type rules follows that [e/] is
a subclass of D. Next, observe that the scope of a class subsumes its super-
classes. So we also have D € scope([¢’]). From this result and [¢’.z] € scope(D)
follows [¢’.z] € scope([e’]). Furthermore, by the induction hypothesis we have
[€'] € scope(C) because [¢'] must be a class name. Hence [¢’.x] € scope(C). O

8.1.3 Behavioral Subtyping and Specification Matching

According to Leavens and Dhara, behavioral subtyping is essentially refinement
of object types [LD00]. We will give a formal definition of behavioral refine-
ment in this section and subsequently define behavioral subtyping in terms of
behavioral refinement. This definition of behavioral subtyping raises the ques-
tion how one can check whether a particular type is a behavioral refinement of
some other type. We will therefore also look at specification matching [CCO00]
in this section, which is a static way to prove behavioral refinement on the basis
of method specifications.

Behavioral Refinement

So far, we have said that behavioral subtyping requires that objects of subtypes
behave in the same way as objects of their supertypes. The behavior of an object
is determined by the behavior of methods called on the object. We therefore have
to investigate the behavior of methods in subtypes. In particular, we must focus
on the behavior of overriding methods. For method implementations which are
simply inherited (unchanged) from the supertype will not cause objects of the
subtype to behave differently. And functionality in subtypes which is not present
in supertypes is also irrelevant because one cannot ask objects of the supertype
to perform such functions.

For clarity, we first summarize our definition of method overriding as given
in Chapter 2.

Definition 8.1. A method m in some class C with return type t and param-

eter types t1,...,t, overrides a method m’' in class D with return type t' and
parameter types t}, ...t if and only if the following conditions hold.
i) m=m'

ii) class C is a subclass of class D
iii) t; <t; for everyi e {1...n}
) t=t.
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The last clause is dropped if both methods have return type void. Construc-
tor methods are never inherited and can therefore not be overridden. Observe
that all these conditions can be checked statically.

For simplicity, we will only allow a method in a subclass to have the same
name as a method in one of its superclasses if the method in the subclass
overrides the other method. This ensures that we do not have to deal with
method overloading, which would needlessly complicate our definitions.

We are now ready to define behavioral refinement for methods. We assume
that all methods are annotated with a precondition and a postcondition. A
method essentially refines the behavior of another method that it overrides
when it satisfies the specification of the overridden method. However, it only
has to satisfy this specification for parameter values that are also accepted by
the overridden method. This is sufficient to ensure that calls to the overridden
method that are handled by the overriding method result in similar behavior.

Definition 8.2. Let m be a method in class C with formal parameters p =
P1,...,pn and return type t. Assume that m overrides a method m’ in class D
with parameters p' = py,...,pl, and return type t'. We say that m refines the
behavior of m’ if and only if m satisfies the interface specification with precon-
dition (8.2) and postcondition (8.3) below, where P’ and Q)" are the precondition
and postcondition of m’, respectively, and I = {i € {1...n}|[p;] < object}.

P'[p/p'] A /\(pi instanceof [p}]) (8.2)
iel

Q'[old(.[p/p])/old(.)] (8.3)

The substitution [p/p’] in (8.2) replaces every parameter in p’ by the corre-
sponding parameter in p. Note that the restrictions on the parameter types of
overriding methods reveal that this substitution may replace an expression of a
subtype by an expression of a supertype (see Definition 8.1). The potentially
‘weaker’ types of the parameters in p may contain less information about the
types of the parameters. The second clause of the precondition restores the lost
information.

The postcondition @’ may also contain occurrences of formal parameters
inside expressions of the form old(e). The function [old(.[p/7'])/old(.)] replaces
these occurrences by the corresponding formal parameters of the overriding
method. Its characteristic case is

old(c)[old(.[/#]) /old(.)] = old(e[p/p)) -

The definition of [old(.[p/7'])/old(.)] is extended to all other logical expressions
and formulas in the standard way.

Finally, we have to make a remark about the types of this and result in these
formulas. We assume that this and result in (8.2) and (8.3) retain their original
types. That is, we have [this] = D and [result] = ¢’ in these formulas. Changing
the types of these variables to the types which they have in the context of
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method m might change the meanings of (8.2) and (8.3) in the presence of field
shadowing. One can simply think of occurrences of this and result as being
(implicitly) annotated with a specific type.

The following lemmas provide semantical characterizations of the parameter
renaming operations [p/p’] and [old(.[p/p'])/old(.)] in (8.2) and (8.3), respec-
tively. They basically say that parameter renaming has no influence on the
validity of assertions if we ensure that the parameters have the same values.

Lemma 8.2. Letp=p1,...,p, and ' = pl, ..., pl, be two parameter sequences
such that [p}] = [p:] for everyi € {1...n}, and let o = v1,...,v, be a sequence
of values such that v; € dom([p}]), for every i € {1...n}. Let P be an arbitrary
precondition. Then we have for every valid state (s[p — ], h) that

(s[pf — v],h) EP <= (s[p— v],h) = P[p/p] /\ (p; instanceof [pl]) ,

where I = {i € {1...n}|[p;] < object} and s[p — v] denotes the stack that
results from s by assigning v; to p;, for everyi € {1...n}.

Proof. By structural induction on P. O

Lemma 8.3. Let p, ' and v be as in Lemma 8.2. Let Q be an arbitrary
assertion. Then we have, for every state (s,h) and every compatible (and valid)
freeze state (s'[p' — v],h’), that

(s, W' =0, 0) EQ <« (s,h)(s'[pr 0], 1) = Qlold(.[p/p])/old()] ,

where s[p — v| denotes the stack that results from s by assigning v; to p;, for
every i € {1...n}.

Proof. By structural induction on Q. O

Behavioral Subtyping

With the definition of behavioral refinement above we can give a formal defini-
tion of behavioral subtyping. To be precise, we will define under what conditions
two types C' and D (both object types) are behavioral subtypes. Roughly speak-
ing, two types are behavioral subtypes if every overriding method of the subtype
refines the behavior of the overridden method of the supertype.

In the following definition the expression ‘a method of class C” either denotes
a method implementation declared in class C' or a method implementation which
C inherits and which is not overridden by another method of C.

Definition 8.3. A class C is a behavioral subtype of a class D if
i) C is a subclass of D, and
ii) every method m of C which overrides a method m’ of D refines the behavior
of m'.
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Thus behavioral subtyping restricts the behavior of methods in subtypes. It
should be clear that not every class that is declared as a subtype of some other
class in an arbitrary M-COORE program automatically qualifies as a proper
behavioral subtype. We must carefully check whether the subtype relation of a
program satisfies the criteria of behavioral subtyping.

Specification Matching

Ideally, we would like to be able to infer on the basis of its specification whether
a given method behaviorally refines some other method. More specifically, we
would like to have a function that tells us whether two specifications ‘match’
in the sense that every method that satisfies the first specification refines the
behavior of the second specification. Applying such a function is known as spec-
ification matching. Specification matching can be used, for example, to deter-
mine whether one can replace a particular component in a system by some other
component without changing the system’s observable behavior (cf. [CC00]).

It is customary to use logical formulas over the elements of the two specifi-
cations (called specification matches) as match criteria. Chen and Cheng have
compiled an overview of specification matches which contains no less than ten
entries [CC00]. However, these specification matches are only suitable for simple
languages with global variables. We will develop an object-oriented specification
match below.

Our search for an object-oriented specification match was simplified by the
observation that there is a surprising similarity between specification matches
and the verification conditions of adaptation rules (cf. Section 5.2.1). The
verification condition of an adaptation rule checks whether the specification
of a method call follows from the specification of the corresponding method,
whereas a specification match checks whether the specification of a particular
method implies the specification of the method that it is assumed to refine. This
is almost the same problem!

This similarity enables us to use the verification conditions of our adaptation
rules as blueprints for our object-oriented specification match. We will show
that we get a proper object-oriented specification match by simply translating
the verification condition (VC5) of our basic adaptation rule (on p. 80) to
the specification matching context. The resulting specification match is even
simpler than (VC5) because it neither involves parameter passing nor result
value handling. However, we do have to handle differences in parameter sets
between the two methods.

Let {P} m@QC {Q} be the interface specification of a method m in class C
with formal parameters p = p1,...,p,. Let m’ be a method in some class D
with specification { P’} m’@QD {Q’} and formal parameters ' = p},...,p,. Our
specification match for these two methods is the following formula.
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heapt, A g'(P') A /\ieI(Pi instanceof [p}])
A(VZ € H e [P]— (Q[l]/0old(.)])) — (Q[g'(.)/0ld(.)]) (84)

The predicate heapy, in (8.4) abbreviates the conjunction of heap” (to be ex-
plained below) and the formula A . v € H, where V is the set that contains
this, and every parameter in p that references an object, and every logical vari-
able z that occurs free in P’ or (' which either references an object or a sequence
of objects. (We have v C H instead of v € H for every logical variable v that
references a sequence of objects.) Thus this clause says that all these variables
reference objects in the initial heap H.

The formula heapD is a restricted version of the formula heap (as defined on
p. 75). It is obtained from heap by restricting the clauses (5.19) and (5.20) to
fields which are defined in classes that are part of the scope of class D. This
restriction makes sense because we do not want (8.4) to depend on fields that
are not visible in the context of the overriding method.

The list Z in (8.4) contains all logical variables that occur free in P or @
(except the special-purpose logical variable result that denotes the result value).
The specification match is evaluated in the context of the overriding method.
However, we assume again that this has no consequences for the types of occur-
rences of this and result in P’ and Q.

Other new elements of (8.4) are the function g’ and the operation [|.]/old(.)].
All other elements of (8.4) are defined in the same way as in Definition 8.2.
The function g’ combines the substitution operation [p/p’] and |.]. We have
g(Q) = |Qlp/p)).

The operation [|.]/old(.)] simply replaces every expression of the form old(e)
in a formula by the corresponding expression |e]. It is a simplified version of
the corresponding operation [g/(.)/old(.)] in (VC5), which also takes the context
switch into account. Its effect is described by the following lemma.

Lemma 8.4. Let e be an arbitrary expression and let Q be an arbitrary as-
sertion. Let H be a fresh logical variable of type object™. Let H(xz¢) be a fresh
logical variable of type t*, for every instance variable x : t declared in some class
C which occurs in e or Q. Let h,h' be two heaps such that dom(h) C dom(h’).
Let s be a stack such that (s, h) = (5.28) and (s, h) = (5.29). Then

i) Ele](s,h) = Nlell(s, k'), and

ii) (5, 1')(5,h) = Q if and only if (s, ") = (Q[L./old(.)).

Proof. Along the lines of the proof of Lemma 5.7. O

The following example shows how one can use our specification match to
check whether a type CachedAccount is a behavioral subtype of a type Account.

Example 8.2. Assume that we have a class Account that models a bank account.
It has a field bal : int that represents the account’s current balance. Moreover,
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it has a method setBalance(int p) that sets the account’s balance to a new value.
We assume that the following specification holds.

{true}setBalance@ Account{this.bal = old(p)}

Next, we also assume that we have a subclass CachedAccount of Account which
stores the previous balance value in a field cache : int. It overrides method
setBalance in Account with a method implementation which satisfies

{true} setBalance@ Cached Account{this.bal = old(p)Athis.cache = old(this.bal)} .

Is CachedAccount a behavioral subtype of Account? The specification match

for the implementation of setBalance in CachedAccount (without the clause
heapgachedAccount) is

true A (true — this.bal = p A this.cache = H(bal Account)[f (this)])
— this.bal = p

It is not difficult to see that this formula holds. So CachedAccount is indeed a
behavioral subtype of Account.

The specification match that we propose here is better than the specifica-
tion match that is used in early work on behavioral subtyping [Ame91, LW94|
because it identifies more matches. This fact follows from Chen and Cheng’s
analysis of existing specification matches. Our specification match is essentially
an object-oriented version of their Myep—preq match [CCO0, p. 93], whereas tra-
ditionally the Mjp,q—m match is used. Chen and Cheng prefer a specification
match which has one additional clause (see also [DL96]), but this is explained
by the fact that they consider specifications for total correctness, whereas we
investigate partial correctness.

The following theorem justifies our specification match by showing that it
implies behavioral refinement.

Theorem 8.5. Let m be a method in some class C' with formal parameters
D = Pi,y...,Pn, and let m' be a method in class D with formal parameters
P =0ph,...,pl,, precondition P and postcondition Q. Suppose that m overrides
m/, and that ={P} mQC {Q}. Then |= (8.4) implies that m refines the behavior
of m'.

Proof. Let S be the body of the implementation of method m, and let e be the
expression that denotes its result value. Let (S, (s,h)) — (s, h’) be such that
Ele](s,h) =v # L, and let (s, h) = (8.2). We must prove that

(s'[result — v], h") (s, h) = (8.3) . (8.5)

Many steps in this proof are equal to steps in the soundness proof of the
adaptation rule (cf. Theorem 5.11). In fact, the proof below is simpler because
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the parameter renaming operations in (8.4) are simpler then the context switch
in Theorem 5.11. Moreover, (8.4) does not have to handle result value passing.
We will nevertheless give the proof here for completeness sake.

Our first step is (again) to build a stack in which the variables of the heap
model have the same values as the corresponding locations in the initial heap h.
Let v be an arbitrary sequence without repetitions that contains every object
o € dom(h) (except null). Let 0[i] denote the object at position ¢ in . For
every instance variable x declared in some class F that is part of the scope of
class D, let o(xzg) be the sequence of the same length as ¥ such that the i-th
element of v(xg) is h(0[i])(E)(x), if 9[i] € dom(E), and init([z]) otherwise. Let
f : dom(object) — dom(int) denote a function such that f(null) denotes the
length of o, and for every object stored at some index i of o we have f(3i]) = i.
Let st be the stack that is obtained from s by assigning o to H, f to f, and
v(rg) to H(xg), for every sequence v(xg). Finally, let s* = sf[result +— v].

Our first goal is to show that the antecedent of (8.4) holds in the state (s*, h').
It is not difficult to see that (s*,h’) = heapi,. From (s,h) k= (8.2) follows
(s*,h) = (8.2) by the construction of s* (the relevant variables and function
symbols do not occur in (8.2)). Then (s*, ') = g'(P’) A \,;c;(p: instanceof [p;])
using Lemma 5.7.

Next, we prove that (s*,h') = (VZ € He |[P] — (Q[|.]/old(.)])). Let & be
an arbitrary sequence consisting of admissible values for the variables in Z such
that (s*[z2 — a],h’) = | P|. Because result does not occur in | P| we also have
(s'[z+ @], ') = | P|. Note that z does not contain freeze variables. Using
Lemma 5.7 we obtain (s[z — al,h) E P.

The existence of our initial computation (S, (s, h)) — (s’, h’) implies that we
also have (S, (s[zZ — @], h)) — (s'[Z — a], h') because the existence of a compu-
tation does not depend on the values of logical variables. Then ={P} m@QC {Q}
and our last two results (cf. Definition 3.3) together imply that

(s'[z — a][result — v],h')(s[z — a],h) EQ , (8.6)

since v = E[e](s',h') = E[e](s'[z — a],h’)). Next, we will argue that we can
replace s’ in (8.6) by s. Recall that every free logical variable (except result)
in @ occurs in Z. Moreover, () contains no free local variables. Hence the
value of @ does not depend on s’. By replacing s’ by s’ we obtain the term
(s7[z +— a][result — v],h')(s[z — @a],h) = Q, which is in turn equivalent to
(s*[z2 — a],h)(s[z — a],h) = Q due to the construction of s*. The freeze stack
s can be replaced by s* because the values of logical variables in the freeze stack
never play a role. Then Lemma 8.4 yields (s*[z — a], h') E Q[[.]/old(.)], which
shows that the entire antecedent of (8.4) holds in the given state.

From our previous result we conclude that the consequent of (8.4) also hold
in the given state: (s*,h') = Q'[g/(.)/old(.)]. Recall that g'(e) = |e[p/P']]. From
Lemma 8.4 follows that N[g’(e)](s*, ') = E[e[p/P']](s*, h) for every expression
e. Moreover, E[e[p/P']](s*, h) is equivalent to E[e[p/p']](s, h) because the value
of a program expression e does not depend on the values of logical variables.
But then we also have (s*,1')(s, h) = Q'[old(.[p/p;])/old(.)].
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The freeze variables do not occur in @’. For that reason we also have
(s[result — v],h')(s,h) = Q'[old(.[p/p;])/old(.)]. This latter result is almost
equivalent to our initial goal (8.5). In fact, the following two observations imply
that (8.5) follows from it. Firstly, observe that s’ assigns the same values to
logical variables as s because s’ is part of the final state of a computation that
started in the state (s,h), and the values of logical variables are not changed
during a computation. And secondly, recall that a postcondition like @’ only
has occurrences of local variables inside expressions of the form old(e). Hence
its value only depends on the values of local variables in the freeze state. O

8.2 Modular Adaptation Rules

We have seen in the previous section what behavioral subtypes are, and how one
can verify whether two classes are behavioral subtypes. We have also claimed
that behavioral subtyping enables modular proof systems. This section provides
the details of such a proof system.

We have written in the introduction of this chapter that a modular proof
system is a proof system that does not require respecification or reverification
of existing code when new classes are added. In other words, existing proof
outlines must remain valid under class addition. A simple inspection of our
basic verification strategy in Section 7.1.1 reveals that only the set of verification
conditions of dynamically bound method calls may change under class addition.
The verification conditions of other statements remain unchanged.

The set of verification conditions of a dynamically bound method call is
extended by class addition if the new class contains an implementation that
may also be bound to the call. For one verification condition is generated for
each method implementation that may be bound to the call. Two new sets of
verification conditions are described in this section which both overcome this
problem. These sets correspond to two new adaptation rules. Our first rule
is based on Leavens and Weihl’s supertype abstraction principle [LW90, LW95].
The second rule refines the first rule to overcome an incompleteness issue.

8.2.1 A Modular Adaptation Rule Based on Supertype
Abstraction

Recall from Section 5.2.3 that our adaptation rule for dynamically bound meth-
od calls has one verification condition for each implementation that may be
bound to a particular call. Leavens and Weihl [LW90, LW95] have pointed out
that it suffices to generate only one verification condition for each method call if
a program only contains behavioral subtypes. The verification condition that is
indispensable is the one that corresponds to the specification of the method of
the static (or nominal [LW90]) type of the receiver. This simplification is essen-
tially sound because behavioral subtyping forces methods to refine the behavior
of methods which they override. For this reason all other implementations also
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satisfy the specification of the implementation that corresponds to the static
type of the receiver. Hence one can reason about subtypes using the specifica-
tions of supertypes. This technique is known as supertype abstraction.

Supertype abstraction leads to a modular adaptation rule. The outline of
that rule is

prov(leo],m) = C {P} m@C{Q}  (VCsp)
{Q'} u:=eg.m(er,...,e,) {Q"} .
Recall that prov(C, m) denotes the class in which the implementation of method

m that is used by C-objects is declared. We assume that the call occurs in the
code of class D. The verification condition (VCsyp) is

(8.7)

L(/\;O defined(e;))| A [~(eo = null) | A heap? A |Q'|A
(Vz € H e g(P Arec = this) — (Qlrec/this][g(.)/old(.)]))
— Q"[result/u] , (VCsup)

which is almost syntactically equal to the verification condition (VC5) that we
proposed in Section 5.2.2 for reasoning about statically bound method calls.
We have only replaced heap;, by heape (as defined in Section 8.1.3) to make
sure that (VCgyp) is a modular formula. All its other elements are defined in
the same way as in (VC5). This reveals that supertype abstraction basically
reduces reasoning about dynamically bound method calls to reasoning about
statically bound method calls!

It is not difficult to explain why this rule leads to a modular proof system.
A proof system is modular if every existing derivation remains valid under class
addition. We can prove that our new logic is modular by induction on the length
of a derivation. In particular, we can show that every derivation that ends with
an application of rule (8.7) remains valid. This requires us to prove that the
premises of (8.7) still hold.

Observe that the value of the first premise prov([eg],m) cannot be altered
by program extensions because adding new classes has no effect on the existing
inheritance chain of class [ep]. The second premise of (8.7) follows from the
induction hypothesis if the other rules of the logic are also modular. Finally, we
can prove that class addition does not affect the validity of (VCsyp). Essentially,
this holds because every subclass relation that is obtained by adding a new class
to a program is always an extension of the old subclass relation. Thus we can
show that we may still apply (8.7). Hence this rule leads to a modular proof
system.

8.2.2 Subtype Awareness

Unfortunately, rule (8.7) has a potential weakness. This weakness is caused by
the fact that overriding methods may have stronger specifications than overrid-
den methods. Rule (8.7) does not always allow us to reason about method calls
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using these stronger specifications. Hence it is too weak to prove certain valid
Hoare triples. This problem has been observed by Soundarajan and Fridella
[SF99].

The weakness can be illustrated using the code of Example 8.2. Consider
the Hoare triple

{a instanceof CachedAccount A a.bal = 4} S {((CachedAccount)a).cache =4} ,

(8.8)
where S is the call a.setBalance(5). We assume here that the static type of the
local variable a is Account. Observe that the precondition of the call contains ad-
ditional information regarding the dynamic type of the receiver because it states
that a denotes an object of some subtype of CachedAccount. This information
implies that the call will not be bound to the implementation of setBalance in
the superclass Account but to the implementation in CachedAccount or to an
implementation in some unknown subclass of the latter class. Hence the given
Hoare triple holds.

But can we prove (8.8) using rule (8.7)7 This is unfortunately not the case
since the specification of setBalance in Account is too weak to prove the required
postcondition. It does not say anything about its effect on the cache field of
its receiver. We can only prove the required Hoare triple if we are able to
reason about the call using the stronger specification of the implementation of
setBalance in subclass CachedAccount.

We believe that situations like the one above (where the specification con-
tains additional information regarding the dynamic type of the receiver) occur
quite often in object-oriented programs. Classes frequently store objects of some
particular type in polymorphic data structures such as lists and enumerations.
The static type of the objects in such structures is usually the root type object.
Thus information about the dynamic types of these objects is lost when they are
stored in these data structures. However, this information is then usually added
to a class invariant (see Chapter 9 for invariants). In this way, it is available
whenever methods are called on the objects in these data structures.

How can we solve the indicated problem? Observe that supertype abstrac-
tion enables us to reason about a call without knowing the specifications of all
implementations that may be bound to the call. It uses the specification of the
implementation of the static type of the receiver and ignores all other speci-
fications even when these specifications are visible in the context of the call.
Clearly, we can improve the situation by devising a rule which takes all visible
specifications into account. We will use the term ‘subtype awareness’ for this
technique.

But when is a specification visible? We say that a specification is visible in
some class C' if the class D in which it is declared is part of the scope of C'. A
specification is visible in the context of a call if it is visible in the class in which
the call occurs.
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8.2.3 An Adaptation Rule Based on Subtype Awareness

How can we change rule (8.7) in such a way that it also considers other visible
specifications? Do we have to prove one verification condition for every visible
specification? Fortunately, this will not be necessary because we will continue
to assume behavioral subtyping. We just have to weaken (VCy,p) in such a way
that we may also prove a given call specification using the stronger specification
of a visible subtype.

Suppose that we consider a call u := eg.m(ey, ..., e,) in some class C. Let
Cy = prov([eg],m), and let Cs,...,Ck be an enumeration of all other classes D
such that

i) D € scope(C),

i) D < [eo], and

iii) D also contains an implementation of m.
The outline of our new adaptation rule based on subtype awareness is then as
follows.

{P} mQC, {@Q1},...,{Px} mQCy {Q} (VCsup)
{Q} u:=eg.mley,...,e,) {Q'}

So all visible method specifications must hold in order to prove the call speci-
fication, but we only have to prove one verification condition (VCgup). Let p;
be the formal parameter sequence of the implementation of m in class C;, for
j € {1...k}. Moreover, let I; abbreviate the formula

(8.9)

(Vz; € H o g;(Pj Arec = this) — (Q;[rec/this|[g;(.)/old(.)])) .

Thus I; is the part of the verification condition of an adaptation rule that
corresponds to a particular method specification (instantiated with the elements
of the specification in class C;). The variable list Z; in I; is a list of all the
logical variables that occur free in either P; or @; (without result). By g; we
denote the function that replaces every assertion @ and every expression e by
|Qleo, €/this, p;] | and |eleo, €/this, p;]], respectively, where € abbreviates the list
€1,...,€En.

The verification condition ( VCyyp) of our adaptation rule (8.9) is the formula

L(/\;O defined(e;))] A [~(eo = null)| A heap$ A | Q)]

— \/jzl([eoj instanceof C; A (I; — Q'[result/u])) . (VCgsup)

The disjunction in (VCgup) shows that it is sufficient to prove the desired
postcondition @’ using only one specification I; provided that the precondition
implies that the receiver is an object of a type which inherits that particular
implementation. All behavioral subtypes of C; have implementations that also
satisfy I;. This observation explains why the clause |eg] instanceof C; suffices
here.
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The new adaptation rule (8.9) does not rely on unknown classes and therefore
fits in a modular proof system. But is the rule also sound? The following
theorem states that rule (8.9) is sound for programs that enforce behavioral
subtyping.

Theorem 8.6. Rule (8.9) is sound in the context of a program m in which every
type is a behavioral subtype of all its supertypes.

Proof. Let S =u :=eg.m(ey,...,e,) be a method call in some class C. More-
over, let C1 = prov([eg],m), and let Cy, ..., C) be an enumeration of all other
classes D such that (i) D € scope(C), (ii) D =< [eo], and (iii) D also contains
an implementation of m. Finally, let = (VCsup) and = {P;} mQC; {Q;}, for
every i € {1...k}. We must prove the validity of {Q} S {Q’}. For this purpose
we consider a computation (S, (s,h)) — (s’,h’) and an additional freeze state
(s", k") such that (s, h)(s”,h") = Q. We will prove that (s',h')(s”,h") E Q’.

The given computation can only be derived using rule MC'; of the operational
semantics. Hence the following must hold.

Eleo](s,h) =0 = (D,1)

Elei)(s,h) =v; # L forie {1...n}
meth(D,m) =t m(p1,...,pn){ S’ return e }
(S, (s[this,p1, ..., pn — 0,01,...,vs],h)) — (s°,h)
Ele](s®, W)y =v # L

s = sfu )

Our next step is to build a stack in which the variables of the heap model have
the same values as the corresponding locations in the initial heap h. Let ¥ be an
arbitrary sequence without repetitions that contains every object o € dom(h)
(except null). Let v[i] denote the object at position i in ©. For every instance
variable z declared in some class E € scope(C), let v(zg) be the sequence of
the same length as @ such that the i-th element of o(zg) is h(D[i])(E)(x), if
oi] € dom(E), and init([z]) otherwise. Let f : dom(object) — dom(int) denote a
function such that f (null) denotes the length of ¥, and for every object stored at
some index i of o we have f(o[i]) = i. Let s' be the stack that is obtained from
s by assigning @ to H, f to f, and o(z¢) to H(zc), for every field z declared in
some class C. Finally, let s* = sf[result — v].

Observe that D < [eg] (Lemma 2.4 and Lemma 2.2). Let prov(D,m) = E.
Note that we do not necessarily have E € {C1,...,Cy} because it is possible
that class E ¢ scope(C). We do know, however, that meth(D,m) denotes the
implementation of method m declared in class F.

Next, observe that = (VCgyup) implies (s*,h')(s”,h") = (VCsup). We will
prove that the antecedent of (VCgy,) also holds in that state to be able to
conclude its consequent. That is, we will prove that
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(s, B)(s", B") = L(/\j:o defined(e;))| A [~(eo = null) | A heap¥ A |Q]
(8.16)

In order to do so, we will first prove that for every formula Q* in which the
logical variables of the heap model and result do not occur we have that

(s,h)(s”,h") = Q* if and only if (s*,1')(s",h") = |Q*] . (8.17)

Note that (s, h)(s”,h") = Q* is equivalent to (s*,h)(s”,h”) E Q* by the con-
struction of s* if the logical variables of the heap model and result do not occur
in Q*. We get (s*,h) = (5.27), (s*, h) = (5.28), and (s*, h) |= (5.29) by the con-
struction of s*. Moreover, (8.13) and Lemma 5.6 imply that dom(h) C dom(h').
Then (s*,h)(s"”,h") = Q* is equivalent to (s*,h')(s”, k") E |Q*| according to
Lemma 5.7.

Let us now return to (8.16). From (8.10) and (8.11) above follows that
(s,h) E i defined(e;), and by (8.17) then (s*, 1) = [}, defined(e;)]. Simi-
larly, (s, h) = |—(eo = null)] follows from (8.10) and (8.17). Moreover, it is not
difficult to check that (s*, k') |= heap$ holds too. We have (s*, ') = heap® by
the construction of s* (heap™ only depends on variables of the heap model). The
local variables of the caller and this refer to objects in dom(h) because s is con-
sistent with h. By the construction of s* these values also occur in H. We must
also prove that (s*,h')(s”,h"”) = |Q]. Note that we have (s,h)(s”,h") E Q.
Hence (s*,h')(s”,h") E |Q] using (8.17). So (8.16) holds.

From (8.16) we conclude that the consequent of (VCyyp) also holds in the
given state. That is, we have

k
(s*,n')(s",h") = \/jzl(Leoj instanceof Cj A (I; — Q'[result/u])) ,

This latter result means that
(s*,h")(s",h") = |eo] instanceof C; A (I; — Q'[result/u]) (8.18)

for some j € {1...k}.

An important fact follows from the first conjunct of (8.18). Note that this
formula is equivalent to (s, h) = eg instanceof C; (cf. (8.17)). But then it must
be the case that EJeg](s,h) = 0 = (D, i) € dom(C}). This in turn implies that
D < Cj (cf. Lemma 2.2). In other words, the receiver of the method call is an
element of a (behavioral) subtype of C;. This ensures that the implementation
of method m in E satisfies the specification of method m in C; as described in
Def. 8.2.

Next, we focus on the second conjunct of (8.18). Recall that I; abbreviates

(Vz; € H e g;(P; Arec = this) — (Q;[rec/this|[g;(.)/old(.)])) ,
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where g; is the syntactical operation that takes a formula ) and returns the
formula |Q[eg, €/this, p;]| withe =e; ..., e, and p; = p!,...,p),. Our next goal
is to show that (s*,h’) = I;.

Let z; = 21,...,2, and let @ = oy,...,a; be an arbitrary sequence of
values such that «; € dom([z]), for i € {1...1}. Moreover, we assume that
a; € dom(v) or dom(cy;) C dom(?) if ; is an object or a sequence of objects,
respectively. Finally, we assume that (s*[z; — a], k) |= g;(P; A rec = this). By
expanding g; we get

(s*[z; — a], ') = | (P} A rec = this)[eg, €/this, p;]) | . (8.19)
From (8.19) and Lemma 5.7 follows that
(s*[zj — @], h) = (P; A rec = this)[eg, &/this, p;]

because the variables of the heap model do not occur in z;. Moreover, result
does also not occur in the formula (P; A rec = this)[eg, &/this, p;], and therefore

(s[zj — @], h) = (P; A rec = this)[eg, €/this, ;] .

Then (s[z; — a&][this, p; — 0,7],h) |= (P; A rec = this), with 0 = vq,...,v,, fol-
lows from Lemma 5.8. The clause rec = this in this formula implies that
s[z — a](rec) = o.
From (s[z; — a][this, p; — o0,7], h) = P; above we get
s[z; — a][this, p; — 0,7][p — 0], h) = P;[p/p;] A /\(pi instanceof [p}])
icl

using Lemma 8.2, which is in turn equivalent to

s[z; — @&][this, p — 0,0], h) = P;[p/p;] A /\(pz instanceof [p}]) (8.20)
icl

because this formula does not depend on the values of parameters in p; (except
if these variables also occur in p).

Because D is a behavioral subtype of C; we know that the implementation
of m in class E satisfies the specification with the precondition of (8.20) and
the postcondition @;[old(.[p/p;])/old(.)] (cf. (8.3)). Moreover, observe that the
computation in (8.13) entails that we also have

(S, (s[z — a]this, p — 0,0],h)) — (s°[z — a], k) (8.21)

because the existence of a computation does not depend on the values of logical
variables. Furthermore E[e](s°[zZ — al,h') = E[e](s°, h’) = v # L. For the final
state of the computation we then have

(s°[z = al[result = v], ') (s[z > a][this, p = 0, 7], h) = Q;old(.[p/p;]) /old(.)] .
(8.22)
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Lemma 8.3 implies that (8.22) is equivalent to
(s°[z — a]lresult — v], ') (s[z — a]this,p; — 0,7],h) = Q; . (8.23)

From the computation in (8.21) follows that s°[Z; — @](this) = o because
assignments to this are not allowed. Similarly, we have that s°[z — &](rec) = o
follows from s[Z — @](rec) = o. Then (8.23) and Lemma 5.10 imply

(s°[z = a][result — v], h')(s[z — a][this, p; — 0,],h) = Q,[rec/this] . (8.24)

The formula @ ;[rec/this|] contains no free occurrences of local variables, and
every logical variable that occurs free in Q; (except result) occurs in z. Moreover,
s*(result) = v. Therefore

(s*[z — al, h')(s[z — a][this,p — o,7], h) = Q;[rec/this]

holds too. We can also replace the freeze stack s in this formula by s* because
the only variables in ); whose values depend on the freeze state are this and
pl,...,pl. Subsequently, we can use Lemma 5.9 to obtain

(s*[z — a],h’) = Qjlrec/this][g;(.)/old(.)] . (8.25)

Equation (8.25) completes our proof of (s*,h') = I;. Combined with (8.18)
this result implies that (s*, h')(s”,h”) = Q'[result/u]. If we expand s* we get
(s'[result — v], h’)(s", ") |= Q'[result/u]. Then we know that

(s[result — v], 1) (s", h") = Q'[result/u]

holds too because the dual heap variables do not occur in @’. Moreover,
Q'[result/u] does also not depend on the value of u. Hence we also have
(s'[result — v], h')(s", h") = Q'[result/u]. Then (s'[result — v], h')(s",h") = Q'
follows from the definition of s’ and Lemma 5.10. This shows that our main
goal (s',h/)(s",h") = Q' also holds because result does not occur in @’. O

8.3 Behavioral Modular Completeness

Behavioral subtyping raises interesting questions regarding the completeness of
program logics that are based on this principle. We have argued elsewhere
[PdB05a] that program logics which are based on behavioral subtyping cannot
be (relatively) complete. The problem with the standard completeness notion
is that it puts no constraints on programs other than the ordinary typing rules.
It requires that every valid Hoare triple regarding such programs is derivable
in a particular program logic. Consequently, one must also be able to derive
every valid property of programs in which the behavioral subtyping principle is
violated. We believe that this requirement is too stringent [PdB05a].

Our response to this issue has been to propose two novel completeness no-
tions [PdB05a]. We have dubbed the most interesting of the two notions behav-
1oral modular completeness. 1t is in particular relevant for the modular rules in
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this chapter because it is supposed to define a level of completeness that can
be reached by modular program logics. We will define and motivate behavioral
modular completeness in this section.

8.3.1 Motivation

We have given a completeness proof for our non-modular proof outline logic
in Section 7.3. In this proof, we annotated methods with their Most General
Method Specifications. However, such specifications can only be expressed for
closed programs because the freeze formulas in these specifications explicitly
mention all program fields (cf. Section 7.3.3), which is not feasible for open
programs in which the fields of certain (future) classes may be unavailable.
Consequently, we must accept weaker specifications in completeness proofs of
modular logics.

What is needed for modular program logics is a completeness notion that
takes all method specifications for granted. It should only check whether the
rules of a logic allow us to prove every call specification that follows from these
specifications. This is a truly weaker completeness property because a method
call may also satisfy specifications which do not follow from a particular speci-
fication of the corresponding method. The required completeness notion should
essentially handle a method as a black box of which only the behavior as de-
scribed by a particular specification is known. A completeness notion that sat-
isfies these requirements has been proposed by Zwiers. He called this property
modular completeness [Zwi87]. The completeness property of modular object-
oriented program logics that we propose is a variant of Zwiers’ completeness
notion.

One important addition in our completeness notion is that it only requires a
program logic to be able to derive properties of programs in which the behavioral
subtyping principle is not violated. That it, is only considers programs in which
every subtype is behavioral subtype of all its supertypes. Program logics that
are based on behavioral subtyping will not even be sound in other contexts.

Another addition is that behavioral modular completeness forces a program
logic to consider all method specifications which are visible. In other words,
it is based on subtype awareness. Therefore we do not expect that proof rules
which use supertype abstraction will lead to a program logic that is behavioral
modular complete.

8.3.2 Definition

We will first state the definition of behavioral modular completeness, and sub-
sequently explain its parts.

Definition 8.4. A formal proof system is behavioral modular complete if, for
every Hoare triple {Q} S {Q'} of a statement S in some class C of an annotated
program 7 in which every subtype is a behavioral subtype of all its supertypes,
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we have that

{P1} m@QCy {Q1},....{P} m@QC, {Qi} = {Q} S {Q'} (8.26)
implies
{Pi} mi@QCy {Q1},....{P} m@QC{Q.} - {Q} S {Q'} . (8.27)

where {P1} m1QC; {Q1}, ..., {P} m@QC{Q;} are all the (valid) method spec-
ifications that are visible in C.

There are several elements of this definition that deserve some clarification.
We start with (8.27), which says that we can derive {Q} S {Q’} using the
assumptions {P;} m1QCy {@Q1},...,{P} miQC;{Q;}. The meaning of (8.26)
is more difficult to define. It roughly says that {Q} S {Q'} is a valid Hoare
triple if all Hoare triples {P; }m1@C1{@Q1},...,{P}mQC{Q,} are also valid.

One can formalize this validity notion by defining an operational semantics
relation with members of the form (S, (s, h)) SPECS (s',h’). The SPECS param-

eter of this relation denotes a finite set of method specifications that contains

the specifications { P} m1@QCy {Q1}, ..., {B} mQC; {Q;}. We will define this

‘black box’ semantics in such a way that the relation (S, (s, h)) SPEGS (s', ') only

holds if the method specifications in SPECS imply that a computation of S that
starts in (s, h) may terminate in the state (s’,h’).

The new semantics is defined as usual by a set of axioms and rules. These
axioms and rules are in most cases obtained by simply adding the SPECS param-
eter to the corresponding rule or axiom of our standard semantics for statements
in Section 2.2.3. For example, the rule

Ele](s, h) # L

(wi=c,(s,h)) "2ES (s]u— E[e](s, b)), h)

(LApp)

describes the new semantics of local assignments. The real differences between
our ordinary semantics and the new semantics become visible in the rules for
method calls.

We will use the method specifications in SPECS to define the meaning of
method calls. However, this raises the question which method specification we
use to define the meaning of a call. For it is possible that SPECS contains
several specifications of implementations which could in principle be bound to
the call.

Consider, for example, a call eg.m(€). It may be the case that the execution
of this call is bound to the implementation of the method m that belongs to
class [eg]. Note that SPECS always contains the specifications of the method
implementations that corresponds to the static types of receivers of method
calls in S. (cf. Lemma 8.1). However, SPECS may also contain specifications
of implementations of m from subclasses of [eg]. In this kind of situation we will
always pick the most specific available method specification for the dynamic type
of the receiver. We say that a method specification in class C' is more specific
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than a method specification in class D if C' < D. By msms(m, C,SPECS) we
denote the most specific method specification {P} m@D {Q} in SPECS such
that C < D.

The ‘black box’ rule for basic method calls basically says that every compu-
tation of a call is possible as long as the initial state and the final state of the
computation satisfy the precondition and the postcondition of the most specific
method implementation, respectively.

Eleo](s,h) = 0= (C,i)
Eleil(s,h) =v; # L forie{l...n}
msms(m, C, SPECS) = {P} mQD {Q}

(s[this,p1,...,pn — 0,01,...,05],h) E P
dom(h) C dom(h’)
(s,h)(s,h) = Q

(MChp)
(eomler,...en), (s,h)) 257 (s, 1)
We assume here that pq,...,p, are the formal parameters of the implementation

of m in class D. We require that dom(h) is a subset of dom(h') to make sure that
(s,h) is a valid state; the semantics of the body of the implementation normally
ensures that this condition holds. The first occurrence of s in the premise
(s,h')(s,h) E Q may be somewhat surprising; however, it can be justified by
pointing out that ¢ contains no free occurrences of local variables.

Similar changes must be made to the rule for object creation because that
rule involves a call to a constructor method; we omit the details. Instead, we
now turn to the new rule for calls to methods that return a value because that
rule is slightly more complex than the previous one.

5[[60]](8, h) =0= (Ca Z)
Elei)(s,h) =v; #L forie{l...n}
msms(m, C,SPECS) = {P} mQD {Q}

(s[this, p1,...,pp = 0,v1,...,0,],h) E P
dom(h) C dom(h')

v € dom(t) N dom(h')

(s[result — v],h')(s,h) E Q

(u:=eg.m(e1,...,en),(s,h)) SPEGS (s[u +— v], h')

(MChy)

The rule shows that an arbitrary value v that satisfies the postcondition is

returned. We assume in (MC1,) that ¢ is the return type of method m in class

D. The condition v € dom(h') should be dropped if ¢ is a primitive type.
With the new semantics we can give a formal meaning to (8.26).

Definition 8.5. We have SPECS = {Q} S {Q'} if and only if for every state

(s,h) and compatible freeze state (s',h') such that (s,h)(s',h') E Q, and every

state (s”,h") such that (S, (s, h)) SPEGS (s, "), we have (8", h")(s', 1) E Q.

Modular behavioral completeness is meant to be a weaker property than
relative completeness. The two additional assumptions of relative completeness
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regarding the expressiveness of the assertion language and the completeness of
the underlying proof system for the assertion language (cf. Section 7.3) are
therefore also permitted for our new property.

8.3.3 Evaluation

By defining the SPECS Lelation in terms of the most specific available method
specification we get a larger set of valid specifications {P} S {Q}, and con-
sequently a stronger completeness criterion. This decision presumably implies
that program logics that are based on supertype abstraction are not behavioral
modular complete. For such logics always reason about method calls using the
specification that corresponds to the static type of the receiver, which may not
be the most specific available method specification.

On the other hand, we do believe that our modular adaptation rule (8.9),
which is based on subtype awareness, may well be lead to a proof system that
is behavioral modular complete. However, at this point this is merely a con-
jecture. A full proof of this conjecture would involve a substantial revision of
our completeness proof in Section 7.3. We finish this section by formalizing the
crucial step in such a completeness proof. It is our hope that this will encourage
someone to undertake the task of completing the proof.

Conjecture 8.7. Let {Q} u := eg.m(e,...,e,) {Q'} be an arbitrary Hoare
triple regarding a method call in some class C' of an annotated program
in which every subtype is a behavioral subtype of all its supertypes. Let C
be prov([eo],m), and let Cs,...,Cy be an enumeration of all other classes D
such that (i) D € scope(C), (i) D = [eg], and (#ii) D also contains an im-
plementation of m. We assume that {P;} mQC; {Q;} is the valid specifi-
cation of method m in class C;, for j € {1...k}. Let SPECS be such that
{P;} mQC; {Q,} € SPECS for every j € {1...k}. Then

SPECS = {Q} u:=eg.m(e1,...,e,) {Q'} implies = (VCsup) -

8.4 Advanced Specification Constructs

We finish this chapter with a section on advanced specification constructs. Thus
far, we have only considered traditional (Hoare) specifications involving precon-
ditions and postconditions. Several other specification constructs have been
proposed in the literature. This section provides an overview of some of the
most important specification constructs. Invariants, however, are discussed in
more detail in the next chapter.

The specification constructs that we discuss below have not been chosen at
random. Our selection is motivated by an incompleteness issue that reveals it-
self when one tries to prove a specification involving extended state in a modular
way. We will only discuss constructs which are relevant to that particular phe-
nomenon. Naturally, we start our discussion with a description of the problem.
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class C imports object, D {

Dd: class D imports object {

int z ;
requires true;

ensures this.d = old(p);
C(D p) { this.d :==p }

requires true;

ensures this.z = old(p);
D(int p) { this.z :=p }
requires true;

ensures this.d.z = old(this.d.x) + 1;
void incD() { this.d.inc() }

requires true;
ensures this.z = old(this.z) + 1;
void inc() { this.z :=this.x +1 }

Figure 8.1: The code of two example framework classes.

8.4.1 Class Scopes and Extended State

It is important to realize that object-oriented programs are almost never en-
tirely written by one person. Even small programs often reuse and extend
functionality that is provided by standard framework classes. Developers can
extend framework classes by declaring new subclasses. These subclasses may
also contain additional field declarations. Such fields are usually not visible
in the superclass. This leads to an interesting reasoning challenge for modular
program logics. We will illustrate this challenge using some small pieces of code.

Fig. 8.1 lists the code and annotation of two (framework) classes. The first
class C holds a reference to an element of the second class D, which stores an
integer value in its z field. The initial value of that field can be increased by
calling the inc method. Class C has a corresponding method incD that calls the
inc method on the object that it references. The specifications of the methods
in the framework classes express these properties.

Now suppose that someone wants to extend class D in such a way that it
becomes possible to identify whether an object still has its initial value. For
this purpose, he (or she) defines a new subclass ED with one additional field
init, which has value true until the first call to method inc is completed. The
code and annotation of class ED is listed in Fig. 8.2.

Observe that class ED is declared as a subtype of class D. This is possible
because the implementation of the inc method in ED satisfies the specification
of the method in D which it overrides.

Now suppose that the developer of class ED writes another new class in
which he wants to reuse the existing code of class C. For this purpose, the
new class F' references a C' object. Moreover, assume that for some reason it is
necessary that this object has the additional functionality that is provided by
class ED. Therefore it is initialized with an instance of class ED instead of D
in the code in Fig. 8.3.

Anyone who tries to construct a proof outline for the specification of the
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class ED extends D refines D imports D {
boolean init ;

requires true;
ensures this.z = old(p) A this.init = true;
ED(int p) { this.x := p ; this.init := true }

requires true;
ensures this.xz = old(this.z) + 1 A this.init = false;
void inc() { this.x := this.x + 1 ; this.init := false }

Figure 8.2: The code of class ED.

class F imports object, ED, C {
Cc;

requires true;
ensures this.c.d.x = 2 A this.c.d instanceof ED A ((ED)this.c.d).init = false;
F() {
D u; u:=new ED(1) ;
Cuv;v:=new C(u);
this.c := v ; this.c.incC() ;
}
}

Figure 8.3: The code of class F'.

constructor method of this class will discover at least two problems. The first
problem is that the specifications of the methods that are called in the construc-
tor method only describe their effects on the fields that are actually changed.
But they do not say which fields are not modified during a call. For example,
with the current specifications we are unable to prove that the execution of the
constructor method of class C' does not change the value of the z field of its
parameter. This is not a major problem because the missing information can be
added to the method specifications. Moreover, in Section 8.4.2 we will discuss
modifies clauses, which solve this issue in an even more satisfactory way.

The second problem is much more difficult to solve. It manifests itself when
we try to prove the last clause ((ED)this.c.d).init = false of the postcondition.
We know that this clause holds because the call to method inc in the body
of the method incD will be bound to the implementation in class ED due to
dynamic binding. However, the specification of incD does not describe the
modification of the init field. We cannot blame the specifier of class C for this
problem. For we cannot expect that the specification of a class reflects the
potential modification of fields which are not visible in that particular class. In



8.4. ADVANCED SPECIFICATION CONSTRUCTS 179

our example, field init is declared in class ED, which is not imported by class
C.

One could criticize this example by pointing out that the validity of the
postcondition of the constructor method depends on ‘hidden’ knowledge. In
particular, it depends on our knowledge about the implementation of method
incD. The fact that this method satisfies it specification by calling the inc
method on the object referenced by its ¢ field is not something that can be
deduced from its specification. In other words, client F' is demanding more
than what is promised in the contract of incD.

We agree that it is not advisable to base expectations about method behav-
ior on implementation details. On the other hand, we also believe that it may
sometimes be necessary to be able to prove specifications like the postcondition
in our example. So the only proper response to this problem seems to be to pro-
vide additional specification constructs which would enable us to write stronger
contracts. In the following sections we will study several advanced specification
constructs in order to determine their contribution to this issue.

8.4.2 Modifies Clauses and Data Groups

We have seen in the previous section that some of the specifications in our
example are too weak because they only reflect the changes which a method
performs. They do not say which fields remain unmodified. Ideally, these weaker
specifications would be sufficient. Because otherwise we would have to describe
the effect of a method on the fields of all objects in the program state, which
would result in rather lengthy specifications. Moreover, only a limited set of
fields is usually visible in the context of a particular method. What seems to be
missing is a clause that says “...and nothing else changes”. This issue is known
as the ‘frame problem’ in procedure specifications [BMR95].

The standard solution to this problem is to explicit list the set of fields that
a method is allowed to modify in a modifies clause. Such a clause would have
the form

modifies e1.x1,...,en.Ty

where x1,...,x, are field names and eq,...,e, are ordinary program expres-
sions. A method m with such a clause in its contract would only be allowed to
modify the heap locations that are denoted by these expressions (in the initial
state of its execution). Moreover, every method that m calls would also have to
respect this part of m’s contract.

Whether a method m satisfies its modifies clause can partly be checked by a
simple inspection of its body and the contracts of the methods that m calls. For
example, if a particular field x does not occur in a modifies clause, then we can
simply check whether there is no assignment of the form e.x := ¢’ somewhere
in m’s body. Additionally, we have to ensure that none of the modifies clauses
of methods that are called in m’s body contains an expression of the form e.x.

We have to do a bit more work for a field x which is listed in the modifies
clause. Assume, for example, that the modifies clause contains two expressions
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of the form e.xz: e;.x and es.z. Then we have to prove that m only modifies the
x fields of the objects denoted by e; and es. We use two fresh logical variables
z and 2’ to verify this. We can express the required property by adding the
clause =(z = e1) A =(z = e3) A z.x = 2’ to m’s precondition, and the clause
z.x = 2z’ to m’s postcondition. Thus z denotes an arbitrary object other than
the objects denoted by e; and ez, and 2z’ denotes the value of this object’s x
field. We can build a proof outline for this property by (implicitly) adding the
clause —(z = old(e1)) A =(z = old(e2)) A z.x = 2’ to every assertion in m’s
body. Subsequently, we can use our standard verification condition techniques
to verify the modifies clause.

Another question is how the additional information contained in the modifies
clause can be embedded in the verification conditions of method calls. Again we
have to distinguish two situations. For a field « that occurs in the modifies clause
of a method we can add the two clauses described in the previous paragraph
to the precondition and the postcondition of the method while computing the
verification condition for the method call (cf. Section 8.2.3). These clauses add
the additional information to the method specification. For a field  which does
not occur in the modifies clause we have two options. In principle, we could
add clauses of the form z.z = 2’ to both the precondition and the postcondition
of the method specification. Thus the specification expresses that the x field of
every object is not changed during the method execution. We should only do
that for fields which are visible in the context of the call. Adding such clauses
for other fields is useless because the specification of the call cannot depend on
such fields.

There is, however, a superior solution which results in shorter and simpler
verifications conditions. We have proposed this alternative solution elsewhere
[PdBO03a]. The idea is to modify the result of the |.| operator for expressions
of the form g.x if x is a field which does not occur in the modifies clause of
a method. Recall from Section 5.2.2 that |.| replaces expressions that denote
heap locations by expressions which denote the initial values of these expressions
in the dual heap. The idea is that the dual heap stores the initial values of all
heap locations. However, we know that fields which do mot occur in a method’s
modifies clause are not modified by that method. Consequently, there is no
difference between the initial and the final values of the corresponding heap
locations. And therefore there is no need to replace these expressions. So the
idea is to define |¢.x] = |g].x for every field 2 which does not occur in the
modifies clause. If we do not replace an expression e.x in the precondition
by the corresponding dual heap expression H(z¢)[f(|e])], then we can directly
use information regarding e.x in the precondition to prove properties regarding
e.z in the postcondition. This improvement renders superfluous the additional
clauses z.x = 2’ .

We will illustrate both approaches in an example.

Example 8.3. Suppose that we call a parameterless method m in some class C
with an empty modifies clause. Hence m does no modify any variables. Let us
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assume that this method has precondition true and postcondition true, which is
a rather weak specification. But the modifies clause will nevertheless enables us
to prove certain call specifications.

Suppose that we want to prove that {this.x = 5} this.m() {this.x = 5}. Let
D be the class in which this call occurs. We use verification condition (VCsyp)
on page 166 to reason about this call. In the first approach we add the clause
z.x = 2’ to the precondition and the postcondition. This yields the verification
condition

defined(this) A —(this = null) A heapt) A H(z¢)[f(this)] = 5
A (Vz,2" € H e (true A H(zc)[f(2)] = 2 A rec = this) — (true A z.z = 2'))

— this.z =5 .

Note that we did not expand the abbreviation heape. This formula contains the
clause this € H. This clause is necessary here to ensure that the verification
condition holds.

The second approach yields a much shorter and simpler formula. We do not
have to add clauses to the precondition and postcondition:

defined(this) A —(this = null) A heapi) A this.z = 5
A ((true A rec = this) — true) — this.z =5 .

This verification condition clearly holds, because we can use the clause this.x =5
in the precondition to prove this.x = 5 in the postcondition.

Data Groups

Behavioral subtyping requires a certain constraint on modifies clauses. For
we cannot allow that a method in a subtype which overrides a method in a
supertype behaves differently. The necessary constraint is that the locations in
the modifies clause of the overriding method must be a subset of the locations
in the modifies clause of the overridden method.

However, this simple restriction is too rigid. It forbids all modifications of
fields that are declared in subclasses which are out of scope in the superclass.
We can illustrate this claim using the code of the example in Section 8.4.1.
First, consider method inc in class D in Fig. 8.1. This method only modifies
field z, so it seems reasonable to give this method the clause modifies this.z.
Next, consider method inc in class ED on page 178. This method modifies both
field x and field init. However, according to the proposed constraint it is only
allowed to modify z.

Clearly, we want to allow modifications of fields which are declared in sub-
classes. Leino has proposed data groups for this purpose [Lei98, LPHZ02]. A
data group is essentially an underspecified set of fields. Data groups can be used
in modifies clauses to indicate that every field that belongs to that group may
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be modified. So if g is the name of a data group, then e.g in a modifies clause
means that the location e.xz may be modified if x is an element of the group g.

Data groups are open: fields of subclasses can be added to data groups
declared in superclasses. This enables subclasses to extend the set of modifiable
heap locations of an overriding method by adding new fields to data groups
which occur in the modifies clause of the overridden method. This basic idea
can be extended in several ways [Lei98, LPHZ02].

In our example, we could define a data group g in class D and give the inc
method of that class the modifies clause modifies this.z, this.g. Subsequently,
we can add a tag to the declaration of field nit in class ED indicating that
it belongs to group ¢. Finally, we can give the implementation of inc in this
class the same modifies clause as the method which it overrides. This choice
clearly satisfies the constraints on modifies clauses of overriding methods, and
it permits the modification of init.

Modifies clauses and data groups are important advanced specification con-
structs. However, they do not help us to solve the more fundamental reasoning
problem that we observed in the previous section. We could use them to spec-
ify that method incD in class C' may modify init, but we cannot use them to
specify precisely how it is modified. The former could be done by adding the
clause modifies this.c.g to the specification of this method. This would signal to
class F that init is potentially modified. But it does not reveal that this field
invariably gets the value false during the call.

8.4.3 Trace Specifications

Another radical extension of the expressiveness of method specifications results
if we allow specifications to describe the trace of a method. A trace is a finite
sequence of communication events (or method calls in the context of object-
oriented programs). Traces are sometimes also called communication histories
[dRABH™01].

Recently, Soundarajan and Fridella have proposed techniques for reasoning
incrementally about object-oriented systems [SF04]. In particular, their paper
considers the problem how a subclass can prove a (potentially stronger) specifi-
cation for a method which its inherits from its superclass without reexamining
its code. This is an interesting problem because the inherited method may call
other methods which are overridden in the subclass. Hence its behavior may be
different when invoked on objects of the subclass. We will briefly describe how
they use trace specifications to solve this problem.

Each element of a trace represents a call to a dynamically-bound method
that occurs during the execution of a method. The name of the method, the
initial and final state of the call, the parameter values, and the result value
are recorded for every call. Every method describes its trace in an additional
enrichment specification, which is only available for subclasses. A new rule
enables subclasses to derive a stronger specification for methods that it inherits.
This rule allows a subclass to assume that every call to an overridden method
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in the trace satisfies the stronger specification of the overridden method.

Can traces help us to solve our remaining reasoning problem? We believe
that they may provide a viable solution. However, stronger techniques than
those described by Soundarajan and Fridella are required to fully handle our
example in Section 8.4.1. One shortcoming of their work is that it only addresses
the relation between a base class and its subclass. In our example, the method
that needs to have a stronger specification is located in a separate (third) class.
We would like to infer a stronger specification for method incD in class C'; the
specifications for the methods inc in class D and its subclass EFD are strong
enough.

It seems that we could solve the issue if method incD would provide an
enrichment specification to class F' which would reveal that it satisfies its spec-
ification by calling the inc method on its D-object. Then class F' could deduce
that this would result in a call to the implementation of inc in the subclass ED
because it knows that this D-object is actually an instance of the subclass ED.
However, this requires that the enrichment specification is not only available
for subclasses but also for arbitrary clients like class F'. Moreover, there are
also several aliasing restrictions in the language considered by Sounderajan and
Fridella which are not satisfied by most object-oriented languages. However, it
may well be possible to realize the necessary extensions of their system.
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Chapter 9

State Based Invariants and
Object Allocation

Sharing of objects is often necessary to increase the speed and reduce the re-
source demands of programs. A system that allocates too many objects is prone
to be slow. This phenomenon forces modules to share objects whenever possible.

Fortunately, many objects can safely be shared. This holds, for example, for
simple immutable objects like strings and classes that encapsulate primitive data
like integers or floating-point values. More complex examples include objects
that represent key strokes, and borders of graphical user interface elements.

The resource demands of a program can be reduced by means of a mechanism
that handles requests of client code for new objects by returning existing, shared
objects whenever possible. Moreover, clients should be discouraged (or down-
right precluded) from allocating such objects directly. The flyweight pattern
[GHJV94] supports object sharing by means of factories that maintain pools of
shared objects. It is interesting to see that many variants of this pattern appear
in version 1.4 and later versions of the Java API.

In this chapter, we formally analyze this type of object sharing by studying
the invariants that describe such object pools. A common feature of these
invariants is that they are falsifiable by the allocation of new objects. This is a
disturbing observation because object allocation is possible in every context in
which a constructor method of the class is visible. Therefore almost every code
fragment may potentially falsify the invariant. We show how such invariants
can nevertheless be maintained by means of creation guards. A creation guard
for a particular class is a formula that should hold in each state in which a new
object of that class is allocated.

Invariants are commonly used to describe properties of the encapsulated rep-
resentation of a single object following an influential paper by Hoare [Hoa72].
Barnett and Naumann recently proposed a friendship system with update guards
for maintaining invariants over shared state [BNO4]. In this chapter, we show

185
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how to extend their system with creation guards in order to control object
allocation.

This chapter is organized as follows. Section 9.1 presents an example in-
volving a border factory that enables clients to share border objects. In the
following section we describe the state based invariant framework, along with
some results concerning the relationship between object creation and invariants.
Section 9.3 summarizes the friendship methodology on which we build. Section
9.4 introduces our creation guards, and the corresponding invariant methodol-
ogy. It also provides a sketch of its soundness proof. The last section is devoted
to related work and conclusions.

9.1 An Example: Sharing Borders

In this section, we describe an example factory class that enables clients to share
bevel borders. Fig. 9.1 shows the two classes of the example. The example is
derived from the corresponding classes in Java’s javax.swing package. More
complex examples are possible, but this example suffices to illustrate our ap-
proach. The example is written in a simple class-based object-oriented Java-like
language that extends our language COORE (cf. Chapter 2). For convenience,
we will assume that the examples in this chapter behave according to the se-
mantics of Java. However, this does not imply that the techniques that we will
describe cannot be applied to other object-oriented languages like C#.

Our example uses static fields and methods which are not present in COORE.
Static class elements are associated with the class in which they are declared
and not with its instances. Static fields are essentially global variables.

A bevel border can either be lowered or raised. The type field in class
BBorder stores the type of the border. The factory class has two static fields
(LOWERED and RAISED) that represent the two types.

Factory methods handle request for specific objects. They ensure that only
one object is created for each value (or type). The getBBorder method in the
BorderFactory class is an example of a factory method; it returns BBorder
objects. The border factory class typically provides a factory method for each
available border type.

To enable object sharing, references to the existing instances of a class should
be maintained in a global object pool. In our example two static variables
(raised and lowered) are used to build such a pool; more complex examples
usually involve a hash table.

The constructor method of class BBorder is public. This is necessary because
the factory method must have access to it. However, this also implies that
client code is able to ignore the factory method by directly instantiating the
class. That is, the implementation does not effectively impose object sharing on
clients. This kind of situation is often accompanied by strong warnings in the
class documentation not to exploit this leak. We will show how creation guards
can repair this weak spot.
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class BBorder {
private boolean type ;

public BBorder(boolean type) { this.type := type ; }
// methods for drawing the border omitted

class BorderFactory {
public static final boolean RAISED := true, LOWERED := false ;
private static BBorder raised, lowered ;

public static BBorder getBBorder(boolean type) {

if (type = RAISED) {
if (raised = null) { raised := new BBorder(RAISED) ; }
return raised ;

}

else {
if (lowered = null) { lowered := new BBorder(LOWERED) ; }
return lowered ;

}
}

// fields and factory methods for other border types omitted

}

Figure 9.1: A class that represents bevel borders, and a factory class that main-
tains a border pool.

In situations where a factory only controls one class, it is best to place the
factory method in the same class; the problem can then be avoided by declaring
the constructor to be private (see, e.g., class java.util.Currency in version 1.4
of the Java API). However, one still needs a way to check whether statements in
that class do not inadvertently falsify invariants by allocating new objects. Our
example addresses the more general situation where the factory method resides
in a different class.

The code of the factory class facilitates (but does not impose) an invariant
regarding BBorder objects: each object occurs in the object pool, and each
bevel border has a unique type. That situation is described by the following
invariant.

(Vb : BBorder e b = lowered V b = raised)
A lowered # null — lowered.type = LOWERED (BorderFactory.Inv)
A raised # null — raised.type = RAISED .

(Here, and throughout this chapter, we assume that quantification ranges over
allocated non-null objects.) We assign this invariant to class BorderFactory,
which makes it a static invariant. We will assume that static invariants are
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invariants that belong to a class, and not to the instances of a particular class.

Non-static (object) invariants describe the representation of instances of a
class, and are allowed to refer to their receiver by means of this. The first part
of the above invariant could be rephrased as the object invariant

this = lowered V this = raised .

However, this object invariant has the flaw that it makes the instances respon-
sible for assigning themselves to the proper location in the object pool. This is
impossible in our example due to the visibility restrictions. We will therefore
focus on static invariants in this chapter.

Invariants reveal important design choices regarding a class that may justify
code optimizations. For example, if invariant (BorderFactory.Inv) holds, then
the following efficient implementation of the equals method is sufficient to check
if two instances of the class represent the same border type.

public boolean equals(Object obj) { return this = obj ; }

9.2 State Based Invariants

Invariants are commonly expected to hold in all ‘visible’ states. This implies that
the invariants must hold every time control leaves a method of a class [HK00,
LBRO4]. However, it is also possible to use a state based approach to invariants
[BDFT04] in which the state signals which invariants hold. This approach has
been developed in the context of the Spec# programming system [BLS05]. It
handles callbacks [BDF*04] and inter-object relationships [LM04, BN04] more
flexible while still preventing scenarios in which one wrongfully assumes that an
invariant holds.

We will explain the state based approach in more detail below. But first we
describe the syntax of invariants and the relationship between invariants and
object allocation.

9.2.1 The Syntax of Invariants

We will assume that invariants are expressed in terms of the expressions of the
underlying (Java-like) programming language. That is, they should be based
on the following set of expressions:

e € IExpr == null|ex | C.f| (C)e]| e instanceof C
| e=celop(e1,...,en) | 2z | undefined | defined(e)

We will assume that C.f denotes the value of the static field f declared in class
C. The meaning of every other expression is similar to its meaning in COORE
(see Chapter 2).
Invariants are simply formulas over the set of expressions that we have de-
fined above:
ITelnv == e|-I|IANT|(Vz:tel)
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Invariants must satisfy one additional syntactical restriction: they are not al-
lowed to have unbound occurrences of logical variables.

We will denote the value of an invariant expression by Ne](s,h) along the
lines of the formal semantics in Section 3.1.1. The missing case is as follows:
N[C.f](s,h) = h(C.f). Note that we assume that a heap h also assigns values
to static fields. This requires a simple extension of the domains of heaps; we
omit these details.

We will write P[I](s,h) to denote the value of an invariant I in the state
(s,h). The definition of P[I](s,h) is equal to the definition of P[P](s,h) in
Section 3.1.1. However, the quantification domain of an invariant (Vz : C e I)
does not include the null reference.

9.2.2 Quantification and Object Allocation

The static invariant of class BorderFactory (BorderFactory.Inv) is an example
of an invariant that is falsifiable by object creation. It is clear that this invariant
is falsified by the allocation of a new instance of class BBorder whenever the
static variables raised and lowered already reference existing objects.

We can use the weakest precondition calculus for object allocation in Chap-
ter 6 to check whether invariants are falsifiable by object allocation. Recall
that the operation [new(C)/u] computes the weakest precondition of the allo-
cation of a new instance of class C, and its assignment to a fresh local variable
u that temporarily stores a reference to the object. This operation does not
model the execution of a constructor method. It merely models the effect of the
heap extension that is caused by the allocation of a new object, which is the
first effect of the execution of a statement new C/(ey,...,e,) in Java [GISB0O].
Whether the constructor method preserves the invariant should be checked in
the constructor method itself.

The following theorem describes the correspondence between falsifiability by
object creation of an invariant and the validity of a formula.

Theorem 9.1. An invariant I is falsifiable by the allocation of a new instance

of class C if = I — (I[new(C)/u]).

Proof. We prove the contrapositive of the theorem. Let (s, h) = I. Recall from
Section 6.1 that (s[u +— o], h - [0 — init(C)]) is the state that we obtain if we
allocate an object of class C' and assign it to the local variable u in the state
(s,h). We have that (s[u — o], h - [0 — init(C)]) = I if I is not falsifiable by
the allocation of a new instance of class C. Then (s, h) = I[new(C)/u] follows
from Lemma 6.10. |

In most cases one can also directly deduce from the syntax of an invariant
that it cannot be falsified by the allocation of a new instance. The following
result states that only invariants that quantify over a domain that includes the
new object can be falsified by its allocation.
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Theorem 9.2. If an invariant I has no subformulas of the form (Vz : C o I')
or (3z: C e I'), for some superclass C of class D, then it cannot be falsified by
the allocation of a new instance of class D.

Proof. By structural induction on I. O

We assume here that each class is also a sub- or superclass of itself. The
implication is not valid in the opposite direction.

9.2.3 Relating Invariants and States

We will briefly summarize the state based invariant methodology (a.k.a. the
Boogie approach) [BDFT04]. It uses auxiliary fields to signal whether invariants
hold. For example, we can introduce an auxiliary field inv to signal which
invariants hold for a particular object. Its value is always a superclass of the
dynamic type of an object. The state based invariant methodology ensures that
if the value of the inwv field of an object is class C, then the object satisfies every
object invariants declared in a superclass of C (including the invariant in class
(). The following system invariant (for each class C) formally describes the
relation between this field and the object invariant Invg of class C.

(Vo : Ceo.inv = C — (Invc|o/this])) (9.1

Here, < denotes the reflexive and transitive subclass-relation, and [0/this] is the
capture-avoiding substitution of this by o defined in Chapter 4.

The default value of field inv is the root class object, which implies that the
object invariant of this class must hold for each fresh object. The value of the
inw field is controlled by two special statements, pack and unpack, which are
defined as follows for a class D with immediate superclass C.

pack e as D =
assert defined(e) A =(e = null) A e.inv = C' A (Invple/this]) ;
eanv:=D ;

unpack e from D =
assert defined(e) A =(e = null) A e.inv = D ;
e.inv ;= C ;

The formulas that follow the assert keyword should be seen as preconditions for
these statements. The program logic in which they are used should guarantee
that they hold whenever these statements are executed (e.g., by adding them
to the weakest preconditions of these statements). A runtime assertion checker
can simply check if the assertion holds upon reaching the statement.

These statements enable a discipline whereby each object is sufficiently un-
packed before its fields may be modified. This can be achieved by placing the



9.3. THE FRIENDSHIP SYSTEM 191

additional precondition e.inv A C on all field assignments of the form e.x := €',
where C' is the class in which field z is declared.

The above mentioned discipline suffices for object invariants that only de-
pend on the fields of their receiver. Other invariants can be allowed by using
ownership [CPN98] in order to extend the range of invariants to objects be-
yond of the original object, to owned objects and objects with the same owner
[BDF*04, LM04].

The Boogie approach to invariants can also be used to handle static invari-
ants. For this purpose, we assign to each class an auxiliary boolean field stable
that indicates whether the class is stable, i.e., whether its static invariant holds.
Assignments to static fields of a class will only be allowed if it is unpacked. A
class is unpacked if its stable field has the value false. The following statements
control this field.

pack class C = assert C.Inv ; C.stable := true ;
unpack_class C = C.stable := false ;

The purpose of these statements is to maintain the following system invariant,
for each class C.

C.stable — C.Inv (9.2)

9.3 The Friendship System

Barnett and Naumann [BN04, NB04] extended the set of admissible invariants
by allowing object invariants to depend on fields of shared objects. The classes of
these objects are called friend classes. Their extension allows, for example, the
invariant of our factory class to depend on instance fields of objects of (friend)
class BBorder. Note that BorderFactory.Inv depends on field type declared
in class BBorder. We will describe in this section how their proposal can be
applied to static invariants.

Their friendship system uses update guards to describe permitted updates
to shared fields. An update is permitted if it occurs in a state in which the
guards of the field hold, or if the factory class is unpacked. We will use the
following syntax to declare an update guard U in class C' for an instance field
x of class C.

static guard U guards x for F;

The keyword static indicates that the guard protects a static invariant; the
guard U protects the static invariant of class F' against updates of field = of
C-objects that would falsify F’s invariant. The guard itself should be a valid
formula that does not mention fields that are invisible to clients of the class. It
may additionally refer to two keywords: this denotes the object whose field is
modified, and val denotes the value that is assigned to the field. A field may
have several update guards.
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A static invariant F.Inv that depends on a field x of some other class C' is
only allowed if it is sufficiently protected by the update guard of that field. An
update guard U for field = protects the static invariant of class F' if

F.Inv NU — (F.Inv|val/this.z]) (9.3)

holds. By [val/this.z] we denote the weakest precondition operation of the as-
signment this.z := val (see Chapter 4).

As mentioned above, updates to guarded fields are only allowed in states in
which either the guards hold or in which the class of the invariant is unpacked.
This is checked by giving each assignment of the form e.x := ¢’ the (additional)
precondition —F.stable VV (Ule, ¢’ /this,val]). Here [e, e’ /this,val] is the simulta-
neous substitution of this by e, and val by ¢’. Thus we ensure that all updates
to this field maintain (9.2).

Note that guards are always placed in the class in which the field is declared.
This is necessary in a modular proof system. It ensures that a proof of correct-
ness for a method cannot be falsified by adding additional classes that declare
new guards for arbitrary fields of other classes.

We can also use this mechanism to allow static invariants that depend on
static variables declared in other classes. A guard declaration

static guard U guards f for F ;

protects the static invariant of class F' against updates of static variable C.f in
states in which the guard does not hold. The keyword this does not make sense
in update guards of static fields and is therefore not permitted.

One can check whether an update guard U for a static field C. f protects the
invariant by replacing [val/this.z] in (9.3) by the weakest precondition operation
[val/C.f] of the assignment C.f := val. An assignment C.f := e is only allowed
in states in which —F.stable VV (U[e/val]) holds.

In the following section we introduce creation guards in order to enable
static invariants that are falsifiable by object creation. The definition of the set
of admissible static invariants will therefore also be deferred to that section.

9.4 Creation Guards

Theorem 9.2 states that only invariants that quantify over a domain that in-
cludes new objects can be falsified by object creation. It would therefore be safe
to allow static invariants to quantify over the instances of the class in which
they are declared if that class has only private constructors. Thus creation of
instances of the class would be restricted to methods of the class, and it would
suffice to check that the methods of the class ensure that the invariant holds in
all visible states.

However, as we have argued in Section 9.1, it is often not the case that the
factory methods are part of the same class. Moreover, we often find protected
or even public constructors for shareable objects. We will use creation guards to
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grant the class of the factory method the right to quantify over shared objects.
A creation guard for some class C' is a formula that should hold in each state
in which a new object of class C' is allocated.

Let F be the class that contains the factory method(s) for objects of class
C. Class C can protect the static invariant of its factory class by declaring a
creation guard. Such a declaration could have the following form.

static creation guard G for F

The creation guard G is an arbitrary formula over the part of the program state
that is visible to clients; it should not reveal hidden implementation details of
class C.

The most commonly used creation guard is false. This creation guard seems
to prohibit creation of objects of class C, but that is not the case. The effect
of such a creation guard is that objects of that class can only be created if the
factory class is unpacked. That is, we require that —~F.stable V G holds prior to
the execution of each statement that allocates a new object of class C.

The invariants that are enabled by a creation guard depend on the strength
of the guard. The only invariants that are allowed are those that cannot be
inadvertently falsified by the allocation of a new object as a consequence of the
creation guard. A creation guard G protects the static invariant F.Inv of a
factory class F' against allocation of instances of class C' if

F.Inv NG — (F.Inv[new(C)/u])

holds, where w is a fresh local variable. Only invariants that are protected by
guards in the above sense will be allowed to quantify over shared objects.

9.4.1 Admissible Invariants

In this subsection, we briefly summarize the methodology that we have proposed
thus far. In particular, we give a precise definition of the set of admissible
invariants that is supported by the guards that have been introduced up to now.
The definition avoids possible complications that may arise due to subclassing;
we discuss subclassing in Sect. 9.4.3.

Definition 9.1 (admissible invariant). A static invariant F.Inv is admissible
if the following conditions are met:

e cach static variable C.f that occurs in F.Inv is syntactically distinct from
C'.stable, and either belongs to class F (C' = F), or class C' has a static up-
date guard U for C.f and class F such that F.Inv AU — (F.Inv|val/C. f]);

e cach subformula of the form e.x concerns a field x that is syntactically dis-
tinct from inv, and the class C in which it has been declared has a static up-
date guard U for x and class F such that F.Inv AU — (F.Inv|val/this.z]);
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e cach subformula of the form (Vz : C e I) concerns a class C that has a
creation guard G for class F such that F.Inv AN G — (F.Inv[new(C)/u]);
moreover, class C is either final, or has at least one private constructor,
and no public or protected constructors.

Note that quantification over the values of a primitive type is never a prob-
lem. Such formulas are not falsifiable by object creation (as follows from Theo-
rem 9.2). The last clause ensures that the class over which the invariant quan-
tifies has no subclasses. Classes that have at least one private constructor, and
no public or protected constructors, cannot have subclasses in Java. Thus the
quantification domain of a formula in an invariant never includes instances of
subclasses. This prevents invariants from depending on the creation of such
objects. We will weaken this restriction in Sect. 9.4.3, where we address sub-
classing.

9.4.2 The Border Example Revisited

In this subsection we revisit the example described in Sect. 9.1. A proof outline
of the example classes can be found in Fig. 9.2. It shows what annotation is
needed to ensure that the required invariant is maintained, and how the invariant
can be used to guarantee that methods behave according to their specification.

The static invariant of class BorderFactory is introduced by the keywords
static and invariant on three succesive lines; the actual invariant is the conjunc-
tion of its three parts. The first part of the invariant is protected by a creation
guard in class BBorder. However, the given invariant is only admissible if the
class BBorder would have been declared to be final; we will explain in the
following section why the invariant is also admissible without finalizing class
BBorder.

Note that the references to the static variables in the invariant do not require
update guards; a static invariant is always allowed to depend on static fields of
the class in which it is declared. The following two parts are protected by the
update guard for field type in the code of class BBorder.

The proof outline does not restrict the values of the static fields RAISED
and LOWERED with e.g., the invariant RAISED = true A LOWERED = false.
Instead, we assume that the proof method replaces occurrences of these variables
by their initializer expressions, which would make the above invariant trivially
true. This preprocessing step corresponds to the way Java compilers handle
final static variables with initializer expressions that are compile-time constants
[GJSBO0, §12.4.1].

The constructor method of class BBorder is listed with its precondition
(requires clause) and postcondition (ensures clause). It assigns to field type, and
must therefore require that the factory class is unpacked due to the update
guard of the field. Note that we assume that an occurrence of a parameter in a
postcondition denotes its value in the initial state.

The equals-method of class BBorder depends on the static invariant of
BorderFactory as signalled by its precondition. It uses the fact that the class is
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class BBorder {
private boolean type ;

static creation guard false for BorderFactory ;
static guard false guards type for BorderFactory ;

requires ~BorderFactory.stable ; ensures this.type = type ;
public BBorder(boolean type) { this.type := type ; }

requires BorderFactory.stable ;
ensures result = (0bj instanceof BBorder

&& ((BBorder)obj).type = this.type) ;
public boolean equals(object 0bj) { return this = obj ; } }

class BorderFactory {
public static final boolean RAISED := true, LOWERED := false ;
private static BBorder raised, lowered ;

static invariant (Vb : BBorder e b = raised V b = lowered) ;
static invariant raised # null — raised.type = RAISED ;
static invariant lowered # null — lowered.type = LOWERED ;

requires stable ;
ensures result.type = type A stable ;
public static BBorder getBBorder(boolean type) {
if (type = RAISED) {
if (raised = null) {
unpack_class BorderFactory ;
assert type = RAISED A raised = null A (V¢ : BBorder e ¢ = lowered)
A-stable A (lowered # null — lowered.type = LOWERED) ;
raised := new BBorder(RAISED) ;
pack_class BorderFactory ;

}

return raised ;
}
else {
if (lowered = null) {
unpack_class BorderFactory ;
assert type=LOWERED A lowered =null A (Yc : BBorder o c¢=raised)
A-stable A (raised # null — raised.type = RAISED) ;
lowered := new BBorder(LOWERED) ;
pack_class BorderFactory ;

}

return lowered ;

P}

Figure 9.2: A proof outline of the shared borders example.
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packed and the system invariant (9.2) to prove its postcondition, which would
otherwise be too strong.

The factory method preserves the invariant of the class according to its
specification. It temporarily unpacks the class if it has to allocate a new instance
of the class. For clarity, we have inserted assert statements that describe what
holds immediately after the class is unpacked. The invariant is restored in the
factory method by assigning the fresh object to the proper static variable after
completion of the constructor method.

9.4.3 Subclassing

The set of admissible invariants that we defined in Sect. 9.4.1 does not allow
quantification over a range that includes instances of subclasses. This may
seem a strong restriction, but it actually matches well with many variants of
the flyweight pattern that we found in the Java API. These sharing facilities do
not cater for subclasses because the creation statements in the factory methods
fix the classes of the objects in the pool.

However, it is not difficult to conceive a more flexible factory based on the
prototype pattern [GHJIV94] that would not statically fix the class of its objects.
Such a factory method would have to be initialized with a prototype object.
From that point on, the factory method should clone the prototype object each
time a new object is required, thus ensuring that all objects have the same type.
We therefore investigate the use of creation guards in the presence of subclassing
in this section.

Assume that we have a static invariant in class F' that quantifies over the
instances of class C. In closed programs, one can check for each subclass D of
C if its creation guards protect the invariant. However, this solution cannot
be applied if some of the (future) subclasses are unavailable. Therefore we will
have to rely on a system in which the creation guards of a subclass are restricted
by the creation guards of its superclass.

One may be tempted to believe that it suffices to let subclasses inherit the
guards of their superclass, but that is not the case. Assume, for example, that
we have a static invariant (Vo : C' @ =(o instanceof D)), where D is a subclass of
C. This invariant is not falsifiable by creation of instances of class C, so we could
give class C' the creation guard true for this invariant. However, we can easily
break the invariant by allocating an instance of class D. The inherited creation
guard does not prevent this scenario. The problem with this invariant is that it
depends on a property of objects that is not inherited by subclasses. Instances
of a subclass belong to a different class than instances of their superclass.

The instanceof operator and the cast operator are examples of operators
that depend on the class of the objects to which they are applied. One of
their operands is a class name. This operand always reveals the criterion that
is used. Fortunately, these operators cannot discriminate between instances of
that class and its subclasses. It suffices to ensure that the creation guard of the
mentioned class protects the invariant. However, this latter restriction needs
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only hold if the operator occurs in a formula that quantifies over the instances
of some superclass of the mentioned class.

These additional restrictions suffice to protect invariants provided that cre-
ation guards are inherited by subclasses. A subclass may override a creation
guard that it inherits if the new creation guard is stronger than the inherited
guard. The above considerations lead to the following refinement of Def. 9.1.

Definition 9.2 (admissible invariant). A static invariant F.Inv is admissible
if the first two conditions of Def. 9.1 are met, and moreover, each subformula
of the form (Vz : C e I) of F.Inv concerns a class C with a creation guard G for
class F such that the implication F.Inv AN G — (F.Inv[new(C)/u]) holds, and

o class C is either final, or has at least one private constructor, and no
public or protected constructors, or

e cevery subclass D of C that occurs in I has a creation guard G' for F s.t.
F.Inv NG — (F.Inv[new(D)/ul).

9.4.4 Soundness

Soundness of our methodology means that system invariant (9.2) holds in every
reachable state of a properly annotated program in which all invariants are
admissible according to Def. 9.2. We presuppose a sound proof system which
ensures that the explicated preconditions of program statements hold. We show
that these preconditions suffice to ensure that the various statements in the
program maintain the system invariant.

A full soundness proof would duplicate many steps in the soundness proof
of the friendship system [NB04]. We will therefore only prove the results that
cover the part of the proof that checks whether object allocation preserves (9.2).

A statement new Cl(eq,...,e,) first allocates a new instance of class C, and
then initializes the object by calling the corresponding constructor method with
parameters e; to e, [GJSBO00]. For simplicity, we assume that parameter evalua-
tion has no side effects. The methodology must ensure that the system invariant
is maintained by the allocation to prevent scenarios in which the specifier of the
constructor method wrongfully assumes that the invariant holds.

The following definitions play an important role in the proof. Let classes(/)
denote the least set such that C' € classes(]) whenever invariant I has a subfor-
mula of the form (3z : CeI’) or (Vz : C'eI’), or a subexpression of the form (C)e
or e instanceof C. By the most specific superclass of a class D in an invariant
I we mean the most specific superclass C' of D such that C' € classes(!), if any.
Formally, C € classes(/) is the most specific superclass of D in an invariant I
if D < C, and there exists no other class F € classes(I) such that D < E and
E=XC.

The following lemma shows that the allocation of an instance of an arbitrary
subclass has the same effect on an invariant as the allocation of an object of its
most specific superclass.
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Lemma 9.3. Let I be an arbitrary invariant. Let class C' be a superclass of
class D such that C is the most specific superclass of D in I if it exists. Let
(s, h) be an arbitrary state, and let o. and og be arbitrary objects of class C' and
D, respectively, that do do not occur in dom(h). Then

(s[u = oc], h - [oc = init(C)]) = I <= (s[u— odl, h - [0 — init(D)]) =T .
Proof. By structural induction on I. For the base case one must prove that
ELe)(slu— 0], b - o > nit(C)]) = E[el(slu = 04, h - [og > init(D)))
for every invariant expression e. ]

The main result of this section implies that any admissible invariant cannot
be falsified by object allocation in a state in which all relevant creation guards
hold. It is necessary to prove a slightly stronger result to be able to prove the
claim by structural induction.

Lemma 9.4. Let C.Inv be an admissible invariant according to the additional
requirements stated in Def. 9.2 (i.e., without the requirements of Def. 9.1
concerning update guards). Let D be an arbitrary class. Let (s,h) be a state
such that (s, h) | C.Inv, and moreover, for each creation guard G declared in
some class E € classes(C.Inv) that protects some friend class C we have that
(s,h) E G. Then (s[u — o], h-[o+— init(D)]) E C.Inv, where o is an object of
class D such that o & dom(h).

Proof. By structural induction on I. We first prove for the base case that, for
every invariant expression e, E[e](s[u+ o], h- [0+ init(D)]) = E[e](s,h) by
structural induction on e.

The most interesting case of the lemma concerns an invariant C.Inv such
that C.Inv = (Vz : E eI) for some class E such that D < E. Let F be the most
specific superclass of D in C.Inv. Note that F exists because F is already a valid
candidate. We have by Def. 9.2 that C.Inv A G — (C.Inv[new(F)/u]), where G
is the creation guard declared in class F' for friend class C. Let oy be an object
of class F' such that Oy & dom(h). From (s, h) = C.Inv[new(F')/u] follows by
Lemma 6.10 that (s[u — of], h-[of +— nit(F)]) = C.Inv. The required validity
of (s[u — o], h-[o— init(D)]) E C.Inv then follows from Lemma 9.3. O

9.5 Related Work and Conclusions

The problem of maintaining invariants that are falsifiable by object creation
has not been solved before. This is somewhat surprising because it is quite
common to allow quantification in program annotations, and quantification is
the (potential) source of the issue. Leino and Nelson identified the problem
[LNO02], but they responded to it by forbidding this kind of invariant.
Calcagno et al. [COBO03] studied the consequences of garbage collection
(object deallocation) on program specifications. They rightly pointed out that
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certain formulas that are similar to the set of invariants that we studied are
vulnerable to object deallocation. Their remedy is to weaken the semantics of
quantification such that non-existing objects are also included. However, the
invariants that we studied are not valid in their semantics. Consequently, one
has no means to prove the correctness of method specifications that rely on such
invariants. It is more common to ignore garbage collection in the semantics
of garbage-collected languages without pointer arithmetics such as Java and
C#. Note that our example invariants are invulnerable to garbage collection
because the references retained by each factory ensure that the objects are
always reachable.

The Boogie approach to invariants was initially designed to handle reentrant
calls to objects that are not in a stable state [BDF104]. Several later extensions
showed that the initial extended state approach could be stretched to cope with
other object-oriented specification patterns. In this chapter, we have focussed
on the use of creation guards, and have therefore ignored some of the orthogonal
extensions such as the use of ownership.

Leino and Miiller [LM04] proposed a new ownership model to support ob-
ject invariants that depend on fields of owned objects that are not statically
reachable from their owner, which allows, e.g., the invariant of a List object to
depend on the fields of all the Node objects in its representation. They later also
explored the use of ownership in static invariants [LMO05]. However, quantifica-
tion over owned objects is too weak to fully express the properties obtained by
factory methods. They also explore quantification over packed objects, which
turns out to be difficult to handle in a general way [LMO5].

Barnett and Naumann [BNO04] introduced update guards to protect object
invariants that depend on fields of friend objects. They show how the set of
friends can be managed using auxiliary state. Their friendship system protects
invariants over shared state in circumstances where the ownership relation would
be too rigid. They give a semantical characterization of the set of admissible
invariants that rules out invariants that can be invalidated by object creation.
An elaborate soundness proof of the system appeared in a companion paper
[NB04].

The Java specification language JML [LBRO4] defines static invariants in
terms of visible states. Such a definition seems incompatible with invariants
that are falsifiable by object creation because objects can be created in every
state.

This chapter is a slightly revised version of an earlier paper [PCdB05]. A
preliminary version of this work [PCdB04] has been presented at a workshop.

9.5.1 Conclusions

Object sharing is an important technique to overcome some of the potential
resource demands and speed limitations of object-oriented programs. This is
witnessed by the amount of examples of patterns that manage object allocation
that we found in the Java API. However, as we have shown in this chapter,
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the invariants that describe pools of shared objects are falsifiable by object
allocation. The singleton pattern [GHJV94] is another example of a pattern
that leads to an invariant that is falsifiable by object creation [PCdBO04].

The main contribution of this chapter is a sound and modular methodology
for static invariants which could be falsified by both states updates and object
allocation. We introduced creation guards to maintain such invariants. The
examples that we studied are best described using static invariants, but creation
guards can also be used to protect object invariants.

The invariant methodology can be applied in both a static-checking and in a
full program verification context. It also seems useful to check creation guards
using a runtime assertion checker. The methodology is not tied to a specific
program logic, although we have partly expressed it in terms of our previous
work on program logics for object-oriented programs. The formulas that use the
weakest precondition operation for object allocation can be rephrased in terms
of the semantics of object allocation. We employed a syntactical description to
be more specific about the set of admissible invariants.

We have implemented the invariant methodology in a tool that computes
the proof obligations of proof outlines of sequential Java programs. This tool is
described in the next chapter of this thesis.



Chapter 10

Tool Support

The preceding chapters of this thesis contain theoretical work. In this penul-
timate chapter we will show the more practical side of our research. We will
describe a tool that supports our proof outline logic. This tool gives an impres-
sion of how the logic could be applied in practice.

We also hope that this chapter provides more insight into the design decisions
behind our logic. We have already motivated the design of our proof outline
logic in the introduction of this thesis. But the architecture of our verification
tool also reflects some of the constraints that our logic satisfies. In particular,
it shows that a proof outline logic enables us to automate important parts of
the verification process.

The Verification Front-End Tool (VFT) that is described in this chapter
has been developed by the author of this thesis. It is written in Java. The
VFT is the successor of another tool that computes the verification conditions
of annotated object-oriented flowcharts [PdB03b].

In the next section we explain the functionality of the VFT. The details of
its architecture can be found in Section 10.2. We report our experiences with
the tool in Section 10.3. The last section of this chapter contains an overview
of related tools.

10.1 Using the VFT

The VFT is a stand-alone application that looks like a standard integrated
development environment. It has a graphical user interface with several windows
in which the user can manage and edit the files that contain the source code
of a particular program. Syntax highlighting makes the structure of the code
easier to detect, and drop-down menus and toolbar buttons provide access to
the tool’s functionality. Figure 10.1 shows the graphical user interface of the
tool.

The differences between the VFT and a normal integrated development en-
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Figure 10.1: The graphical user interface of the VFT.

vironment start to become clear when the developer adds annotation to the
Java source code. The VFT recognizes code annotation and highlights it ac-
cordingly. It expects the user to supply a precondition and a postcondition for
every method. It also supports intermediate assertions in method bodies and
logical variable declarations.

The assertion language which the VFT supports is similar to the COORAL
language in Chapter 3. However, the precise syntax of the language differs
somewhat. More information about the syntax of VFT’s assertion language can
be found in the documentation that is available at its website:

http://www.cs.uu.nl/groups/IS/vit/.

All annotation elements must be written between the standard Java comments
markers /* and */. This ensures that the annotation is ignored by Java com-
pilers. Thus every proof outline is also a valid Java program. A user can easily
insert these markers by selecting them in a popup menu that appears when he
clicks on his right mouse button.

Another useful annotation feature of the tool is its support for assertion
macros. A macro is an abbreviation for some specific (parameterized) formula.
Macros can be used in proof outlines to shorten specifications and to improve
their readability. Macros are defined in separate files. Their declarations are
very similar to method declarations. A macro definition consists of a name, a
formal parameter list, and an formula (the body of the macro).

Annotated programs can be compiled. This process consists of two stages.
First, the VF'T type checks both the program and its annotation. It also checks
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Figure 10.2: The verification panel and a proof dialog.

whether the program satisfies the normal sanity constraints for Java programs
[GJSB00]. Violations of the typing rules and other constraints are reported in
a separate window. The tool also produces a warning if the code contains Java
constructs that are currently not supported. The Java subset which the VFT
currently supports is similar to the COORE language in Chapter 2. Additionally,
it has some support for static fields and methods. And it also supports Java’s
increment and decrement statements [GJSBO0O].

During the second compilation stage the verification conditions of the proof
outline are computed. This step always succeeds if the proof outline has passed
the first compilation stage. Each method has its own set of verification condi-
tions. The verification conditions are presented to the user on a separate tab
panel (the verification panel) that is only accessible when the program has been
compiled successfully. Figure 10.2 shows this panel (and a proof dialog which
we will explain below).

The verification panel shows a tree structure which contains a node for every
class and every method in the program. The verification conditions of a method
are listed on the verification panel when its node is selected. For each verification
condition a short description of its origin is shown. The actual verification
condition is displayed when its description is selected.

The remaining task is to make sure that all verification conditions are valid.
This is where the back-end of the tool comes into play. The VFT currently uses
the HOL 4 prover! to verify its proof obligations. This automated proof system

IThe HOL 4 system is available from http://hol.sourceforge.net/.
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runs in the background during the execution of the tool. The VFT can send
verification conditions to this system. After sending it reads the output of the
prover to determine whether the proof obligation was proved. It then changes
the status of the verification condition accordingly. The status of a verification
condition is either pending, valid, or invalid. A small icon next to the description
of a verification condition indicates its current status.

The easiest way to determine the validity of the verification conditions is
to ask the VFT to try to prove them all automatically. The tool then sends
all verification conditions to the theorem prover in a particular order. The
prover gets a fixed amount of time to prove each verification condition. The
tool resubmits the verification conditions that were not successfully proved in
the first round when every verification condition has been examined. In a new
round the prover either gets a longer time period for each verification condition
or it is asked to try a different proof tactic. This process terminates when all
proof obligations are proved or when it is interrupted by the user.

It is also possible to use HOL 4 interactively. The VFT supports interactive
proof construction by means of a proof dialog that displays the output of the
theorem prover. Figure 10.2 shows such a dialog. The user can send commands
to the prover in a proof dialog by typing them in a particular field. It is also
possible to select commands in the dialog’s dropdown menu. The interactive
mode can be used to prove the validity of complex verification conditions that
cannot be proved automatically.

Obviously, it is also possible that the prover fails to prove a verification
condition because it is invalid. Unfortunately, the tool currently does not detect
invalid verification conditions. This is caused by the fact that HOL 4 does not
systematically try to disprove formulas.

10.2 Architecture

The core activity of the VFT is data processing. Its input are annotated Java
programs and its final output is a set of verification conditions. The data flow
in the VFT is depicted in Figure 10.3.

The first step in the data processing chain is performed by a lexer and a
parser. We have used the CUP? parser generator to build the parser. The
parser cooperates with a lexer that was generated using the lexical analyzer
generator JLex®. These tools produce a Java object structure that represents
the abstract syntax tree of an annotated program.

In the next step, the VFT calls a method on the root of the object struc-
ture to initiate type checking. This method ensures that every variable in the
abstract syntax tree is annotated with its proper type. But it also verifies that
the program is well-defined. It checks, for example, whether each class in the
program has a unique identifier.

2See http://wuw2.cs.tum.edu/projects/cup/.
3See http://www.cs.princeton.edu/appel/modern/java/JLex/.
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Figure 10.3: Data flow in the VFT.

The resulting typed abstract syntax tree is passed to the Verification Con-
dition Manager. This manager can query the tree to obtain the verification
conditions of a particular method. It then display these verification conditions
to the user. But it can also obtain all verification conditions of the entire pro-
gram and send them to the theorem prover. Each verification condition consists
of a typed abstract syntax tree that represents a particular formula, a string
that describes its origin, and an integer value that represents its status.

The final data processing step occurs when the Verification Condition Man-
ager sends a verification condition to the theorem prover. It then constructs
a string that represents the verification condition in the input language of the
theorem prover. This is necessary because the HOL 4 system supports a higher
order logic that differs from our assertion language. However, it is not difficult
to represent formulas of our assertion language in this logic.

We will not provide a detailed description of the embedding of assertions
in HOL 4’s higher order logic because its details are fairly specific for this
particular system. The translation simply follows the definition of the semantics
of formulas in Section 3.1.1. This semantics sometimes refers to the subtype
relation of the program. This relation is therefore also represented in the logic
of the theorem prover. It is available as a program-specific background axiom
for all verification conditions.

The current situation in which the VFT supports only one theorem proving
system is not ideal. We would prefer a situation in which the user could select
its preferred theorem prover from a range of systems. The architecture of the
tool makes this feasible. For the background axiom and the resulting verification
conditions are the only things that must be embedded in the theorem prover’s
logic. Moreover, the size of the assertion language is reasonably small. Its
translation can therefore easily be adapted towards other theorem provers.
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10.3 Evaluation

So far, the VFT has mainly been used for educational purposes. Students have
worked with the tool during two editions of a course on program correctness at
Utrecht University. The students wrote proof outlines and manually computed
the corresponding verification conditions. Afterwards they compared their re-
sults with the verification conditions which the tool computed for the same proof
outlines. They were also asked to prove some of the verification conditions in
order to validate their proof outlines. This does not require much knowledge
of the HOL 4 system because the verification conditions of small examples can
usually be proved either automatically or by means of one of the standard proof
procedures in the dropdown menu of the proof dialog.

The students proved that it only takes a few hours to learn to work with the
VEFT if one is familiar with programming in Java. Experienced Java developers
can immediately start to add annotation to their code. But learning to write
proper specifications takes more time of course.

One way to guide students towards writing useful specifications would be to
add an extended static checking mode to the tool. This mode would force users
to add at least enough annotation to ensure that methods do not result in, for
example, null pointer exceptions. The VF'T currently does not compel users to
prove such properties. However, it is not difficult to adapt our proof outline
logic accordingly. For example, if we want to make certain that an assignment
u := e terminates without exceptions then we must ensure that the value of e is
defined. Recall from Chapter 4 that the weakest precondition of this statement
with respect to a postcondition @ is the formula defined(e) — Q[e/u]. Changing
this formula to defined(e) A Q[e/u] additionally guarantees that the statement
terminates without exceptions.

10.4 Related Work

Many verification systems have been built in recent years. Below, we will only
discuss systems which can be used to verify object-oriented programs.

The VFT is similar to an extended static checker in the sense that it also
automatically computes the verification conditions of proof outlines. A differ-
ence between the VFT and extended static checkers is that the VFT supports
interactive theorem proving, whereas an extended static checker purely relies
on an automated theorem prover. Another difference is that extended static
checkers are designed to prove lightweight properties like the absence of run-
time exceptions, whereas our tool currently does not direct the user towards
proving some particular set of properties.

The first extended static checker for Java was ESC/Java [FLLT02]. Its
successor ESC/Java2 [CKO05] supports the JML [LBR04, LCCT02] specification
language. It implements JML’s visible state semantics for invariants.

The Spec# programming language [BLS05] extends C# with method spec-
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ifications, invariants, non-null types and checked exceptions. There is a static
programmer checker for Spec# (codenamed Boogie) that checks these proper-
ties. It is available as a plug-in for Microsoft Visual Studio. The Spec# pro-
gramming language supports the state based invariant methodology [BDF*04]
which we have discussed in Chapter 9.

Verger [AOB] is a command line tool that generates verification conditions for
annotated Java programs in the input language of the PVS system. Its distin-
guishing feature is that it is able to handle multi-threaded programs. However,
it neither supports inheritance nor subtype polymorphism.

Several tools generate verification conditions for annotated Java programs
using existing verification tools for less complex languages. They translate
Java programs and their specifications into these primitive languages and sub-
sequently compute their proof obligations. This usually makes these proof obli-
gations harder to understand. Moreover, the initial translation step can easily
result in a logic that is incomplete or even unsound.

The Java Applet Correctness Kit (JACK) [BRLO03] automatically computes
verification conditions for Java Card applets with JML annotations. It does so
by first translating Java classes into B models. The resulting proof obligations
are B lemmas (instead of JML formulas). The KRAKATOA tool [MPMUO(4]
translates Java programs with JML specifications into the input language of
the WHY tool, which produces proof obligations for programs that are written
in a ML-like minimal language.

Other tools support interactive verification using some specific logic. The
KeY tool [ABBT05], for example, enables its user to interactively construct
proofs in a dynamic logic for Java implementations of UML models with OCL
[WKO8] constraints. It is integrated in a commercial CASE tool (Borland’s To-
gether Control Center). Stenzel has developed a similar dynamic logic calculus
for Java Card programs that is supported by the interactive KIV system [Ste04].

The Java Interactive Verification Environment (JIvE) [MPHO00] provides sup-
port for Poetzsch-Heffter and Miiller’s logic for Java programs [PHM99]. This
logic is not suitable for verification condition generation. Users of JIVE must
therefore not only interact with a theorem prover component, but also with
a program prover component. The latter component interactively constructs
proofs using the rules of the aforementioned logic.

All tools that we have discussed sofar are based on logics that abstract from
a particular formal semantics of object-oriented programs.The developers of the
LOOP compiler [vdBJO01] follow a different approach. For this compiler trans-
lates Java programs with JML annotations into the higher order logic of PVS
or Isabelle/HOL [Hui01] using an embedding of the (denotational) semantics of
Java programs.

The LOOP compiler covers a significant subset of sequential Java. Moreover,
it also properly models the semantics of Java’s integral types [Jac03]. However,
this approach also has some drawbacks. It is based on a complex encoding
of Java’s semantics in the higher order logic of the theorem prover. Such an
encoding is difficult to learn. Most other tools only need an embedding of the
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simpler and more compact semantics of specification formulas. Secondly, the
proof obligations which the LOOP compiler constructs are larger than those of
other logics. This is a consequence of the fact that all the reasoning takes place
in the theorem prover. By contrast, our VFT already executes many reasoning
steps when it generates the verification conditions of a program. The validation
techniques which it implements encode many non-trivial reasoning steps.



Chapter 11

Conclusions

Our aim was to construct a proof outline logic for a language that has the object-
oriented features of popular object-oriented languages like Java and C#. To this
end, we have developed techniques for reasoning about assignments, method
calls and creation statements which are valid in the context of a language that
supports inheritance, subtype polymorphism and dynamic binding. Moreover,
we have shown how these techniques can be used to validate proof outlines
of object-oriented programs. The resulting logic is both sound and relatively
complete for closed programs.

During our research we discovered that we could not build the desired proof
outline logic from techniques that all reason in the same direction; our final
logic therefore combines techniques that reason in the forward direction using
strongest postconditions with techniques that reason in the backward direction
using weakest preconditions.

The problems that we encountered are all related to dynamic object alloca-
tion. We found out that it is impossible to reason in the backward direction over
method calls in a language with dynamic object allocation (cf. Section 5.2.2).
For this would force us to reason in the initial state of a method execution about
objects from its final state. This is not possible because the objects that are
created during the execution of a method do not yet exist in its initial state.
And our assertions can only describe objects that exist in the current state. We
do not have this problem for the opposite direction because all objects from the
initial state also exist in the final state.

The fact that our assertions can only describe existing objects is a conse-
quence of the abstraction level of our logic. It is in principle possible to overcome
this limitation, but only by creating a gap between the abstraction level of the
programming language and that of its specifications. For normal program ex-
pressions in Java or C# only denote existing objects. Reasoning about future
objects seems to require state parameters in the assertion language. Moreover,
we would have to relate all expressions in assertions to some specific state.

It is also not possible to reason about all statements in the forward direction.
We encountered difficulties while trying to define the strongest postconditions
of object allocations. The proposed strongest postconditions are too weak to
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prove certain postconditions which contain logical variables that do not occur in
the corresponding preconditions (cf. Section 6.1.2). Our weakest precondition
calculus for object allocation does not have this shortcoming. Hence our proof
outline logic is a combination of techniques for both directions.

We have experimented in this thesis with expressions of the form old(e) in
specifications. An expression old(e) denotes the value of the program expression
e in the initial state of the current method execution. Thus such expressions
can be used to refer to the initial values of expressions in, for example, the
postcondition of a method. They seem to serve the same purpose as the logical
variables in traditional Hoare logics [Apt81], which raises the question whether
they render logical variables superfluous.

We have been able to integrate these expressions in our proof outline logic.
Moreover, we have observed that their use simplifies the verification conditions
of method calls (see our remark on page 81). But we have come to the conclusion
that these expressions cannot totally replace logical variables in program logics
for object-oriented languages. For the usage of logical variables that range over
finite sequences remains necessary.

We have employed logical variables that range over sequences in the verifica-
tion conditions of our adaptation rules (cf. Chapter 5) and in the freeze formula
of our completeness proof (Chapter 7). In both cases we could not achieve
the same goals with expressions of the form old(e). With logical variables that
range over finite sequences we can model the dynamically allocated part of an
object-oriented state, independent of its size, whereas an expression old(e) only
denotes one particular state location. The absence of powerful specification con-
structs like the finite sequences in our specification language also seems to be
the cause of the incompleteness of Abadi and Leino’s logic for reasoning about
object-oriented programs [AL03].

We have also investigated whether our techniques can be used to reason
about open programs. We have made use of behavioral subtyping in Chapter
8 to turn our proof outline logic into a modular logic that is suitable for open
programs. But we have also argued that behavioral subtyping is not the answer
to all modularity issues. It is only a means to obtain a sound modular logic
for open programs. It does not tell us in which sense a program logic for open
programs can still be complete. We have given a possible answer to that question
in Section 8.3. The completeness notion that we have proposed there is tailored
to the usual method specifications that describe initial and final states of method
executions.

However, stronger specification techniques must be developed in order to
fully master the extensible nature of object-oriented programs. Methods should
additionally be able to specify how their behavior can be influenced by future
program extensions. To this end, methods have to reveal more details of their
internal behavior. We have illustrated this necessity in Section 8.4. Integrat-
ing trace specifications (cf. [SF04]) into our logic appears to be a valuable
step towards a definite solution for reasoning about extensible object-oriented
programs.
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Samenvatting

Steeds meer taken worden tegenwoordig uitgevoerd door computerprogramma’s.
Niet zelden betreft het taken waarvan grote economische of maatschappelijke
belangen afhangen. Deze belangen rechtvaardigen een grote inspanning om de
correcte werking van dergelijke programma’s aan te tonen.

De correctheid van een programma kan aangetoond worden door middel van
bewijsschetsen voor de procedures waaruit het programma bestaat. Een be-
wijsschets van een procedure beschrijft met formules uit een formele taal de
gewenste begin- en eindtoestanden van de procedure. Verder beschrijft het de
mogelijke toestanden op belangrijke punten in de implementatie van de proce-
dure. Zo wordt op een beknopte manier getoond waarom een procedure aan zijn
specificatie voldoet. Een geldige bewijsschets beschrijft de wezenlijke elementen
van een sluitend wiskundig bewijs voor de correctheid van een procedure.

Een bewijsschets is echter niet zondermeer geldig. De juistheid van een
bewijsschets kan aangetoond worden door de geldigheid van een verzameling
additionele bewijsverplichtingen te bewijzen. Deze bewijsverplichtingen kunnen
berekend worden op basis van de implementatie van de procedure en de formules
in de bewijsschets. Doorgaans wordt er vervolgens een stellingbewijzer gebruikt
om na te gaan of de bewijsverplichtingen geldig zijn.

In dit proefschrift wordt beschreven hoe de additionele bewijsverplichtin-
gen van bewijsschetsen van objectgeoriénteerde programma’s kunnen worden
berekend. Het proefschrift definieert voor dit doel een formele calculus. De-
ze calculus houdt rekening met belangrijke objectgeoriénteerde kenmerken als
overerving, subtype polymorfisme en dynamische binding. Er is gestreefd de
calculus geschikt te maken voor de objectgeoriénteerde eigenschappen van de
populaire programmeertalen Java en C#.

De ontwikkelde calculus heeft een aantal belangrijke kenmerken. Allereerst
is de calculus geschikt voor bewijsschetsen waarvan de specificatietaal is geba-
seerd op de expressies uit de programmeertaal. Dergelijke bewijsschetsen zijn
eenvoudiger te begrijpen en op te stellen door programmeurs. Bovendien zijn
de berekende bewijsverplichtingen zelf ook formules uit dezelfde specificatie-
taal. Verder kan de calculus volledig mechanisch toegepast worden. Tenslotte
wordt in dit proefschrift aangetoond dat de berekende bewijsverplichtingen een
sluitende bewijs opleveren voor de corresponderende bewijsschets, en dat de
correctheid van iedere geldige bewijsschets met behulp van deze calculus aange-
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toond kan worden (voor zover dit van de calculus athangt).

De genoemde calculus wordt beschreven in de eerste hoofdstukken van dit
proefschrift. De laatste drie hoofdstukken beschrijven uitbreidingen van de cal-
culus en een applicatie waarmee de ontwikkelde technieken toegepast kunnen
worden op Java programma’s.

Hoofdstuk 2 geeft een overzicht van de belangrijkste kenmerken van object-
georiénteerde programmeertalen en definieert een eenvoudige taal waarin al deze
eigenschappen samengebracht zijn. Voor deze taal wordt een formele semantiek
gegeven, zodat de betekenis van alle taalconstructen eenduidig vastgelegd is.

Het volgende hoofdstuk bevat een formele definitie van bewijsschetsen. Maar
eerst wordt de specificatietaal beschreven waarin de onderdelen van bewijsschet-
sen uitgedrukt worden. Zowel de taal als de bewijsschetsen krijgen een formele
semantiek.

In het vierde tot en met het zesde hoofdstuk wordt de calculus opgebouwd
aan de hand van de verschillende taalconstructen in objectgeoriénteerde pro-
grammeertalen. Allereerst worden in Hoofdstuk 4 toekenningen behandeld.
Voor toekenningen aan lokale variabelen en voor toekenningen aan velden van
objecten wordt een zwakste preconditie calculus gedefinieerd. Uitgelegd wordt
hoe omgegaan kan worden met het verschijnsel dat objecten meerdere gelijkna-
mige velden kunnen hebben door overerving. Ook het beruchte alias probleem
wordt behandeld.

Hoofdstuk 5 is een centraal hoofdstuk van dit proefschrift. Het introduceert
een nieuwe manier om bewijsverplichtingen te genereren voor aanroepen van
procedures in objectgeoriénteerde programma’s. Voor dit doel wordt een zoge-
naamde aanpassingsregel (adaptation rule) ontwikkeld. Ook wordt uitgebreid
beschreven waarom een dergelijke regel noodzakelijk is voor de mechanische
generatie van bewijsverplichtingen in de context van bewijsschetsen.

Hoofdstuk 6 beschrijft het laatste onderdeel van de basiscalculus: een zwak-
ste preconditie calculus voor object allocatie. Ook wordt ingegaan op de ge-
neratie van bewijsverplichtingen voor de daarop volgende initialisatiefase van
objecten.

Hoofdstuk 7 rondt het eerste deel van het proefschrift af. Het begint met
een samenvatting van de ontwikkelde calculus. Daarna volgen er bewijzen van
twee belangrijke eigenschappen van de calculus. Eerst wordt aangetoond dat
de berekende bewijsverplichtingen een sluitende bewijs opleveren voor de cor-
responderende bewijsschets. Vervolgens wordt bewezen dat de correctheid van
iedere geldige bewijsschets met behulp van de calculus aangetoond kan worden.

De hierboven genoemde technieken zijn geschikt voor bewijsschetsen van ge-
sloten programma’s; dat zijn programma’s waarvan alle code beschikbaar is.
In Hoofdstuk 8 worden de problemen rond programma-uitbreidingen behan-
deld. Het hoofdstuk begint met een formele definitie van behavioral subtyping
in bewijsschetsen. Vervolgens wordt een nieuwe manier beschreven waarmee
nagegaan kan worden of een bepaalde klasse gebruikt kan worden als behavioral
subtype van een andere klasse. Daarna worden nieuwe bewijsverplichtingen ge-
geven voor aanroepen van procedures. Met deze uitbreidingen wordt de calculus
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geschikt voor het modulair controleren van bewijsschetsen van open, uitbreid-
bare programma’s.

Tot op heden was niet duidelijk aan welke volledigheidseisen een calculus
voor open programma’s moet voldoen. Hoofdstuk 8 eindigt om die reden met
een nieuwe volledigheidsdefinitie. Bovendien wordt aan de hand van een voor-
beeldprogramma een probleem geschetst dat met de huidige technieken voor
bewijsschetsen van open programma’s nog niet opgelost kan worden.

Hoofdstuk 9 introduceert een nieuwe techniek die ondersteuning biedt voor
invarianten die gevoelig zijn de allocatie van nieuwe objecten. Uitgelegd wordt
hoe additionele formules die moeten gelden bij de allocatie van een nieuw object
kunnen garanderen dat een invariant niet ongemerkt geschonden wordt.

Tenslotte wordt in het tiende hoofdstuk een applicatie beschreven waarmee
de technieken die in dit proefschrift beschreven staan, toegepast kunnen worden
op bewijsschetsen van Java programma’s. De applicatie ondersteunt de gebrui-
ker bij het opstellen van de bewijsschetsen en berekent de corresponderende
bewijsverplichtingen. Vervolgens wordt er een stellingbewijzer gebruikt om de
geldigheid van de bewijsverplichtingen te onderzoeken. De resultaten van de
stellingbewijzer worden uiteindelijk getoond aan de gebruiker.
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waren we op tijd klaar voor de lunch. De leesbaarheid van mijn proefschrift is
sterk verbeterd door zijn adviezen. Bovendien wist hij vaak interessante ver-
banden aan te wijzen tussen mijn onderzoek en dat van veel andere informatici.

De leden van de leescommissie van mijn proefschrift wil ik bedanken voor hun
medewerking. Zij mogen hier niet ongenoemd blijven: Farhad Arbab, Ernst-
Riidiger Olderog, Wishnu Prasetya, Willem-Paul de Roever en Job Zwiers.

Met veel genoegen denk ik terug aan de bijeenkomsten in het kader van
het MobiJ-project. Ik kreeg er een kijkje in de keuken van het internationale
onderzoek. En ’s avonds werden er mooie verhalen verteld in allerlei Duitse
eetgelegenheden.

Ik wil ook al mijn collega’s van de Intelligent Systems groep bedanken voor
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te praten. Ook van de intensieve discussies heb ik veel geleerd. In het bijzonder
wil ik mijn kamergenoten Paul Harrenstein en Birna van Riemsdijk bedanken
voor de vele goede gesprekken. Paul stond ook altijd klaar om mij over alle
ETEX-hobbels op mijn pad te helpen.

Aalt-Jan van Dijk en Jan Reitsma waren meteen bereid mij als paranimf
terzijde te staan. Dat wil ik nu alvast met dank vermelden. Ik wens ze ook
allebei succes toe bij het voltooien van hun eigen proefschriften.

Aan mijn beide ouders heb ik veel te danken. Zij hebben mij tijdens mijn
studiejaren (en lang daarvoor) altijd gesteund en leven ook nu nog op allerlei
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manieren mee. Zulke ouders durf ik iedereen toe te wensen.

En dan is er nog één reisgenoot over. Ook zij heeft van heel dichtbij mijn
tocht meegemaakt. Ze was op veel momenten onmisbaar. Met haar hoop ik nog
lang mijn weg te vervolgen. Natuurlijk heb ik het dan over mijn lieve echtgenote
Anne Marie.
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